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Abstract

We introduce growcurves for R that performs analysis of repeated measures multiple
membership (MM) data. This data structure arises in studies under which an interven-
tion is delivered to each subject through the subject’s participation in a set of multiple
elements that characterize the intervention. In our motivating study design under which
subjects receive a group cognitive behavioral therapy (CBT) treatment, an element is a
group CBT session and each subject attends multiple sessions that, together, comprise the
treatment. The sets of elements, or group CBT sessions, attended by subjects will partly
overlap with some of those from other subjects to induce a dependence in their responses.
The growcurves package offers two alternative sets of hierarchical models: 1. Separate
terms are specified for multivariate subject and MM element random effects, where the
subject effects are modeled under a Dirichlet process prior to produce a semi-parametric
construction; 2. A single term is employed to model joint subject-by-MM effects. A fully
non-parametric dependent Dirichlet process formulation allows exploration of differences
in subject responses across different MM elements. This model allows for borrowing
information among subjects who express similar longitudinal trajectories for flexible esti-
mation. growcurves deploys “estimation” functions to perform posterior sampling under a
suite of prior options. An accompanying set of “plot” functions allows the user to readily
extract by-subject growth curves. The design approach intends to anticipate inferential
goals with tools that fully extract information from repeated measures data. Computa-
tional efficiency is achieved by performing the sampling for estimation functions using
compiled C++ code.

Keywords: growth curve, Bayesian hierarchical model, conditional autoregressive model, Dirich-
let process, R, C++.
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1. Introduction

1.1. Motivation

Repeated measures data are commonly used to compare the effectiveness of alternative treat-
ments or interventions, to study persistence of a treatment effect, and to understand the
process of symptom attenuation or augmentation. The number of repeated observations per
study participant is often constrained by factors such as data collection costs, consideration of
substantively meaningful measurement points (e.g., baseline and 1-year follow-up), and data
availability when secondary data sources are used.

A common feature of such studies in the behavioral and social sciences is that participants
might experience an intervention together, leading to correlated outcomes. A further compli-
cation in such studies is that the memberships in or linkages to a set of treatment elements
might vary. An element under the BRIGHT study illustrations to follow is defined to be a
cognitive behavioral group therapy session used in a study of mental health treatment effec-
tiveness among clients who experience substance abuse. Each client attends multiple therapy
sessions that, together, characterize the treatment. Clients express overlaps in their session
attendances that induce correlations among their responses to the treatment. Such studies
often employ open enrollment in which individual clients enter and leave a standing therapy
group at different sessions (Morgan-Lopez and Fals-Stewart 2006; Paddock, Hunter, Watkins,
and McCaffrey 2011). In the education evaluation context, the composition of classrooms
may change over time (Hill and Goldstein 1998). In addition, incorporating this membership
into the analysis must account for the fact that each participant’s post-treatment outcomes
reflect the effects of each membership element (e.g., therapy group sessions) attended by that
participant during the course of treatment.

1.2. Scope of growcurves

The growcurves package for the R statistical software platform (R Core Team 2013) is designed
for Bayesian hierarchical modeling of longitudinal repeated measures of continuous outcomes
that accounts for dependence among subjects, such as group therapy clients, induced by over-
laps in their elements of memberships (such as group therapy sessions). Further, growcurves
employs a non-parametric Dirichlet process prior on a collection of subject-indexed random
effects to borrow strength that permits estimation of flexible, non-linear curves or trajecto-
ries. Inference on extracted clusters of subjects also allows for additional inference on subject
random effects. Package growcurves is available from the Comprehensive R Archive Network
at http://CRAN.R-project.org/package=growcurves (Savitsky 2014).

It is common for behavioral intervention studies to employ a protocol that may induce cor-
relations across study participants; for example, the design of the BRIGHT study employed
as our case illustration in Section 2 induces between-client correlations derived from their
overlapping patterns of session attendance induced by open enrollment. To model this de-
pendence requires us to “link” each client to the typically multiple sessions they attend. The
growcurves package allows the user to employ a multiple membership (MM) model for this
purpose that defines a univariate set of random effects, one for each session, which are then
mapped to clients to produce an average client effect (Browne, Goldstein, and Rasbash 2001;
Hill and Goldstein 1998). We call the collection of these session effects multiple membership
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(MM) effects. We will model the dependence among clients induced by overlaps among client
session attendances and map these effect values back to clients through an MM weight ma-
trix that encodes the session attendances of all clients. Adjacency dependence among the
session effects will be modeled using a conditional autoregressive (CAR) formulation specified
in Paddock and Savitsky (2013).

There are other software tools and R packages that allow a user to fit sub-models of the
overall model described above, such as MLwiN by Rasbash, Charlton, Browne, Healy, and
Cameron (2012) for fitting parametric hierarchical models that include the MM construction
of Hill and Goldstein (1998) and the DPpackage of Jara, Hanson, Quintana, Mueller, and
Rosner (2011) for fitting DP priors on sets of random effects. Yet, growcurves is directly
tailored for Bayesian semi-parametric analyses of repeated measures under study protocols
that may induce correlations among participants, such as under the open-enrollment struc-
ture in the BRIGHT case study, and so combines these separate modeling components and
adds new ones. Researchers involved with open-enrollment group therapy studies or similarly
structured behavioral or social intervention studies would thus benefit from having a single R
package to conduct post-treatment outcomes analyses. Analysis is supported in growcurves
by incorporating the typical inference performed on repeated measures behavioral interven-
tion data, which generally espouses three goals: 1. To extract by-subject growth curves to
distinguish the patterns of persistence, attenuation or augmentation across the population;
2. To compare the fixed effects of two or more treatments. The treatment mean effect may
be non-linear in time and composed of interactions of treatment effect with time; 3. To model
dependence among subjects induced by study design or any known factors. The growcurves
package provides a “plot” function for each of these goals that accepts output objects from
estimation functions as their inputs and allows additional user settings to directly perform
inference and produce associated graphical and data summary outputs not otherwise available
in more general packages.

We outline the BRIGHT application study design and data structures that we use to illustrate
growcurves’ functions in Section 2 in order to frame the definition of our Bayesian models
that follow. An overview of the input and output data structures for growcurves is intro-
duced in Section 3. The section first specifies the additive Bayesian model framework that
is composed of fixed, subject and MM random effects. Alternative prior formulations for
each of the subject and MM random effects are outlined Section 4 and include illustrations of
growcurves’ functions under our BRIGHT application. A more flexible model that defines a
distinct set of MM effects for each subject is introduced in Section 5 and again illustrated for
our BRIGHT data set. Computational runtime comparisons are offered for all growcurves’
estimation functions in Section 6, followed by concluding remarks in Section 7.

2. Case study data set

The building recovery by improving goals, habits and thoughts (BRIGHT) study (Watkins
et al. 2011) was a community-based effectiveness trial of a group cognitive behavioral ther-
apy (CBT) intervention for reducing depressive symptoms among residential substance abuse
treatment clients. An aim of the study was to test whether clients receiving the BRIGHT
intervention would have sustained improvements in depressive symptoms following treatment.
The BRIGHT study employed a quasi-experimental design under which cohorts of clients in
each of four treatment sites that received either treatment as usual (UC) or treatment en-
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hanced with the BRIGHT intervention (CBT). Clients were assigned to receive either CBT
or UC according to which intervention was offered at their study sites at the time of entry
into residential substance abuse treatment. Overall, n = 299 subjects enrolled into the study,
with 140 assigned to CBT, of which 132 attended CBT sessions, and 159 to UC. A total of
S = 245 CBT sessions were offered over all the G = 4 therapy groups. Data were collected
from subjects at a baseline survey administered when subjects enrolled in the BRIGHT study
and at two post-treatment follow-up assessments conducted at 3 and 6 months post-baseline,
providing a total of T" = 3 waves of measures. The outcome of interest is client depressive
symptoms as measured by the Beck Depression Inventory-II (BDI-IT) (Beck, Steer, and Brown
1996). The BDI-II score is a sum across 21 four-level items (scored 0-3), with a higher score
indicating a greater level of depressive symptoms. Subjects in the CBT arm could attend the
16 session CBT treatment.

Trends in depressive symptoms scores within-client are non-linear; see Paddock and Savit-
sky (2013). However, the flexibility to accurately model this non-linearity using parametric
procedures widely available in software packages is constrained by having up to just three
time points per client. Another feature of BRIGHT is that clients entered an ongoing CBT
group on an open-enrollment basis, which allowed for group membership to change session-to-
session. This instantiated a complex correlation structure among co-grouped clients. Suppose
that clients “Fred” and “Mary” participate in a particular therapy group at session 3. One
might expect that their outcomes might be correlated, owing to the interactive nature of group
therapy. Now, further suppose that “Fred” leaves the group immediately following session 3
and a new client, “Betty”, joins the group at session 5. The depressive score outcomes of Fred
and Betty may be correlated, even though they never met. This correlation is allowed through
the possibility for Fred to influence Mary, which may, in turn, result in Fred influencing Betty.

3. Overview of package design and input

3.1. Model construction

Our first class of functions that produce posterior estimates of model parameters under a MM
data structure is specified in an additive form,

subject-time response = fixed effects + subject effects + MM effects + error.

Stating the same equation in mathematical notation,

Yij :a+xiTj,8+ziiji+WiTu+eij, (1)
where y;; is a continuous outcome observed for subject i = (1,...,n) at repeated measurement
event j = (1,...,m;), and m; reflects the fact that different numbers of repeated measures may

be observed across subjects, so that the data are not required to be balanced. The first two
terms on the right-hand side are the intercept and fixed effects, respectively. The fixed effects
are parameterized as a polynomial function of time that includes a treatment arm indicator
and its interaction with a polynomial function of time in the form of A + Af(time) + ... or
B + Bf(time) + ... for each subject, where A and B are treatment arm indicators for this
illustration with K = 3 arms (with one level excluded as a hold-out for identifiability) and
f(time) is a polynomial function of time. This parameterization requires each subject to be
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Figure 1: Induced dependence among CBT clients through “chaining” of their session atten-
dance sequences.
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assigned to a single treatment arm (including the possibility for assignment to a control arm,
if applicable) so that they receive either the fixed effects term for A or B if they are assigned
to either of these arms. Our models in growcurves allow as many treatment arms as the
user may define, though our BRIGHT study illustration includes two arms. The {b;}i—1 . »
represent subject random effects that permit borrowing of strength among subjects in the
growth curve estimation. Finally, w = (ug,...,us)' denotes the collection of session random
effects.

We next offer more detail on the construction of each term on the right-hand side of Equa-
tion 1. Moving left-to-right, v is a fixed intercept term; x;; is a p x 1 set of fixed effects predic-

tors, with the effect of each predictor on the outcome expressed as 3; z;; = (1, tijs tgj7 . ,t%)
is a set of ¢ predictors that multiply the ¢ client random effects, or growth parameters, b;,
where ?;; denotes the continuously-valued time at which outcome y;; was observed; and ¢;; is

an observational error term.

We formulate the fixed effects covariates to permit assessment of treatment effects by enu-
merating predictors to index the treatment arm assignment for subject ¢, capture the time of
repeated measurement and account for their interactions. In particular, we define a vector of
fixed effects, d;, a 1 x (K — 1) vector of 0’s with a 1 in the position representing the treatment
arm assigned to subject i; e.g., djy = 1 if subject ¢ is assigned to treatment ¢ and K counts
the number of treatment arms (with the first treatment, here labeled as 0, held out for iden-
tifiability). The treatment arm(s) design vector, d;, includes a variable for each arm or level
€(1,2,...,(K —1)). Then this composition allows for more than the usual single treatment
and control arms study configuration. The estimation functions of growcurves employ an op-
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tion, n.fix_degree that determines the polynomial order for fixed effects covariates that are
functions of time. In particular, we will see in the next section that setting n.fix_degree =

2 produces the p = 3K — 1 fixed effects vector, x;; = (di, tij, ti, dityj, dit?j)T. It bears men-
tion that under employment of two treatment arms as used in our CBT case study discussed
in Section 2, d; for subject 7 reduces to a treatment indicator variable, d;, such that d; = 1
if subject 4 is assigned to the treatment arm and d; = 0 if assigned to the control. Then,
parameters 3 represent the effects of treatment assignment, time trend and the differential
effect of treatment(s) on the average time trend in y.

MM effects, u = (ug,... ,uS)T, are indexed by group therapy session under the BRIGHT
study, producing a set of S = 245 group therapy session effects. Clients (who are the “sub-
jects”) are assigned to the treatment arm may attend up to 16 sessions of group CBT. To
model outcomes for clients who attend multiple sessions, we employ a MM construction to
map each element of u to the y’s; see Browne et al. (2001). Under the MM model, the
components of u are mapped to the y;;’s by multiplying w by an § x 1 weight vector, w;,
that is normalized to sum to 1; in particular, S; may be viewed as the number of sessions
attended by client 7; w;s = 1/5; if client i participates in session s and w;s = 0 otherwise.
We normalize vector, w;, to sum to 1 because we intend that the treatment fixed effects re-
flect the magnitude of the treatment effect, while the MM term expresses dependence among
clients induced by the study design. Let N = ). m,; denote the number of repeated measures
observed for all study clients. Then W = {w;} is the resulting N x .S MM matrix where the
rows representing the repeated measures for client ¢ are identical. In the sections to follow, we
refer to the set of random effects linked to subjects through an MM matrix as “MM random
effects”.

2
i

3.2. Package input and output structures

Modeling is performed with estimation functions, of which there are 3: dpgrow, dpgrowmm,
and dpgrowmult. Working from left-to-right, we will see that each estimation function may
be viewed as a simpler, special case of that which follows. Each model is distinguished by
the number of included MM terms (which may be 0 or greater) and the prior formulation
options chosen for the set of subject-indexed and MM random effects. We will outline the
prior formulations for and subsequently illustrate and compare these functions in Section 4.

Inputs to estimation functions

We presently focus on the elements of our data input structure that are common across
estimation functions. The data input components are designed to anticipate the structures
employed in most applications with repeated measures data. For illustration of the data input
vocabulary common to the estimation functions, we select dpgrowmm, which contains a single
MM term under varied priors and a DP prior on the set of by-subject random effects. Since
the construction of growth curves depends on knowing which covariates are associated to
treatment and time indices as well as the subject identifier for repeated measures, user input
to the estimation functions directly input these as vectors and automatically compose fixed
and random effects design matrices from them, as follows:

R> library("growcurves")
R> data("datsim", package = "growcurves")
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attach(datsim)

n.iter <- 20000

n.burn <- 10000

n.thin <- 10

out <- dpgrowmm(y = datsim$y, subject = subject, trt = trt, time = time,

[1]

1

o

n.random = 3, n.fix_degree = 2, group = group, subj.aff = subj.aff,
W.subj.aff = W.subj.aff, n.iter = n.iter, n.burn = n.burn,
n.thin = n.thin, option = "mmigrp")

"Your chosen option = mmigrp"

. subject: A numeric or character vector that provides subject identifiers for each obser-
vation. In particular, subject is of length, N = """ | m;, the number of subject-time
cases. For example, if there are 3 subjects, "fred", "barney" and "wilma", where the
first has observations at 2 time points and the latter two clients each hold observations
at 3 time points, then

R> subject <- c("fred", "fred", "barney", "barney", "barney", "wilma",
+ "wilma", "wilma')

trt: A numeric or character vector of length N of treatment labels for one or more
arms and may be as many as desired. For example, under 2 treatments each entry in
trt might be € {0,1} or € {"cbt", "uc"}, where "uc" stands for “usual care” in our
BRIGHT CBT case study. The trt vector assigns each subject to a treatment arm.

time: A numeric vector of length IV specifying the time point for each subject-time
observation.

. n.random: The number of random effect terms per subject. n.random = 2 captures
random subject intercept and slope parameters, while n.random = 3 adds a quadratic
term.

n.fix_degree: The polynomial order for the fixed effects design matrix. As noted
above, the fixed effects include treatment and time covariates and treatment-time co-
variate interactions. If n.fix_degree = 2, then there is a quadratic covariate for time
and another for time by treatment(s) interaction(s).

. subj.aff: A numeric or character vector of labels for unique subjects connected with
the MM effects term. The subjects included in subj.aff should be a strict subset of the
unique values enumerated in subject. The length of subj.aff is equal to the number
of subjects linked to MM effects, n.q. For example, if only "fred" and "wilma" are
linked to MM effects, such as therapy sessions, then subj.aff = c("fred", "wilma").

. W.subj.aff: A numeric matrix of dimension n,¢x S, where S denotes the number of MM
effects when a single set of MM effects is in the model. There is no requirement for the
rows to sum to 1, but each row must contain a numerical value that links each MM effect
to a subject in subj.aff. The identifiers in subj.aff align to the rows of W.subj.aff.
Crafting an example of a row of W.subj.aff, if Fred attends the first 5 sessions and
there are S = 10 total sessions available, then the row of W.subj.aff corresponding to
Fred will be defined by (0.2,0.2,0.2,0.2,0.2,0,0,0,0,0) (Hill and Goldstein 1998).
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8. group: A numeric or character vector of length S, providing group identifiers for each
of S MM effects. A grouping is composed of a set of disjoint collections of subjects and
associated MM effects.

9. n.iter: A numerical scalar indicating the number of posterior sampling iterations of
the Gibbs sampler.

10. n.burn: A numerical scalar for the number of initial iterations to discard.

11. n.thin: A numerical scalar indicating the gap in post-burn-in posterior sampling iter-
ations to retain.

12. option: A scalar character value that indicates the covariance formulation under a
Gaussian prior on the MM effects. Choices must be made within c¢("mmi", "mmigrp",
"mmcar"). Values for option will vary across estimation functions.

Outputs from estimation functions

The returned object out of the dpgrowmm estimation function includes parameter summaries,
model fit statistics, sampled parameters and a set of standard plots. We extract these sum-
maries with S3 functions. The S3 class is primarily used to define functions that wrap a
return object from an estimation function. Invoking the S3 function, summary(), on the re-
turn object produces parameter summaries; for example, summary (out) $summary.results,
contains credible intervals for all model parameters. Table 1 highlights some (but not all) of
the most useful summary objects returned by summary (out).

Penalized fit statistics, such as the log pseudo marginal likelihood ("1pml"), a leave-one-out
fit statistic intended to assess out-of-sample fit that marginalizes over the parameters, are
particularly useful for mixture models in lieu of the usual DIC' due to difficulty in estimating
D to compute the effective number of parameters, pD of the DIC. The "DIC" object defined
as the DIC3 statistic also marginalizes over the parameters, but the simulations of Celeux
et al. (2006) suggest it may under-penalize complexity. Since the fixed and random effects
design matrices, X and Z, respectively, are constructed from user data inputs noted above,
we return the associated matrices with helpful column names for user inspection.

Posterior sampled values of all model parameters are returned for (n.iter - n.burn)/n.thin
MCMC iterations with parms.samples <- samples(out). The posterior samples may be
used to compose trace plots or to compute effective sample sizes to assess the convergence
properties of the sampling chain. Table 2 highlights some of the most useful objects stored
in parms.samples holding posterior sampled values.

Calling the function residuals(out) returns a set of model residual values. A plot(out,
TRUE) function returns a set of ‘ggplot’ (Wickham 2010) objects that include growth curves
aggregated by treatment group, a random selection of individual growth curves, plots of 95%
credible intervals for MM and by-subject effects, as well as selected trace plots of model
precision parameters and number of clusters formed (under the DP prior on subject effects).
If the plot option is set to FALSE, the plots will not be automatically rendered (though they
will be generated and stored as ‘ggplot’ objects; otherwise, the plots will be displayed in
separate plot windows).
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Object

Description

bmat . summary

Credible intervals for subject random effects.

A 1list object of n.random components.

Each component represents as polynomial order (from 1— n.random).
Each component contains an n x 3 matrix.

Columns are credible intervals; 2.5%, 50%, 97.5%.

u.summary

Credible intervals for MM random effects.

An S x 3 matrix.

Each row indexes an MM element (such as a session).
Each component contains an n x 3 matrix.

Columns are credible intervals; 2.5%, 50%, 97.5%.

beta.summary

Credible intervals for fixed effects.

An p x 3 matrix.

Each row indexes a fixed effect, e.g., (time,time? trt x time,trt x
time?).

Columns are credible intervals; 2.5%, 50%, 97.5%.

X The N x p fixed effects design matrix.
Each row indexes a subject-time case observation.
Each column includes names for the fixed effects e.g., (time, time?,
trt x time,trt x time?), formed from user input of data objects.
Z An N x q random effects design matrix.
Each column includes names for the random effects, e.g., (1, time, time?),
formed from user input of data objects.
lpml A leave-one-out penalized fit statistic described in Congdon (2005).
DIC The DIC' fit statistic of Celeux, Forbes, Robert, and Titterington (2006).
Dbar The model deviance, D.

Table 1: Post-burnin posterior summaries for model estimated parameters output from

summary (out).

Object Description

Beta An n.iter X p matrix.
Columns are labeled with predictor names e.g., (time, time?, trt x time,
trt x time?).

Gamma An n.iter x S matrix.
Each column represents an MM element (e.g., session)

B An n.iter x (n.random X n) matrix.
Polynomial order is the slow-moving index
Subject is the fast-moving index

bigSmin list object of M components, where M denotes number of clusters.

Component m contains a vector of subjects in cluster m

Table 2: Post-burnin posterior samples for model estimated parameters output from

samples (out).

We next review underlying model formulations for each estimation function and explain avail-
able modeling option choices.
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4. Prior formulations for subject and MM effects

4.1. Non-parametric modeling of growth parameters

The dpgrow estimation function addresses models that exclude an MM term, wiTju, from
Equation 1, and solely employ the subject effects term, zz-iji, to borrow estimation strength
among subjects. Each subject defines (¢ = 3) x 1 random effects, b;, that are multiplied
by z;; = (1,tij,t?j)—r to allow the effect term for each subject to vary with time, t;;. The
option = "lgm" imposes an independent Gaussian prior, by,...,by|m ~ N (0,7'1)*1 Iq),
where 7, = (71, ...,74) for ¢ random effect terms, by subject, each of which receives a further
Gamma(1, 1) prior to allow for further variation. All gamma priors employed in this paper
specify a construction with rate (rather than scale) hyperparameters. We are restricted to
q =T — 1, where T counts the number of measurement waves, in the case one wants to avoid
weak identification through the prior (accomplished with use of the precision parameter, 7
to perform shrinkage estimation); otherwise, the user may select any value for ¢. The fixed
effects parameters, (o, 3) receive non-informative, flat priors in all models.

The DP framework (Ferguson 1973; Escobar and West 1995) generalizes the prior construction
on B = {bj} to allow estimation of a different form than a specified parametric distribu-
tion, such as the Gaussian (Brown and Ibrahim 2003; Miiller, Quintana, and Rosner 2007).
Using option = "dp" in the dpgrow estimation function replaces the standard parametric
distribution on the random growth parameters, B = {b:} with:

bi,....b,|F X F (2)
Fle,Fy ~ DP(c, Fp), (3)
where by, ..., b, are conditionally independent given F', and are generated from the unknown

distribution F'. The base measure, Fj, represents the ‘best guess’ about the form of F' prior
to observing data; the expected value of F' is Fy. The precision parameter, ¢ > 0, expresses
the degree of confidence that Fj is the correct generating distribution for B; the higher the
value of ¢, the more F is expected to conform to Fy. We choose Fy = N, (0, Tb_l Iq), the same
as our parametric construction under option = "lgm", to discover how much the estimated
model differs from the analogous parametric approach.

The DP prior produces almost surely discrete realizations as can be seen from the conditional
prior over B after using the exchangeability of the DP prior to marginalize over the random
measure, ' (Blackwell and MacQueen 1973):

n

1 c
b, B_; ~ ——M— (b — F 4
z‘ 7 n—1+c,;¢,5b”( z)+n_1+c 0 ()
J=LJ7F

where B_; = (b1,...,b;—1,bi11,...,by) and dy,(b;) is a point mass density that equals 1
if b; = b; and 0 otherwise. Resulting samples drawn from Equation 4 may express ties
or co-clustering as a mechanism for the data to discover the dependence among subject ef-
fects, conditional on both the chosen base measure, Fj, and concentration parameter, c,
which influence the number of clusters formed. The parameter, M, captures the number of
clusters formed for each posterior sampling iteration and the results are returned in both
summary () and sample() functions. Introduce Ci,...,Chy, M < n to index the clusters,
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where Cj = {i : b; = b;f}, where b}f capture unique “locations” or unique values for the
subjects assigned to cluster j. Then each posterior sampling iteration produces a clustering
defined by (C,B*), which we point out is a sample from the posterior distribution over the
space of partitions or clusters. We employ the least squares clustering algorithm of Dahl,
Day, and Tsai (2008) in growcurves to select a single clustering of subjects from among the
clusters sampled over the posterior sampling iterations based on some notion of optimality.
This algorithm uses the cluster memberships over the set of posterior samples to compose
an n X n square matrix of pairwise co-clustering probabilities of subjects. The selected clus-
ter minimizes the distance to this pairwise clustering probability matrix in a least squares
sense. This chosen clustering may be used to conduct inference on the pattern of dependence
among subject effects as we will do in Section 2. We may extract the clustering selected un-
der least squares with samples(out)$bigSmin, where out is an object of class c("dpgrow",
"dpgrowmm", "dpgrowmult") from the applicable estimation function.

We impose ¢ ~ Gamma(a, 1), which encodes the prior expected number of clusters, with
higher values for shape parameter, a, producing more clusters. This shape parameter setting
may be input to dpgrowmm with shape.dp = 1. This value defaults to 1 if no input is given
by the user.

4.2. Including a single MM term with prior formulations

We next return to the model formulation of Equation 1 under which a single MM term
is included. The dpgrowmm function performs inference for this model under various prior
formulations on the MM term. The simplest construction incorporating MM effects is the
standard model in which the effects are assumed to be independent and identically distributed,
drawn from a Gaussian distribution:

U1,...,US|TUNNS (077—1;1]:5)7 (5)
with precision parameter, 7,,. This prior uses dpgrowmm under option = "mmi".
The option = "mmigrp", ..., group = group allows for a grouping of effect parameters

within an MM term. For example, clients assigned to the (group CBT) treatment arm of
the BRIGHT study are exclusively assigned to one of G = 4 groups to attend therapy ses-
sions. The clients in each group do not receive treatment or “communicate” with clients in
other groups such that the grouping divides clients into disjoint collections. Then option =
"mmigrp" models a possible dependence among client effects in the same group, g =1,...,G
through the location parameter, 74, where in our present example w = (u1,...,ug) captures
the set of MM effect parameters over S sessions. Each 7, is exclusively mapped to those
sessions belonging to therapy group g by use of an S x G matrix, R, under the following
formulation,

Uty . uglty ~ Ng (Rn,qulIS) (6)

7717--'777G|Tn ~ N(O,T{llg). (7)
The matrix R is automatically created by growcurves based on the user input vector group
defined in Section 3.

Choosing option = "mmcar" allows for spatial or adjacency-based prior dependence among
the MM effects that permits a borrowing of strength across MM effects for estimation. Our

11
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Gaussian CAR formulation follows Besag, York, and Mollié (1991), who enumerate a two-
part form for the covariance matrix. Firstly, define an S x S adjacency matrix, €2, to encode
an adjacency dependence among neighboring effect covariate labels where we set wgy > 0 if
session s is a neighbor of session s’ (e.g.,, s ~ '), and 0, otherwise, and wys is defined to be
0. Secondly, construct D = Diag(ws4 ), where ws = 3, ws; equals the sum of the distances
between session s and its neighbors and may be viewed as capturing the relative influence
of session s. Then compose covariance matrix, Q~ = (D — Q)™ of a multivariate Gaussian
distribution (where — denotes use of the Moore-Penrose pseudo-inverse since the rows of Q
sum to 0 such that Q is rank degenerate). Hodges, Carlin, and Fan (2003) show that the
rank of this covariance matrix is S — G, where GG represents the number of distinct groupings
or “islands” of MM effects as discussed for option = "mmigrp". Despite the improper joint
distribution, this construction specifies a set of proper Gaussian full conditional distributions,

ot 7 @~ N (T, () 7! (®)

where Uy = Z#S wsjlj/wsy is the average of the MM effects for the neighbors of effect s.

The adjacency matrix is input as matrix object to dpgrowmm(..., Omega = Omega, ...)
under option = "mmcar". The precision parameter receives, 7, ~ Gamma(a,a), under all
prior options for u, where a is input under dpgrowmm with strength.mm. If not set by the user,
strength.mm defaults to 0.1, a value under which the prior is readily changed by the data in
estimating the posterior distribution (Banerjee, Wall, and Carlin 2003). It bears noting that
all models under dpgrowmm employ a DP prior on subject effects, B, such that dpgrow(. . .,
option = "dp") may be viewed as a reduced model subset of function dpgrowmm. For both
"mmigrp" and "mmcar" options, we input the group structure identifiers for the S effect terms
with a numeric or character vector to dpgrowmm(..., group = group, ...). If there is no
grouping structure among the sessions (for option = "mmi"), this option may be omitted
and defaults to a vector of 1’s.

4.3. Illustration on BRIGHT data

Producing growth curves

We now illustrate estimation and inference on the model of Equation 1 by loading the BRIGHT
data included with growcurves that includes the BDI-II response, as well as (subject, trt,
time) predictors and the MM weight matrix (W.subj.aff) with rows identified by affected
subjects (subj.aff) and group structure the MM session effects with (group). The associated
Sx S adjacency matrix, Omega that will be needed to employ the CAR prior on the MM session
effects, is in the BRIGHT data. We load the data with,

R> data("datbrghtterms", package = "growcurves")
R> dat <- datbrghtterms

where trt = 1 specifies CBT and trt = 0 captures UC. We could have also chosen to use
character entries, such as {"cbt", "uc"}. Study clients are labeled in subject and take
a value in 1:299. The time field is measured in months, consistent with repeated subject
measures taken at (0,3,6) month intervals where 0 represents baseline; for example, the first
9 entries for these data vectors are listed. We add a reminder that the data are not required
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to be balanced such that subjects may hold observations for varied number of time points or
measurement waves.

y subject trt time
24 1 1
3
9
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0
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31
11
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We first employ an MM model with a CAR prior on the MM random effects using BRIGHT
study data. Required inputs include the (n.s = 132) x (S = 245) single MM matrix,
dat$W.subj.aff_mat defined in Section 3, where each row is linked, in order, to a client
listed in subj.aff and records a positive weight in the columns associated to those sessions
attended by that client (if they are among those clients assigned to trt = 1) and includes
0 values in the remaining columns (for sessions not attended) such the row entries sum to
1. growcurves does not require the rows of W.subj.aff to sum to 1. It only requires that
a numeric value links each client to a particular session they attend. One recalls that we
normalize the rows to sum to 1 because we intend that the treatment fixed effects reflect the
magnitude of the treatment effect, while the MM term expresses dependence among clients
induced by the study design. As each of the G = 4 groups are non-communicating, the result-
ing structure of input matrix object, the structure of W.subj.aff = dat$W.subj.aff_mat
is block diagonal for session-attending treatment arm clients. We specify estimation func-
tion dpgrowmm under a CAR prior for the MM session effects with option = "mmcar". A
CAR prior is selected for our primary model as we expect adjacency in sessions to exhibit
a dependence such that we may borrow strength for estimation of their effects. We must
additionally input an S x S CAR adjacency matrix, Omega = dat$0Omega_mat, whose form is
discussed in Section 4.2, and has 0's on the diagonals and 1’s in those cells where sessions are
adjacent or are neighbors. The CAR prior implemented in dpgrowmm is targeted to models
that employ a single MM term. The dpgrowmm function allows input of an S x 1, group =
dat$group_mat group identifier for each session to account for the sub-grouping structure of
these study sessions into disjoint sets of G = 4 groups that is then used to set the degrees of
freedom for the posterior distributions for session effects, U, and CAR precision parameter,
Tu-

R> MMCAR <- dpgrowmm(y = dat$y, subject = dat$subject, trt = dat$trt,
+ time = dat$time, n.random = 3, n.fix_degree = 2,

+ Omega = dat$Omega_mat, group = dat$group_mat,

+ subj.aff = dat$subj.aff_mat, W.subj.aff = dat$W.subj.aff_mat,

+ n.iter = 40000, n.burn = 15000, n.thin = 10, option = "mmcar")

[1] "Your chosen option = mmcar"
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We next employ the simpler prior formulation of Equation 6 that extends the independent

Gaussian prior assumption of option = "mmi" to account for group dependence by employing
unique by-group means with option = "mmigrp" with the above syntax to deliver object
MMIGRP.

Assess the relative contribution of the MM term by next employing models that exclude an
MM term. We employ dpgrow, but with option = "dp" that reduces the effective number of
parameters by borrowing strength across clients for their estimation.

R> DP <- dpgrow(y = dat$y, subject = dat$subject, trt = dat$trt,
+ time = dat$time, n.random = 3, n.fix_degree = 2, n.iter = 40000,
+ n.burn = 15000, n.thin = 10, option = "dp")

[1] "Your chosen option = dp"

We select a baseline comparator model under which subjects’ random effects receive an inde-
pendent joint Gaussian prior by utilizing estimation function dpgrow with option = "lgm"
and n.random = 3 which provides weak identification (through the variance of the prior)
since our data only employ 7' = 3 measurement waves. We name the returned object, LGM.

We may now employ our returned objects, MMCAR, MMIGRP, DP, LGM, in our plot functions
to perform graphical analyses and return one or more ‘ggplot’ objects and the associated
data.frame tables used to produce them. In R, the data.frame object is a special case
of a 1list object where each field or column in a record may be of a distinct data type
(e.g., numerical, character, factor), so it is a convenient way of collecting related information
across data types. The first goal enumerated in Section 1 to render denoised growth curves is
addressed by performing an analysis of the difference in by-subject growth curve shapes and
orientations between CBT and UC BRIGHT study arms. We do so with the growcurves plot
function,

R> gc <- growplot(object = MMCAR, compare.objects = 1ist(LGM = LGM, DP = DP),
+ main.label = "MMCAR")

which renders two plots. Figure 2 employs a non-parametric loess smoother line through the
by-subject posterior mean growth curves aggregated to each treatment arm, (0 = UC, 1 =
CBT), and reveals a notable treatment effect focused on an increased attenuation of depressive
symptoms between the 0 and 3 month measurement time intervals. We may also examine
the characteristics of growth curves for selected subjects. To do so, we use the growplot plot
function with option, subjects.subset, that contains a vector of subjects for which we desire
to plot their individual growth curves. In this example, we exclude the subjects.subset, in
which case a random draw of subjects is selected for by-subject growth curve plotting.

The curves in Figure 3 are smooth because our method performs within-client predictions at
multiple time points constrained to the 0—6 month post-treatment measurement window for
our BDI depressive symptoms response scores. The curve for subject 283 in the treatment
arm reveals that MMCAR maps convex (downward facing curves, or bell-shaped) curves more
robustly than the LGM model. Subject 40 in the CBT arm also demonstrates that MMCAR is
more shape and orientation adaptive than LGM. In particular, one notices that the LGM model
always estimates concave or U-shaped growth curves because it restricts the client effects to
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Figure 2: Growth curves aggregated by treatment arm for CAR prior on MM effects.
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Figure 4: Growth curves aggregated by best-fit cluster under DP prior on subject effects.

be estimated from a common group as contrasted with the DP prior used for client effects
in the MMCAR prior that allows for client effects to draw from multiple clusters, where some
clusters may have convex growth curves and others, concave.

We may further utilize growplot to examine our model outputs to learn the drivers for this
enhanced growth curve adaptability with MMCAR. Employ a feature of growplot that allows
the user to compose a grouping of the by-client growth curves in any chosen fashion through
input of groups.plot and subjects.plot. The former inputs a vector defining a user-
defined grouping structure for the growth curves of those clients listed in the latter (such
that both input vectors are of the same length). The defaults are to group all clients within
treatment arms used for modeling. The DP prior on the subject effects under option =
"mmcar" allows for a borrowing of strength among clients through clustering their random
effect parameters, b;, to better explore the space of possible growth curve shapes than the
usual parametric alternative. We examine whether this feature is responsible for the more
adaptive performance of MMCAR by using the best fit clustering selected from the least squares
clustering algorithm reviewed in Section 4.1 to group our by-subject growth curves with the
following script,

R> cluster <- samples(MMCAR)$bigSmin

R> c.sizes <- sapply(cluster, length)

R> clusterstoplot <- sort(c.sizes, decreasing = TRUE,
+ index.return = TRUE)$ix[1:4]
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Figure 5: By-subject growth curves, labeled with cluster memberships, comparing MM term
under CAR prior to a standard LGM.

R> map <- vector(mode = "list", length = length(clusterstoplot))
R> for(i in 1:length(clusterstoplot)) {

+ cluster.i <- cluster[[clusterstoplot[i]]]

+ map[[i]] <- as.data.frame(cbind(cluster.i,

+ paste("cluster", i, sep = "_")), stringsAsFactors = FALSE)
+ names (map[[i]]) <- c("subject", "group")

+ }

R> map <- do.call("rbind", map)

where bigSmin is a list object of length equal to the number of unique clusters formed that
we denote as M, and each list element contains a vector of client identifiers assigned to the
cluster represented by that element. The above script selects the 4 largest clusters with size
defined by number of client members. The data.frame object, map, provides us with the
subset of clients and their cluster identifiers that we will use to set the growplot option.
Another instantiation instance of growplot is created with,

R> gc.2 <- growplot(object = MMCAR,
+ compare.objects = 1ist(LGM = LGM, DP = DP), subjects.plot = map$subject,
+ groups.plot = map$group, main.label = "MMCAR")

We see in Figure 4 that cluster 1 captures many of the clients with deeper concave growth
curves, confirming our expectation that the basis for clustering is primarily shape and ori-
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Model D —LPML DIC,
LGM 5666 3031 5841
DP 5520 2989 5691

MM(CAR) 5501 2082 5675

Table 3: Model fit comparisons: D, —LPML and DIC3 scores for model alternatives. Lower
values imply better performance.

entation of curves such that subjects under similarly shaped curves borrow strength in co-
estimation. While the effect is not as strong, we also observe a grouping of convex-shaped
curves in cluster 2. The clustering by curve shape and orientation indicate that our posterior
distribution over the subject effects, B, better spans the space of possible curve shapes and
helps explain the improved adaptability we observe with model MMCAR. Figure 5 presents a
set of by-client growth curves as in Figure 3, only now the labeling and random draw of the
clients reflects the new grouping of clients. All plot functions may be assigned to objects in
order to recover the ‘ggplot’ plot objects and associated data.frame objects. They may also
be invoked without assignment, in which case the plots are rendered, but the return objects
are suppressed.

Recall that we may extract fit statistics from function summary (out), where out is an object
holding the results from any of the estimation functions. Fit statistics include DIC3 of Celeux
et al. (2006), a special case of the deviance information criterion (DIC') of Spiegelhalter, Best,
Carlin, and van der Linde (2002), that marginalizes over the parameter space such that it is
more robust for mixture models (that includes any model employing a DP prior on random
effects) and the log-pseudo marginal likelihood, 1pml referred to in Congdon (2005), that
imposes a stronger model complexity penalty in practice than does DIC3 by composing the
marginal distribution in a leave-one-out fashion. The unpenalized model deviance, Dbar, is
also available. We present results for the 3 comparison models run with the BRIGHT data
in Table 3, where a lower value indicates a better fit for the included fit statistics, and we see
that the improved adaptability of the estimated growth curves from employing both client
and session effects terms with MMCAR produces the best fit.

Analysis of treatment effects

We continue our analysis of object MMCAR by testing for a statistically significant differential
treatment effect between the CBT and UC arms, which we labeled as the second goal for
analysis of repeated measures data in Section 1. Recall that the fixed effects include a CBT
treatment indicator, d;, along with interactions with time, ¢;;, up to the chosen polynomial or-
der in option n.fix_degree = q, where ¢ may be any integer value. We assign n.fix_degree
= 2. The treatment effects are estimated from predictive margins (Lane and Nelder 1982)
where we predicted outcomes as if all clients were in CBT, then predicted outcomes as if all
clients were in UC, for each MCMC sample at a chosen time point.

The plot function, trtplot, allows us to access this distribution under any desired set of
model outputs returned from our estimation functions at a selected set of time points,

R> run.objects <- list(LGM = LGM, DP = DP, MMCAR = MMCAR, MMIGRP = MMIGRP)
R> run.models <- c("LGM", "DP'", "MMCAR", "MMIGRP")
R> trt.labs <- c(0, 1)
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Figure 6: 95% credible intervals for difference between CBT and usual care study subjects.

R> time.points <- c(3, 6); time.labels <- c("3 months", "6 months")
R> tp <- trtplot(run.objects = run.objects, run.models = run.models,
+ trt.labs = trt.labs, time.points = time.points,

+ time.labels = time.labels)

The mean difference in Figure 6 is located at notably higher ranges of BDI values for the MMCAR
and DP objects, both of which employ a DP prior on the sets of client effects, than for the LGM
object, which does not. In our analysis of subject growth curves, LGM is unable to model the
sub-population of subjects who express convex or bell-shaped growth curves, assigning them
concave or U-shaped curves. A concave curve produces a more negative fixed effects slope
estimate than a convex curve. The result is that the treatment effect for LGM is larger than for
DP and MMCAR. Therefore, a more robust modeling of subject growth curves avoids a source of
bias expressed in LGM estimation of treatment effects. While our case analysis focuses on two
treatment arms, all estimation functions and associated plot functions are flexible to handle
any number of arms. In particular, trtplot may be employed to compare any two treatment
arms.

Analysis of MM effects

Although we have employed an MM term of session effects in MMCAR and MMIGRP to capture the
dependence structure among clients, we may also realize an interpretative value by directly
studying the posterior summaries of the session random effects to compare their relative
effectiveness in reducing depressive symptoms, which is the aim of the goal 3 enumerated in
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Figure 7: MM effects: posterior mean estimates under varied prior formulations.

Section 1. We employ the plot function effectsplot that composes overlaid plots of session
effect posterior mean values from one or more prior formulations for the MM term, with the
plots faceted by disjoint groups, g € (1,...,G). As with all discussed plot functions, an
associated data.frame object used to compose the plots is also returned. We first compare
the MMIGRP independent prior formulation with by-group means to the MMCAR prior that allows
for adjacency or spatial dependence among the session effects.

R> run.objects <- 1list(MMCAR = MMCAR, MMIGRP = MMIGRP)
R> prior.labs <- c("MMCAR", "MMIGRP")
R> axis.labs <- c("Session-Within-Group",

+ "Session Effect(BDI-II Unit of Measure)')
R> ep.1 <- effectsplot(objects = run.objects, prior.labs = prior.labs,
+ axis.labs = axis.labs, center = TRUE)

Figure 7 aggregates the posterior mean estimates for session effects within each of the 4
groupings of treatment arm clients. We observe how the "mmcar" prior construction borrows
strength across adjacent sessions, producing estimates that are generally similar to those
under "mmigrp", but that provide heightened interpretative value by smoothing over "mmigrp"
results. This clarification under "mmcar" may be seen for groups 2,3 and 4, in particular.
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4.4. Including two or more MM terms

So far our definition of an MM term was restricted to the linear product of a single N x S
MM weight matrix, W, and the associated vector of S x 1 random effects, u, representing all
of the S sessions employed for CBT treatment as employed in Equation 1 where N denotes
the number of observed subject-time cases. One may find it useful to extend Equation 1 with
employment of additional MM terms under two scenarios,

1. There are multiple classes of unrelated exposures under which a subject’s weighted
exposure pattern in each MM sums to 1. An education example is an experimental
design that links a set of teachers to students across years with MM terms indexed
by year. A given student may link to a subset of MM terms over the multiple years
(Mariano, McCaffrey, and Lockwood 2010).

2. Sub-groupings of clients receive disjoint or non-communicating patterns of exposure
(such that modeling under a single MM matrix produces a block diagonal structure).
The disjoint collection of groups to which treatment arm clients are assigned for the
BRIGHT study offers an example of such a non-communicating exposure pattern. Each
subject is constrained to belong to exclusively one MM term of those employed. While
this pattern may be addressed under a single MM term (e.g., by using the "mmigrp"
modeling option in the dpgrowmm estimation function), separately modeling each disjoint
exposure pattern with its own MM term allows separate prior specifications for each
term. We will review this second use of disaggregating disjoint groups into separate
MM terms in the BRIGHT case study example that follows.

We perform the extension of the single-MM term formulation of Equation 1 to allow two or
more MM terms with,

Yij = o+ %58+ 250 + (Wijign) Vo -+ (Wijnigy) Ve + €ijs 9)

where (1{3},..., L;{i}) denotes those MM terms linked to subject i for a total of L; < L terms
and here L denotes the total number of MM terms employed over all subjects. For example,
if subject 5 belongs to terms (2,6,7) of L = 10 terms, then 1{5} =2, 2{5} =6, and 3{5} =7
with Ls = 3. Each MM term, Wy, £ =1,...,L, is an N; x Sy MM matrix specialized to term
¢ that maps Sy effects (where Zngl Sy = S) to Ny repeated measure cases for ny subjects.
Similarly, 4, represents an S; x 1 vector of MM (e.g., session) effects associated to MM term

L.

The construction for employing more-than-one MM term is modeled with estimation function,
dpgrowmult, but now inputs subj.aff and W.subj.aff as lists of vector and matrix objects,
respectively, with the lengths both 1ist objects equal to the number of MM terms. A prior
formulation for each MM term is input in a similar manner where now option holds a vector
of choices equal in length to the utilized number of MM terms. The available option choices
include, ("mmi", "mmigrp", "mmcar", "mmdp"). Each MM term is assumed independent
under Equation 9, though the prior constructions for each term may allow the data to learn
a dependence structure among the effects defined within that term.

21
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The "mmdp" option employs a DP prior over the effects within the applicable MM term,

w,...uslH S H (10)
H‘C,HU ~ DP(C,H{)) (11)
Hy = N(0,7,"), (12)

to allow the data to learn any dependence among the effects. Inputs for Omega and group are
now also list objects, the former of length equal to the number of terms under "mmcar" and
the latter the number of terms under either of "mmcar" or "mmigrp" prior formulations.

The non-overlapping client attendance patterns in the BRIGHT study across the G = 4
groups allow us to model each group with employment of a distinct MM term as an alternative
to the block-diagonal construction in a single MM weight matrix employed for W.subj.aff
used under a single MM term. We accounted for the group structure of the BRIGHT study
CBT arm in the adjacency matrix for the "mmcar" option or with the employment of by-
group random mean parameters under "mmigrp". We now extract each block from the block-
diagonal structure of the MM weight matrix used under the dpgrowmm into its own MM term in
dpgrowmult. We specify G = 4 MM terms, one for each group, where the effects for each term
receive their own prior specifications. For example, if a "mmcar" or "mmi" prior formulation
is specified for each term, then the associated precision parameters, 7,,, g = 1,...,G, will be
specific to each term (unlike with the single MM term construction which employs 1 precision
term, 7,,). So we can model dependence among the sessions within each MM term by using
"mmcar" or "mmdp" prior formulations, though the sessions between the MM terms are assumed
to be independent.

Hllustration on BRIGHT data

Our definition of 4 MM terms produces dat$subj.aff and dat$W.subj.aff as list objects,
each holding 4 elements. We may view the columns of dat$w.subj.aff[[g]] as a collection
of sessions nested under group g. For example, dat$W.subj.aff[[4]] is of dimension 78 x
129, reflecting the 78 CBT clients who attend any of the 129 unique sessions in this group.
Similarly, dat$subj.aff[[4]] is a vector of length 78 which captures the specific client
identifiers assigned to group 4. We may mention, however, that the use of 4 MM terms to
model the S = 245 session effects is about 20% more computationally expensive under our
BRIGHT case study runs.

Results displayed in Figure 7 from the modeling of BRIGHT CBT groups under a single MM
term (with dpgrowmm) reveal that session effects across the groups express a wide range of
values and dependence patterns, suggesting more flexibility might be warranted. We label the
object output from running dpgrowmult with MMDCAR, where the “D” denotes the BRIGHT
data are modeled under “disjoint” MM terms. Each group is now represented in its own MM
term that specifies a prior formulation. In our illustration, we employ two Gaussian prior for-
mulations; CAR ("mmcar"), for groups 2 and 4, and independent ("mmi"), for groups 1 and 3,
by setting option = c("mmi", "mmcar", "mmi", "mmcar"). We construct Omega and group
as list objects that use the associated constructions only for the groups (2 and 4) receiving
the CAR prior as these objects are not required for the independent prior formulations in the
following script,

R> Omega <- list(dat$Omegal[[2]], dat$Omegal[4]1])
R> group <- list(dat$group[[2]], dat$group[[4]1])
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R> MMDCAR <- dpgrowmult(y = dat$y, subject = dat$subject, trt = dat$trt,
+ time = dat$time, n.random = 3, n.fix_degree = 2, Omega = Omega,

+ group = group, subj.aff = dat$subj.aff, W.subj.aff = dat$W.subj.aff,
+ n.iter = n.iter, n.burn = n.burn, n.thin = n.thin, strength.mm = 1,
+ shape.dp = 4, option = c("mmi", "mmcar", "mmi", "mmcar"),

+ ulabs = c("group_1", "group_2", "group_3", "group_4"))

[1] "Your chosen set of MM term priors = mmi mmcar mmi mmcar"

The option, ulabs, allows us to name each MM term such that model outputs, including
plots, may reflect this labeling. For example,

R> u.summary <- summary(MMDCAR)$summary.results$u.summary
R> u.summary[["group_1"]]

$group_1
mcmc . low mcmc.mean mcmc.high
[1,] -3.674902 -0.1608180162 2.814044
[2,] -3.432991 -0.1195210419 3.002024

[36,] -3.052427 0.0554539194 3.475589

For comparative purposes, we replace the "mmcar" prior formulations for groups 2 and 4 in
model run MMDCAR with non-parametric "mmdp" options in a model we label MMDDP to see if
the greater flexibility of the non-parametric DP prior to discover dependence among sessions
provides a different result from specification of CAR priors.

The effectsplot function also permits a comparison of effects in a single, target MM term, of
possibly many, across multiple objects produced from dpgrowmult. The comparison for a focus
term may simultaneously include objects generated from dpgrowmm that include all sessions
for the single MM term or a selected group within the term (indicated with the group option)
such that the number of sessions compared across all objects is equal. We illustrate such a
comparison of dpgrowmult and dpgrowmm objects with another run of effectsplot focused
on group 4, which holds both the largest number of clients and associated sessions. We select
MM effects term 4 produced for MMDCAR and MMDDP using estimation function dpgrowmult
and also choose group = 4 for MMCAR that was earlier generated using estimation function
dpgrowmm.

R> run.objects <- 1list(MMDCAR = MMDCAR, MMDDP = MMDDP, MMCAR = MMCAR)
R> mm.terms <- c(4, 4, 4)

R> prior.labs <- c("MMDCAR-G4", "MMDDP-G4", "MMCAR-G4")

R> axis.labs <- c("Session-Within-Group",

+ "Session Effect (BDI-II Unit of Measure)")

R> ep.2 <- effectsplot(objects = run.objects, mm.terms = mm.terms,

+ prior.labs = prior.labs, axis.labs = axis.labs, center = TRUE)



24 Bayesian Non-Parametric Models with Multiple Membership Effects in R

0
>
(%]
3 A
2 A
=
A
8 A hi A .
c M PO N Prior
=) uA MM 4 allisiin A AM‘AA A
f 0-a Ao A A “Aﬂ N s AA“A“ A‘MAA‘ , A ‘AAAAAAM MMDCAR-G4
fa} ) @ il i [ 4 MMDDP-G4
8 - 'Yy LI il
= nin I MMCAR-G4
8 A
=
i}
c
o
[
1%
jo)
n

|
N
1

TR C TR ANTA
144539220 V20280348 3

I
1EIV SR I RO PP

i
PAISSIS!IL IPRFIPR

SENAEATTIL S
Session-Within—-Group

Figure 8: MM session effects: 1-term vs. 4-term model.

The option mm. terms identifies the focus MM term for an object generated from dpgrowmult
or target group for an object of class ‘dpgrowmm’ and may either contain the term or group
name (set with the ulabs option when running dpgrowmult or group for dpgrowmm) or may
contain a numerical value indicating the position order of the term or group. Here, we enter
4 for both the two ‘dpgrowmult’ and ‘dpgrowmm’ objects. The pattern of the MM term 4
posterior means for MMDCAR, produced under prior option "mmcar", shown in Figure 8 appears
similar to that for the 4th group in Figure 7 for MMCAR generated under a single MM term,
only the effects for the middle sessions appear now pulled further apart for MMDCAR. The
magnitudes are relatively higher across the session effects with MMDCAR to indicate the data
are learning a stronger signal. We may examine the trace plots (not shown here) for the
precision parameters, 7,,, produced for each term of the four terms specified in MMDCAR by
invoking the statement, plot (MMDCAR). These trace plots reveal that each of 4 MM terms
express different values for 7, to indicate the data use the flexibility from specializing 7, by
CBT group, to discover differing strengths of first order dependence. The -1pml fit statistic
improves from 2982 for MMCAR to 2975 for the MMDCAR. We conclude this section by noting that
MMDDP, which employs a DP prior alternative to CAR for term 4, expresses a similar, though
less discernable pattern before session 40 as compared to the other two alternative choices
for the priors defined on the session effects, but otherwise appears to estimate relatively little
dependence among the session effects.

We make brief mention that if the aggregation of effects across terms (dpgrowmult) or groups
(dpgrowmm) are common for all objects modeled (as they are in this example), an additional
plot is generated that compares all effect terms and groups when invoking effectsplot.



Journal of Statistical Software

4.5. Multivariate MM random effects

The univariate MM random effects of Equation 8 may be replaced with a multivariate formu-
lation where the effect of each MM random effect (such as a session effect) is allowed to vary
with time.

Yij = o+ X;g,@ + ZgbZ + (W;EU) Zi; + €5, (13)
where S x ¢ matrix of session effects, U = (uy,..., uS)T, so that row s defines a multivariate
g % 1, ug set of random effects for session s that is multiplied by z;; = (1,tij,tz2j) to allow
the session effect, s, to vary as a polynomial function of time. We may most easily make the
extension of the CAR formulation of Besag et al. (1991) by stacking each of the ¢, S x 1
columns from T into ¢S x 1, & = (u(l), . .,u(q)) for the S x 1, u,). Then compose the
multivariate CAR prior,

BIA,Q ~N(0,[(D-Q)®A]7), (14)

for ¢S x ¢S precision matrix, Q = (D — Q) ® A, where A describes the dependence among
the ¢ = 3 polynomial order effects for each MM element or session.

Our implementation restricts the multivariate session effects to be of the same form as the
q x 1 subject random effects, {b;}. The S x ¢ multivariate MM effects, U, are multiplied
by the 1 x S client ¢ row for observation j of the MM weight matrix, W, in Equation 13 to
produce a 1 x g product that is then multiplied by the ¢ x 1 random effects design vector,
Zj; = (1, tija t?j).
The multivariate MM (session) effects term is invoked with dpgrowmm(. .., multi = TRUE,
..) (where multi = FALSE is the default, which produces a univariate MM (session) effects
model). There are two available options for prior specification of the S x S covariance matrix
generating the columns of U, which are set with option in a very similar fashion as for
Equation 8. The two options are ¢("mmi", "mmcar"). A Wishart prior, A ~ W ((¢ + 1),1,),
where A is the ¢ X ¢ covariance matrix for the rows of U, completes the prior specification
for this model. This prior configuration implies a set of marginally uniform priors on the
correlations and we see little sensitivity to alternative specifications in lieu of I, for the mean
of the Wishart distribution, possibly because ¢ (that specifies the polynomial order) tends to
be small for our data applications.

Hlustration on BRIGHT data

We next generalize the single MM term to ¢ = 3 polynomial effects indexed by time for each
MM element. In what follows, we aggregate the 245 sessions from the BRIGHT study into
S = 61 modules that collect sessions. Each module is associated to a particularly therapeutic
topic and collects 4 sessions under that topic. In all, S = 61 CBT modules were offered to
clients. These 61 modules were divided into the same G = 4 CBT open-enrollment therapy
groups used to collect the underlying sessions. The number of modules for each of these four
groups was 9, 10, 10, and 32 and number of clients enrolled in each open-enrollment group was
17, 21, 19, and 83, respectively. Each client attended modules of only one of the four open-
enrollment groups. Other than coarsening our employed MM effects from session to modules,
we employ the same BRIGHT study data with identical structure for the study design, but
now we will focus on module effects (rather than session effects). The following code loads the
BRIGHT study data for use with module MM effects. Then we run dpgrowmm(. .., multi

25
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Figure 9: Multivariate module effects: posterior mean intercept (order 1), slope (order 2) and
quadratic (order 3) effects for each module.

= TRUE, n.random = q ...) to invoke the ¢ polynomial effects. Finally, we compose the
effect plots, faceted by CBT group, which is rendered in Figure 9. We first load the data.

R> data("datbrghtmodterms", package = "growcurves")
R> dat <- datbrghtmodterms

We next run the estimation function

R> MMIMV <- dpgrowmm(y = dat$y, subject = dat$subject, trt = dat$trt,
+ time = dat$time, n.random = 3, n.fix_degree = 2,

subj.aff = dat$subj.aff_mat, group = dat$group_mat,

W.subj.aff = dat$W.subj.aff_mat, multi = TRUE, n.iter = n.iter,

n.burn = n.burn, n.thin = n.thin, shape.dp = 4, strength.mm = 1.5,
plot.out = TRUE, option = "mmi")

+ + + +

[1] "Your chosen option = mmi for multivariate MM effects"

R> orderto <- 1list(1:9, 1:10, 1:10, 1:32)

R> run.objects <- list(MMIMV = MMIMV)

R> prior.labs <- "MMIMV"

R> axis.labs <- c("Module", "Effect Value")

R> ep.mv <- effectsplot(objects = run.objects, prior.labs = prior.labs,
+ axis.labs = axis.labs, smoother = TRUE, orderto = orderto)
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5. Combined subject-by-MM effects term

The MM models discussed earlier (which are invoked using the dpgrowmm and dpgrowmult
estimation functions) employ separate subject and MM terms. The use of separate terms
assumes no interaction between them such that the subject and MM effects are independent.
We will next reformulate Equation 13 that uses a single term with a new formulation to
explicitly index the subject random effects by treatment module (for the BRIGHT case study
illustration). Each subject will receive their own set of module random effects where each
subject is assigned a ¢ x (S + 1) matrix of random effects, in contrast with the set of ¢ x 1,
{b;}i=1,..n subject random effects and the S x 1 set of MM module effects, u, specified under
Equation 13. So each subject in our BRIGHT study application will have their own set of
S module effects. Our revised formulation will allow us to explore clusters of subjects whose
responses vary across treatment modules. We re-formulate Equation 13 in a more flexible
composition,

Yij = Oz—i—X;-;,B—i—ZZ—-;AZ’WZ'—FGZ’j (15)
A AP KR (16)
F|Fy ~ DP(c, Fp). (17)

Our construction for w is equivalent to the MM weight vector of Equation 13, plus an intercept
term to incorporate subject mean effects. The (S + 1) x 1, w is composed of values in [0, 1]
with 25:1 wg = 1 for subjects who are linked to at least one module, and 25:1 wg = 0 for
subjects who are not. We may see intuitively how (16) expands the DP formulation of (2) by
indexing subject effects by modules attended with,

A, = [bjai,...,ag;, (18)

where A; is composed of a ¢ x (S + 1) set of random effects specific to subject i that includes
a g X 1 vector, b;, and S sets of ¢ x 1 effects, {a,;}, specified for group therapy modules,
s=1,...,5. So this formulation estimates a full set of S module effects for every client in
both the UC and CBT arms, regardless of the particular modules they attended (or not at
all). The parameter matrix, A;, is back multiplied by the (S+1) x 1 vector w that encodes the
multiple membership link of subject ¢ to their particular vector of modules they did attend.
So only those effects, {as(k),i}k:h“, K, corresponding to the non-zero entries of w; will impact
the likelihood for y;, where (s(1),...,s(K)) defines a sub-vector of K < .S MM modules. The
way we may interpret the module effects for those modules not attended by a client is as the
projected value of their response if they had attended those modules.

We refer to the resulting formulation as a “multiple membership dependent Dirichlet process”
(MM DDP) because Savitsky and Paddock (2013) show that the construction of Equation 16
may be equivalently specified with a set of prior distributions for the subject random effects,
Fy, that are indexed by the unique MM weight vectors, w, expressed in the data.

5.1. Illustration on BRIGHT data

We implement our combined model with estimation function,

ddpgrow(... numdose = dat$numdose, dosemat = dat$dosemat,
Omega = dat$Omega, typetreat = c("car", "car", "mvn", "ind"), ...).
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This function utilizes similar inputs as dpgrow, particularly for data structure inputs. Addi-
tional inputs include numdose, a vector of length equal to the number of distinct sets of MM
modules, where each entry contains the number of modules associated to a set. A set contains
a collection of modules that may represent a treatment or, in the case of the BRIGHT study
data, a CBT therapy group. We specify numdose = c(9, 10, 10, 32) for the BRIGHT case
study, where each entry represents the number of modules contained within a CBT therapy
group and there are 4 total groups. The next input is dosemat, an n x (S + 1) MM weight
matrix that maps the n clients to S MM modules (across all treatments or groups). Each row
of dosemat contains, w;, the MM attendance vector for client ¢, where i = 1,...,n, and the
first column is an intercept column of 1’s to parameterize the client 7 mean random effect, b;.
A hold-out module is required for identifiability. Under a study design that includes 2 or more
interventions, the control arm may serve as the hold-out — which is equivalent to a module
“0” or the null module — so that the row entry for all control arm clients is set to (1,0,...,0),
where the 0’s in all the module columns indicate a control arm client is not linked to (or
did not attend) any modules. The base distribution prior, Fy, for each group of modules is
conveyed in typetreat, which is of the same length as numdose and equal to the number of
groups. There are 3 prior options from which to choose for each group, "car", "mvn" and
"ind". The "car" option implements a multivariate CAR formulation similar to Equation 14
used for the multivariate MM module effects term, though the improper CAR formulation
is replaced with a very similar proper variant that allows for joint or block sampling. See
Savitsky and Paddock (2013) for additional details of the base distribution formulations.

The input, Omega, is a list object of length equal to the number of groups of modules for which
"car" is selected in typetreat. This construction is identical to that for dpgrowmult, where
each list component is a square adjacency matrix dimensioned by the number of modules
in the group. So we see that implementing Equation 18 estimation function ddpgrow is a
non-parametric generalization of dpgrowmult. Heuristically, ddpgrow may be described as
bringing the set of MM module effect terms utilized for dpgrowmult “inside” the DP prior
specified for client random effects to produce an expanded client-by-module random effects
parameterization.

We now run ddpgrow with our BRIGHT dataset. Focusing on the code block, below, we first
run the ddpgrow estimation function, allocating the modules to the 4 CBT groups through
the numdose input vector. We employ the multivariate CAR base distributions for all of the
CBT groups. As earlier, we next extract the least squares clustering of clients (from among
the posterior clusterings) and create the matrix, map, for faceting our plots of the resulting
client-by-module random effects by clusters of clients. These effect plots are accomplished in
the last script sequence by invoking plot function, ddpEffectsplot. The orderto input is
an optional vector input of length equal to the number of modules, S = 61 that enumerates
a specific order for the plotting of sessions within group (with the grouping conveyed in
map.group). The default is to plot the client-by-module effects in order of increasing value
and is overridden by the orderto input. This sorting of effects by increasing value may be
directly turned off by choosing re.order = FALSE, which is done automatically if an input
is specified for orderto.

R> typetreat <- c("car", "car", "car", "car")

R> DDP <- ddpgrow(y = dat$y, subject = dat$subject, trt = dat$trt,

+ time = dat$time, n.random = 3, n.fix_degree = 2, numdose = dat$numdose,
+ dosemat = dat$dosemat, Omega = dat$Omega, n.iter = n.iter,



Journal of Statistical Software 29

+ n.burn = n.burn, n.thin = n.thin, shape.dp = 2, rate.dp = 4,
+ M.init = 15, plot.out = TRUE, typetreat = typetreat, labt = dat$labt)

[1] "Your chosen set of treatment base distributions = car car car car"

We next re-group clients into extracted clustering and focus on 6 most populated clusters.

R> cluster <- samples(DDP)$bigSmin

R> c.sizes <- sapply(cluster, length)

R> clusterstoplot <- sort(c.sizes, decreasing = TRUE,

+ index.return = TRUE)$ix[1:6]

R> map <- vector(mode="list", length = length(clusterstoplot))
R> for(i in 1:length(clusterstoplot)) {

+ cluster.i <- cluster[[clusterstoplot[i]]]

+ map[[i]] <- as.data.frame(cbind(cluster.i,

+ paste("cluster", i, sep = "_")), stringsAsFactors = FALSE)
+ names (map[[i]]) <- c("subject", "group")

+ }

R> map <- do.call("rbind", map)

We now plot subject-by-module multivariate MM effects averaged over clients within each of
the 6 clusters.

R> trts.plot <- paste("cbt", 1:4, sep="_")

R> dep <- ddpEffectsplot (DDP, cred.intervals = FALSE,

+ x.axis.label = "Modules", map.group = map, re.order = FALSE,
+ trts.plot = trts.plot, orderto = 1:61)

Running ddpEffectsplot produces a set of plot objects, including the two we next discuss,
which both focus on analyzing the client-by-module effects aggregated to clusters of clients
for each of the 4 CBT groups. Figure 10 provides insight for examining the variation in
client-by-module effects across clusters of clients and how those effects vary over time. The
figure displays ¢ = 3 posterior mean polynomial effects for each module averaged up to
the 6 clusters of clients, denoted by cluster_1, ..., cluster_6. The 3 polynomial effect values
are presented for all modules. Each cluster’s trajectories are presented within each of the
4 open-enrollment CBT therapy groups (of modules) along the rows within clusters. They
are denoted by cbt_1,...,cbt_4 in the Figure. These polynomial parameters imply an effect
trajectory for each module with the order 1 effect providing the intercept, the order 2 effect the
slope and order 3, a non-linear quadratic term. For example, the resulting effects trajectory
for a module would be U-shaped if the order 3 term is positive. Scanning from left-to-right
across the clusters in Figure 10, we observe a notable variation in first order module effect on
depressive symptoms among the clusters, particularly for cbt groups 1-3. If we compare the
first order (red) module effects in the third row Figure 10 for group 3 with the same result in
the lower left panel in Figure 7 generated from the additive two-term model of Equation 1, we
see a similar S-shape, though the magnitude among cluster_1 clients is higher in Figure 10,
but progressively diminishes in the other clusters of clients (from left-to-right).

Figure 11 presents module effect trajectories of the BDI-II depressive symptom scores for
randomly selected modules, which are composed from performing within sample predictions



30 Bayesian Non-Parametric Models with Multiple Membership Effects in R

cbt_1, cluster_1 cbt_1, cluster_2 cbt_1, cluster_3 cbt_1, cluster_4 cbt_1, cluster_5 cbt_1, cluster_6

A A

mod_2

mod_3

mod_5

mod_4 ]
mod 67 °

0,
o
8
£

mod_6
mod_7
mod_8
mod_9
mod_1
mod_2
mod_3
mod_7
mod_8
mod_9

<
<
8
£

mod_8
mod_9
mod_1

~
o
8
£

mod_1
mod_2
mod_3
mod_4
mod_5
mod_6

cbt_2, cluster_4 cbt_2, cluster_5 cbt_2, cluster_6

0wy 3 pada) | Sagirritey |rasd EAre A an || Err g gttt || Eragnapeid
N_o A
CUZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIOrder
= 23Yq2RENYT SAIIARIRLENRS 34T INENBZ 3 IYFINENRS I 3ARJUENQS AT LGNS
] pujpa jpa e hu Jn Jou e Jhn Joa e Jou fpa jha Jn [ fbu e Jn Joa e Jpn o e hn Ipar e e Jon [pa e Jon [ e Jn [parpa e Jn I e o fpu e Ju [pupa u Jpn Joa e o Jou hu Jn a e u e e e
> 8888888888 o888 coc0b0pc88 boococo0po0o0o68 o058 0o0009808 o500 00b0p0098 So06o808¢8 288 8
E EEEEEEETEE E EEEEEEEEE E EEEEEEEEE E EEEEEEETEE E EEEEEEEEE E EEEEEEEEE ~2
= A
O
§ cbt_3, cluster_1 cbt_3, cluster_2 cht_3, cluster_3 cbt_3, cluster_4 cbt_3, cluster_5 cbt_3, cluster_6 3
-
w4
2_
0— - -8 - - -
A-aK *-A- A- % -A- A A P A-A
_2IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
CHNOITWENR®? OHNNIMORRY SHNDINEN®E CHNOTONEN2Y STINNINSRRSE SHNODST OGN ©a
NI N\ N\ N\ N\ N\ N\ NI NI N\ NI NI N\ N\ N\ N\ N\ NI NI N\ N\ NI N\ N\ N\ N\ N\ N\ NI N\ N\ NI NI N\ N\ N\ N\ N\ NI NI N\ NI NI N\ N\ N\ N\ N\ NI NI N\ N\ NI NI N\ N\ N\ N\ N\ NI
e e e
2888888888 8888888888 BBEEE8E8E888¢88 2EEEEEEEEE T EEEBEBEEBEBE BEEEEEEEEGE
E EEEEEEEEE E EEEEEEEEE E EEEEEEEEE E EEEEEETEEFE E EEEEEETEEE E EEEEETETEEE
cbt_4, cluster_1 cbt_4, cluster_2 cbt_4, cluster_3 cbt_4, cluster_4 cbt_4, cluster_5 cbt_4, cluster_6

Modules

Figure 10: Client-by-module effects: posterior mean intercept (order 1), slope (order 2) and
quadratic (order 3) effects. Columns are clusters (of clients) and rows are CBT treatment
groups.

Model D —LPML DIC3
MMCAR 5505 2980 5679
MMIMV 5547 2994 5716
DDP 5079 2929 5302

Table 4: BRIGHT study model fit comparisons: D, —LPML and DIC3 scores for model
alternatives. Lower values imply better performance.

using the polynomial client-by-module effects. The same display format is used from Figure 10,
with clusters of clients across the columns and CBT groups down the rows. Scanning the
columns from left-to-right reveals the same marked attenuation in cluster responsiveness to the
CBT intervention that we observe in Figure 10. Member clients of clusters 4-6 express much
less depressive symptom sensitivity to participation in the modules and, therefore, one notes
much less differentiation in effect values among the modules for these clusters. These results
reveal the extent to which group therapy clients express distinct underlying tendencies for
realizing change in depressive symptoms. The ability for clients to express differing responses
to module attendances produces a much better fit for DDP as compared to other models, as
noted in Table 4 (where our MM effects are denoted by module, rather than session in our
earlier examples using BRIGHT): Even though there are many more parameters in DDP, the
borrowing of strength among clients reduces the effective parameterization sufficiently such
that the dramatically improved deviance drives lower values for both penalized fit statistics.



Journal of Statistical Software
cbt 1, cluster_1 || cbt 1, cluster_2 || cbt 1, cluster_3 || cbt 1, cluster_4 || cbt_1, cluster 5 || cbt 1, cluster 6 | Modules
44 ——|/mod_1
2 _/"_’"\\ ——|mod_4
RS e N I e e —ssna e i
o4 —— mod_8
cbt_2, cluster_1 || cbt_2, cluster_2 || cbt_2, cluster_3 || cbt_2, cluster_4 || cbt_2, cluster_5 || cbt_2, cluster_6 —— mod_9
4+ —— mod_10
mﬁﬁ—'ﬁ—'—._.
2 .-<:::: —_—— —— mod_13
g % = . : nnse-*%niss.- ~==es
c 1= S
D, —— mod_15
3 d
2 cbt_3, cluster_1 || cbt_3, cluster_2 || cbt_3, cluster_3 || cbt_3, cluster_4 || cbt_3, cluster_5 || cbt_3, cluster_6 —— mod_18
)
o 4- —— mod_21
N
& 24 —— mod_24
0+ —— mod_25
2 %::s %ﬁ — mod_28
cbt_4, cluster_1 || cbt_4, cluster_2 || cbt_4, cluster_3 || cbt_4, cluster_4 || cbt_4, cluster_5 || cbt_4, cluster_6 —— mod_29
4+ —~— mod_35
24 —— mod_46
5 —— mod_51
I I I T I I T I I T I I [ I I [ I I I
0 2 4 60 2 4 60 2 4 60 2 4 60 2 4 60 2 4 6 |~ modss
Time

Figure 11: Client-by-module effect curves: within-sample predicted growth curves for client-
by-module effects generated from using the 3 effect orders for each module. The columns
contain clusters of clients and the rows are CBT treatment groups. Randomly-selected mod-
ules are included in each plot cell.

Model CPU-time (min)
LGM 0.3
DP 2.6
MMCAR 4.6
MMDCAR 5.8
MMIGRP 7.8
DDP 720.0

Table 5: BRIGHT study model computation time comparisons in CPU minutes.

6. Computation

Each of our models illustrated with the BRIGHT study data was run for 40000 iterations on
an ¢7 quad core machine configured with 8 threads where only 1 thread was used to compare
computation run times in Table 5.

The DDP model computational speed is impacted by the matrix variate objects estimated
for each subject and the time is of O(n?), where n denotes the number of subjects. While
this model experiences a far longer run time than the others, our experience is that it tends
to provide the best fit and very useful inference for MM random effects.

31



32 Bayesian Non-Parametric Models with Multiple Membership Effects in R

7. Concluding remarks

Repeated measures data over a set of subjects drawn from an experimental trial are typically
expensive and difficult to acquire. Study protocols on how treatment(s) are administered may
induce complex patterns of measurement dependence among subjects. Standard methods for
their analysis do not fully borrow strength in estimation of subject effects or account for the
often complex set of correlations induced by the manner in which treatments are administered.
growcurves for R addresses the opportunities with employment of a Bayesian semi-parametric
hierarchical framework with employment of MM random effects.

The design of growcurves further recognizes the important graphical information inherent to
a repeated measures data construction and provides plot functions that supply the user with
the flexibility to compose and arrange graphics to suit their inferential tasks. Each of the three
plot functions addresses a core analytical need common to inference conducted with repeated
measures data for treatment(s) evaluation studies, including generation and aggregation of
subject growth curves to extract patterns of persistence, displaying the distribution over
treatment fixed mean differences between any two treatment arms, and plots to determine
how one or more MM term effects contributes to estimation of the observed response. Then
our growcurves package construction is well-targeted to a class of inferential problems and
intends to save the user much of the effort typically required under application of a general
software solution for such analysis.

Future work on the growcurves package for R will focus on adding generalized linear model
constructions to accommodate dichotomous, polychotomous and event time outcomes. We
hope to further focus on more fully modeling sparse matrix formulations in C++ to further
reduce the computation times for our estimation functions.

Computational details

For obtaining the results in the manuscript, R version 3.0.2 (R Core Team 2013) was used with
packages growcurves (Savitsky 2014) and matlab (Roebuck 2014). Additionally, growcurvers
depends on or imports the following packages: Repp (Eddelbuettel and Francois 2011), Rep-
pArmadillo (Eddelbuettel and Sanderson 2014), reshape2 (Wickham 2007), ggplot2 and scales
(Wickham 2009, 2014a), testthat (Wickham 2014b), and Formula (Zeileis and Croissant 2010).
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