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Abstract

Quantifying non-linear dependence structures between two random variables is a chal-
lenging task. There exist several bona-fide dependence measures able to capture the
strength of the non-linear association, but they typically give little information about how
the variables are associated. This problem has been recognized by several authors and has
given rise to the concept of local measures of dependence. A local measure of dependence
is able to capture the “local” dependence structure in a particular region. The idea is
that the global dependence structure is better described by a portfolio of local measures
of dependence computed in different regions than a one-number measure of dependence.
This paper introduces the R package localgauss which estimates and visualizes a measure
of local dependence called local Gaussian correlation. The package provides a function
for estimation, a function for local independence testing and corresponding functions for
visualization purposes, which are all demonstrated with examples.
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1. Introduction

The Pearson correlation coefficient is by far the most widely used measure of dependence
between two stochastic variables. For variables with a linear relationship it measures both
the strength and the direction of the (linear) dependence, and for jointly Gaussian variables
it completely characterizes the dependence structure. However, it is well known that it is not
adequate in many cases, and one can easily construct examples where there is complete depen-
dence, but where the correlation coefficient is 0 (e.g., take Y = X2 where X is any symmetric
variable with mean 0 and existing third moment). Other valid measures of dependence exist
(see e.g., Rosenblatt and Wahlen 1992; Skaug and Tjøstheim 1993; Tjøstheim 1996; Székely,
Rizzo, and Bakirov 2007; Székely and Rizzo 2009), but unlike the Pearson correlation, these
measures typically do not distinguish between positive and negative dependencies. Indeed,
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in general a signed one-number measure cannot properly capture non-linear dependence (see
e.g., Embrechts, McNeil, and Straumann 2002). The issue of defining positive and negative
dependence for variables in a non-linear relationship is a rather delicate one (see e.g., Lehmann
1966). For such variables there can be regions within their support where there is stronger
dependence, positive or negative, and other regions where it is weaker. For example, it has
been observed that the dependence between financial variables becomes stronger during an
economic downturn, leading to a stronger association between large losses. It may be more
suitable to describe such situations by a local measure of dependence that can characterize
the dependence structure within different regions of the data, rather than using a one-number
measure.

This paper accompanies the R package localgauss, publicly available for Linux, Mac and
Windows at the Comprehensive R Archive Network (CRAN, http://CRAN.R-project.org/
package=localgauss), which estimates and visualizes a novel local measure of dependence
called local Gaussian correlation, introduced by Tjøstheim and Hufthammer (2013). See also
Støve, Tjøstheim, and Hufthammer (2012), Berentsen, Støve, Tjøstheim, and ø (2013), Støve
and Tjøstheim (2014) and Berentsen and Tjøstheim (2014). R is a free software environment
for statistical computing and graphics (R Core Team 2013), and the R language is widely used
among statisticians.

The rest of the article is organized as follows. A brief review of a competing local measures
of dependence is presented below. An introduction to local Gaussian correlation and the
package localgauss is then described in Section 2. Finally, in Section 3, we demonstrate the
usage of the package on several examples.

1.1. Local measures of dependence

For two random variables X1 and X2, a local dependence measure is allowed to vary within
the support of (X1, X2). Besides this property, local measures of dependence proposed in
the statistical literature have quite different properties and motivations (see e.g., Berentsen
and Tjøstheim 2014, and references therein). The local measure with most similarities to
our methodology is perhaps the “local dependence function” proposed by Holland and Wang
(1987). This measure is derived by generalizing the concept of cross-product ratios in discrete
two-way contingency tables to the case of a continuous bivariate density and is given by

γ(x1, x2) =
∂2

∂x1∂x2
log f(x1, x2),

where f is the bivariate density of (X1, X2). Further motivation for γ is given in Jones (1996)
along with an empirical counterpart based on kernel estimates of the density and its deriva-
tives. Properties of γ are given in Jones (1996) and a method for visualizing the dependence
structure in bivariate data based on γ can be found in Jones and Koch (2003). Elements of
this methodology are adopted in our software to visually present the local dependence mea-
sure described in Section 2, and in many situations the two approaches give broadly similar
results (see Berentsen and Tjøstheim 2014). Software for the competing methodology can be
obtained from the second author of Jones and Koch (2003) upon request.

http://CRAN.R-project.org/package=localgauss
http://CRAN.R-project.org/package=localgauss
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2. Local Gaussian correlation and package localgauss

The idea of local Gaussian correlation is very simple. Let X = (X1, X2) be a random variable
with a general bivariate density f . Then in a neighborhood of each point x = (x1, x2) we fit
a bivariate Gaussian density

ψ(v, θ(x)) =
1

2πσ1(x)σ2(x)
√

1− ρ2(x)
exp

[
−1

2

1

1− ρ2(x)

(
(v1 − µ1(x))2

σ21(x)
−

2ρ(x)
(v1 − µ1(x))(v2 − µ2(x))

σ1(x)σ2(x)
+

(v2 − µ2(x))2

σ22(x)

)]
. (1)

where v = (v1, v2)
> is the running variable in the Gaussian distribution and

θ(x) = (µ1(x), µ2(x), σ1(x), σ2(x), ρ(x)),

with µi(x), i = 1, 2 the local means, σi(x), i = 1, 2 the local standard deviations and ρ(x) the
local correlation at the point x. The population values of the local parameters θb(x) = θ(x)
are obtained by minimizing the local penalty function

q =

∫
Kb(v − x) [ψ (v, θ(x))− logψ(v, θ(x))f(v)] dv, (2)

where Kb(v−x) = (b1b2)
−1K(b−11 (v1−x1))K(b−12 (v2−x2)) is a product kernel with bandwidth

b = (b1, b2), and we define the “local Gaussian correlation” ρb(x) = ρ(x) as the last element of
the vector θ(x) that minimizes q. Moving to another point x′, q can be used to obtain a new
Gaussian approximation density ψ(v, θ(x′)), which approximates f in a neighborhood of x′.
In this way f may be represented by a family of Gaussian bivariate densities as x varies, and
in each specific neighborhood of x, the local dependence properties are described by ρ(x). We
may define the (local) dependence to be positive if ρ(x) > 0 and negative if ρ(x) < 0.

The penalty function q was used in Hjort and Jones (1996) for density estimation purposes,
and later by Tjøstheim and Hufthammer (2013) in the development of local Gaussian corre-
lation. In general, q can be used to fit any parametric distribution to f locally, and in Hjort
and Jones (1996) it is argued that q can be interpreted as a locally weighted Kullback-Leibler
criterion for measuring the distance between f(·) and the chosen parametric distribution (in
our case ψ(·, θ(x))).

Given observations Xi = (Xi1, Xi2), i = 1, . . . , n, from f the corresponding estimates θ̂(x) are
obtained by maximizing the local log-likelihood function (see Hjort and Jones 1996)

L
(
X1, . . . , Xn, θ(x)

)
= n−1

∑
i

Kb(Xi − x) logψ(Xi, θ(x))−
∫
Kb(v − x)ψ(v, θ(x)) dv. (3)

To see that the local likelihood function (3) is consistent with the penalty function q, first
observe that when θ(x) is chosen to minimize q, it satisfies the set of equations

∂q

∂θj
=

∫
Kb(v − x)

∂

∂θj
{log(ψ(v, θ(x))}[ψ(v, θ(x))− f(v)] dv = 0, j = 1, . . . , 5. (4)

Using the notation

uj(·, θ) =
∂

∂θj
{logψ(·, θ)}, (5)
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and assuming E{Kb(Xi − x)uj(Xi, θ(x))} <∞, the law of large numbers gives almost surely

∂L

∂θj
= n−1

∑
i

Kb(Xi − x)uj(Xi, θ(x))−
∫
Kb(v − x)uj(v, θ(x))ψ(v, θ(x)) dv

→
∫
Kb(v − x)uj(v, θ(x))[f(v)− ψ(v, θ(x))] dv = − ∂q

∂θj
, j = 1, . . . , 5,

(6)

as n→∞ and we see that (6) can be identified with (4). Note that as b→∞ (3) reduces to the
ordinary log-likelihood for a Gaussian distribution ψ plus a constant, and hence ρ(x) reduces
to the ordinary global Gaussian correlation. For more details about the local parameters
and estimation using local likelihood, including limiting behavior as bi → 0, i = 1, 2, and
estimation of standard errors, we refer to Tjøstheim and Hufthammer (2013).

2.1. Function localgauss

The equations ∂L
∂θj

= 0, j = 1, . . . , 5, with ∂L
∂θj

given by (6) do not in general have closed form

solutions, hence (3) must be maximized directly. In the R package localgauss the function
localgauss() maximizes (3) for different values of x using a modified Newton’s method with
line-search and returns an S3 object of class ‘localgauss’. The function (3) is not everywhere
concave, and eigenvalue modification is therefore employed to ensure that the scaling matrix is
positive definite (Nocedal and Wright 1999, Chapter 6). The optimizer and objective function
are written in Fortran 90 (Metcalf and Reid 1999), and the source code for the gradient and
Hessian of (3) are generated using the automatic differentiation tool TAPENADE (Hascoët
and Pascual 2004).

The number M of points x = (x1, x2) for which we want to estimate the local Gaussian
correlation can be manually specified by the argument xy.mat which is an M times 2 matrix.
Alternatively, the selection of these points can be done using the methodology of Jones and
Koch (2003). First a regular N × N grid is placed across the area of interest. The regular
grid is then screened by selecting the grid points x1, . . . , xM satisfying f̂(xj) ≥ C, for some

constant C and a density estimator f̂ . For simple and quick implementation this is done
using the R package MASS (Venables and Ripley 2002). In localgauss() the values of N
and C are set by the arguments gsize and hthresh, respectively. If xy.mat is not specified
it will be selected internally by the method described above. Since (3) has to be optimized
for every estimation point, the computational time increases proportionally with the size of
xy.mat. Calling localgauss() with a 500 times 2 xy.mat, even for a rather large sample
size (n ≈ 1000), should not take longer than a few seconds with a personal computer of
today’s standard. An overview of the other arguments and output of localgauss() is given
in Table 1. Note that we have used the notation x and y for the marginal data vectors rather
than x1 and x2.

Choosing the bandwidth b = (b1, b2) in localgauss() is left to the user. In this way, the local
Gaussian correlation can be estimated with different bandwidths, reflecting the dependence
structure on different scales of locality increasing to the global correlation as b → ∞. The
population value ρb(x) = ρ(x) is defined as the minimizer of (2) with the bandwidth b fixed.
If one wants a more objective choice for estimating the limiting value ρ(x) as b→ 0, note that
Tjøstheim and Hufthammer (2013) propose a bandwidth algorithm that aims to balance the
variance of the estimated local parameters θ̂(x) versus the bias of the resulting density estimate
ψ(·, θ̂(x)). An alternative method is described in Berentsen et al. (2013) in the context of
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Arguments Description Default

x, y The two data vectors.
b1, b2 The bandwidth in the x-direction and y-direction, respectively.
gsize The gridsize (only used if xy.mat is not specified). 15

hthresh Grid points where a non-parametric density estimate is lower
than hthresh are omitted (only used if xy.mat is not specified). 0.001

xy.mat A M times 2 matrix of points where the local parameters are
to be estimated. NULL

Results Description

par.est M times 5 matrix of parameter estimates, with columns µ1, µ2,
σ1, σ2 and ρ.

eflag M -vector of exit flags from the optimizer. Estimations with exit
flags other than 0 should not be trusted.

hessian The negative Hessian of the objective function (3).

Table 1: Summary of arguments and results of localgauss().

copula goodness-of-fit testing. A method of general applicability is likelihood cross-validation
as explained in Berentsen and Tjøstheim (2014). It has worked well in cases tested by us, but
may require screening of outlying observations (see Berentsen and Tjøstheim 2014).

2.2. Function localgauss.indtest

In an independence testing situation it may be of interest to pinpoint possible discrepancies
between the data and the null-hypothesis of independence. Such discrepancies can be inves-
tigated more closely by doing several “local tests of independence” as described in Berentsen
and Tjøstheim (2014). This idea is similar but not identical to the idea of local permutation
testing described in Jones and Koch (2003).

The local test of independence is based on estimating the null-distribution of the estimated
local Gaussian correlation by re-sampling from the product of the empirical marginal dis-
tributions. This is a standard way of estimating the null-distribution for any statistic suit-
able for independence testing. The difference in the present case is that we may have a
portfolio of test statistics ρ̂(xi) for several different points xi, and that we need to pro-
duce the null distribution for each of them. In the R package localgauss this can be done
by passing a ‘localgauss’ object, produced by the function localgauss(), to the func-
tion localgauss.indtest(). The null-distribution is estimated for each point specified in
xy.mat in the ‘localgauss’ object. The function localgauss.indtest() then returns an
S3 object of class ‘localgauss.indtest’, and the result of the test can be found in the vec-
tor test.results: An estimated local correlation for the original data significantly larger
than the null-distribution is indicated with +1; an estimated local correlation for the original
data insignificant with respect to the null-distribution is indicated with 0; an estimated local
correlation for the original data significantly smaller than the null-distribution is indicated
with −1. Recall that when b → ∞, the local log-likelihood (3) reduces to the ordinary log-
likelihood for Gaussian variables. Note therefore that all the results in test.results will
coincide with that of a bootstrap test of the global Gaussian correlation when b→∞.

In general, the choice of bootstrap replicas R is a compromise between reducing the effect of
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Arguments Description Default

locobj S3 object of class ‘localgauss’ produced by the
localgauss function.

R Number of bootstrap replica. 10

alpha Significance level (note: two sided test). 0.10

seed Random seed used for bootstrap. 1

Results Description

localgauss Simply returns argument locobj.
upper Vector containing the 1−alpha/2 quantiles of the null-

distributions.
lower Vector containing the alpha/2 quantiles of the null-

distributions.
test.results Vector containing the test results.

Table 2: Summary of arguments and results of localgauss.indtest().

random sampling error and available computing power and time. Our experience suggests
that using R = 500 bootstrap replicas is adequate, with larger values having little effect on
the results. This means that the computational time can be significant even in situations
where the original ‘localgauss’ object only takes a few seconds to produce. The re-sampling
loop is constructed using the R package foreach (Kane, Emerson, and Weston 2013; Revolu-
tion Analytics and Weston 2013b) which supports parallel execution for users with multiple
processors/cores on their computer or access to multiple nodes of a cluster. The function
localgauss.ind() will automatically run in parallel if a “parallel backend” compatible with
the foreach package is registered. Registering a parallel backend in R can be done via e.g., the
R package doParallel (Revolution Analytics and Weston 2013a) which supports both Unix-like
systems and Windows. When no parallel backend is registered localgauss.ind() will issue
a warning that it is running sequentially. Note that the computational time depends to a
large degree on the size of the xy.mat in the ‘localgauss’ object. An overview of the other
arguments and output of localgauss.indtest() is given in Table 2.

2.3. Graphics

Graphics are important for proper interpretation and presentation of the results given by the
functions localgauss() and localgauss.indtest() described above. The following plotting
routines are based on the R package ggplot2 (Wickham 2009).

The S3 method for graphically displaying a ‘localgauss’ object is invoked by applying plot()

to such an object. The function displays the estimated local Gaussian correlation ρ̂(xi) in tiles
for each point in xy.mat. The numerical value of ρ̂(xi) is indicated by a color gradient between
highcol (which represents large values) and lowcol (which represents low values). This color
gradient may be taken to be continuous (divergent.col.grad = FALSE) or divergent with
0 as midpoint (divergent.col.grad = TRUE). We recommend the former choice when the
range of the values of ρ̂(xi) is small. For the latter choice, values close to 0 are indicated with
the color white and we recommend this choice in the presence of both positive and negative
values of ρ̂(xi). If plot.text = TRUE the numerical value is added to each tile. An overview
of the other arguments of the S3 plot method for ‘localgauss’ objects are given in Table 3.
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Arguments Description Default

x S3 object of class ‘localgauss’ produced by
localgauss().

plot.text If TRUE, the numerical values of the estimated TRUE

local correlation are added to each tile.
plot.points If TRUE, the original observations are overlain. FALSE

tsize The font size used if plot.text is TRUE. 3

lowcol The color used to indicate small values of ρ̂(xi). "cyan"

highcol The color used to indicate large values of ρ̂(xi). "magenta"

point.col The color used for observation points if "black"

plot.points is TRUE.
point.size The size of observation points if plot.points is 1

TRUE.
xlab, ylab The label of the x-axis and y-axis, respectively.
divergent.col.grad If TRUE, a divergent color gradient between lowcol TRUE

and highcol with 0 as midpoint is used. If FALSE
an ordinary color gradient between lowcol and
highcol is used.

Table 3: Summary of arguments of S3 plot method for ‘localgauss’ objects.

Arguments Description Default

x S3 object of class ‘localgauss.indtest’ produced by the
localgauss.indtest function.

plot.points If TRUE, the original observations are overlain. FALSE

poscol Color indicating +1 test result. "magenta"

negcol Color indicating −1 test result. "cyan"

point.col The color used for observations points if plot.points is TRUE. "black"

point.size The size of observations points if plot.points is TRUE. 1

xlab, ylab The label of the x-axis and y-axis, respectively.

Table 4: Summary of arguments of S3 plot method for ‘localgauss.indtest’ objects.

Similarly, an S3 plot method for graphically displaying a ‘localgauss.indtest’ object is
available. The test.results from the ‘localgauss.indtest’ object are displayed in tiles
for each point in xy.mat. The values of test.results are indicated with poscol for +1,
negcol for −1 and white for 0. The resulting plot is an analogue to the “dependence map”
proposed in Jones and Koch (2003) for the local dependence function. It can be seen as a
compromise between the very fine details given by the estimated local Gaussian correlation
and the crude characterization of dependence given by a single global measure. An overview
of the other arguments of the S3 plot method for ‘localgauss.indtest’ objects are given
in Table 4.

3. Usage examples

In the following examples, all R code demonstrated assumes that the package has been loaded
and we set the random seed to make all the examples reproducible:
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R> library("localgauss")

R> set.seed(1)

3.1. Example 1: Bivariate Gaussian variables

We start by illustrating the basic usage of localgauss() in the case when X1 and X2 are
standard Gaussian with (global) correlation ρ = 0.6. The following code estimates local
parameters in the points (−1, 1), (0, 0) and (1, 1):

R> x <- rnorm(1000)

R> y <- 0.6 * x + sqrt(1 - 0.6^2) * rnorm(1000)

R> xy.mat <- rbind(c(-1, 1), c(0, 0), c(1, 1))

R> lg.out <- localgauss(x = x, y = y, xy.mat = xy.mat, b1 = 1, b2 = 1)

As a precautionary measure one should check that the output eflag only contains a string
of 0’s indicating that the optimization succeeded:

R> lg.out$eflag

[1] 0 0 0

The estimated local parameters are then given by the output par.est:

R> lg.out$par.est

mu_1 mu_2 sig_1 sig_2 rho

[1,] 0.02255388 0.0023722762 1.007630 0.9785351 0.5538728

[2,] 0.00913216 0.0006094236 1.015119 1.0021872 0.5681855

[3,] -0.02580466 -0.0319621089 1.023635 0.9948138 0.5830581

Note that the local Gaussians are not centered at the estimation points given by xy.mat.
Indeed, in the case of Gaussian f with parameters θ = (µ1, µ2, σ1, σ2, ρ), the solution to the
penalty function (2) is given by θ(x) = θ, hence the local Gaussians will be located at the
mean µ = (µ1, µ2). This also means that we have the appealing property that ρ(x) = ρ, and
as seen above the corresponding estimate is quite close to ρ = 0.6.

The following code creates a ‘localgauss’ object where xy.mat is generated internally using
the arguments gsize and hthresh:

R> lg.out2 <- localgauss(x = x, y = y, b1 = 1, b2 = 1, gsize = 15,

+ hthresh = 0.01)

Typically, ‘localgauss’ objects where the xy.mat is generated internally are well suited for
plotting using their corresponding S3 plot method. To check that the value of hthresh is suit-
able we recommend overlaying the observations in the plot to visually check that estimation
is done only in points with a neighborhood containing a “reasonable” amount of observations
(otherwise the value of hthresh should be adjusted). For the previous ‘localgauss’ object
this is done by

R> plot(lg.out2, plot.text = FALSE, plot.points = TRUE)
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Figure 1: Estimated local Gaussian correlation with overlain observations and value indicated
by color in the Gaussian case.
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Figure 2: Numerical value of estimated local Gaussian correlation in the Gaussian case.



10 localgauss: Estimating and Visualizing Local Gaussian Correlation in R

which produces the plot shown in Figure 1. Indeed, we see that the neighborhood of all points
in the area of estimation (colored pink) contains observations. By default the S3 plot method
will include the numerical value of the estimated local correlation. Thus we need only write

R> plot(lg.out2)

to obtain Figure 2. As expected, the local Gaussian correlation is constant equal to 0.6
everywhere modulo the sampling variation.

3.2. Example 2: Wikipedia model

Several simulated examples where the ordinary Pearson correlation fails to capture non-linear
dependence structure can be found at Wikipedia (2012). One of these examples can be
simulated in the following way

R> x <- runif(1000, -1, 1)

R> y <- (x^2 + runif(1000, 0, 1/2)) * sample(c(-1, 1), 1000, replace = TRUE)

A scatter-plot of these variables is displayed in Figure 3, where we clearly see a strong non-
linear relationship between the two variables. However, the sample correlation is

R> cor(x, y)

[1] -0.02702666

which is due to the symmetry between positive and negative dependence in the data. The
following code creates a ‘localgauss’ object and plots it without including numerical values
in each tile:

R> lg.out <- localgauss(x = x, y = y, b1 = 0.5, b2 = 0.5, gsize = 100,

+ hthresh = 0.15)

R> plot(lg.out, plot.text = FALSE)

This results in Figure 4. Note that the initial gridsize is gsize × gsize = 100× 100, which
after the screening procedure resulted in a 4684 times 2 xy.mat. This means that (3) must
be maximized for 4684 different points which on the first author’s laptop (with 2.4 GHz Intel
Core i5 CPU and 8 GB memory running Linux) took about one minute. Such an amount
of estimation points is hardly necessary in practice, and the neighboring estimates in this
example are extremely close in value. This also means that the corresponding plot produced
by the S3 plot method will be very smooth.

3.3. Example 3: Uranium exploration data set

The Uranium exploration data set of Cook and Johnson (1986) consists of 655 chemical
analyzes from water samples collected from the Montrose quad-rangle of Western Colorado.
These data can be obtained via the R package copula (Yan 2007):

R> data("uranium", package = "copula")

R> attach(uranium)
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Figure 3: Scatter plot of n = 1000 simulated data from the Wikipedia example.

Figure 4: Estimated local Gaussian correlation for the Wikipedia example with value indicated
by color.
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Note that package copula requires that the GNU Scientific Library (GSL) is installed on the
computer (see Galassi, Davies, Theiler, Jungman, Alken, Booth, and Rossi 2009). Amongst
several other elements, concentrations of cesium (Cs) and scandium (Sc) were measured. We
are interested in the relation between the concentration of these two elements. Point estimates
of local Gaussian parameters at the points (1.8, 0.7) (the lower tail) and (2.3, 1.2) (the upper
tail) are obtained by

R> xy.mat <- rbind(c(1.8, 0.7), c(2.3, 1.2))

R> lg.out <- localgauss(x = Cs, y = Sc, xy.mat = xy.mat, b1 = 0.6, b2 = 0.4)

R> lg.out$par.est

mu_1 mu_2 sig_1 sig_2 rho

[1,] 2.041581 1.023168 0.2173486 0.1715325 0.4262585

[2,] 2.037460 1.020956 0.2432937 0.1679532 0.3224928

The following code creates a ‘localgauss’ object suitable for plotting:

R> lg.out <- localgauss(x = Cs, y = Sc, b1 = 0.6, b2 = 0.4, gsize = 15,

+ hthresh = 0.1)

To check if we have chosen a suitable value of hthresh we include the observations in the first
plot:

R> plot(lg.out, plot.text = FALSE, plot.points = TRUE,

+ xlab = "Cs", ylab = "Sc", divergent.col.grad = FALSE)

which results in Figure 5. We see that the neighborhood of all points in the area of estima-
tion contains observations indicating a good choice of hthresh. Note that with the choice
divergent.col.grad = FALSE a continuous color gradient is used, which is the better choice
for discriminating between values when the range of the values is small. Including numerical
values of the estimated local Gaussian correlation can be done by

R> plot(lg.out, xlab = "Cs", ylab = "Sc", divergent.col.grad = FALSE)

as displayed in Figure 6. Figure 6 indicates that small concentrations of cesium are typically
associated with small values of scandium, while large values of cesium are associated with
medium to large values of scandium.

3.4. Example 4: Non-linear regression

Finally we illustrate the usage of plot() for ‘localgauss.ind’ objects and localgauss.ind()

when X1 and X2 are given by the non-linear regression model X2 = X2
1 + ε, where X1 and ε

are independent standard normal. This is yet another example where the ordinary Pearson’s
correlation is zero even though X1 and X2 are dependent. We start by creating a ‘localgauss’
object with estimates of the local parameters in the points (−1, 1), (0, 0) and (1, 1) for n = 500
observations simulated from the model:
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Figure 5: Estimated local Gaussian correlation with overlain observations and value indicated
by color for the Uranium exploration data set.

Figure 6: Numerical value of estimated local Gaussian correlation for the Uranium exploration
data set.
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R> x <- rnorm(500)

R> y <- x^2 + rnorm(500)

R> xy.mat <- rbind(c(-1, 1), c(0, 0), c(1, 1))

R> lg.out1 <- localgauss(x, y, b1 = .5, b2 = 1, xy.mat = xy.mat)

Performing the local test of independence in the same points can be done by passing the
‘localgauss’ object to localgauss.ind():

R> ind.out1 <- localgauss.indtest(lg.out1, R = 500)

R> ind.out1$test.results

[1] -1 0 1

We see that the local Gaussian correlation is significantly negative in (−1, 1), significantly
positive in (1, 1) and neither in (0, 0) at a (default) 10% significance level. In the previous
computation no parallel backend is registered and the bootstrapping is done sequentially.
Nevertheless, since the null-distribution of ρ̂(xi) is constructed for only three points, the
computational time is quite reasonable (about 10 seconds on the first author’s laptop). The
following code creates a ‘localgauss’ object where the xy.mat is generated internally and
plots it with overlain observations:

R> lg.out2 <- localgauss(x, y, b1 = .5, b2 = 1, hthresh = 0.015, gsize = 30)

R> plot(lg.out2, plot.text = FALSE, plot.points = TRUE)

This results in Figure 7. Applying localgauss.indtest() on this ‘localgauss’ object can
be quite time consuming since the new xy.mat contains 118 points. The computational time
can be shortened by registering a parallel backend if the user has multiple cores/processors
on his/hers computer. On a Unix-like system with 28 cores (say) a parallel backend can be
registered using the doParallel package in the following way:

R> library("doParallel")

R> registerDoParallel(cores = 28)

The function localgauss.indtest() will then automatically run in parallel:

R> ind.out2 <- localgauss.indtest(lg.out2, R = 500)

On a computer with 4 AMD Opteron 6128 CPUs (a total of 32 cores) and 128 GB of mem-
ory this took about 25 seconds, while using just one core on the same computer (sequen-
tial run) took about 11 minutes. The result can then be passed to the plot method for
‘localgauss.indtest’ objects for a graphical display of the test results:

R> plot(ind.out2)

This results in Figure 8 which displays the regions where ρ̂(xi) is significantly positive and
negative.

4. Conclusions

This paper introduces the R package localgauss which estimates and visualizes local Gaussian
correlation. The package enables users to easily utilize the methodology of local Gaussian
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Figure 7: Estimated local Gaussian correlation with n = 500 overlain observations from the
non-linear regression model.

Figure 8: Result of local independence test.
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correlation without constructing their own optimization routines. The package can be used
for exploring the dependence structure in datasets and can be seen as a supplement to the
raw information given by a scatter-plot. Other applications of the package can be found in
Berentsen and Tjøstheim (2014) and Berentsen et al. (2013). The former article illustrates
how the local Gaussian correlation can be used to construct both global and local tests of
independence, while the latter article discusses how the local Gaussian correlation can be used
to describe and recognize the dependence structure in various copula models. The package
has also been used for parts of the work in Støve and Tjøstheim (2014).

Acknowledgments

The authors are grateful to Karl Ove Hufthammer who laid the foundation for the present
plotting routine used in the S3 plot method for ‘localgauss’ objects. We would also like to
thank three anonymous referees for useful comments and suggestions which helped improve
both the localgauss package and its presentation in this paper.

References

Berentsen GD, Støve B, Tjøstheim D, øTN (2013). “Recognizing and Visualizing Copulas: An
Approach Using Local Gaussian Approximation.” Working paper, URL http://people.

uib.no/gbe062/local-gaussian-correlation/.

Berentsen GD, Tjøstheim D (2014). “Recognizing and Visualizing Departures from Inde-
pendence in Bivariate Data Using Local Gaussian Correlation.” Statistics and Computing.
doi:10.1007/s11222-013-9402-8. Forthcoming.

Cook RD, Johnson ME (1986). “Generalized Burr-Pareto-Logistic Distributions with Appli-
cations to a Uranium Exploration Data Set.” Technometrics, 28(2), 123–131.

Embrechts P, McNeil A, Straumann D (2002). Risk Management: Value at Risk and Beyond,
chapter Correlation and Dependence in Risk Management: Properties and Pitfalls, pp.
176–223. Cambridge University Press.

Galassi M, Davies J, Theiler BG, Jungman G, Alken P, Booth M, Rossi F (2009). GNU
Scientific Library Reference Manual. 3rd edition. Network Theory Ltd.
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