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Abstract

PySSM is a Python package that has been developed for the analysis of time series
using linear Gaussian state space models. PySSM is easy to use; models can be set up
quickly and efficiently and a variety of different settings are available to the user. It also
takes advantage of scientific libraries NumPy and SciPy and other high level features of
the Python language. PySSM is also used as a platform for interfacing between optimized
and parallelized Fortran routines. These Fortran routines heavily utilize basic linear algebra
and linear algebra Package functions for maximum performance. PySSM contains classes
for filtering, classical smoothing as well as simulation smoothing.

Keywords: Bayesian estimation, state space model, time series analysis, Python.

1. Introduction

In this paper, an open source Python module (library) called PySSM is presented for the
analysis of time series, using state space models (SSMs); see van Rossum (1995) for further
details on the Python programming language. The purpose of time series analysis is to identify
inherent characteristics in raw time ordered data. State space models are one method for
analyzing time series data, and are based upon the assumption that observations can be
explained in terms of different components, such as trends, seasonality, cycles, regression
elements and disturbance terms. While each component can be modeled separately the SSM
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approach combines them together to form a single unified model of the phenomena being
studied (Durbin and Koopman 2001). State space modeling of time series is undertaken in
many fields including finance, economics and environmental science, amongst others.

The linear Gaussian SSM provides an attractive representation for numerous time series mod-
els, including both stationary and non stationary, in either a univariate or multivariate time
series setting. The estimation and the analysis of SSMs is covered in numerous books includ-
ing Anderson and Moore (1979), Harvey (1989) and Durbin and Koopman (2001), amongst
others. One of the attractive features of the SSM is that its generic form allows for the ap-
plication of standard algorithms, of which the most well known is the Kalman filter. There
are also numerous other filtering and smoothing algorithms, many of which are used in con-
junction with the Kalman filter that are associated with the SSM. Of particular interest for
Bayesian analysis are simulation smoothing algorithms, which can be used to jointly sample
the state vector of a SSM, from its full conditional posterior distribution. Given the popu-
larity of modeling time series using SSMs, and the complexity of the associated algorithms
that are used in estimation, the need for a library such as PySSM, is apparent. Whilst there
are state space libraries for a range of software environments (see Drukker and Gates 2011,
for an overview) — including MATLAB (The MathWorks, Inc. 2011; see also Peng and Aston
2011), R (R Core Team 2013; see also Petris and Petrone 2011), SAS (SAS Institute Inc.
2011; see also Selukar 2011), STAMP (Koopman, Harvey, Doornik, and Shephard 2009; see
also Mendelssohn 2011), Stata (StataCorp. 2013; see also Drukker and Gates 2011) among
others — there is no current comprehensive suite in Python for the analysis of SSMs. PySSM
is designed to fill this gap.

Python is an interpreted, interactive, object-oriented programming language, and is an ideal
programming language for building an SSM library, as it has extensive scientific libraries,
such as NumPy (Oliphant 2006) and SciPy (Jones, Oliphant, and Peterson 2001); see for
example Oliphant (2007). Furthermore, Python is easily extensible, has a clean syntax and
powerful programming constructs. NumPy is a fundamental package that is extremely useful
for scientific computing, and contains among other things a powerful N-dimensional array
object. NumPy is used primarily as an efficient multi-dimensional container of generic data
in PySSM. Another feature of Python which is particularly important is that it is quite easy to
include modules from compiled languages such as C/C++ and Fortran in order to obtain the
necessary speed for feasible practical analysis; see for example Strickland, Alston, Denham,
and Mengersen (2011). With Python, the user can simply compile Fortran code using a module
called F2py, see Peterson (2009), or inline C using Weave, which is part of SciPy, see Oliphant
(2007) and use the subroutines directly from Python.

PySSM is a collection of Python classes, foremost of which are the Python classes for filter-
ing and simulation smoothing. Associated with these classes is a suite of Fortran functions
and subroutines that are heavily optimized and make use of basic linear algebra subroutines
(BLAS) and the linear algebra package (LAPACK); see Anderson et al. (1999) for details. All
of the computationally intensive calculations in PySSM are performed using these routines,
to ensure that the majority of the computation is undertaken with optimized compiled code.
The user, however, interacts with the high level Python interface to these routines, which
helps to minimize development time.

The examples included with the package, PySSM, require the PyMCMC library of Strickland

et al. (2011) that provides a solution to the complex integration problems faced in the Bayesian
analysis of statistical problems. It consists of a variety of Markov chain Monte Carlo (MCMC)
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algorithms. In particular it contains classes for the Gibbs sampler, Metropolis Hastings (MH),
independent MH, random walk MH, orientational Monte Carlo (OBMC) as well as the slice
sampler.

The aim of this paper is to describe PySSM, and to illustrate its use in Bayesian analysis of
SSMs. Note that the package also contains numerous algorithms that can be used for classical
analysis. In Section 2, the SSM is specified and the application of Bayesian estimation is
reviewed. In Section 3 the PySSM classes are described in detail. Section 4 then illustrates
the application of PySSM to a variety of examples. Section 5 concludes.

2. State space model

The linear Gaussian SSM, considered in this paper, the (p x 1) vector of observations, vy, is
generated by

Yyt = XifBm + Zioy + Reey, &~ N (0, Hy), (1)
where X is a (p X ky,) matrix of regressors, 3, is a (k,, X 1) vector of regression coefficients,
Z; is a (p x m) system matrix, oy is an an (m x 1) state vector, &; is a (p x 1) vector of
normally distributed random variables, with a mean vector 0 and a (p X p) covariance matrix,
H;. The state, oy, is generated by the following relation,

aiy1 = WiBs + Tvay + G, me ~ N (0, Q) (2)

where W, is an (m x k) matrix of regressors, 35 is a (ks x 1) vector of regression coefficients,
T; is an (m x m) transition matrix, G; is an (m x r) system matrix and 7; is normally
distributed, with a mean 0 and a (r x r) covariance matrix @Q;. Let 3 = (8/,03,,). The
initial state is distributed as follows:

(85} NN(al,Pl), (3)

where a; is an (m x 1) mean vector and P is the (m x m) covariance matrix for the initial
state. The set of unknown parameters in the system matrices is denoted by the (j x 1) vector
6. Given the measurement equation in 1, for the case where RthRﬁtT is non-singular, the
joint probability density function (pdf) for the set of observations, y, is multivariate normal,

where y = (le, y;—, e ,yI)T, is distributed as

n _1 1 —1
P (yla, 0) H ‘RHtRT‘ * exp {—2(% — XiBm — Zyoy) " (RthRtT) (yr — XiBm — Ztat)} ;
=1

where a = (a1, a2, ..., o). From (2), it is clear that the joint pdf for the state, a, for the
case where GyQ;G " is non-singular, is given by

n—1

p(alf) = p(cu]6) [ ] »(eri]ew. 6)
t=1

‘71/2

n—1
_ 1 _
o [Py 12 exp {—2(a1 —a1) P! (o — Gl)} H ‘GtQthT (4)
t=1

n—1

1 -1

X exp {—2 E (ap41 — Wi B85 — ,Ttat)T (GtQthT> (ag41 — Wi Bs — TtOét)} .
t=1
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2.1. Bayesian estimation of SSMs

Bayesian inference summarizes uncertainty about the unknown parameters of interest through
the joint posterior density function. MCMC is probably the most common way to conduct
Bayesian analysis of SSMs.

A generic Bayesian algorithm for a SSM using MCMC can be given, at iteration j by:

1. Sample o from p (a]y,@j_l,ﬁj—l),
2. Sample 67 from p (Bly, o, 3771).

3. Sample 37 from p (,B\y,aj,aj).

Algorithm 1: A generic algorithm for the MCMC estimation of a linear Gaussian SSM.

For a linear Gaussian SSM, the standard approach for sampling the state in Step 1 is to use
a simulation smoothing algorithm. Alternative algorithms are provided by Carter and Kohn
(1994), De Jong and Shephard (1995), Durbin and Koopman (2002), Frithwirth-Schnatter
(2004) and Strickland, Turner, Denham, and Mengerson (2009). PySSM contains a simula-
tion smoothing class, which uses the most computationally efficient, of the aforementioned
simulation smoothing algorithms, given the specified SSM.

Step 2 is model specific, but often makes use of computing the log of the probability of the
measurement or state equations or log-likelihood function. PySSM contains functions for
these computations, which are described in later sections and PyMCMC simplifies the task
of setting up the MCMC algorithm.

Step 3 is easily computed using the ‘CondRegressionSampler’ class in PyMCMC. This is
demonstrated in the following examples. Alternatively, PySSM can also be used to jointly
sample the regression coefficients, 3, and the state vector, a, from their joint posterior dis-
tribution p (83, aly, 6, o).

3. Python implementation

A description of the Python implementation is now presented. Unless otherwise stated, all
arrays used in PySSM are initialized as NumPy arrays. All multi-dimensional arrays are
also initialized with the order = ’F’ Fortran contiguous ordering option. This ensures that
multi-dimensional data are stored in memory in a column-wise fashion.

The three main classes ‘System’, ‘Filter’, ‘SimSmoother’ that constitute PySSM are de-
scribed, in the following subsections. There is no unifying class that encapsulates instances of
these classes for SSMs, but it is quite feasible for one to be created if necessary. The classes
remain separate because users may only want to, for instance use the filtering algorithms,
simulate data or simply compute the log-likelihood, and therefore do not need to allocate
the additional memory that is required for simulation smoothing classes. It should be noted
though that the class ‘Filter’ depends on the class ‘System’ and that the class ‘SimSmoother’
makes use of both the ‘Filter’ and ‘System’ classes.
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3.1. ‘System’ class

A class named ‘System’ is used to encapsulate the system matrices and other important
parameters for the SSM. One should not have to manually create the class ‘System’ as it is
created as apart of the ‘Filter’ and ‘SimSmoother’ classes. Note, however, both classes have
accessor functions that supply the user with a reference to the ‘System’ class, allowing the
user to modify the system matrices when required. An instance of type ‘System’ is created
(i.e., by the class constructor), with the following arguments:

nobs: An integer specifying the number of time series observations.

nseries: An integer specifying the number of time series.

nstate: An integer specifying the dimension of the state vector.

rstate: An integer specifying the dimension of the covariance matrix Q.

nreg: An integer specifying the number of regressors in the measurement equation.
sreg: An integer specifying the number of regressors in the state equation.

timevar: A Boolean flag or dictionary (Python data structure) that is used for specifying
which of the system matrices is time varying. For example, if the parameter is input
as a Boolean then each of the system parameters is defined as either time varying
or not time varying according to whether the Boolean entered is True or False. If
specific system matrices are to be time varying while others are not then a dictionary
is required as input. An example is as follows: timevar = {‘gt’:True, ‘qt’:False,
‘zt’:False, ‘tt’:False, ‘ht’:False, ‘rt’:False}. Note that the keyword is on
the left and the property on the right. The system matrices are differentiated by the
following keys: ‘tt’, ‘qt’, ‘gt’, ‘ht’, ‘zt’ and ‘rt’. In particular, the first letter
refers to the particular system matrix and the second letter refers to the time index.
In this example only Gy, see (2), is time varying. An important point to note, only
the system matrices that are time varying need to be specified in the dictionary. For
instance, in the above example timevar = {‘gt’:True} is sufficient to produce the
same result.

properties: A dictionary (Python data structure) used to describe special structures of the
system matrices that allow additional specific numerical optimizations in the algorithms
implemented in PySSM. By default all system matrices are regarded as “standard” and
specified in the following way: properties = {‘tt’:‘default’, ‘qt’:‘default’,
‘gt’:‘default’, ‘ht’:‘default’, ‘zt’:‘default’, ‘rt’:‘default’}.
Special structures of the system matrices other than the default include: identity, di-
agonal, and null (zero matrix). They are abbreviated by the following strings: ‘null’,
‘eye’ and ‘diag’, and can be specified for certain matrices.

Table 1 lists the currently available optimization options, for each of the system matrices. Also
shown is whether or not compressed storage is used, for a particular specification. Essentially,
compressed storage implies for both the cases where the specified system matrix is classed as
either a diagonal or an identity matrix that only the diagonal of the matrix is stored. For
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SM Label Currently available options Compressed storage

A ‘zt’ ‘default’ No

R, ‘rt’ ‘default’, ‘diag’, ‘eye’ Yes (for ‘diag’ and ‘eye’?)
H; ‘ht’ ‘default’, ‘null’, ‘diag’, ‘eye’  Yes (for ‘diag’ and ‘eye’)
T ‘tt? ‘default’ No

G, ‘gt’ ‘default’, ‘eye’ No

Qr ‘qt’ ‘default’ No

Table 1: Specifies the options that are currently available for each of the system matrices. The
first column specifies the system matrix (SM), the second column specifies its label, the third
column specifies the options currently available and the fourth column specifies whether or not
compressed storage is used for the given option; see the description below for an explanation
of compressed storage.

example, if H; is a diagonal matrix then the user should only pass in a (p x 1) vector (in the
case that H; is not time varying) when initializing (or updating) the matrix.

Note that only the arguments for the system matrices that are not default need to be included
in the dictionary. For instance, suppose the system matrix H; is diagonal, but all the remain-
ing matrices have no special structure. In this case, the user can simply specify; properties
= {‘ht’:‘diag’}. Also note that just because a property for a system matrix is given does
not necessitate the use of an optimization. This will depend upon the specific property and
the specific algorithm being used.

The system class also contains a number of “public” member functions which have been
provided to access and update the system matrices. To access any of the system matrices the
user can simply use the label associated with the system matrix as label(). The labels for
the system matrices are (tt, zt, ht, rt, cht, qt, cqt, gt, gqg, gcqt, rhr, rcht,
pl, al, cholpl, wt, xt, beta). Note that we will use the labels interchangeably with
the names of the system matrices to simplify discussion. For instance, we may use ht to refer
to H;. It should be noted that cht, cqt and cholpl refer to the Cholesky factorization of
ht, qt and p1, respectively. Similarly gcqt refers to the product of gt and cqt; gqg refers to
the product of gt, gt and the transpose of gt; rcht is the product of rt and cht, and rhr is
the product of rt, ht and the transpose of rt. Further, the labels xt and wt refer to X; and
W, in (1) and (2), respectively. For example, if the class instance is called system then the
system matrix T} can be accessed as system.tt (). If in this case the user wanted to access
the element in the first row and column then they would use system.tt() [0, 0].

The public update functions have the following specification: update_label (array) where
label is one of the following (tt, zt, ht, rt, qt, gt, pl, al, beta, wt, xt). The
new value of the system matrix denoted by “array” is required as input by each update func-
tion. These update functions call a number of private member functions to compute (update)
all associated components. For example, updating the system matrix corresponding to the
label gt results in the matrices corresponding to the labels qt, cqt, gcqt and gqg being
updated automatically. Similarly, updating G; through the function gt () results in the ma-
trices corresponding to the labels gt, gcqt and qgq being updated. If ht is updated then
ht, cht, rcht and rhr are also updated. Similarly, if rt is updated then rt, rcht and rhr
are also updated. Two other update functions are also provided with the following specifica-
tion: update_gt_qt(gt, qt) and update_rt_ht(rt, ht). These update functions take two
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standard arguments and perform both updates. In other words they reduce the redundancy
of calling an update_gt followed by an update_qt or vice versa, or an update_rt followed
by an update_ht or vice versa. These functions are necessary because of the requirement for
additional calculations to be performed that allow numerical optimizations to be used. For
example, the Cholesky factorization of Q; and H; are needed in many calculations.

An instance of of type ‘System’ is created for use within the simulation smoother and filtering
classes and is freely accessible from within these instances.

3.2. Filtering

A class named ‘Filter’ is provided to accomplish all filtering tasks required by the SSM. The
class can also be used to simulate data. The purpose of filtering is to update knowledge of the
system each time a new observation is brought in (Durbin and Koopman 2001). An instance
of type Filter is created (i.e., with the class constructor) with similar arguments as for class
‘System’. For example, a class instance filter can be created as follows

filter = Filter(nobs, nseries, nstate, rstate, timevar, **kwargs)

where nobs, nseries, nstate and rstate have the same meaning as described in Sec-
tion 3.1. There are also additional optional arguments that are input using the special Python
syntax *xkwargs. This double asterisk form is used to pass a key worded variable-length
argument list to a function. The following optional arguments can be specified:

joint_sample: The diffuse Kalman filter of De Jong (1991) is used. There are two options.
The first is [b, B, Wp], where b and B, are from the definition

B~ N (b, BBT> ,
that is 3 is distributed normal, with a mean vector b and a covariance BB . Here we
- T 2T\ T o B 0
assume that b= (b ,b,)) and B = ( Os B, ), where

By ~ N (bs,BsB§>

and

B ~ N (bm, BmB,D .

Note that under the assumptions of De Jong (1991) a; = Wy3s. The second option is
[‘diffuse’, W], where a flat prior is assumed for 3.

filter: Specifies the filtering algorithm. There are two options, namely ‘dkbenchmark’ and
‘c_filter’. If no options are specified then the default filtering algorithm, which may
change depending on the properties defined, is used. The keyword ‘dkbenchmark’ refers
to a filter that is implemented (without alteration) from Durbin and Koopman (2001).
This algorithm can be very inefficient (particularly for multivariate time series) and
should only be used for benchmarking. The algorithm c_filter is the contemporaneous
version of the Kalman filter; see (Durbin and Koopman 2001, p. 68) for further details.
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smoother: By default the state smoother is used; however, there is the option of using a
disturbance smoother, through the option ‘disturbance’.

properties: Required in the initialization of an instance of the class ‘System’ (as described
in the preceding subsection). If this option is not used then the default settings are
used, in which it is assumed that each of the system matrices are dense.

wmat: Specifies the matrix W;, see (2), which is used if regressors are desired in the state
equation of the SSM. If this option is not used then there is no such term in the state
equation. The parameter sreg is extracted from the array that is input (i.e., size of the
second dimension) and is not explicitly input in the constructor.

xmat: Specifies the matrix Xy, see (1), which is to be used if regressors are to be included
in the measurement equation of the SSM. If this option is not used then there is no
such term in the measurement equation. The parameter nreg is extracted from the
array that is input (i.e., size of the second dimension) and is not explicitly input in the
constructor.

The following is an example of how to use kwargs to specify additional options for the ‘Filter’
class:

filter = Filter(nobs, nseries, nstate, rstate, timevar, wmat = W)

where in this example W is an (m X k x n) array of regressors. Note that using this notation
implies that W4, in (2) is W[:,:,t].

The ‘Filter’ class must be initialized before use, with the following member function:
initialise_system(al, pl, zt, ht, tt, gt, qt, rt, **kwargs)

The optional argument for this function is beta. This argument should only be used if the
SSM includes regressors.

A number of other public member functions are also provided. These are described below:

get_ymat (): Returns the (nseries by nobs) array of observations, y = (y1;Y2;...,;Yn)-
For example, suppose the instance of the class ‘Filter’ is called filter, then the data
may be obtained using the code:

y = filter.get_ymat ()
In this case y; is obtained as y[:,t].

get_state(): Returns the nstate by nobs simulated values for the state, a = (a1; ;. . . ;
ay,). Note that, the simulated state is initialized as 0 so if the function simssm() (which
is described below) has not been called then a zero array is returned.

update_ymat (ymat): Updates the class copy of ymat, where ymat refers to the data set, y.

simssm(): Simulates data from the specified SSM. Note that it returns nothing. For example,
if the class instance is filter and assuming the filter has been initialized, using the
public member function initialise_system, then the user may simulate and obtain
the data set using the following code:
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filter.simssm()
data = filter.get_ymat ()

In this case data denotes the data set, y.
calc_log_likelihood(): Returns the log-likelihood for the SSM.
filter(): Runs the specified filtering algorithm.

smoother (): Function runs the specified smoothing algorithm.

3.3. Simulation smoothing

A class named ‘SimSmoother’ is provided to accomplish all simulation smoothing tasks re-
quired by the SSM. The purpose of smoothing is to draw state variables (samples) from their
conditional posterior distribution given parameters and the observations. An instance of type
‘SimSmoother’ is initialized with similar arguments as ‘System’:

smoother = SimSmoother (ymat, nstate, rstate, timevar, **kwargs)

The values of nseries and nobs are extracted from the dimensions of ymat. This class has
similar optional arguments as class ‘Filter’ that are input using the Python syntax **kwargs.
Like ‘Filter’, this class must also be initialized using member function initialise_system,
which has the same arguments as input, including the beta optional argument; see Section 3.2.
The ‘SimSmoother’ class has similar member functions to the ‘Filter’ class, i.e., same func-

tions as described in Section 3.2. There are several other public member functions to note
and these are described below:

get_meas_residual (): Returns the residuals from the measurement equation of the SSM.
This procedure computes the measurement residuals as €; = R, 1 (yt — XiBm — Ziaowy)
fort=1,2,...,n.

get_state_residual(): Returns the (rstate by nobs) matrix of residuals for the state,
where the residuals are calculated as n; = GI (a1 — WiBs — Thay), fort =1,2,... ,n—
1, where GI is the pseudo-inverse of G;. See Appendix A for a cautionary note.

log_probability_state(): Returns the log probability of the simulated state. Specifically,
this function computes the log of p (@), where

n-l o —1/2
plalo) = 2m) " < I (|e@ic! |)
t=1

n—1
X exp 1 [GT(a —Wi8s — Tiow) TQ*1 Gl (a1 — Wi, — Thowy)
2 ¢ (g1 tBs — Loy ¢ ¢ (g1 tBs — Tioy

t=1

_ 1 _
AP 2exp { (o - a) P (o - an) )

where following Rue and Held (2005) ‘G’tQthT |* is defined as product of the non
zero eigenvalues; we refer to this as a generalized determinant. See Appendix B for a
cautionary note.
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log_probability_meas(): Returns the log probability of the measurement equation given
the state vector and the system matrices. Specifically, logp (y|W, X, a, 0) is returned,
where

n —-1/2
PyW, X, .0) = 2m) " ] | R/ |
t=1

1 -1
X exp {—2 > (= XiBm — Ziow) " (RthRtT> (Y: — XiBm — Ztat)} :
=1

get_zt_times_state(): Returns the (nseries by nobs) array Z;xoy.

4. Examples

The application of PySSM to three examples is illustrated in this section. For each example,
the model of interest is specified, and code snippets are provided. In addition to the module
PySSM, the libraries PyMCMC, NumPy, SciPy and Matplotlib are also required. Note that
NumPy, SciPy and Matplotlib are used directly in some cases and are also dependencies for
PyMCMC. The reader is expected to be familiar with NumPy at a minimum. Previewing
the documentation for PyMCMC would also help in following the examples.

4.1. Example 1: Autoregressive model with regressors

The first example is a common univariate time series model, and can be found in
example_ssm_arl_reg.py. The measurement equation for the model is defined as follows:

Yt = op + &5 e ~ N (0,02), (6)
where oy is a trend component, and ¢; is an irregular component. The irregular component is

normally distributed, with a mean 0 and a variance 2. The trend is specified as a first order
autoregressive process as follows:

p1 = B+ poy + 1 me ~ N (0, 0727) ; (7)

where the constant is defined as 8 = p (1 — p) and 7; is normally distributed, with mean
0 and variance 0%. Assuming that the autoregressive process has been running since time
immemorial then the initial state for the time series model in (6) and (7) is defined as

&
ay ~ N ”’1_7102 . (8)

An MCMC algorithm for this example is as follows:
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1. Sample o from p (oz|y7 ag_l, P, a%_l, [3’j_1)

2. Sample o2 from p (U§|y, ol pi—t J%fl,ﬁjA)

3. Sample /3j7pj70—% from p (5;07 0—77|y7aj70g>

Algorithm 2: MCMC algorithm for autoregressive model with regressors.

In Step 1, Algorithm 2, the state, «, is jointly sampled from its full conditional posterior distri-
bution, (4). This is achieved using the class ‘SimSmoother’ in PySSM. In Step 2, 0, is sampled
from its posterior distribution. In the code we accomplish this step with the help of the class
‘CondScaleSampler’, which is a part of PyMCMC. In Step 3, the parameters 3, p and o2 are
jointly sampled from their posterior distribution using the class ‘CondRegressionSampler’,
which is a part of PyMCMC.

The program used for estimation, following Algorithm 2 is detailed below. The layout of the
program can be summarized with the following steps:

1.

2.

Import libraries.

Define a function to simulate data.

Define a function to sample the state, «, from its posterior distribution. This function
is used in Step 1, Algorithm 2.

Define a function to sample from the posterior distribution of o, which is used in Step
2, Algorithm 2.

Define functions for the prior distributions of o, p and for the joint posterior distribution
for o, p and 3, which are used in Step 3, Algorithm 2.

Define the main part of the procedure.

Load data.
Initialize system matrices for SSM.

Instantiate a class instance of ‘SimSmoother’, which is used in Step 3 of the pro-
gram.

Instantiate a class instance of ‘ScaleSampler’, which is used in Step 4 of the
program.

Instantiate a class instance of ‘LinearModel’, which is used in Step 5 of the pro-
gram.

Define the objects simstate, sampleht and samplesigbetarho, which define the
blocks of the MCMC sampling scheme.

Instantiate a class instance of ‘MCMC’ and run the MCMC sampling scheme.

Produce output for the estimation, using the class instance of ‘MCMC’.

11
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The code is presented in parts, where a description for each part follows each code segment.

from numpy import log, ones, column_stack, hstack, mean
from numpy import random, zeros, sqrt

from pymcmc.mcmc import MCMC, RWMH, CFsampler

from pymcmc.regtools import LinearModel, CondScaleSampler
from pylab import plot, show

from ssm import Filter, SimSmoother

The first part of the program simply imports all the functions and classes that are used in the
programs from their appropriate library. All of the functions imported in the first two rows
are from the NumPy library. They are basic mathematical tools as well as tools to manipulate
arrays. The third and forth rows import classes from the PyMCMUC library. These are useful
for the MCMC analysis. The fifth row imports functions that aid in plotting the output of
the analysis. The sixth row imports the classes ‘Filter’ and SimSmoother from PySSM.

def simdata(nobs):
ht = 1.0 **x 2

zt = 1.0

tt = 0.95

qt = 0.3 ** 2
gt =1.0

rt = 1.0

mu = 5.0

al = mu

pl =qt / (1. - tt ** 2)
beta = mu * (1.0 - tt)
wmat = ones((1, 1,nobs))

filt = Filter(nobs, 1, 1, 1, False, wmat = wmat)
filt.initialise_system(al, pl, zt, ht, tt, gt, qt, rt, beta = beta)
filt.simssm()

yvec = filt.get_ymat().T.flatten()
simstate = filt.get_state()
return yvec, simstate

The function simdata is used to simulate data from the model described in (6), (7) and ().
The function consists of three parts. The first part initializes the system matrices for the
SSM.

Table 2 shows the relationship between the SSM in (1), (2) and (3); the model described
in (6), (7) and (8); and the function simdata. The first column lists the system matrix, or
parameter, as defined in (1), (2) and (3). The second column specifies the corresponding label
in the code. The third column specifies the values of each system matrix or parameter used
in simulating from the model in (1), (2) and (3), using the function simdata.

The second part of the function simdata instantiates an instance of the class ‘Filter’, which
is initialized and then used to simulate the data.
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SSM  Label Value Additional notes
H; nt 1.0 Refers to o2, in (6).
Z; zt 1.0

T; tt 0.95 Refers to p, in (6).
Q: qt 0.3? Refers to o7, in (6).

Gt gt 1.0
R, rt 1.0

ai al 5.0 Mean of the initial state, in (8).
P, pl % Variance of the initial state, in (8).
W; wt 1.0 Note that W = (Wy; Wa;...; W,,), where W, = 1, Vt.

B beta 5.0(1.0 —0.95)

Table 2: Provides a mapping between the SSM in (1), (2) and (3); the model described in
(6), (7) and (8); and the code snippet above.

The third part of the function simdata is used to obtain the observations (yvec), the state
(state) and then return them to the main program.

def simstate(store):
system = store['simsm'].get_system()
system.update_tt (store['rho'])
pl = system._qt() / (1.0 - store['rho'] ** 2)
al = store['beta'] / (1.0 - store['rho'])
system.update_al(al)
system.update_p1(p1)
system.update_beta(store['beta'])
state = store['simsm'].sim_smoother ()
return state

The function simstate is used to sample from the posterior distribution of the state in
equation (4). This function computes Step 1, Algorithm 2. Most of the function is spent
updating the system matrices based on the estimates of o2, p, 3 and oy from the previous
iteration, in Steps 2 and 3, Algorithm 2. The object store is a dictionary that is passed
into the function simstate, containing the latest draws of the parameters in the MCMC
scheme, as well as classes that are required as a part of the MCMC estimation. For instance,
store[’simsm’] is an instance of the class ‘SimSmoother’, which is instantiated before the
beginning of the MCMC scheme; note that this occurs latter in the code. As documented
in Sections 3.2 and 3.3 the public member function get_system() returns an instance of the
class ‘System’, which can be used to access or update the system matrices for the SSM. An
example of this is

system.update_tt (store['rho'])

where the code is used to update the system matrix T;. Note that, store[’rho’] is the latest
value for p. The key ’rho’ is defined when constructing the MCMC block used to sample p;
note that this occurs in a latter point of the code. The rest of the updates follow in the same
fashion. As described in Section 3.3, the member function sim_smoother () is used to sample
the state, o, given the data and the system matrices.

13
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def simht(store):
system = store['simsm'].get_system()
residual = store['simsm'].get_meas_residual()
ht = store['scale_sampler'].sample(residual.T)
system.update_ht (ht ** 2)
return ht *x 2

The function simht is used to simulate from the conditional posterior distribution of o2,
following Algorithm 2, Step 2. As in the previous code segment, store is a dictionary that
can be used to obtain the latest values from each of the iterates in the MCMC scheme, as
well as functions and classes that are useful in the required calculations. As described in
Section 3.3, the function get_meas_residual () can be used to obtain the residuals from the
measurement equation, given the current value of the state, ¢, and the current value of 8. The
class store[’scale_sampler’] is an instance of the class ‘CondScaleSampler’ that is a part
of the PyMCMUC toolkit. Given the residuals from a linear component or model, the member
function sample() draws from the posterior distribution of the associated scale term in the
model. That is, in Algorithm 2, Step 2, store[’scale_sampler’].sample(residual.T) is
a draw from p (<7€2|y7 a,p, oy, B) , given certain prior assumptions, which are detailed when
setting up the class instance for ‘CondScaleSampler’. This will be further explained in a
proceeding code segment.

Before describing the next code segment it will be helpful to describe the algorithm used in
sampling from Step 3, Algorithm 2, in a little more detail. To sample from the posterior
distribution of 3,p and o0, an independent MH algorithm is used; see Robert and Casella
(1999) for technical details. The class that facilitates the implementation of the independent
MH algorithm requires three functions. One function draws from a candidate density; note it
is important that the candidate density closely approximates the target density, which in this
case is the posterior distribution for 3, p and o0,. The second function evaluates and returns
the log probability of the posterior, given particular values for 3, p and o,,. The last function
evaluates and returns the log probability of the candidate density, given a particular value for
B, p and o,. First we detail the set of functions used in evaluating the posterior density for
B, p and o,.

def prior_rho(store):
if store['rho'] < 1.0 and store['rho'] > 0.0:
rhol = 15.0
rho2 = 1.5
return (rhol - 1.0) * log(store['rho']) + \
(rho2 - 1.0) * log(1.0 - store['rho'])
else:
return -1E256

The function prior_rho(store) returns the log prior probability for p, up to a constant of
proportionality. Here, it is assumed apriori that p follows a beta distribution. That is

p(p) o pP17 D (1 — p)le2=) (9)

where, in this context, p; and p2 are prior hyperparameters.
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def prior_sigma(store):
nu = 10.0
S =0.01
sigma = -(nu + 1) * log(store['sigma']) - S / (2.0 * store['sigma'] ** 2)
return sigma

The function prior_sigma(store) returns the log prior probability for o,. Here we have
assumed an inverted gamma prior, which up to a constant of proportionality is

—w S
p(an)oco'n( +1)exp{— }

Noting that

logp (p, B, oyla) = constant + log p (a|p, 5, 0y) + logp (p) +logp (5) + logp (o)

and given that we assume a flat prior for 3, so it is absorbed into the constant, then we can
write code for the function that evaluates the posterior for 3, p and o, as follows:

def post_rho_sigma(store) :

if store['rho'] < 1.0 and store['rho'] > 0.0:
system = store['simsm'].get_system()
pl = system._qt() / (1.0 - store['rho'] ** 2)
al = store['beta'] / (1.0 - store['rho'])
system.update_p1(p1)
system.update_al(al)
system.update_tt (store['rho'])
system.update_beta(store['beta'])
system.update_qt (store['sigma'] ** 2)
Ilnpr = store['simsm'].log_probability_state()
return lnpr + prior_rho(store) + prior_sigma(store)

else:
return -1E256

The function post_rho_sigma(store) returns the logp (5, p, oy|a) . Most of the operations
are simply updating the system matrices. Note that p (3, p, oy|ax) o< p (B, p, oy|y, @), however,
it is much simpler and more computationally efficient to work with p (8, p, op|cx).

def cand_rho_sigma(store):
nobs = store['state'].shape[1]
store['bayes_reg'].update_yvec(store['state'] [0, 1:nobs])
xmat = column_stack([ones(nobs - 1),store['state'][0, O:nobs - 1]])
store['bayes_reg'].update_xmat (xmat)
sig,beta = store['bayes_reg'].sample()
return sig, betal[0], betal[1]

The function cand_rho_sigma(store) is used to sample from the candidate density, which
we denote ¢ (8, p, op|ar). To construct a good candidate, we note that the trend, apy1 = 8+
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pa +1y, is similar to a linear regression model. As such, we can force it into a linear regression
framework and thus construct a candidate density, that closely resembles the posterior, is easy
to sample from and also easy to evaluate up to a constant of proportionality. This is achieved
by constructing a linear model as follows:

§=XB+é, (10)
where
le%) 1 o
_ Qg N 1 o - R
Y= , X = ,ﬁ—[i]andsz(O,agI). (11)
Qn 1 ap

In the above code snippet store[’bayes_reg’], which is an instance of the class ‘LinearModel’
in the PyMCMUC tool suite, is used in jointly sampling 8 and p. The class ‘LinearModel’ is
useful when analysing either linear models or models with linear components in a Bayesian
analysis. The code in this snippet updates the values of X and ¢, in lines 2, 3 and 4.
Line 5 samples from the candidate density and line 6 returns the candidates for oy, 3 and p
respectively.

def cand_prob(store):
beta = hstack([store['beta'], store['rho']])
return store['bayes_reg'].log_posterior_probability(
store['sigma'], beta)

The function cand_prob evaluates the log candidate density, given 3, p and o0,. This is
achieved by simply using the member function log_posterior_probability(sigma, beta),
which is a part of the ‘LinearModel’ class.

def transform_beta(store):
return store['beta'] / (1.0 - store['rho'])

The function transform_beta(store) is used so that u can be reported instead of 5. The
function is called from the MCMC algorithm, and demonstrates how easy reparameteriza-
tions are using PyMCMC. This can be particularly important for achieving simulation effi-
cient MCMC sampling schemes; see for example Frithwirth-Schnatter (2004) and Strickland,
Martin, and Forbes (2008).

random.seed (12345)

nobs = 1000

nstate = 1

rstate = 1

yvec, simulated_state = simdata(nobs)
data = {'yvec':yvec}

This code snippet simulates data using the function simdata described above, with 1000
observations. The last line creates the dictionary data, which is used to store information
that the user wants to access using functions that are called from the MCMC scheme. The
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object data is passed into the main class that facilitates MCMC estimation and its elements
are accessible through the dictionary store that is passed into each of the relevant functions;
see for example the code snippet that specifies the function transform_beta that is listed
above.

ht =
tt =
zt =
qt =
gt =
rt = 1.
pl =qt / (1. - tt ** 2)
mu = mean(yvec)

1
0
1.
0
1
1

SO O O © O

al = mu
beta = mu * (1 - tt)
wmat = 1.0

The above code snippet is used to define initial values for the system matrices that are used
to initialize the class ‘SimSmoother’.

data['simsm'] = SimSmoother(yvec, nstate, rstate, False,
properties = {'gt':'eye'}, wmat = wmat)
data['simsm'].initialise_system(al, pl, zt, ht, tt, gt, qt, rt, beta = beta)

The code above demonstrates the creation of the class instance for ‘SimSmoother’, which is
defined as data[’simsm’]. After creating the class instance, it is initialized using the member
function initialise_system(...).

data['scale_sampler'] = CondScaleSampler(
prior = ['inverted_gamma', 10.0, 0.01])
data['bayes_reg'] = LinearModel (yvec[1:nobs],
column_stack([ones(nobs - 1), yvec[0:nobs-1]1))

Here instances of the classes ‘CondScaleSampler’ and ‘LinearModel’ are created. Recall that
the class instance for ‘CondScaleSampler’ is used in the function simht (store) to sample o2
and that the class instance for ‘LinearModel’ is used in the functions post_rho_sigma(store),
cand_rho_sigma(store) and cand_prob(store), which are used in sampling 3, p and oy,.
The prior for o, is defined as

v+1 :
p(oy) Jé )exp{—w}.

samplestate = CFsampler(simstate, zeros((nstate, nobs)), 'state')

The code above is used to create a class instance of ‘CFsampler’, which defines the block of
the MCMC algorithm that is used to sample the state, a. The class ‘CFsampler’ is a part
of the PyMCMC toolkit and is used when defining blocks of an MCMC algorithm where a
closed form solution is being used to sample from the posterior distribution of interest. The
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first argument for the class defines the function that returns a sample from the posterior
distribution of interest, which in this case is simstate. The second argument in the class
defines the initial values for the parameter(s) being sampled. Here we have initialized the
state with an (m x n) array of zeros. Note that, as the sampling scheme is set up (code that
follows) so that the state is sampled first, we do not require a sensible initialization. The
third argument defines the key that can be used to access the array that stores the state in
the MCMC sampling scheme; see for instance the function cand_rho_sigma(store).

sampleht = CFsampler (simht, ht, 'ht')

The code above is used to instantiate the class instance sampleht, which defines the block
in the MCMC sampling scheme used to sample o2. We are able to draw from the posterior
of 02 using a closed form solution, and consequently we use the class ‘CFsampler’ to define
this block of the MCMC sampling scheme. Note that, simht is the function that we defined
earlier, which is used to sample from the posterior of 02; ht is the value used to initialize the
MCMC sampling scheme and ht’ is the key used to access 2.

samplesigbetarho = IndMH(cand_rho_sigma, post_rho_sigma,

cand_prob, [sqrt(qt), 0.1, tt], ['sigma', 'beta', 'rho'])

The class instance samplesigbetarho defines the block in the MCMC sampling scheme relat-
ing to sampling 3, p and a%. In this case we do not have a closed form solution, and are using
the independent MH algorithm. To define this block for our MCMC sampler we used the class
‘IndMH’, which is a part of the PyMCMC library. Note that three functions cand_rho_sigma,
post_rho_sigma and cand_prob have been defined earlier and are the functions that sample
from the candidate density, evaluate the log posterior density and evaluate the log candidate
density, for 3, p and o;. The list [sqrt(qt), 0.01, tt] defines the initial values and the
list [’sig’, ’beta’ ’rho’] defines the keys for each of o,, 8 and p, respectively.

blocksl = [samplestate, sampleht, samplesigbetarho]
mcmc = MCMC(5000, 2000, data, blocksl, transform = {'beta': transform_beta})

This code segment is used to define the blocking scheme and instantiate the class instance
for MCMC, which is the engine for MCMC analysis and is defined in PyMCMC. Note that
the order of the blocking scheme is defined by the order of the blocks in blocksl. The first
argument in MCMC defines that the MCMC sampling scheme will be run for 5000 iterations
and the second argument denotes that the first 2000 iterations will be discarded as burnin.
The third argument is the dictionary data that stores any user defined functions, classes, or
data, which are required by any of the functions that are called by the MCMC sampling
scheme; note these can be accessed using the dictionary store for any of the functions above.
The fourth argument blocks1, defines the blocking scheme for the MCMC sampling scheme
and the (optional) fifth argument transforms the iterates for 5, as defined by the function
transform_beta, which are used in calculation of the output. Note that when accessing (8
using store in any of the functions called as a part of the sampling scheme, the sample value
rather than the transformed value for 3 is obtained.

mcmc . sampler ()
mcmc. output (parameters = ['ht', 'sigma', 'rho', 'beta'l)
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Simulated vs estimated state
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Figure 1: Plot of the marginal posterior mean of the state against the simulated state.

In the code segment above, the function sampler() is used to run the MCMC sampling
scheme. The function output is used here to produce some generic output for o2, oy, p and

3.

The time (seconds) for the MCMC sampler = 43.47
Number of blocks in MCMC sampler = 3
mean sd 2.5% 97.5% IFactor
beta 5.2 0.252 4.71 5.69 4.16
sigma 0.195 0.0208 0.157 0.235 69.3
rho 0.972 0.00839 0.956 0.988 7.37
ht 1.04 0.0566 0.927 1.15 4.43
Acceptance rate beta = 0.7382
Acceptance rate sigma = 0.7382
Acceptance rate rho = 0.7382
Acceptance rate ht = 1.0

Here we can see the total time for estimation is around 40 seconds. The marginal posterior
mean estimates for each of the parameters 3, 0, p and o2, appear to be reasonably accurate,
given the true values for the simulated data.

mcmc.get_mean_var('state')
plot (range(nobs), means[0], range(nobs), simulated_state[0])
show ()

means, vars =

The code snippet above is used to plot the marginal posterior mean estimate for the state,
against its simulated value (Figure 1). The member function get_mean_var (name) returns
the marginal posterior mean and variance estimates for the specified parameter, which in this
case is the state.

4.2. Example 2: Spline smoothing

The second example can be found in example_ssm_vector_spline.py. This study uses a cu-
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bic smoothing spline to model motorcycle acceleration data. The data set is used in Durbin
and Koopman (2001) and can be found on the book’s website http://www.ssfpack.com/
DKbook.html. The state space form for a cubic smoothing spline is well known; see for exam-
ple Carter and Kohn (1994) and Durbin and Koopman (2001). The measurement equation
for the cubic smoothing spline is as follows:

Yt = pt + &, (12)

where the disturbance e; is distributed normal with a mean 0 and variance h. The latent
variable p; is defined as

Her1 =+ 0 + G (13)
Biy1 = B +&,

where §; = 741 — 7y, with 7 being the time of the tth observation. The disturbance terms
are jointly distributed such that

o]l ) o

5] (] e) w

where k — oco. Expressing (12), (13), (14) and (15) in state space form, using (1), (2) and (3)
is achieved by defining
Ht Gt 1 5t] [ 300 507 ]
a; = = T, = Q= G =ob, Z,=[1 0],
S R P RS

H,=h R, =1,8=0,a; =0 and P, = xkls, where k — oc.

Further, it is assumed that

=0

An MCMC algorithm for this example is as follows:

1. Sample o from p (ayy, hi—1, gj—l)_
2. Sample A/ from p (hly,a?,o71).

3. Sample o7 from p (a]y, hj).
Algorithm 3: MCMC algorithm for cubic smoothing spline.

In Step 1, Algorithm 3, we sample the state, a, from its full conditional posterior distribution
in (4). This step is accomplished with the class ‘SimSmoother’ in PySSM. Step 2, Algorithm 3,
we sample h from its full conditional posterior distribution. This step makes use of the class
‘CondScaleSampler’ in PyMCMC. In Step 3, we sample ¢ from its posterior distribution,
marginal of the state, a.

The program used for estimation, following Algorithm 3 is detailed below. The layout of the
program can be summarized with the following steps.

1. Import functions and classes. This step is skipped in the detailed description below to
avoid repetition.
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2. Define function to update the system matrix G;.

3. Define function to sample from the posterior distribution of the state, a. This function
is used in Step 1, Algorithm 3

4. Define function to sample from the posterior distribution of A, which is required in Step
2, Algorithm 3.

5. Define functions for the posterior and prior for o. These functions are used in Step 3,
Algorithm 3.

6. Start main program.

e Load data.
e Initialize system matrices for MCMC scheme.
¢ Define a class instance of ‘SimSmoother’. Note this is used in Step 3 of the program.

e Define a class instance of ‘CondScaleSampler’. Note this is used in Step 4 of the
program.

e Define the objects samplestate, sample_ht and sample_sigma, which define the
blocks of the MCMC sampling scheme.

e Define a class instance of ‘MCMC’ and run the MCMC sampler.
¢ Produce MCMC output.

For the code description here, we skip the importing of the required libraries. To avoid,
repetition, the descriptions for this example are far less detailed than the first example, in
Section 4.1.

def update_gt (store):
system = store['simsm'].get_system()
gt = eye(2) * store['sigma']
system.update_gt (gt)

The function update_gt(store) is used to update the system matrix Gy, given the latest
iterates of the parameters in the MCMC scheme. Note that store[’simsm’] is a class instance
of the class ‘SimSmoother’.

def simstate(store):
update_gt (store)
state = store['simsm'].sim_smoother ()
return state

The function simstate is used to sample from the posterior distribution of the state, cc. This
corresponds to Step 1, Algorithm 3.

def sim_ht(store):
residual = store['simsm'].get_meas_residual()
sqrtht = store['scale_sampler'].sample(residual.T)
system = store['simsm'].get_system()
system.update_ht (sqrtht ** 2)
return ht
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The function sim_ht (store) is used to sample from the posterior distribution of A in Step 2,
Algorithm 3. Note that store[’scale_sampler’] is an instance of class ‘CondScaleSampler’.

def post_sigma(store):

if store['sigma'] > 0:
update_gt (store)
lnpr = store['simsm'].log_likelihood()
#lnpr = store['simsm'].log_probability_state(diffuse = True)
return Ilnpr + prior_sigma(store['sigma'])

else:
return -1E256

The function post_sigma(store) returns the log posterior probability for o, marginal of
the state, a. This function is defined to facilitate the use of a random walk MH algo-
rithm to sample o, in Step 3, Algorithm 3. Note that, if we use the member function
log_probability_state rather than log_likelihood () the sample of o will be conditional
on the state. Sampling marginally of the state improves the mixing of the MCMC sampling
scheme, however, calculating the log likelihood is computationally more expensive than calcu-
lating the log posterior probability of the state. If we implemented the second approach, that
is we used log_probability_state(diffuse = True) then the optional argument diffuse
= True is required here as we are using diffuse initial conditions; that is we are assuming
P, = kI, where k — 0.

def prior_sigma(sigma):
nu = 10
S =0.1
return -(nu + 1) * log(sigma) - 0.5 * S / sigma ** 2

The function prior_sigma returns the log prior probability for o, where it is assumed apriori
that o is distributed following the inverted gamma distribution.

random.seed (1234)

data = loadtxt('motorcycle.txt')
data = data[datal:, 1] > 0]
yvec = datal:, 2]

delta = datal:, 1]

nobs = yvec.shape[0]

nstate = 2

rstate = 2

data = {'yvec': yvec}

The code snippet above loads the data. Note that, the observations are labeled yvec and the
time between observations are labeled delta.

sigeps = 0.9

ht = sigeps ** 2

rt = 1.

zt = array([[1.0, 0.0]])
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tt = zeros((2, 2, nobs))
tt[0, 0, :] = 1.

ttl1, 1, :] = 1.

tt[0, 1, :] = delta

sigma = 0.3

qt = zeros((2, 2, nobs))

qt[0, 0, :] = delta ** 3 / 3.

qtlo, 1, :] = qt[1, 0, :] = delta ** 2 / 2
qtl1, 1, :] = delta

gt = eye(nstate) * sigma

al = zeros(2)

pl = eye(2)

wmat = zeros((2, 2, nobs))

The code above initializes the required system matrices. Note that, as we use diffuse initial
conditions a1l is only a dummy argument in this case. Further, setting wmat to zeros is required
here as diffuse initial conditions are dealt with using the simulation smoother of De Jong and
Shephard (1995) and no specialization is incorporated to differentiate between a diffuse prior
on 3 for a model with or without regressors. As a consequence, by setting wmat = 0, that is
W;=0fort=1,2,...,n, it ensures that 3, which has a diffuse prior on it, is only entering
the model through the mean of the initial state as, a; = Wy3.

data['simsm'] = SimSmoother (yvec, nstate, rstate,

timevar = {'tt': True, 'qt': True}, properties = {'rt': 'eye'l},

wmat = wmat, joint_sample = ['diffuse’', eye(2)])
data['simsm'].initialise_system(al, pl, zt, ht, tt, gt, qt, rt)
data['scale_sampler'] = CondScaleSampler(

prior = ['inverted_gamma', 10, 0.1])

The above code snippet instantiates the classes ‘SimSmoother’ and the CondScaleSampler.

samplestate = CFsampler(simstate, zeros((nstate, nobs)), 'state',
store = 'none')

sample_ht = CFsampler(sim_ht, 0.3, 'ht')

sample_sigma = RWMH(post_sigma, 0.05, 0.003, 'sigma', adaptive = 'GFS')

The main point to note in the code above is that we have used the class ‘RWMH’. This is a
class in PyMCMC that is used to facilitate estimation using the random walk MH algorithm.
The first argument defines the posterior density; the second argument defines the initial value
for the scale that defines the size of the step in the algorithm; the third argument defines the
initial value for the the parameter of interest; the fourth argument defines the key for o and
the optional argument adaptive = ’GFS’ means the adaptive algorithm of Garthwaite, Fan,
and Scisson (2010) is used to compute the step size of the random walk MH algorithm.

blocks = [samplestate, sample_ht, sample_sigma]

mcmc = MCMC(8000, 3000, data, blocks, runtime_output = True)
mcmc . sampler ()

mcmc. output (parameters = ['ht', 'sigma'])
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Smoothing spline for motorcycle acceleration data.
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Figure 2: Plot of the motorcycle acceleration data, with the smoothing spline superimposed
over it.

The block of code above defines the blocking scheme and initializes and runs the MCMC
sampling scheme. The MCMC sampler is run for 8000 iterations, where the first 3000 are
discarded as burnin. The optional argument runtime_output = True simply produces out-
put at runtime, specifically timing information, including a progress bar, the time remaining,
total time and time taken so far.

The time (seconds) for the MCMC sampler = 25.71
Number of blocks in MCMC sampler = 3

mean sd 2.5% 97.57 IFactor
sigma 0.459 0.087 0.317 0.648 7.3
ht 462 71.6 332 602 3.85
Acceptance rate sigma = 0.4555
Acceptance rate ht = 1.0

For o and h, the marginal posterior mean, marginal posterior standard deviation, 2.5% and
97.5% credible interval and IFs are reported. The total time for estimation is about 26
seconds. The output plot is given in Figure 2

means, vars = mcmc.get_mean_var('state')

plot(yvec, '.', color = 'k')

title('Smoothing spline for motorcycle acceleration data.')
plot (means[0], color = 'k')

savefig('spline.pdf')

4.3. Example 3: Trend plus cycle model

The third example is for a multivariate time series, where it is assumed there is a common
trend and cycle. This model is used to analyze the data set considered by Strickland et al.
(2009). It can be found in example_ssm_trendcycle2.py. The model is defined such that
the (p x 1) vector of observations, y;, for t =1,2,... n, is generated by

Yr =+ P+ e ~N(0,X),
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where p; is a (p x 1) vector of common trends, 1, is a (p x 1) vector of common cycles and &;
is normally distributed, with a mean vector 0 and a covariance ¥. Further, it is assumed that
pig = pot = = ppt and P14 =Poy = -+ =Ppy, for t =1,2,...,n. The trend component
is assumed to evolve according to

Ber1 = Mg+ 0+ vy VtNN(Oaasfp)a
01 = Oy

The stochastic cycle is assumed to evolve according to

Yir1 | Pit1
[ Wi } =1 [ Wit ] e

—sin A cos A
and p is a persistence parameter that is restricted such that |p| < 1. The disturbance vector
Wy = Ly @ Ky, with K ~ N (O, 0'2_[2), where ¢, is a (p x 1) vector of ones.

3 )\ < >\
where 9/ is a (p x 1) vector of auxiliary variables, I' = I,@T'y, with I'y, = p { cos St ]

This model can be compactly reformulated as an SSM with the following parameters:

11 0
o= 0 Y F ]  m=[w & &] . Te=|01 0 |,
0 0 Ty
B cos(A)  sin(\)
Ty=r| _ sin(A) cos(A) |’
1010
o2 0 0 (1) 8 8 1 010
Q=0 o2 0 |,G = 01 0 , Zy=|. . . .|, H=%Xand R, =1,
0 0 o2 00 1 .
10 10
A proper prior is assumed for the initial state, with
7 10 0 0 0
0 0 10 O 0
— — 2
a; = 0 and P, = 0 0 1022 0
2
0 0 0 0 %

—
|
S

An MCMC algorithm for this example is as follows:
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1. Sample o frornp(a|y >l ag_l,aﬁ_l,pj_l,)\j_l)
2. Sample 3/ fromp<2|y,a3 ot ﬁ'*l,pj_l,)\j_l)

3. Sample o7 from p al,]y,cvj,EJ,a,.i LT N 1)

4. Sample o7, from p oﬁ\y,aj,Zj,UZ,pj_l,Aj_1>

5. Sample p’ from p <p|y, ol 3 ol ol )\j_1>

6. Sample M from p <)\|y, ol X ol ol p7>

Algorithm 4: MCMC algorithm for the trend cycle model.

In Step 1, Algorithm 4 the state, « is sampled from its posterior distribution. The class
‘SimSmoother’ is used in the step. In Steps 2 and 3 the covariance matrix 3 and the scale
parameter o, are drawn from their posterior distributions, respectively. In both cases the
class ‘CondScaleSampler’ is used. Steps 4, 5 and 6 sample the parameters o, p and A from
their posterior distributions, respectively. In sampling each of these parameters the class
‘RWMH’, from the package PyMCMC, is used.

The program used to implement Algorithm 4 is described below. A brief summary of the
program is as follows:

1. Import system matrices. Note that in the description below. The initial importing of
libraries is omitted for brevity.

2. Define a function to update the system matrix T;.
3. Define a function to update P;.
4. Define a function to update the covariance matrix Q;.

5. Define a function that draws from the posterior distribution of the state. This function
is used in Step 1, Algorithm 4.

6. Define a function that draws from the posterior distribution of X.

7. Define a function that draws from the posterior distribution of the state. This function
is used in Step 2, Algorithm 4.

8. Define a function that is used to sample from the posterior distribution of o,. This
function is used in Step 3, Algorithm 4.

9. Define prior and posterior functions for o, p and A. These functions are used in Steps
4,5 and 6, Algorithm 4.

e Load data.
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e Initialize system matrices.

o Define a class instance for ‘SimSmoother’.

e Define a class instance of ‘CondScaleSampler’, with a Wishart prior.

e Define a class instance of ‘CondScaleSampler’, with an inverted gamma prior.

e Define objects samplestate, sampleht, samplesig_level, samplesig_cycle,
samplerho and samplelambda that define the MCMC sampling scheme.

e Define a class instance of ‘MCMC’ and run the sampling scheme.

e Produce the MCMC output.

The code is presented in parts, where a brief description is presented below describing each
code segment. The descriptions are far less detailed than in Section 4.1, to avoid repetition.

def update_tt(store):
system = store['simsm'].get_system()
tt = system.tt()

tt[2, 2] = store['rho'] * cos(store['lambda'])
tt[2, 3] = store['rho'] * sin(store['lambda'])
tt[3, 2] = -tt[2, 3]
tt[3, 3] = tt[2, 2]

system.update_tt (tt)

def update_pl(store):
system = store['simsm'].get_system()
pl = system.p1()
pl[2, 2] = store['sigma_cycle'] ** 2 / (1. - store['rho'] ** 2)
pi[3, 3] = pi[2, 2]
system.update_p1(p1)

def update_qt (store):
system = store['simsm'].get_system()
qt = zeros((3, 3))

qt[0, 0] = store['sigma_level'] ** 2
qt[1, 1] = store['sigma_cycle'] ** 2
qt[2, 2] = qt[1, 1]

system.update_qt(qt)
The code above contains update functions for T3, P; and Q;, respectively.

def simstate(store):
update_tt (store)
update_qt (store)
update_p1 (store)
return store['simsm'].sim_smoother()

The function simstate is used to draw from the posterior distribution of the state, a. This
is required for Step 1, Algorithm 4.
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def simht(store):
residual = store['simsm'].get_meas_residual()
ht = linalg.inv(store['scale_sampler'].sample(residual.T))
system = store['simsm'].get_system()
system.update_ht (ht)
return ht

def simsig_level(store):
update_tt (store)
residual = store['simsm'].get_state_residual (state_index = [0])
sigma_level = store['scale_sampler2'].sample(residual.T)
return sigma_level

The functions simht (store) and simsig_level(store) are designed to draw from the pos-
terior distributions of ¥ and o, respectively.

def posterior_sig_cycle(store):
if store['sigma_cycle'] > O:
update_tt (store)
update_qt (store)
update_p1(store)
probstate = store['simsm'].log_probability_state()
#probstate = store['simsm'].log_likelihood()
return probstate + prior_sig(store['sigma_cycle'])
else:
return -1E256

def prior_sig(sig):
nu = -1.
S =20.0
return -(nu + 1) * log(sig) - S / (2.0 * sig ** 2)

The functions posterior_sig_cycle and prior_sig evaluate the posterior distribution and
the prior distribution for o, respectively. As in the previous example, using the log likelihood
in the computation of the posterior distribution is straightforward and a valid alternative to
computing the log probability of the state.

def posterior_lambda(store) :
update_tt (store)
lnpr = store['simsm'].log_probability_state()
#lnpr = store['simsm'].log_likelihood ()
return lnpr + prior_lambda(store)

def prior_lambda(store):
if store['lambda'] > pi / 20. and store['lambda'] < 2 * pi / 4.:
return 0.0
else:
return -1E256
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The functions posterior_lambda and prior_lambda evaluate the log posterior and log prior
probabilities for A, respectively. The prior for A is a uniform prior restricting the period of
the cycle to be between 10 and 14 months.

def posterior_rho(store):

if store['rho'] > 0 and store['rho'] < 1.0:
update_tt (store)
update_p1(store)
lnpr = store['simsm'].log_probability_state()
#lnpr = store['simsm'].log_likelihood ()
return lnpr + prior_rho(store)

else:
return -1E256

def prior_rho(store):
rhol = 15.0
rho2 1.5
rho = (rhol - 1.0) * log(store['rho']) + \
(rho2 - 1.) * log(1l. - store['rho'])
return rho

The functions posterior_rho(store) and prior_rho(store) evaluate the log posterior and
log prior probabilities for p, respectively. Note that a beta prior is defined for p, which is
identical to (9).

random. seed (12345)

filename = 'farmb.txt'

ymat = loadtxt(filename).T / 1000.

nseries, nobs = ymat.shape data = {'ymat': ymat}

The code above is used to load the data set.

nstate = 4

rstate 3

ht = eye(nseries)

zt = column_stack([ones(nseries), zeros(nseries),
ones (nseries), zeros(nseries)])

rt = ones(nseries)

tt = zeros((nstate, nstate))

rho = 0.9
lamb = 2. * pi / 20.
tt[0, 0] = 1.0

tt[0, 1] = 1.0
tt[1, 1] = 1.0

tt[2, 2] = rho * cos(lamb)
tt[2, 3] = rho * sin(lamb)
tt[3, 2] = -tt[2, 3]
tt[3, 3] = tt[2, 2]
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sig_cycle = 0.3

sig_level = 0.3

qt = diag(array([sig_level, sig_cycle, sig_cycle]) ** 2)
gt = zeros((nstate, rstate))

gtlo, 0] = 1.0

gtl2:,1:] = eye(2)

al = array([7.5,0.000, 0.0, 0.0])

pl = zeros((nstate, nstate))

p1[0,0] = 10.

pil1, 1] = 10.

pil2, 2] = qt[2, 2] / (1 - rho ** 2)
pl[3, 31 = p1[2, 2]

The code above is used to initialize the system matrices for the MCMC analysis.

timevar = False

data['simsm'] = SimSmoother(ymat, nstate, rstate, timevar,
properties = {'rt': 'eye'})

data['simsm'].initialise_system(al, pl, zt, ht, tt, gt, qt, rt)

The code snippet above instantiates and initializes the class SimSmoother.

prior_wishart = ['wishart', 10 * ones(nseries), 0.1 * eye(nseries)]
data['scale_sampler'] = CondScaleSampler(prior = prior_wishart)
data['scale_sampler2'] = CondScaleSampler(

prior = ['inverted_gamma', 10, 0.1])

Here, two instances of ‘CondScaleSampler’ are initialized. The first is defined assuming a
Wishart prior, where this instance is used in sampling X from its posterior distribution. The
second is defined for an inverted gamma distribution, which is used in sampling o, .

samplestate = CFsampler(simstate, zeros((nstate, nobs)), 'state',
store = 'none')

sampleht = CFsampler(simht, ht, 'ht')

samplesig_level = CFsampler(simsig_level, sig_level, 'sigma_level')

samplesig_cycle = RWMH(posterior_sig_cycle, 0.05, sig_cycle ** 2,
'sigma_cycle', adaptive = 'GFS')

samplerho = RWMH(posterior_rho, 0.09, rho, 'rho', adaptive = 'GFS')

samplelambda = RWMH(posterior_lambda, 1.03, lamb, 'lambda’,
adaptive = 'GFS')

The class instances samplestate, sampleht, samplesig_level and samplesig_cycle define
the blocks of the MCMC scheme, for Step 1, Step 2, ..., Step 6, Algorithm 4, respectively.

blocks = [samplestate, sampleht, samplesig_cycle, samplesig_level,
samplerho, samplelambda]

mcmc = MCMC(8000, 3000, data, blocks)

mcmc . sampler ()

mcmc . output (parameters=['rho', 'lambda’, 'sigma_level', 'sigma_cycle'])
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Trend Cycle Model

Figure 3: The top plot superimposes the marginal posterior mean estimate for the trend
over the data. The second plot is of the marginal posterior mean estimate of the stochastic
cycle.

The code above defines and runs the MCMC sampling scheme, and produces standard output
for the parameters p, A, o, and oy.

The time (seconds) for the MCMC sampler = 103.73
Number of blocks in MCMC sampler = 6

mean sd 2.5% 97.5% IFactor
sigma_cycle 0.27 0.0233 0.225 0.314 31.4
sigma_level 0.105 0.0219 0.0669 0.148 32.2
rho 0.897 0.0273 0.845 0.95 9.49
lambda 0.306 0.0429 0.228 0.394 14
Acceptance rate sigma_cycle = 0.525625
Acceptance rate sigma_level = 1.0
Acceptance rate rho = 0.448375
Acceptance rate lambda = 0.46275

The total time taken for the MCMC scheme is just over 100 seconds. Note that both
the method and model differs from Strickland et al. (2009). The marginal posterior mean,
marginal posterior standard deviation, 2.5% and 97.5% credible intervals, as well as the IFs
are reported for each of o, 0, p and A.

means, vars = mcmc.get_mean_var('state')
title('Trend Cycle Model')

plot(ymat.T, color = 'k')

plot (means[0], color = 'k')

subplot(2, 1, 2)
plot (means[2], color
show ()

lk!)
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The function get_mean_var(’state’) is used to obtain the marginal posterior mean and
variance for the state. The remainder of the code, uses functions from pylab, which is a part
of the library Matplotlib to plot the marginal posterior means for the state (see Figure 3).

5. Conclusions

In this paper a Python library (module) called PySSM has been introduced. PySSM is a
powerful tool to analyze time series using SSMs. It utilizes the best features of the high
level language Python to define, store and manipulate data. Furthermore, it is also used to
interface with lower level languages such as Fortran which has the function to perform intensive
numerical calculations.

SSMs an be easily defined and analyzed using classes from PySSM. We have demonstrated
the use of PySSM, in a Bayesian context, through three examples.
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A. Computing the residuals

The residuals, 1; are calculated as n; = GI (a1 — WiBs — Thay), for t = 1,2,...,n — 1,
where GI is the pseudo-inverse of Gy. Whilst, this is the correct calculation for most models
in our experience, it may not always be what the user is expecting. Take for example the case
where the transition state equation is specified as an autoregressive (AR) process of order 2.

That is, set oy = [ ’ui ] , Ty = [ or 1 } , Gy = ] and assuming no regressors s = 0,
M ¢2 0 | 0
it follows that
i1 o1 1}_%} [1}
* = * +
[Ntﬂ} [¢2 0] m o)™
[ P41 } _ [ 1t + py + e ] ' (16)
N:+1 oSy

If we plug pf into the top row of the system in (16), then it is clear that we obtain

Hit1 = P1ite + Papry—1 + Mg

As GI = [ 10 ], then it is clear that 7, = GI (ap+1 — WiBs — Tiayy), implies that

N = W1 — P1ibe — G2pte—1,

which is as expected. If, however, T; is updated then the function get_state_residual ()
is called then n; = GI (41 — WiBs— Tioy), may not provide the user with what they
expect. For example, suppose T} is updated with the parameters ¢7°* and ¢5*”, then 7, =
GI (apy1 — WiBs — Travy), and in this case

e = per1 — AT e — Papu—1,

where it is important to note that the values for ¢o is still the old value, assuming no updates
in the estimate for ay. As such, if the user requires this function, then they should insure it
is calculating what they want, for the model they specify.

B. Computing the log probability

Using the same example as above, with the AR process of order 2, suppose our prior for ¢;
and ¢ is a priori independent, such that p (¢1, ¢2) = p (¢1) p (¢2). Then the posterior for ¢
may be expressed as

p(d2]a, é1) ocp (a0) p (¢2) - (17)

If we wish to evaluate this function at ¢2 = @5°“ then wusing the function
log_probability_state() to compute log p («|f), even after updating T} with the new value,
o™, will unfortunately not give the desired result as

GI (app1 — WiBs — Thoy) # g1 — G1pse — afie—1-

Again, the user must ensure that GI (a1 — WiBs — Tiay) is the correct computation for 7.
Here the user also needs to ensure that !GtQthT ‘ is the correct quantity to calculate. That

35
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said, as for get_state_residual(), we find that for most models equation (5) is the correct
calculation.

C. Installation

PySSM should build relatively easily under most Linux / Unix platforms. Installing the
package from source will require the following:

o A C and Fortran compiler. Development of PySSM used the GNU compilers.
e Python, version 2.7 was used in development, but Python 2.6 may also work.

¢ Functions within PySSM make use of the automatically tuned linear algebra software
(ATLAS). Most distributions will have precompiled versions available, but if you need
to build your own, there are numerous web pages with instructions. See, for example,
the SciPy wiki at http://www.scipy.org/Installing_SciPy/Linux.

With these packages available, the source can be retrieved and built in the following manner:

git clone git@bitbucket.org:christophermarkstrickland/pyssm.git
cd pyssm
python setup.py install

More detailed instructions on building PySSM, including how to build for Microsoft Windows,
are included in the source distribution.

Additionally, binary distributions for Linux Ubuntu are available from the authors’ personal
package archive ppa:rjadenham/ppa. Installing under Ubuntu can then be achieved by run-
ning the following commands:

sudo add-apt-repository ppa:rjadenham/ppa
sudo apt-get update
sudo apt-get install python-pyssm

Windows binaries may also be available in the download section of the code repository web
site (see https://bitbucket.org/christophermarkstrickland/pyssm/downloads).
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