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Abstract

The Imdme package decomposes analysis of variance (ANOVA) through linear mod-
els on designed multivariate experiments, allowing ANOVA-principal component analysis
(APCA) and ANOVA-simultaneous component analysis (ASCA) in R. It also extends both
methods with the application of partial least squares (PLS) through the specification of
a desired output matrix. The package is freely available from Bioconductor and licensed
under the GNU General Public License.

ANOVA decomposition methods for designed multivariate experiments are becoming
popular in “omics” experiments (transcriptomics, metabolomics, etc.), where measure-
ments are performed according to a predefined experimental design, with several exper-
imental factors or including subject-specific clinical covariates, such as those present in
current clinical genomic studies. ANOVA-PCA and ASCA are well-suited methods for
studying interaction patterns on multidimensional datasets. However, currently an R
implementation of APCA is only available for Spectra data in the ChemoSpec package,
whereas ASCA is based on average calculations on the indices of up to three design ma-
trices. Thus, no statistical inference on estimated effects is provided. Moreover, ASCA is
not available in an R package.

Here, we present an R implementation for ANOVA decomposition with PCA/PLS
analysis that allows the user to specify (through a flexible formula interface), almost
any linear model with the associated inference on the estimated effects, as well as to
display functions to explore results both of PCA and PLS. We describe the model, its
implementation and two high-throughput microarray examples: one applied to interaction
pattern analysis and the other to quality assessment.
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1. Introduction

Current “omics” experiments (proteomics, transcriptomics, metabolomics or genomics) are
multivariate in nature. Modern technology allows us to explore the whole genome or a big
subset of the proteome, where each gene/protein is in essence a variable explored to elucidate
its relationship with an outcome. In addition, these experiments are including an increasing
number of experimental factors (time, dose, etc.) from design or subject-specific information,
such as age, gender and linage, which are then available for analysis. Hence, to decipher exper-
imental design or subject-specific patterns, some multivariate approaches should be applied,
with principal component analysis (PCA) and partial least squares (PLS) regression being the
most common. However, it is known that working with raw data might mask information of
interest. Therefore, analysis of variance (ANOVA )-based decomposition is becoming popular
to split variability sources before applying such multivariate approaches.

Seminal works on genomics were that of Haan, Wehrens, Bauerschmidt, Piek, Schaik, and
Buydens (2007) on ANOVA-PCA (APCA) and of Smilde, Jansen, Hoefsloot, Lamers, Greef,
and Timmerman (2005) on ANOVA-SCA (ASCA) models. However, to the best of our knowl-
edge an R (R Core Team 2013) implementation of APCA is only available for Spectra data in
the R package ChemoSpec by Hanson (2012). Regarding ASCA, as there is no R package for
this model, it can only be used by uploading script-function files resulting from a MATLAB
(The MathWorks, Inc. 2011) code translation (Nueda et al. 2007). In addition, ASCA only
accepts up to three design matrices, which limits its use. Moreover, coefficient estimations are
based on average calculations using binary design matrices, without any statistical inference
available for them.

Here, we provide a flexible linear model-based decomposition framework. Almost any model
can be specified, according to the experimental design, by means of a flexible formula inter-
face. Because coefficient estimation is carried out by means of maximum likelihood, statistical
significance is naturally given. The framework also provides the capacity to perform PCA
and PLS analysis on appropriate ANOVA decomposition results as well as graphical repre-
sentations. The implementation is well-suited for direct analysis of gene expression matrices
(variables on rows) from high-throughput data such as microarray or RNA-seq experiments.
Below we provide two examples to introduce the user to the application of the package,
through the exploration of interaction patterns and assessment of microarray experiment
quality.

2. The model

A detailed explanation of ANOVA decomposition and multivariate analysis can be found
in Smilde et al. (2005) and Zwanenburg, Hoefsloot, Westerhuis, Jansen, and Smilde (2011).
Briefly and without the loss of generality, let us assume a microarray experiment where the
expression of (G1, G2, ..., Gg4) genes are arrayed in a chip. In this context, let us consider
an experimental design with two main factors: A, with a levels (A1, Aa,..., A;,..., A,) and
B, with b levels (B1, Ba, ..., Bj, ..., By), with replicates Ry, R, ..., Ry, ..., R, for each Ax B
combination levels. After preprocessing steps are performed as described in Smyth (2004),
each chip is represented by a column vector of gene expression measurements of g x 1. Then,
the whole experimental data is arranged into a g xn expression matrix (X), where n = axbxr.
In this data scheme, single gene measurements across the different treatment combinations
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(A; x Bj) are presented in a row on the X matrix, as depicted in Figure 1. An equivalent X
matrix structure needs to be obtained for 2D-DIGE or RNA-seq experiments and so forth.

Regardless of the data generation, the ANOVA model for each gene (row) in X can be
expressed as (1):

Tijk = o+ o + B + oy X By + €, (1)

where ;5. is the measured expression for “some” gene, at combination “ij” of factors A and
B for replicate k; u is the overall mean; «, 8 and « x 8 are the main and interaction effects
respectively; and the error term e;, ~ N (0,02). In addition, (1) can also be expressed in
matrix form for all genes:

X=X+ Xa+Xs+Xes+E= > X +E, (2)
ZE{[i,Oé,ﬁ,Oéﬂ}

where the matrices X; and E are of dimension g x n and contain the level means of the
corresponding /th term and the random error respectively. However, in the context of linear
models X; can also be written as a linear combination of two matrix multiplications in the
form of (3):

X= Y  X;+E= Y BZ +E=B.Z]+...+BapZlz+E=
le{p,o.8,a8} le{w,o.8,a8}
pl" + BoZy + ...+ BagZag+ E, (3)

where B; and Z; are referenced in the literature as coefficient and model matrices of dimensions
g xmy and n x m;), respectively, and m;) is the number of levels of factor [. The first term
is usually called intercept, with B, = p and Z,, = 1 being of dimension g x 1 and n x 1,
respectively. In this example, all Z; are binary matrices, identifying whether a measurement
belongs (“1”) or not (“0”) to the corresponding factor.

In the implementations provided by Smilde et al. (2005) and Nueda et al. (2007), the estima-
tion of the coefficient matrices is based on calculations of averages using the design matrix (up
to three design matrices Z, gq3), to identify the average samples. In theory, these authors
fully decompose the original matrix as shown in (1). On the contrary, in this package the
model coefficients are estimated, iteratively, by the mazimum likelihood approach, using the
1mFit function provided by limma package (Smyth et al. 2011). Consequently, three desirable
features are also incorporated:

1. Flexible formula interface to specify any potential model. The user only needs to
provide: i) the gene expression matrix (X), ii) the experimental data.frame (design)
with treatment structure, and iii) the model using a formula interface, just as in a
call to the R function 1m. Internal a model.matrix call, will automatically build the
appropriate Z matrices, overcoming the constraint on factorial design size, and tedious
model matrix definitions.

2. Hypothesis tests on coefficient matrices B;. A T test is automatically carried out for
the sth gene model, to test whether or not the oth coefficient is equal to zero, i.e.,
Hy : bso = 0 vs. Hy : bgy # 0. In addition, an F' test is performed to simultaneously
determine whether or not all by, are equal to zero.
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3. Empirical Bayes correction can also be achieved through the eBayes function in package
limma. It uses an empirical Bayes method to shrink the row/gene-wise sample variances
towards a common value and to augment the degrees of freedom for the individual
variances (Smyth 2004).

By contrast, Haan et al. (2007) estimate the main and interaction effects by overall mean
subtraction. Hence, genes need to be treated as an additional factor. Meanwhile, in the
implementations by Smilde et al. (2005) and Nueda et al. (2007), the estimations are obtained
on a gene-by-gene basis, as in (1). Therefore, in a two-way factor experiment, such as time x
ozxygen, De Haan’s model includes two additional double interactions and a triple interaction,
because genes are treated as a factor, unlike the models by Smilde et al. (2005) and Nueda
et al. (2007).

2.1. The decomposition algorithm

The ANOVA model (2) is decomposed iteratively using (3), where in each step the [th coeffi-
cients B;, F; matrices and &12 are determined. Then, the particular term contribution matrix
X = BZZZT is subtracted from the preceding residuals to feed the next model, as depicted in

(4):

X=X, +Xoa+Xs+Xes+E= > X +E
le{u7a7ﬁ7a5}
Step fu : X=X,+E,=X=DB,7, +FE,= E,=X-B,Z,
Step « : E,=Xo+Ey,=FE,=ByZ) + B, = E, = E, — BoZ,
Step [ : E_4 :Xl+El:>El,1:BlZlT—i-EA’l?EA‘l:El,l—BlZIT (4)
Step af3 : Eﬁ:Xag+E=>E5:BQBZJB+EA:>EA=E5—BQ5Z55

Where the hat (“°”) denotes estimated coefficients. In this implementation, the first step
always estimates the intercept term, i.e., formula = ~ 1 in R style, with éu = ftand Z, = 1.
The following models will only include the Ith factor without the intercept, i.e., formula =
~ 1th_term - 1, where 1th_term stands for «, § or af in this example. This procedure is
quite similar to the one proposed by de B. Harrington, Vieira, Espinoza, Nien, Romero, and
Yergey (2005).

2.2. PCA and PLS analyses

These methods explain the variance/covariance structure of a set of observations (e.g., genes)
through a few linear combinations of variables (e.g., experimental conditions). Both methods
can be applied to the I[th ANOVA decomposed step of (4) to deal with different aspects:

e PCA concerns with the wvariance of a single matrix, usually with the main objectives
of reducing and interpreting data. Accordingly, depending on the matrix to which it is
applied, there are two possible methods: ASCA, when PCA is applied to the coefficient
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matrix, B, (Smilde et al. 2005); and APCA when PCA is calculated on the residual,
Ey_1. The latter is conceptually an ASCA and is usually applied to, X; + E, i.e., the
mean factor matrix X, plus the error of the fully decomposed model E of (1), as in
Haan et al. (2007).

e PLS not only generalizes but also combines features from PCA and regression to explore
the covariance structure between input and some output matrices, as described by Abdi
and Williams (2010) and Shawe-Taylor and Cristianini (2004). It is particularly useful
when one or several dependent variables (outputs; O) must be predicted from a large and
potentially highly correlated set of independent variables (inputs). In our implementa-
tion, the input can be either the coefficient matrix El or the residual Ej_;. According
to the choice, the respective output matrix will be a diagonal 0 = diag (nrow(B;)) or
design matrix O = Z;. In addition, users can specify their own output matrix, O, to
verify a particular hypothesis. For instance, in functional genomics it could be the Gene
Ontology class matrix as used in gene set enrichment analysis (GSEA) by Subramanian,
Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander, and
Mesirov (2005).

When working with the coefficient matrix, the user will not have to worry about the expected
number of components in X (rank of the matrix, given the number of replicates per treatment
level), as suggested by Smilde et al. (2005), because the components are directly summarized
in the coefficient B; matrix. In addition, for both PCA /PLS, the Imdme package (Fresno and
Fernandez 2013a) also offers different methods to visualize results, e.g., biplot, loadingplot
and screeplot or leverage calculation, in order to filter out rows/genes as in Tarazona,
Prado-Lépez, Dopazo, Ferrer, and Conesa (2012).

3. Examples

In this section we provide an overview of the Imdme package (Fresno and Ferndndez 2013a),
using two examples. The package is freely available on the Bioconductor website (Gentleman
et al. 2004), licensed under the GNU General Public License. The first example consists
of an application of the analysis of gene expression interaction pattern, where we address:
how to define the model, undertake ANOVA decomposition, perform PCA /PLS analysis and
visualize the results. In the second example, the method is applied to assess the quality of
high-throughput microarray data.

From here onwards, some outputs were removed for reasons of clarity and the examples were
performed with options(digits = 4).

3.1. Example 1: Package overview

The original data files for the first example are available at Gene Expression Omnibus (Edgar,
Domrachev, and Lash 2002), with accession GSE37761 and in the stemHypoxia package
(Fresno and Ferndndez 2013b) on the Bioconductor website. In this dataset, Prado-Lopez
et al. (2010) studied differentiation of human embryonic stem cells under hypoxia conditions.
They measured gene expression at different time points under controlled oxygen levels. This
experiment has a typical two-way ANOVA structure, where factor A stands for “time” with
a = 3 levels {0.5, 1, 5 days}, factor B stands for “ozygen” with b = 3 levels {1, 5, 21%} and
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r = 2 replicates, yielding a total of 18 samples. The remainder of the dataset was excluded in
order to have a balanced design, as suggested by Smilde et al. (2005) to fulfil orthogonality
assumptions in the ANOVA decomposition.

First, we load the data, which consists of the experimental design and gene expression in-
tensities M.

R> data("stemHypoxia", package = "stemHypoxia')

Now we manipulate the design object to maintain only those treatment levels which create a
balanced dataset. Then, we change rownames (M) of each gene in M, with their corresponding
M$Gene_ID.

R> timeIndex <- design$time Jinj, c(0.5, 1, 5)
R> oxygenIndex <- design$oxygen %inj c(1, 5, 21)
R> design <- design[timeIndex & oxygenIndex, ]
R> design$time <- as.factor(design$time)

R> design$oxygen <- as.factor(design$oxygen)

R> rownames (M) <- M$Gene_ID

R> M <- M[, colnames(M) 7inj}, design$samplename]

Now we can explore microarray gene expression data present in the M matrix, with g =
40736 rows (individuals/genes) and n = 18 columns (samples/microarrays). In addition, the
experimental design data frame design contains main effect columns (e.g., time and ozygen)
and the sample names (samplename). A brief summary of these objects is shown using the
head function:

R> head(design)

time oxygen samplename

21 12h_21_1
21 12h_21_2

3 0.5 1 12h_1_1
4 0 1 12h_1_2
5 0 5 12h_5_1
6 O 5 12h_5_2
7 0
8 0

g o1 o oo

R> head(M) [, 1:3]

12h_1_1 12h 1.2 12h_5_1
A_24_P66027 7.182 7.512 8.225
A_32_P77178 6.385 6.035 6.440
A_23_P212522 9.562 9.390 9.211
A_24_P934473 6.288 6.397 6.265
A_24_POo671 12.007 11.995 12.282
A_32_P29551 10.176  9.273 9.360
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Once the preprocessing of the experiment data is completed, package lmdme needs to be
loaded. This instruction will automatically load the required packages, i.e., limma (Smyth
et al. 2011) and pls (Mevik, Wehrens, and Liland 2011). Once the data are loaded, the
ANOVA decomposition of Section 2.1 can be carried out using (4) by calling 1mdme function
with the model formula, the actual data and the experimental design.

R> library("lmdme")
R> fit <- Ilmdme(model = “time * oxygen, data = M, design = design)
R> fit

Imdme object:
Data dimension: 40736 x 18
Design (head):

time oxygen samplename

0.5 1 12h_1_1
1 12h_1_2
5 12h_5_1

5 12h_5_2
21 12h_21_1
21 12h_21_2

O ~NO Ok W
O O O O O
o o1 oo

Model:"time * oxygen
Model decomposition:

Step Names Formula CoefCols
1 1 (Intercept) 1 1
2 2 time T -1+ time 3
3 3 oxygen ” -1 + oxygen 3
4 4 time:oxygen ~ -1 + time:oxygen 9

The results of lmdme will be stored inside the ‘fit’ object, which is an 5S4 class. By printing
the ‘fit’ object, a brief description of the data and design used are shown as well as the
Model applied and a summary of the decomposition. This data.frame describes the applied
Formula and Names for each Step, as well as the amount of estimated coefficients for each
gene (CoefCols).

At this point, we can choose those subjects/genes in which at least one interaction coefficient
is statistically different from zero (F test on the coefficients) with a threshold p value of 0.001
and perform ASCA on the interaction coefficient term, and PLS against the identity matrix
(default option).

R> id <- F.p.values(fit, term = "time:oxygen") < 0.001

R> decomposition(fit, decomposition = "pca", type = "coefficient",

+ term = "time:oxygen", subset = id, scale = "row")

R> fit.plsr <- fit

R> decomposition(fit.plsr, decomposition = "plsr", type = "coefficient",

+ term = "time:oxygen", subset = id, scale = "row")

These instructions will perform ASCA and PLS decomposition over the scale = "row"

version of the 305 selected subjects/genes (subset = id) on the ‘fit’ and ‘fit.plsr’ object,
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Figure 2: Biplot on the decomposed interaction coefficients (time x ozygen) on genes satisfying
the F test with p value < 0.001. Notice that the interaction matrix in the ASCA model is of
rank 9. Thus, 9 arrows are expected and the score of the 305 selected subjects are projected
onto the space spanned by the first two principal components in Figure 2(a).

respectively. The results will be stored inside these objects. In addition, we have explicitly
indicated the decomposition type = "coefficient" (default value) in order to apply it to
the coefficient matrix, on "time:oxygen" interaction term (Byg).

Now, we can visualize the associated biplots (see Figure 2 (a) and (b)).

R> biplot(fit, xlabs = "o", expand = 0.7)

R> biplot(fit.plsr, which = "loadings", xlabs = "o",

+ ylabs = colnames(coefficients(fit.plsr, term = "time:oxygen")),
+ var.axes = TRUE)

For visual clarity, xlabs are changed with the "o" symbol, instead of using the rownames (M)
with manufacturer ids, and the second axis is printed with the expand = 0.7 option to avoid
cutting off loading labels. In addition, PLS biplot is modified from the default pls behavior
to obtain a graph similar to ASCA output (which = "loadings"). Accordingly, ylabs is
changed to match the corresponding coefficients of the interaction term and var.axes is
set to TRUE.

The ASCA biplot of the first two components (see Figure 2(a)), explain over 70% of the
coefficient variance. The genes are arranged in an elliptical shape. Thus, it can be observed
that some genes tend to interact with different combinations of time and oxygen. A similar
behavior is observed in the PLS biplot in Figure 2(b).

The interaction effect on the ‘fit’ object can also be displayed using the loadingplot function
(see Figure 3). For every combination of two consecutive levels of factors (time and oxygen),
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time:oxygen

0.4

0.0

0.5 1 5

Figure 3: ANOVA simultaneous component analysis loadingplot on genes satisfying the
F test with p value < 0.001 on the interaction coefficients (time x ozygen).

the figure shows an interaction effect on the first component, which explains 50.61% of the
total variance of the "time:oxygen" term.

R> loadingplot(fit, term.x = "time", term.y = "oxygen")

In the case of an ANOVA-PCA/PLS analysis, the user only needs to change the type =
"residuals" parameter in the decomposition function and perform a similar exploration,
as will be shown in Section 3.2.

3.2. Example 2: Application to quality assessment

In this example we use two-color microarray technology to explore gene expression profiles
(data available as supplementary material and at http://www.bdmg.com.ar/). Expression
intensity at different time points under diverse substrate growing conditions (protein concen-
tration) on melanoma cell lines was measured. This experiment also has a two-way ANOVA
structure, where factor A stands for “time” with a = 3 levels {0.5, 4, 12 hours}, factor B
stands for “concentration” with b = 3 levels {0, 1, 10 units} and r = 3 replicates, yield-
ing a total of 27 samples. Data owners are particularly interested in finding genes with a
differential expression using an F' test with a p value < 0.05 for the time x concentration
interaction term, which they have already confirmed in previous experiments. Preliminary
results on differential expression analysis using limma did not show any interaction pattern.
Here we show that, by means of the lmdme approach, we were able to identify unexpected
technical effects that could bias biological interpretation and demonstrated how to remove
this unexpected artefact through package Imdme.

Once again, we need to load the Imdme package and experimental data, which were previously
stored on file. Using load(file = "example2.RData") the experimental design and gene
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expression intensities, M, will be loaded. It is always recommended to explore these objects,
to check if they were properly loaded, using the head function, as we did in the previous
example.

R> library("lmdme")
R> load(file = "example2.RData")
R> head(design)

Time Conc SampleName HybridDate

1 0.5 0 221732.gpr nov
2 0.5 0 338515.gpr jan
3 0.5 0 339577.gpr feb
4 0.5 1 221678.gpr nov
5 0.5 1 338514.gpr jan
6 0.5 1 339576.gpr feb

R> head(M) [, 1:3]

221732.gpr 338515.gpr 339577.gpr

[1,] 0.1287 0.1181 0.72294
(2,] -0.1653 -0.1080 0.10825
[3,] -0.5227 -0.2300 -0.29959
[4,] 0.3142 0.5636 0.07366
(5,1] 0.1519 0.2008 -1.10059
[6,] 0.2542 -0.1083 -0.40284

The dimension of matrix M is g = 2520 rows (individuals/genes) and n = 27 columns (sam-
ples/microarrays). In addition, the experimental design data frame design contains main
effect columns (i.e., Time and Conc for concentration), the SampleName and the date when
the chips were hybridized (HybridDate).

Using the 1mdme function we can fit model = ~ Time * Conc using empirical Bayes = TRUE
correction and verbose = TRUE to give the user feedback about the progress of the ANOVA
decomposition. In addition, we can check if the results obtained by the data owners about
non-differently expressed gene for the interaction term were correct.

R> fit <- Ilmdme(model = ~ Time * Conc, data = M, design = design,
+ Bayes = TRUE, verbose = TRUE)

testing: “1

testing: " Time -1

testing: ~ Conc -1

testing: ~ Time:Conc -1

R> id.fit <- F.p.values(fit, term = "Time:Conc") < 0.05
R> sum(id.fit)

(11 0
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Figure 4: ANOVA-PCA biplot on the interaction residuals (time X concentration).

The result of sum(id.fit) which is equal to 0 promotes further exploration of the data. In
this context the APCA approach can be applied to the ‘fit’ object to get a visual exploration

on the biplot on term = "Time:Conc" (see Figure 4(a)).
R> decomposition(fit, "pca", scale = "row", type = "residual")
R> biplot(fit, term = "Time:Conc", xlabs = ".", expand = 0.9)

Some strange, uncontrolled variability source pattern seems to cluster the chips into three
groups (see Figure 4(a)). By inspecting the data frame design, we decided to label HybridData
(Hybridization Date) to explore a possible relationship between the observed biplot clusters.

R> biplot(fit, term = "Time:Conc", ylabs = design$HybridDate, xlabs = ".",
+ expand = 0.8)

Figure 4(b) shows that the cluster structure may be associated with hybridization date, an
unconsidered variability source.

Given this evidence, we can use PLS with a user-defined Omatrix using the model.matrix
function with “HybridDate - 1 with the design object and ask whether or not the data cope
or not with this structure.

R> decomposition(fit, "plsr", scale = "row", type = "residual",

+ term = "Time:Conc",

+ Omatrix = model.matrix(~ HybridDate - 1, design))

R> biplot(fit, term = "Time:Conc", which = "loadings", xlabs = ".",

+ var.axes = TRUE)
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Figure 5: Biplot of PLS regression on the interaction residuals (time
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X concentration) using

In addition, visual exploration of the resulting biplot of Figure 5 proved our assumption.
The data owners explained to us that, the original deployment was planned to hybridize the
three replicates on the same day. But, due to custom constraints, it had to be modified to
hybridize one replicate per shipment reception: the first in November (nov), the second in
January (jan) and the last one in February (feb). The confirmation of our data exploration
with the constraint in randomization suggests that HybridDate should be included in the

model:

R> fit.date <- lmdme (model = ~ HybridDate + Time * Conc, data = M,

+ design = design, Bayes = TRUE)

R> id.fit.date <- F.p.values(fit.date, term = "Time:Conc") < 0.05

R> sum(id.fit.date)

[1] 13

By including HybridDate in the model, we were able to estimate and remove this effect.
Then, the statistical inference about the individuals/genes has been modified, showing 13
candidates affected by time x concentration levels. In addition, the corresponding APCA
biplot of Figure 6 shows that the previous pattern of Figure 4(a) was removed.

R> decomposition(fit.date, "pca", scale = "row", type = "residual")
R> biplot(fit.date, term = "Time:Conc", xlabs = ".", expand = 0.8)

13
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Figure 6: ANOVA-PCA biplot on the interaction residuals (time x concentration) including
hybridization date in the model.
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