
JSS Journal of Statistical Software
April 2014, Volume 57, Code Snippet 2. http://www.jstatsoft.org/

DBKGrad: An R Package for Mortality Rates

Graduation by Discrete Beta Kernel Techniques

Angelo Mazza
University of Catania

Antonio Punzo
University of Catania

Abstract

We introduce the R package DBKGrad, conceived to facilitate the use of kernel smooth-
ing in graduating mortality rates. The package implements univariate and bivariate adap-
tive discrete beta kernel estimators. Discrete kernels have been preferred because, in this
context, variables such as age, calendar year and duration, are pragmatically considered
as discrete and the use of beta kernels is motivated since it reduces boundary bias. Fur-
thermore, when data on exposures to the risk of death are available, the use of adaptive
bandwidth, that may be selected by cross-validation, can provide additional benefits. To
exemplify the use of the package, an application to Italian mortality rates, for different
ages and calendar years, is presented.
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1. Introduction

Mortality rates (or probabilities of dying) are indicators commonly used in demography and
actuarial practice. They are usually referred to one or more variables, the most common
being age, calendar years and duration; for ease of presentation, we will start focusing on age
only, while bivariate extensions will be addressed afterward. To be specific, the dx deaths at
age x can be seen as arising from a population, initially exposed to the risk of death, of size
ex. This can be summarized via the model dx ∼ Bin (ex, qx), where qx represents the true,
but unknown, mortality rate at age x. The crude rate q̊x is the observed counterpart of qx.
Graduation is necessary because crude data usually presents abrupt changes, which do not
agree with the dependence structure supposedly characterizing the true rates (London 1985).
Nonparametric models are the natural choice if the aim is to reflect this belief. Furthermore,
a nonparametric approach can be used to choose the simplest suitable parametric model, to
provide a diagnostic check of a parametric model, or to simply explore the data (see Härdle
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1992, Section 1.1, for a detailed discussion on the chief motivations that imply their use, and
Debòn, Montes, and Sala 2006 for an exhaustive comparison of nonparametric methods in
the graduation of mortality rates).

Due to its conceptual simplicity and practical and theoretical properties, kernel smoothing
is one of the most popular statistical methods for nonparametric graduation. Among the
various alternatives existing in literature (see Copas and Haberman 1983, Bloomfield and
Haberman 1987, Gavin, Haberman, and Verrall 1993, 1994, 1995 and Peristera and Kostaki
2005), the attention is focused on the discrete beta kernel estimator proposed by Mazza and
Punzo (2011). The genesis of this model starts with the consideration that, although age X
is in principle a continuous variable, it is typically truncated in some way, such as age at last
birthday, so that it takes values on the discrete set X = {0, 1, . . . , ω}, ω being the highest
age of interest. Discretization could also come handy to actuaries who have to produce
“discrete” graduated mortality tables. Discrete beta kernels are considered to overcome the
problem of boundary bias, commonly arising from the use of symmetric kernels (Chen 2000);
their support X , in fact, matches the age range and this, when smoothing is made near the
boundaries, allows avoiding allocation of weight outside the support (for example negative or
unrealistically high ages). Adaptive variants, based on the reliability of the data at each age,
are introduced in Mazza and Punzo (2013a,b).

In this paper we present the R (R Core Team 2013) package DBKGrad, available from
the Comprehensive R Archive Network at http://CRAN.R-project.org/package=DBKGrad,
which implements all the methods described above and offers some related functionalities like
bivariate graduation and diagnostic checks. Although R is well-provided with functions per-
forming kernel smoothing techniques (see, e.g., Hayfield and Racine 2008), there aren’t any
offering discrete beta kernel smoothing or kernel smoothing in the field of graduation. How-
ever, there are packages that allow for nonparametric graduation using spline-based methods.
For example, the demography package (Hyndman, Booth, Tickle, and Maindonald 2014) does
partially monotonic penalized spline smoothing for mortality rates and other demographic in-
dicators. Furthermore, the MortalitySmooth package of Camarda (2012) treats mortality
data as Poisson counts and smooths using P-splines; similarly to DBKGrad, this package also
allows for bivariate graduation.

The paper is organized as follows. Section 2 retraces the fixed discrete beta kernel estimator.
Its adaptive variants are recalled in Section 3 while some cross-validation approaches for the
selection of both the fixed and the adaptive bandwidth are discussed in Section 4. Further
related aspects, such as the adoption of a preliminary transformation of the rates and the
extension of the estimator to the bivariate case, are given in Section 5. The relevance of the
DBKGrad package is shown, via a real dataset included in the package, in Section 6, and
conclusions are finally given in Section 7.

2. Discrete beta kernel graduation

Given the crude rates q̊y, for each age (at last birthday) y ∈ X , the Nadaraya-Watson kernel
estimator of the true but unknown mortality rate qx, at the evaluation age x, is

q̂x =
∑
y∈X

kh (y;m = x)∑
j∈X

kh (j;m = x)
q̊y =

∑
y∈X

Kh (y;m = x) q̊y, x ∈ X , (1)

http://CRAN.R-project.org/package=DBKGrad
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where kh (·;m) is the discrete kernel function (hereafter simply named kernel), m ∈ X is the
single mode of the kernel, h > 0 is the (fixed) bandwidth governing the bias-variance trade-
off, and Kh (·;m) is the normalized kernel. Since we are treating age as being discrete, with
equally spaced values, kernel graduation by means of (1) is equivalent to moving (or local)
weighted average graduation (Gavin et al. 1995). In (1), the discrete beta kernels (Mazza and
Punzo 2011)

kh (x;m) =

(
x+

1

2

) m+1
2

h(ω+1)
(
ω +

1

2
− x
)ω+1

2−m
h(ω+1)

, x ∈ X , (2)

are adopted. Their normalized version,

Kh (x;m) =
kh (x;m)∑

y∈X
kh (y;m)

, x ∈ X ,

corresponds to the discrete beta probability mass function defined in Punzo and Zini (2012)
and parameterized, as in Punzo (2010, see also Bagnato and Punzo 2012b), according to
the mode m and another parameter h that is closely related to the distribution variability.
In particular, for h → 0+, Kh (x;m) tends to a Dirac delta function in x = m, while for
h→∞, Kh (x;m) tends to a discrete uniform distribution. Thus h can be considered as the
bandwidth of the estimator (1).

Roughly speaking, discrete beta kernels possess two peculiar characteristics. Firstly, their
shape, for fixed h, automatically changes according to the value of m. Secondly, the support
of the kernels matches the age range X so that no weight is assigned outside the data support;
this means that the order of magnitude of the bias does not increase near the boundaries.
Further details are reported in Mazza and Punzo (2011); see also Chen (2000) to find out
more on the properties of the discrete beta kernel estimator in its continuous counterpart.

3. Making the bandwidth adaptive

Rather than restricting h to a fixed value, a more flexible approach is to allow the bandwidth
to vary according to the reliability of the data measured in a convenient way. Thus, for ages
in which the reliability is relatively large, a lower value for h results in an estimate that more
closely reflects the crude rates. For ages in which the reliability is smaller, such as at old ages,
a higher value for h allows the estimate of the true mortality rates to progress more smoothly;
this means that at older ages we are calculating local averages over a greater number of
observations. This technique is often referred to as a variable or adaptive (bandwidth) kernel
estimator.

As well-documented in Gavin et al. (1995):

(a) a different bandwidth, say hx, can be used for each evaluation age x at which the rates
are estimated;

(b) a different bandwidth, say hy, can be used for each age y;

(ab) a different bandwidth, say hx,y, can be selected for each evaluation point x and for each
age y ∈ X .
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According to Gavin et al. (1995), the adaptive bandwidth could have the following multiplica-
tive formulation

(a) hx (s) = hlsx (b) hy (s) = hlsy (ab) hx,y (s) = hlsx,y x, y ∈ X , (3)

where h is the global bandwidth, lx (or ly or lx,y) is the local factor, and s ∈ [0, 1] is the
sensitivity parameter inserted as a power of the local factor only. Reliability decides the
shape of the local factors, while s is necessary to dampen the possible extreme variations in
reliability that can arise between young and old ages. Obviously, the case s = 0 results in a
fixed bandwidth estimator. By applying to model (1) formulation (a), we have

q̂x =
∑
y∈X

khx (y;m = x)∑
j∈X

khx (j;m = x)
q̊y =

∑
y∈X

Khx (y;m = x) q̊y, x ∈ X , (4)

where the notation hx is used to abbreviate hx (s).

As concerns (a), but similar reasoning also holds for (b), Mazza and Punzo (2013a) consider
the reliability a function only of the amount of exposure, according to the formulation

lx =
e−1x

max
y∈X

{
e−1y
} , x ∈ X . (5)

According to the model dx ∼ Bin (ex, q̊x), where q̊x is the maximum likelihood estimate of
qx, a natural index of reliability is represented by the reciprocal of a relative measure of
variability. As relative measure of variability, Mazza and Punzo (2013b) adopt the variation
coefficient (VC) which, in this context, can be computed as

VCx =

√
exq̊x (1− q̊x)

exq̊x
, x ∈ X ,

and it is normalized, so that lsx ∈ [0, 1], according to the formulation

lx =
VCx∑

y∈X
VCy

, x ∈ X . (6)

Finally, as concerns (ab), one way of defining the local factor is lx,y = ly/lx, x, y ∈ X .

4. The choice of h and s

Choosing h by trial and error is informative, but it is also convenient to have an objective
selection method. Among data-driven methods for bandwidth selection, cross-validation is
the simplest and most commonly used; for an application in graduation, see Gavin et al.
(1995). In detail, h is obtained by minimizing the cross-validation statistic

CV (h) =
∑
x∈X

r2
(
q̊x, q̂

(−x)
x

)
, (7)
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where r
(
q̊x, q̂

(−x)
x

)
denotes the residual (at age x) and

q̂(−x)x =
∑
y∈X
y 6=x

Kh (y;m = x)∑
j∈X
j 6=x

Kh (j;m = x)
q̊y

is the estimated value at age x computed by removing the crude rate q̊x at that age. As
residuals, Mazza and Punzo (2011, 2013a) consider the classical residuals

r
(
q̊x, q̂

(−x)
x

)
= q̂(−x)x − q̊x, (8)

while Mazza and Punzo (2013b), because of the high differences in mortality rates among
ages, adopt the proportional differences

r
(
q̊x, q̂

(−x)
x

)
=
q̂
(−x)
x

q̊x
− 1 (9)

which are commonly used in the graduation literature, since we want the mean relative square
error to be low (see Heligman and Pollard 1980).

Similarly, in the adaptive frame, we minimize the two-dimensional cross-validation statistic
CV (h, s). Alternatively, it is possible to select subjectively one of the two parameters and
let cross-validation select the other. In literature, actually, s is often chosen subjectively (see
Gavin et al. 1995 and Mazza and Punzo 2011, 2013a,b) and cross-validation is used to select
h by minimizing the conditional cross-validation statistic CV (h|s).
In DBKGrad, the Levenberg-Marquardt algorithm (Moré 1978) in the minpack.lm package
(Elzhov, Mullen, Spiess, and Bolker 2013) is used to minimize the cross-validation statistic.

5. Further aspects

5.1. Transforming mortality rates

Before applying any model, it is always worth considering a transformation of the data into
a more tractable form, that better reflects the strengths of the model or that more clearly
reveals the structure of the data. In parametric graduation, for example, it may be easier to
transform the rates and work with a linear model than to graduate the crude rates using a more
mathematically demanding nonlinear model. The same philosophy applies in nonparametric
graduation. The DBKGrad package allows for log, logit, and Gompertz transformations and,
once the transformed data are graduated, a back-transformation is applied. However, because
the choice of a transformation remains subjective, and the relative success of a particular
transformation seems to depend on the data set (Gavin et al. 1995), no transformation is
applied by default in the DBKGrad package.

5.2. Pointwise confidence intervals and simultaneous confidence bands

In visual inspection and graphical interpretation of the estimated sequence of points, we may
either be interested in q̂x, evaluated at a specific age x, or we may be interested in the whole
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sequence of points q̂x, x ∈ X . The first case corresponds to pointwise confidence intervals,
while the second case requires the construction of simultaneous confidence bands (see Härdle
1992, for details). Both provide relevant information because they indicate the extent to
which the estimates are well defined. Moreover, they are useful when nonparametric and
parametric models are compared.

Since q̂x is a linear function of the mortality rates, as can be easily seen from (1) and (4), and
being dx ∼ Bin (ex, qx)

VAR (q̂x) =
∑
y∈X

[Khx (y;m = x)]2
qy (1− qy)

ey
.

The above formula holds if independence of the dys is assumed and requires the knowledge of
the number ey of exposed to risk at each age. Substituting qy with q̂y yields the (1− α) ·100%
pointwise confidence intervals

q̂x ∓ z1−α
2

√√√√∑
y∈X

[Khx (y;m = x)]2
q̂y (1− q̂y)

ey
, (10)

where z1−α
2

is such that Φ
[
z1−α

2

]
= 1− α

2 .

Pointwise confidence intervals, along with a correction of α, can be used to construct simul-
taneous confidence bands. The correction of Bonferroni, α/ (ω + 1), or that of Šidák (1967),

1− (1− α)1/(ω+1), are common in this context.

5.3. Diagnostic checks

After graduating the crude rates, a common practice consists in analyzing the residuals be-
havior. DBKGrad method residuals() returns, according to argument restype, the types
of residual listed in Table 1. Note that, types "response", "pearson", and "deviance", can
be only computed when the exposures are available. In particular, the last two ("pearson",
and "deviance") are based on the binomial model.

The DBKGrad package also allows to graphically investigate the residuals dependence struc-
ture through the autocorrelogram, as implemented by the acf() function of the TSA pack-
age, and the autodependogram of Bagnato, Punzo, and Nicolis (2012), as implemented by
the ADF() function of the SDD package (see also Bagnato and Punzo 2012a, 2013). The
autodependogram looks like the autocorrelogram with the difference that the aucorrelations
for each lag are substituted by the χ2 statistics of (linear/nonlinear) dependence; in order
to show possible “problematic” lags, a critical line is superimposed (for further details and
developments on this diagram see, e.g., Bagnato and Punzo 2010 and Bagnato, De Capitani,
and Punzo 2014, 2013a,b).

5.4. Bivariate graduation

In many cases of practical interest, mortality patterns are referred to both age and another
variable Y . Demographers, for instance, may be interested in mortality patterns over age
and calendar years. Another example are select and ultimate mortality problems, in which
mortality of insured individuals is evaluated over age and duration from the last check by an
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restype Formulation

"working" q̊x − q̂x

"proportional"
q̊x
q̂x
− 1

"response" exq̊x − exq̂x

"pearson"
exq̊x − exq̂x√
exq̂x (1− q̂x)

"deviance" sign (q̊x − q̂x)

√
2exq̊x ln

(
q̊x
q̂x

)
+ 2ex (1− q̊x) ln

(
1− q̊x
1− q̂x

)

Table 1: Options available for the argument restype of the function residuals()

insurance company. The DBKGrad package allows for bivariate discrete beta kernel gradu-
ation; in detail, the estimated mortality rate q̂x,y, (x, y) ∈ X × Y, is obtained by using the
following product discrete beta kernel estimator

q̂x,y =
∑
u∈X

∑
v∈Y

KhX (u;m = x)KhY (v;m = y) q̊u,v, (x, y) ∈ X × Y, (11)

where hX and hY are the bandwidths referred to X and Y , respectively. Using this formula-
tion, all the features described above, like the adaptive bandwidth, can be straightforwardly
generalized to the bivariate case.

6. Package description and illustrative examples

In this section we provide a description of the main capabilities of DBKGrad along with
illustrations via a real data set contained in the package.

6.1. Package description

Package DBKGrad is developed in an object-oriented design, using the standard S3 paradigm.
Its main function, dbkGrad(), graduates one- and two-dimensional mortality rates using dis-
crete beta kernel estimators; its arguments are listed in Table 2 and it returns a dbkGrad class
object. The plot() method allows for a variety of exploratory plots; the type of the plot is
selected through the argument plottype (see Table 3), while its appearance is governed by
the plotstyle argument. Its options are: "mat" (default in univariate analyses) for classi-
cal plots, "level" for level plots (default in bivariate analyses), and "persp" for 3D plots.
When plotting bivariate data, if byage = TRUE (default) the variable in rows (typically age)
is displayed in abscissa and the variable in columns in ordinate while, if byage = FALSE, then
axes are swapped.
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Arguments Description

obsq Crude mortality rates with respect to one or two variables

limx (limy) Interval of rows (columns) of obsqx to be considered in graduation

ex Exposure with respect to the same variables of obsqx

transformation Preliminary transformation to be applied. Options are: "log",
"logit", "Gompertz", and "none" to avoid transformations

bwtypex (bwtypey) Type of bandwidth to be adopted by row (by column): "FX" for the
fixed bandwidth, "VC" and "EX" for the adaptive bandwidth based
on the local factors in (5) and (6), respectively

adaptx (adapty) Type of adaptive bandwidth to be adopted by row (by column): "a"
for type (a), "b" for type (b), and "ab" for (ab) of Section 3

hx (hy) The global bandwidth used for the variable on the rows (columns)

sx (sy) The sensitive parameter used for the variable on the rows (columns)

cvres The type of residuals to be minimized for cross-validation: "res" for
those in (8), and "propres" for those in (9)

cvhx (cvhy) If TRUE, the global bandwidth for the variable on the rows (columns)
is selected by cross-validation

cvsx (cvsy) If TRUE, the sensitivity parameter for the variable on the rows
(columns) is selected by cross-validation

alpha Value of α used for pointwise confidence intervals and simultaneous
confidence bands

Table 2: Arguments of the function dbkGrad()

Option Description

"observed" Plots observed mortality rates

"fitted" Plots fitted mortality rates

"obsfit" Plots observed and fitted mortality rates

"exposure" Displays the number of exposures

"residuals" Displays some plots related to residuals: density of residuals, residuals
versus fitted values, and residuals versus the discrete variable of interest

"checksd" Displays autocorrelogram and autodependogram of residuals (only for the
unidimensional case)

Table 3: Options for argument plottype of the plot() method
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6.2. The ItalyM dataset

This tutorial uses dataset ItalyM included in the DBKGrad package. Data come from the
Human Mortality Database (2013) and consist of probabilities of dying and annual (January
1st) population (ages from 0 to 95 and years from 1906 to 2009, for a total of 104 years) for
the Italian males. Data are loaded with

R> library("DBKGrad")

R> data("ItalyM")

The command data("ItalyM") loads two (ages × years) matrices, obsq and population, of
observed probabilities of dying and annual population, respectively.

Univariate analysis

The first example is an unidimensional analysis referred to the year 2009. The following
command

R> res1 <- dbkGrad(obsq = obsq, limx = c(6,71), limy = 104,

+ exposure = population, bwtypex = "VC", cvhx = TRUE, adaptx = "ab")

It. 0, RSS = 2.85756, Par. = 0.002 0.002 0.2 0.2

It. 1, RSS = 2.82462, Par. = 0.00291382 0.002 0.2 0.2

It. 2, RSS = 2.81778, Par. = 0.00363656 0.002 0.2 0.2

It. 3, RSS = 2.8175, Par. = 0.0034098 0.002 0.2 0.2

It. 4, RSS = 2.81738, Par. = 0.00353524 0.002 0.2 0.2

It. 5, RSS = 2.81735, Par. = 0.00347148 0.002 0.2 0.2

It. 6, RSS = 2.81735, Par. = 0.00350567 0.002 0.2 0.2

It. 7, RSS = 2.81734, Par. = 0.00348779 0.002 0.2 0.2

It. 8, RSS = 2.81734, Par. = 0.00349727 0.002 0.2 0.2

It. 9, RSS = 2.81734, Par. = 0.00349228 0.002 0.2 0.2

It. 10, RSS = 2.81734, Par. = 0.00349492 0.002 0.2 0.2

It. 11, RSS = 2.81734, Par. = 0.00349352 0.002 0.2 0.2

performs the discrete beta kernel graduation and provides an object of class dbkGrad. Ar-
gument limy = 104 is used in order to select the last column in obsq and exposure, which
corresponds to year 2009. In the same way, argument limx = c(6, 71) limits the gradu-
ation only to ages in {5, . . . , 70}. Adaptive bandwidth, with local factor in (6), is selected
using bwtypex = "VC". As regards the type of adaptation, argument adaptx = "ab" applies
formulation (ab) of Section 3. Since cvhx = TRUE and by default cvsx = FALSE, only hx is
selected by cross-validation; note that, because by default cvres = "propres", the propor-
tional residuals (9) are used. Iterations from the cross-validation procedure are printed at
video, with the last four columns showing the values of hx, hy, sx, and sy. As mentioned,
only hx is being estimated, while sx is stuck to its default value and hy and sy are not used
in unidimensional analysis. For more details about the choice of the default parameters val-
ues, see Mazza and Punzo (2013a). The bandwidth type is adaptive and it is based on the
local factor in (6), since we put bwtypex = "VC"; also, being by default transformation =

"none", no preliminary transformation is applied.

We can compare observed and fitted probabilities of dying via the command
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Figure 1: Observed and graduated male mortality rates, in logarithmic scale, of the ItalyM

dataset (year = 2009). Graduation is made by the adaptive discrete beta kernel estima-
tor where the bandwidth is estimated by minimizing the cross-validation statistic (7) with
residuals defined by (9). Bonferroni’s 95% confidence bands are also displayed.

R> plot(res1, plottype = "obsfit", CI = FALSE, CBBonf = TRUE)

that produces the plot in Figure 1. Bonferroni’s 95% confidence bands are also displayed
(CBBonf = TRUE). As usual in the graduation literature, a logarithmic scale is used for the
mortality rates. It is possible to note a small but prominent hump, peaking around 19 years of
age. This excess mortality is known in literature as“accidental hump”; risk-taking and surplus
mortality are signatures of the male human’s early adult years (Heligman and Pollard 1980),
and broadly coincides with a peak in male hormone production (Parkes 1976 and Goldstein
2011). The main causes of death at these ages are accidents, violence, and disease (Preston
1976). Although the statistical influence of the accident hump on survival and life expectancy
is small, on a logarithmic-scale the hump is visible relative to the low mortality typical of late
adolescence and early adulthood.

Once the model is fitted, we can conduct a residuals analysis. To begin, we can consider the
command

R> plot(res1, plottype = "residuals", restype = "pearson")

which generates the plots in Figure 2. They refer to the Pearson residuals (restype =

"pearson"). The Gaussian kernel density of the residuals in Figure 2(a), obtained by us-
ing the density() function of the stats package, is bell-shaped around zero. Furthermore,
residuals versus age in Figure 2(b), and residuals versus fits in Figure 2(c), move around
the horizontal zero line and do not show any particular systematic feature. To investigate
the dependence structure of the residuals, the autocorrelogram and the autodependogram in
Figure 3 are obtained with
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(c) residuals versus fits

Figure 2: Plot of residuals from the fitted model (ItalyM dataset, year 2009).
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Figure 3: Serial dependence diagrams on the residuals from the fitted model (ItalyM dataset,
year 2009).

R> plot(res1, plottype = "checksd", restype = "pearson")

Both plots show that the linear/nonlinear dependence structure of the data is captured by
the fitted model. Note that, for further analyses, residuals can be extracted with

R> residuals(res1, type = "pearson")

2009

5 -0.008221649

6 -0.491638996

7 1.418005014

. .

. .

. .

68 2.432295179

69 1.430594665

70 0.785573483

Bivariate analysis

In the second example, graduation is performed over ages and years, via the command

R> res2 <- dbkGrad(obsq = obsq, limx = c(6, 46), limy = c(60, 104),

+ exposure = population, cvres = "res", transformation = "logit",

+ bwtypex = "VC", bwtypey = "EX", cvhx = TRUE, cvhy = TRUE,

+ cvsx = TRUE, cvsy = TRUE, adaptx = "ab", adapty = "b")
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It. 0, RSS = 17.0044, Par. = 0.002 0.002 0.2 0.2

It. 1, RSS = 16.5043, Par. = 0.00344181 0.00281997 0.428614 0

It. 2, RSS = 16.435, Par. = 0.0033923 0.00304048 0.378265 0

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

It. 25, RSS = 16.2223, Par. = 0.00301489 0.00404372 0.346014 0

It. 26, RSS = 16.2223, Par. = 0.00301489 0.00404372 0.346014 0

It. 27, RSS = 16.2223, Par. = 0.00301489 0.00404372 0.346014 0

Graduation is limited to ages from 5 to 45 (limx = c(6, 46)) and to years from 1965 to
2009 (limy = c(60, 104)); a preliminary logit transformation of the data (transformation
= "logit") is applied. An adaptive bandwidth is used for both variables; the local factors in
(6) are used for age (bwtypex = "VC") and those in (5) for years (bwtypey = "EX"). The type
of adaptation is according to formulation (ab) of Section 3 (adaptx = "ab") for age, while
formulation (b) is used (adapty = "b") for year. Cross-validation with residuals in (8) is
used (cvres = "res") for selecting global bandwidths (cvhx = TRUE and cvhy = TRUE) and
sensitivity parameters (cvsx = TRUE and cvsy = TRUE). From the cross-validation iterations
printed at video, we can see that the sensitivity parameter for variable year is zero; this means
that in this case the exposures-based local factors are not useful.

In the bivariate case, plotting the dbkGrad object produces by default an image plot (Figure 4)
of both observed and graduated mortality rates

R> plot(res2, plottype = "obsfit")

The plot shows how graduated data retain the important aspects coming from the changes of

year

ag
e

10

20

30

40

1970 1980 1990 2000

Actual

1970 1980 1990 2000

Fitted

5e−05

0.00021

0.00042

0.00067

0.00092
0.00103
0.00115
0.0013
0.00159

0.00215

0.00524

Figure 4: Observed and graduated bivariate mortality rates, in logarithmic scale (ItalyM
dataset, ages 5–45, years 1965–2009). Global bandwidths and sensitivity parameters are
selected, after a preliminary logit transformation, by cross-validation with residuals in (8).
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(b) graduated

Figure 5: Bivariate mortality rates, in logarithmic scale (ItalyM dataset, ages 5–45, years
1975–2005). Global bandwidths and sensitivity parameters are selected, after a preliminary
logit transformation, by cross-validation with residuals in (8).

the mortality rates and, at the same time, leave out random noise. A different “perspective”
of the same results can be obtained via the command

R> plot(res2, plottype = "obsfit", plotstyle = "persp", columns = 11:41,

+ col = "orange")

which produces the 3D plots in Figure 5. In order to improve the legibility of the plot, we
have focused the attention on the years from 1975 to 2005 via the specification columns =

11:41.

To investigate residuals, the command

R> plot(res2, plottype = "residuals", restype = "pearson", palette = "topo.colors")

produces the two plots in Figure 6 using the color palette topo.colors. For other color
palettes see ?topo.colors. Note that, the Gaussian kernel density of the Pearson residuals,
in Figure 6(a), is obtained by considering all the available residuals simultaneously. From this
density we can see that, as desired, the residuals are bell-shaped around zero. With regard
to the image plot in Figure 6(b), apart from a ridge running from the point of coordinates
(1970,20) to (1990,15) and then up to (1995,40), no further particular systematic features are
observed.

7. Conclusions

In this paper we present DBKGrad, an R package for graduating mortality rates using discrete
beta kernels. It may be used for smoothing probabilities defined on a univariate/bivariate
finite domain, but the emphasis here is on probabilities of dying. The package — thanks to
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Figure 6: Pearson residuals from bivariate graduation (ItalyM dataset, ages 5–45, years
1965–2009). Bandwidths and sensitivity parameters are selected, after a preliminary logit
transformation, by cross-validation with residuals in (8).

the use of a discrete approach — is meant to be a user-friendly tool for demographers and
actuaries who deal with (discrete) life tables; flexibility is achieved by providing the user with
many options. For example, he/she may choose among fixed and adaptive bandwidths, these
latter being based on three different formulations and each allowing two different ways of
incorporating the exposed to the risk of dying. The global bandwidth and/or a dampening
factor may be indicated by the user or chosen by cross-validation; the cross-validation score
being minimized may be based on the traditional sum of squared residuals or on an alterna-
tive formulation used in the graduation literature, that is the sum of squared proportional
residuals. Several preliminary data transformations, different diagnostic checks of residuals,
and both pointwise confidence intervals and simultaneous confidence bands, are provided.
Given the importance of graphical analysis in the nonparametric context, several plots and
diagrams can be easily produced, with different styles for univariate and bivariate datasets.
We believe that the DBKGrad package may prove useful either as a modeling tool or, if
parametric models are to be used, to carry out a diagnosis of parametric models or simply to
examine data.

References

Bagnato L, De Capitani L, Punzo A (2013a). “Improving the Autodependogram Using the
Kulback-Leibler Divergence.” Technical Report 1306.5006, arXiv.org e-print. URL http:

//arxiv.org/abs/1306.5006.

Bagnato L, De Capitani L, Punzo A (2013b). “Testing Serial Independence via Density-
Based Measures of Divergence.” Methodology and Computing in Applied Probability. doi:

10.1007/s11009-013-9320-4.

http://arxiv.org/abs/1306.5006
http://arxiv.org/abs/1306.5006
http://dx.doi.org/10.1007/s11009-013-9320-4
http://dx.doi.org/10.1007/s11009-013-9320-4


16 DBKGrad: Graduation by Discrete Beta Kernel Techniques in R

Bagnato L, De Capitani L, Punzo A (2014). “Detecting Serial Dependencies with the Repro-
ducibility Probability Autodependogram.” Advances in Statistical Analysis, 98(1), 35–61.

Bagnato L, Punzo A (2010). “On the Use of χ2-Test to Check Serial Independence.” Statistica
& Applicazioni, VIII(1), 57–74.

Bagnato L, Punzo A (2012a). “Checking Serial Independence of Residuals from a Nonlinear
Model.” In W Gaul, A Geyer-Shulz, L Schmidt-Thieme, J Kunze (eds.), Challenges at the
Interface of Data Analysis, Computer Science, and Optimization, Studies in Classification,
Data Analysis and Knowledge Organization, pp. 203–211. Springer-Verlag, Berlin.

Bagnato L, Punzo A (2012b). “Finite Mixtures of Unimodal Beta and Gamma Densities and
the k-Bumps Algorithm.” Computational Statistics, 28(4), 1571–1597.

Bagnato L, Punzo A (2013). “Using the Autodependogram in Model Diagnostic Checking.”
In N Torelli, F Pesarin, A Bar-Hen (eds.), Advances in Theoretical and Applied Statistics,
Studies in Theoretical and Applied Statistics, pp. 129–139. Springer-Verlag, Berlin.

Bagnato L, Punzo A, Nicolis O (2012). “The Autodependogram: A Graphical Device to
Investigate Serial Dependences.” Journal of Time Series Analysis, 33(2), 233–254.

Bloomfield DSF, Haberman S (1987). “Graduation: Some Experiments With Kernel Meth-
ods.” Journal of the Institute of Actuaries, 114(2), 339–369.

Camarda CG (2012). “MortalitySmooth: An R Package for Smoothing Poisson Counts with
P-Splines.” Journal of Statistical Software, 50(1), 1–24. URL http://www.jstatsoft.

org/v50/i01/.

Chen SX (2000). “Beta Kernel Smoothers for Regression Curves.” Statistica Sinica, 10(1),
73–91.

Copas JB, Haberman S (1983). “Non-Parametric Graduation Using Kernel Methods.” Journal
of the Institute of Actuaries, 110(1), 135–156.
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