Journal of Statistical Software

August 2014, Volume 59, Issue /. http:/ /www.jstatsoft.org/

General Purpose Convolution Algorithm in S4
Classes by Means of FFT

Peter Ruckdeschel Matthias Kohl

Fraunhofer ITWM Kaiserslautern Furtwangen University

Abstract

Object orientation provides a flexible framework for the implementation of the convo-
lution of arbitrary distributions of real-valued random variables. We discuss an algorithm
which is based on the fast Fourier transform. It directly applies to lattice-supported dis-
tributions. In the case of continuous distributions an additional discretization to a linear
lattice is necessary and the resulting lattice-supported distributions are suitably smoothed
after convolution.

We compare our algorithm to other approaches aiming at a similar generality as to ac-
curacy and speed. In situations where the exact results are known, several checks confirm
a high accuracy of the proposed algorithm which is also illustrated for approximations of
non-central x2 distributions.

By means of object orientation this default algorithm is overloaded by more specific
algorithms where possible, in particular where explicit convolution formulae are available.
Our focus is on R package distr which implements this approach, overloading operator +
for convolution; based on this convolution, we define a whole arithmetics of mathematical
operations acting on distribution objects, comprising operators +, -, *, /, and ~.

Keywords: probability distributions, FFT, convolution, arithmetics for distributions, S4 classes.

1. Motivation

Convolution of (probability) distributions is a standard problem in statistics. For its im-
plementation the fast Fourier transform (FFT) has been common practice ever since the
appearance of Cooley and Tukey (1965). The upcoming of parallel computing architectures
adds to the importance of FFT, as contrast to convolution by direct computations, it lends
itself to easy parallelization, compare Gupta and Kumar (1993).

Combined with an object oriented programming (OOP) approach, this technique gets even
more attractive: We may use it as a default algorithm in situations where no better alternative

http://www.jstatsoft.org/

2 General Purpose FFT Convolution Algorithm in 54

is known, while in special cases as e.g., those of normal or Poisson random variables, where
convolution reduces to transforming the corresponding parameters, a dispatching mechanism
realizes this and replaces the general method by a particular (possibly exact) one. The user
does not have to interfere with the dispatching mechanism, but is rather provided with one
single function/binary operator for the task of convolution.

We discuss this approach within the R project (cf. R Core Team 2014) where it is imple-
mented in package distr, available from the Comprehensive R Archive Network (CRAN)
at http://CRAN.R-project.org/package=distr. Package distr provides classes for prob-
ability distributions within the S4 OOP concept of R; see Ruckdeschel, Kohl, Stabla, and
Camphausen (2006, 2014).

In this context, convolution is the workhorse for setting up a whole arithmetics of mathe-
matical operations acting on distribution objects, comprising, among others, operators +, —,
*, /, and ~. In this arithmetics, we identify distributions with corresponding (independent)
random variables: If X1 and X2 are corresponding distribution variables, X1 + X2 will produce
the distribution of the sum of respective (independent) random variables, i.e., their convolu-
tion. Technically, speaking in terms of programming, we have overloaded the operator + for
univariate distributions.

Convolution itself is computed according to the actual classes of the operands, with particular
(exact) methods for e.g., normal or Poisson distributions.

R> library("distr")

R> N1 <- Norm(mean = 1, sd = 3)
R> N2 <- Norm(mean = -2, sd = 4)
R> N1 + N2

Distribution Object of Class: Norm
mean: -1
sd: 5

In the default method distributions are discretized to lattice form and the discrete Fourier
transform (DFT) is applied. Thus, our general-purpose algorithm needs no assumptions like
Lebesgue densities.

R> Ul <- Unif(Min = 0, Max = 1)
R> U3 <- convpow(Ul, N = 3)
R> plot(U3, cex.inner = 1, inner = c("density", "cdf", "quantile function"))

While all our applied techniques are not novel in themselves, and much of the infrastructure
(FFT in particular) has already been available in R for a long time, the combination as
present in our approach is unique. Neither in core R nor in any other contributed add-
on package available from CRAN (http://CRAN.R-project.org/), Bioconductor (http://
www.Bioconductor.org/), or Rmetrics (https://www.Rmetrics.org/), there is a similarly
general approach: We provide a + (aka convolution) operator applicable to (almost) arbitrary
univariate distributions, no matter whether discrete or continuous. More specifically we cover
every distribution that is representable as a convex combination of an absolutely continuous
distribution and a discrete distribution. In addition, the return value of this + operator is

http://CRAN.R-project.org/package=distr
http://CRAN.R-project.org/
http://www.Bioconductor.org/
http://www.Bioconductor.org/
https://www.Rmetrics.org/

Journal of Statistical Software

density cdf quantile function
o
o | ™
—
° o |
o g | [
o
2 3 g ° g @]
° SR o -
d 7] o
o~ -]
o N
o o
.
o _|
S] o S]
e T T T T T T T T T T S T T T
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 0.0 0.4 0.8
X q p

Figure 1: Plot of 3-fold convolution of a Unif (0,1) object.

again a distribution object, i.e., consisting not only of either a cumulative distribution function
(CDF) or a density /probability function, but automatically of all four constitutive functions,
i.e., CDF, density, quantile function, and random number generator. Accuracy of our default
methods can be controlled through global options, see 7distroptions. Just to illustrate
our point, we take up the initial example and compute the 1/3 quantile of the convolution
N (1,2) * Unif (0, 1)*3 * Poisson(1), as well as evaluate its density at the vector (0.5,0.8)

R> P <- Pois(lambda = 1)
R>D <- N1 + U3 + P
R> q(D)(1/3)

[1] 2.10923
R> d(D) (c(0.5, 0.8))
[1] 0.08110259 0.08815269

The approach is not restricted to academic purposes: The results are sufficiently accurate to be
used in practice in many circumstances, be it for quite general compound distribution models
as relevant in actuarial sciences, be it for very flexible model fitting techniques as described
in detail in Kohl and Ruckdeschel (2010), or be it for very general robustification techniques
as in packages RobAStBase (Kohl and Ruckdeschel 2013a), ROptEst (Kohl and Ruckdeschel
2013b), and specialized to biostatistical applications in RobLoxBioC (Kohl 2013), compare
Kohl (2005) and Kohl and Deigner (2010).

When interest lies in multiple convolutions we provide a function convpow to quickly and
reliably compute convolution powers; in particular sample size then is not an issue. Otherwise,
i.e., for non-identically distributed summands, we either have to appeal to asymptotics in some
way or do it summation by summation. We can say though, that our approach works reliably

4 General Purpose FFT Convolution Algorithm in 54

for up to 40 (non-)iid summands. In each case, we automatically provide respective quantile
functions which are of particular interest in actuarial sciences and risk management.

Our paper is organized as follows: In Section 2, we discuss how an object oriented framework
could enhance implementations of both probability distributions in general and convolution
algorithms in particular. To this end, we sketch our implementation of distribution classes in
R package distr. We also briefly discuss the dispatching decisions involved when a new object
of a distribution class is generated by convolution and indicate how our convolution methods
are used to set up a whole arithmetics acting on distributions. In Section 3, we present the
general purpose FFT algorithm and some ramifications. Some forerunners in this direction
and connections to other approaches are discussed in Section 4. In Section 5 we present checks
for the accuracy and computational efficiency of our algorithm. At the end of this paper we
provide some conclusions in Section 6.

2. OOP for probability distributions and convolution

2.1. OOP for probability distributions

There is a huge amount of software available providing functionality for the treatment of
probability distributions. In this paper we will mainly focus on S, more specifically, on its
open source implementation R, but of course the considerations also apply for other extensible
software like XploRe (MD*Tech 2007), Gauss (Aptech Systems, Inc. 2006), Simula, SAS (SAS
Institute Inc. 2011) or MATLAB (The MathWorks, Inc. 2011). All these packages provide
standard distributions, like normal, exponential, uniform, Poisson just to name a few.

There are limitations, however: Only distributions are available which either already ship
with the software or in some add-on library or package, or for which oneself has provided an
implementation. Automatic generation of new distributions is left out in general.

In many natural settings one wants to formulate algorithms once for all distributions, so
that one should be able to use the actual distribution, say D, as argument to some function.
This requires particular data types for distributions. Going ahead in this direction, this
allows formulation of statements involving the expectation or variance of functions of random
variables as usual in mathematics; i.e., no matter if the expectation involves a finite sum, a sum
of infinite summands, or a (Lebesgue) integral. This idea is particularly well-suited for OOP,
as described in Booch (1995), with its paradigms “inheritance” and “method overloading”.
In the OOP concept, a dispatching mechanism selects the method to use at run-time. In our
convolution case, the result of such an algorithm may then be a new distribution.

In his Java MCMC simulation package HYDRA, Warnes (2002) heads for a similar OOP
approach providing a set of Java classes representing common statistical distributions, porting
the C code underlying the R implementation. But, quoting the author from the respective
web page, “[o]ther than grouping the PDF, CDF, etc into a single class for each distribution,
the files don’t (yet) make much use of OO design.”

2.2. OOP in S: The S4 class concept

In base R, OOP is realized in the S3 class concept as introduced in Chambers (1993a,b), and
by its successor, the S4 class concept, as described in detail in Chambers (2008). We work

Journal of Statistical Software

with the S4 class concept.

Using the terminology of Bengtsson (2003), this concept is intended to be FOOP (function-
object-oriented programming) style, in contrast to COOP (class-object-oriented program-
ming) style, which is the intended style in C++, for example.

In COQOP style, methods providing access to or manipulation of an object are part of the
object, while in FOOP style, they are not, but rather belong to so-called generic functions
which are abstract functions allowing for arguments of varying type/class. A dispatching
mechanism then decides on run-time which method best fits the signature of the function, that
is, the types/classes of (a certain subset of) its arguments. In C++, “overloaded functions”
in the sense of Stroustrup (1987, Section 4.6.6) come next to this concept.

FOOP style has some advantages for functions like + having a natural meaning for many
operand types/classes as in our convolution case. It also helps collaborative programming, as
not every programmer providing functionality for some class has to interfere with the original
class definition. In addition, as S, respectively R, is an interpreted language, a method
incorporated in a S4 class definition would not simply be a pointer but rather the whole
function definition and environment. Hence, the COOP-style paradigm in (standard) R entails
arguable draw-backs and hence is not generally advisable within the S4 class system. This
has been overcome to some extent, however, with the introduction of reference classes.

Since its introduction to R, the S4 class concept has allowed COOP style, that is, members
(or slots in S4 lingo) have always been permitted to be functions, but we may say that use of
functional slots in S4 is not standard, which may be judged against a thread on the R-devel
mailing list on 2004-01-31 (http://tolstoy.newcastle.edu.au/R/devel/04a/0185.html).
Use of functional slots has been extensively used in Bengtsson’s (2003) R.oo package where
the author circumvents the above-mentioned problems by a non-standard call-by-reference
semantic.

For our distribution classes, we, too, use the possibility for function-type members, albeit
only in a very limited way, and not extending the standard S4 system in any respect. Still,
others have suggested to rather follow the S4 generic way for slots r, d, p, q, which however,
in our opinion, would lead to many class definitions (a new one generated at each call to the
convolution operation) instead of only few class definitions as in our design.

2.3. Implementation of distribution classes within the S4 class concept

In S/R, any distribution is given through four functions: r, generating pseudo-random num-
bers according to that distribution, d, the density or probability function/counting density,
p, the CDF, and q, the quantile function. This is also reflected in the naming convention
[prefix]<name> where [prefix] stands for r, d, p, or q and <name> is the (abbreviated)
name of the distribution.

We call these functions constitutive as we regard them as integral part of a distribution ob-
ject, and hence realize them as members (slots) of our distribution classes (with corresponding
accessor functions r, d, p, and q) even though this causes some “code weight” for the corre-
sponding objects.

Some people dislike our use of function names r, d, p, and g, because making function g
generic, we overload the base R function q for quitting an R session (q retains in base R
usage this way, though); this causes some problems in RStudio (which masks q for technical

http://tolstoy.newcastle.edu.au/R/devel/04a/0185.html

6 General Purpose FFT Convolution Algorithm in 54

reasons). The criticism against our use is that q then means quite different things according to
the signature of the first argument. Still, we think that R should support context-dependent
meanings if this entails, as here, self-explanatory and succinct notation.

A real benefit of our approach is grouping of routines which represent one distribution in-
stead of having separate functions rnorm, dnorm, pnorm, and qnorm which otherwise are only
connected by gentleman’s agreement/naming convention. Consistency may become an issue
then, of course: We cannot exclude the possibility that someone (inadvertently) puts together
inadequate r, d, p, or q slots, manipulating the slots by assignments of the like a@b <- 4.
As mentioned in Ruckdeschel, Kohl, Stabla, and Camphausen (2013, Section 9 and Exam-
ple 13.7), this is not the intended way to generate distribution objects, though. To warrant
a certain level of consistency, we provide generating functions for standard distributions and,
following Gentleman (2003), corresponding accessor and replacement functions for each of the
slots. Of course, consistency also holds for automatically generated distributions arising as
return values from arithmetic operations.

Another justification for this approach can be given by considering convolution: Assume we
would like to automatically generate the constitutive functions for the law of expressions like X
+ Y for objects X and Y of some distribution class. Following the FOOP paradigm the function
cdf to compute the CDF would not be part of the class but some method of a corresponding
generic function. Then, as each distribution has its own constitutive functions and the CDF
method is dispatched on the signature, cdf would need to have a particular method for
every (new) distribution and in particular would need a new class for every newly generated
distribution. That is, very soon the dispatching mechanism would have to decide between
lots of different signatures. In contrast, when cdf is a member of a class, dispatching is not
necessary and calculations are more efficient. This efficiency is not a question of extracting
the CDF as a functional slot, instead of getting it from dispatch, but rather due to the
necessity to have sufficiently many classes for the return values of convolutions of arbitrary
distributions: As a rule, the convolution of two arbitrary distributions f and ¢ will generate a
new distribution f * g for which there has not been an implementation before. So in order to
have access to f*g in FOOP manor, the CDF or density or quantile function has either to be
computed “on the fly” for each evaluation or a new S4 class and a corresponding convolution
method has to be generated when calling something like cdf (conv(f, g)), or the class of
admitted operands (arguments) of conv() has to be restricted, such that the result object is
again a member of a (possibly parametric) set of distribution functions.

In fact, in R package actuar, Goulet (2008) pursues the FOOP approach just sketched in their
function aggregateDist. To escape the possible multitude of new distribution classes, the
authors restrict themselves to particular probability distributions; i.e., the “(a, b, 0) or (a, b,
1) families of distributions” (see cited reference for their definition) and so offer alternatives
to compute the convolution (see help to aggregateDist).

Their approach and ours combine well though: Our extension package distrEx even depends
on package actuar, using some of the additional root distributions provided there.

2.4. Convolution as a particular method in distr

Contrary to the r, d, p, and q functions just discussed, the computation of convolutions ideally
fits in the FOOP setup where method dispatch works as follows:

In case there are better algorithms or even exact convolution formulae for the given signa-

Journal of Statistical Software

ture, as for independent variables distributed according to Bin(n;,p), i = 1,2, or Poisson()\;)
or N (,u,-,a?) etc., the dispatching mechanism for S4 classes will realize that, will use the
best matching existing +-method and will generate a new object of the corresponding class.
However, this case is exceptional and we do not have to dispatch among too many methods.

As our object oriented framework allows to override the default procedure easily by more
specialized algorithms by method dispatch, the focus of our default algorithm, Algorithm 1,
is not to provide the most refined techniques to achieve high accuracy but rather to be
applicable in a most general setting. This default algorithm is based on FFT and will be
described in detail in the next section. It originally applies to distribution objects of class
‘LatticeDistribution’ where a lattice distribution is a discrete distribution whose support
is a lattice of the form ag + iw, ap € R, w € R\ {0} with i € Ny (or {0,1,...,n}, n € N).
In our implementation this class is a subclass of class ‘DiscreteDistribution’ which in
addition to its respective mother class ‘UnivariateDistribution’ has an extra slot support,
a numerical vector containing the support (if finite, and else a truncated version carrying more
than 1 — ¢ mass). Besides ‘DiscreteDistribution’, class ‘UnivariateDistribution’ has
subclasses ‘AbscontDistribution’ for absolutely continuous distributions, i.e., distributions
with a (Lebesgue) density, and ‘UnivarLebDecDistribution’ for a distribution in Lebesgue
decomposed form, i.e., a mixture of an absolutely continuous part and a discrete part. Such
distributions e.g., arise from truncation operations, or when a discrete distribution (with point
mass at {0}) is multiplied with a(n) (absolutely) continuous one.

Our FFT-based algorithm starts with two lattice distributions with compatible lattices; i.e.,
we assume that the support of the resulting convolved distribution has length strictly smaller
than the product of the lengths of the supports of the operands. For discrete distributions, we
check whether they can be cast to lattice distributions with compatible lattices. If one operand
is absolutely continuous, the other one discrete, we proceed by “direct computation”. If both
operands are absolutely continuous, as described in Algorithm 1, we first discretize them to
lattice distributions with same width w. The CDFs F; and F5 used in this algorithm will be
obtained from the corresponding p-slots. For objects of class ‘UnivarLebDecDistribution’,
we proceed component-wise.

Slots p and d of the resulting new object are then filled by Algorithm 1, described in detail
in the next section. More precisely we will use variants of this algorithm for the absolutely
continuous and the discrete/lattice case, respectively.

Slot r of the new object consists in simply simulating pairs of variables by means of the r
slots of the convolutional summands and then summing these pairs. Slot q is obtained by
numerical inversion: For a continuous approximation of the quantile function we evaluate the
function in slot p on an z-grid, exchange z- and y-axis and interpolate linearly between the
grid points, for discrete distributions D we start with the vector pvec <- p(D) (support (D))
and search for the support-point belonging to the largest member of pvec smaller than or
equal to the argument of q.

2.5. General arithmetics of distributions in distr
Implementing distributions as classes enables us to implement fairly complete and accurate
arithmetics acting on correspondingly distributed random variables.

The first observation to be made is that the image distribution of affine linear transformations
can be explicitly spelled out for each of the slots r, 4, p, and q. Hence, if X and Y are

8 General Purpose FFT Convolution Algorithm in 54

cdf quantile function
o _| [T}
- 9
@ S
o
© ©
~ © —
RS 2 o -
o < (o
o 7] v |
|
[9V)
o 7] _
o 3 -
o |
T T T T T T T T T T T
-4 -2 0 2 4 0.0 0.2 0.4 0.6 0.8 1.0
q p

Figure 2: Distribution of X = N % P if N ~ N(0,1) and P ~ Poisson(\)

both univariate distributions, we define X - Y to mean the convolution of X and -Y. For
distributions with support contained in (0,00), also multiplication is easy: as log and exp
are strictly monotone and differentiable transformations, the respective image distributions
may also be spelled out explicitly, for each of the slots r, d, p, and g, and the X * Y =
exp(log(X) + log(Y)). Splitting up the support of a distribution into positive, negative,
and O-part (where each of the intersections may be empty), and interpreting this as a mixture
of possibly three distinct distributions, we can also allow general R-valued distributions as
factors in multiplications; the result can then possibly be a mixture of a Dirac distribution
in 0 and an absolutely continuous distribution. For division we note that for distributions
with positive support, X/Y = exp(log(X) - log(Y)), and similar arguments also allow us
to cover powers, i.e., expressions like X'Y. As an example, let us see how the distribution of
X = N * P looks like if N ~ N (0,1) and P ~ Poisson(\) (see Figure 2):

R> X <- Norm() * Pois(lambda = 1)
R> q(X) ((1:3)/4)

[1] -3.471003e-01 -3.333333e-07 3.471003e-01

R> plot(X, cex.inner = 1, to.draw.arg = c(1, 2),
+ inner = c("cdf", "quantile function"))

3. General purpose FFT algorithm

The main idea of our algorithm is to use DFT, which may be calculated very fast by FFT.
Hence, we start with a brief introduction to DFT and its convolution property (cf. Theorem 1)
where we follow Lesson 8 of Gasquet and Witomski (1999). Afterwards, we describe the
convolution of CDF's/densities in Section 3.2.

Journal of Statistical Software

3.1. Discrete Fourier transform (DFT)

Let m € N and let (x,)nez be a sequence of complex numbers with period m; i.e., Zp1m = Ty
for all n € Z. Then, the DFT of order m is,

DFTm: cm — (ij (.%'0, L1y ,a:m_l) — (.f}o, .@1, e ,[IAJm_l), (1)
where .
N T = omi/m
xn:%ijwﬁf, Wiy = e72TM = /1, (2)
7=0
We obtain the DFT (Z,)nez of (2n)nez by the periodic extension &4y, = &, for all n € Z.
DFT,, is represented by a matrix €2,, with entries w%f” (j,k =0,1,...,m — 1) and inverse

Q. =1/mQ, (2, the conjugate DFT,,); i.e., DFT,, is linear and bijective.

Remark 1 (a) Computing 2o, 21, ..., 2m_1 directly from Equation 2, requires (m —1)? com-
plex multiplications and m(m — 1) complex additions. But, FFT as introduced by Cooley and
Tukey (1965), is of just order mlogm. It works best for the case m = 2P (p € N); see Les-
son 9 of Gasquet and Witomski (1999). In case m = 20, direct computation needs 1046529
multiplications and 1047552 additions, whereas FFT only requires 4097 multiplications and
10240 additions; see also Table 9.1 (ibid.).

(b) If (zn)nez is a sequence of real numbers, it is possible to halve the computational costs,
see Section 8.3 of Gasquet and Witomski (1999).

(c) FFT is available in R as function £ft.

For DFTs we have the following theorem, proven, e.g., in Kohl (2005, Theorem C.1.2).

Theorem 1 Let x = (z,)nez and y = (Yn)nez be two sequences of complex numbers with
period m and let & = (&,)nez and § = (Yn)nez be the corresponding DFTs. Then, the circular
convolution product of x and y is defined as,

ey (mzoy> 3)

€z
and, with 9§ = (ZnUn)nez, it holds,
Z=mzy with z=x%Y. (4)
This theorem implies the following result for N-fold convolution products.

Proposition 1 Let x = (x,)ncz be a sequence of complex numbers with period m and let
& = (&n)nez be the corresponding DEF'T. Then, it holds,

o —

N o =mV 1N N eN (5)

The proof immediately follows from Theorem 1 by induction.

10 General Purpose FFT Convolution Algorithm in 54

3.2. Convolution algorithm

DFT is formulated for discrete (equidistant) sequences of complex numbers, as which we may
interpret the probability function of the following special integer lattice distributions

m—1

p,] []oo i:1727 (6)
7=0

with p; ; > 0for j =0,1,...,m—1 and Z;:olpi,j = 1 and where x € R and m = 27 (¢ € N).
We extend p; ; (i = 1,2, j =0,...,m — 1) to two sequences p; = (P n)nez of real numbers
with period 2m via,

pij =0 1=1,2 j=m,....2m—1 (zero padding) (7)

and p; g4om = pix for all k € Z. Then, the convolution F' of I and F5 is an integer lattice
distribution given by

2m—1 2m—1
F(x)=(Fi1* Fy)(z) = Z mj I[j,oo) () with Ty = Z DP1,kP2,j—k> (8)
j=0 k=0

where in particular mg,,—1 = 0. Hence, in view of Theorem 1, m = (7,)nez = p1 * p2 and we
can compute 7w using FFT and its inverse. This result forms the basis of Algorithm 1.

As it stands, Algorithm 1 will be presented for the case of absolutely continuous distributions,
but with slight and obvious modifications this algorithm works for quite general distributions;
for more details see also Section 3.3.

Algorithm 1 Assume two absolutely continuous distributions Fy, Fo on R.
Step 1: (Truncation)

If the support of F; (i = 1,2) is unbounded or “too large”, we define numbers A;, B; € R,
for given € > 0, such that,

™

Fi((—o00,4)) = 5 and F;((Bj,0)) = g 9)

and set A = min{Ay, A2} and B = max{Bi, Ba}. If this is not the case, we define
A = min{F;(0), F; 1(0)} and B := max{F; (1), Fy '(1)}, where F; ' (i = 1,2) are
the quantile functions of F;.

Step 2: (Discretization on a real grid)
Given m =29 (¢ e N) and F; (i = 1,2), we define the lattice distributions

m—1

Pij LA+ (j4+0.5)h,00) (%) h=——, (10)
7=0

where p;j = F;([A+ jh, A+ (j + 1)h]) for j=0,1,...,m—1.

Journal of Statistical Software

Step 3: (Transformation to an integer grid)
Based on G; (i =1,2), we define the integer lattice distributions

m—1
G,(ac) = Pi,j I[j,oo) (x), 1= 1, 2, (11)
=0
and extend p;; (1 = 1,2, 7 = 0,...,m — 1) to two sequences p; = (Pin)nez of real
numbers with period 2m wvia,
pi; =0, 1=1,2, j=m,...,2m—1, (zero padding) (12)

and p; k+2m = Dik for all k € Z.

Step 4: (Convolution by FFT on integer grid)
We calculate G = G1 * G2 by FFT and its inverse as given in Equation 8; i.e.,

2m—1 2m—1
Gx)= > milje(@), 7= > prapaji, (13)
7=0 k=0

where in particular wo,—1 = 0.

Step 5: (Back-transformation to real grid)
Given G, we obtain G = G1 *x Go by,
2m—2

G(x) = Y 7 Ipay(j+1.5)h00) (@)- (14)

§=0
Here we improve the accuracy of the results using a continuity correction of h/2.

Step 6: (Smoothing)
Next, we use interpolation of the values of G on {2A,2A + 1.5h,...,2B — 0.5h,2B} by
linear functions to get a continuous approzimation F? of F = Fy x Fy. We obtain a con-
tinuous approzimation f° of the density f of F by multiplying {0, 7, 1, ..., Tom—_2,0}
by h and interpolating these values on the grid {2A,2A+ h,...,2B — h,2B} (no conti-
nuity correction) using linear functions.

Step 7: (Standardization)
To make sure that the approzimation FY is indeed a probability distribution, we stan-
dardize F* and f* by Fh([2A, 2B]) and [fi(z) dx, respectively, where [f%(x)dz may

be calculated numerically ezactly, since f% is a piecewise linear function.

For some instructive code examples like the computation of (an approximation to) the sta-
tionary regressor distribution of an AR(1) process see Ruckdeschel et al. (2013).

3.3. Ramifications and extensions of this algorithm

Algorithm 1 for lattice distributions: Obviously, Algorithm 1 applies to lattice distri-
butions Fi, F5 on R defined on the same grid. In this case the algorithm essentially
reduces to Steps 1-5 and 7. Moreover, the results are numerically exact if the lattice
distributions have finite support; see Section 5. In this case the algorithm consists only
of Steps 2-5.

12 General Purpose FFT Convolution Algorithm in 54

Specification of “too large”: In Step 1, a support is considered as “too large” if a uniform
grid with a reasonable step-length produces too many grid points. In the same sense,
the loss of mass included in Step 1 is, to some extent, controllable and in many cases
negligible.

Richardson extrapolation: A technique to enhance the accuracy of Algorithm 1 for given
q is extrapolation. But, for this to work properly, we need additional smoothness con-
ditions for the densities. We could take this into account by introducing a new subclass
‘SmoothDistribution’ for distributions with sufficiently smooth densities and a corre-
sponding new method for the operator +; see also Section 4.1.

Exponential tilting: As a wrap-around effect, summation modulo m (cf. Equation 3) in-
duces an aliasing error. Especially for heavy-tailed distributions — again at the cost of
additional smoothness conditions for the densities — Algorithm 1 can thus be improved
by a suitable change of measure (exponential tilting). So one might conceive a further
subclass ‘HeavyTailedSmoothDistribution’ and overload + for objects of these classes
using exponential tilting; see also Section 4.1.

Modification for M-estimators: In view of Proposition 1, Algorithm 1 may easily be mod-
ified to compute an approximation of the exact finite-sample distribution of M-estimates,
compare Ruckdeschel and Kohl (2010). In the cited reference, we compare the results
obtainable with this modified algorithm to other approximations of the exact finite-
sample distribution of M-estimates, like the saddle point approximation and higher
order asymptotics.

4. Connections to other approaches

4.1. Algorithms based on DFT

A very similar algorithm was proposed by Bertram (1981) to numerically evaluate compound
distributions in insurance mathematics where he assumes claim size distributions of lattice
type. Numerical examples and comparisons to other methods can be found in Biihlmann
(1984) and Feilmeier and Bertram (1987).

A mathematical formulation of the corresponding algorithm is included in Griibel and Her-
mesmeier (1999), with a focus on the investigation of the aliasing error which, as they show,
can be eliminated by exponential tilting in case of a lattice type claim size distribution. But,
even without the smoothness assumptions needed for exponential tilting, in many cases, the
aliasing error can also be made very small if we choose ¢ in Step 1 of Algorithm 1 small enough
and ¢ in Step 2 large enough. This strategy is no cure-all remedy, of course, as a too small
g or a too large ¢ would lead to numerical problems by cancellation effects, and, in addition,
could cause memory problems.

Moreover, if one considers absolutely continuous probability distributions with possibly non-
compact support, initial truncation and discretization steps are necessary; see Steps 1 and 2
of Algorithm 1. This is also discussed in Monahan (2011, Chapter 14, Example (C)). The
corresponding discretization error is studied in Griibel and Hermesmeier (2000) and, under
certain smoothness conditions, shown to be reducible by Richardson extrapolation.

Journal of Statistical Software

Efficient and precise algorithms based on FF'T for the convolution of heavy-tailed distributions
are considered in Schaller and Temnov (2008).

Applications of FFT-based convolutions of distributions cover computation of the total claim
size distribution and probability of ruin in risk theory and insurance mathematics (compare
Embrechts, Griibel, and Pitts 1993) as well as computation of stationary waiting time dis-
tribution in queuing models for general customer inter-arrival time distributions and service
time distributions, see Griibel (1991).

4.2. Other algorithms

For continuous distributions, instead of starting with a discretization of the CDF right away,
we could also use the actual characteristic functions, i.e., the Fourier transform of the corre-
sponding distributions which then get inverted by the usual Fourier inversion formulae, see
e.g., Chung (1974, Section 6.2). Lumely (2007) mentions this approach for linear combination
of independent x? distributions where closed form expressions for the characteristic functions
are available, see also Monahan (2011, Chapter 14, Example (E)). Still, inverting characteris-
tic functions is not always advisable — see, e.g., convolution powers of the uniform distribution
on [—1/2,1/2]: The corresponding characteristic functions are (sin(t/2)/t)" which if naively
inverted causes quite some numerical problems. A more comprehensive account of this ap-
proach can be found in Cavers (1978) and Abate and Whitt (1992, 1995).

Similarly, but with a restricted application range due to integrability one could stay on the
real line using Laplace transforms; compare Abate and Whitt (1992, 1995).

In actuarial science, recursive schemes to compute convolution powers, the so-called Panjer
recursions, have been in use for a long time. As Temnov and Warnung (2008) show, these
methods are slower than FFT when a sufficient precision of the estimated quantile is needed.

5. Accuracy and computational efficiency of our algorithm

To assess the accuracy and computational efficiency of our algorithm, we present checks for
n-fold convolution products where the exact results are known. In addition, we approximate
probabilities of non-central y? distributions.

5.1. Accuracy

We determine the precision of the convolution algorithm in terms of the total variation dis-
tance of the distributions,

dy(P,Q) = 1 / = alds = sup |P(B) - Q(B)|. (15)

where P,Q € M;(B) with dP = pdu, dQ = qdu for some o-finite measure p on (R,B) and
the Kolmogorov distance of the CDFs,

dx(P,Q) = sup ‘P((—oo,t]) — Q((—oo,t]) ‘ (16)

teR

In the sequel d?, and al,h.C stand for the numerical approximations of d, and d,. Due to numerical
inaccuracies we obtain d,u.; > di in some cases, although, of course, d, < d,.

13

14 General Purpose FFT Convolution Algorithm in 54

The first example treats binomial distributions and shows that the convolution algorithm is
very accurate for integer lattice distributions with finite support.

Example 1 Assume F' = Bin (k,p) with £ € N and p € (0,1). Then, the n-fold convolution
product is F** = Bin (nk, p) (n € N). Let f,, and f? be the probability functions of F*" and

F', respectively. Then, we may determine dE, and d,hi numerically exact by,

d}(F, F*) = Zlfn (7] (17)
and h h h

We obtain the results contained in Table 1 which show that Algorithm 1 is very accurate in
case of binomial distributions, where the values of k and p are chosen arbitrarily. To get the
corresponding results we use our R packages distr and distrEx. For example,

R> library("distrEx")

R> distroptions(TruncQuantile = 1le-15)
R> B1 <- Binom(size = 30, prob = 0.8)
R> B2 <- convpow(B1, N = 10)

R> D1 <- as(B1, "LatticeDistribution")
R> D2 <- convpow(D1, N = 10)

R> TotalVarDist (B2, D2)

total variation distance
2.918596e-16

R> KolmogorovDist (B2, D2)

Kolmogorov distance
2.220446e-16

where B2 is computed using the exact formula and D2 is the approximation via FFT. To
increase accuracy we change the default value of option TruncQuantile from le—5 to le—15.

We skip the example for the Poisson distribution where the results of the convolution algorithm
are very accurate, too. Corresponding code is included in the supplementary material. In the
next two examples we consider the convolution of absolutely continuous distributions. We
determine d (F, F%) by numerical integration using the R function integrate. To compute the
Kolmogorov distance, we evaluate di(F , F h) on a grid obtained by the union of a deterministic
grid of size 1e05 and two random grids consisting of 1e05 pseudo-random numbers of the
considered distributions. We begin with results for normal distributions.

Example 2 Assume F = N (u,0?%) with 4 € R and o € (0,00). Then, for n € N, it holds,
F** = N (nu,no?). Starting with V' (0,1) and A and B as defined in Step 1 of Algorithm 1

Journal of Statistical Software

n k p 4 &,
2 10 0.5 29e—16 2.2e—16
5 20 0.7 1.7e—15 1.le—15
10 30 0.8 24e—15 1.0e—15
100 15 0.2 4.5e—15 3.4e—15
1000 50 0.4 8.3e—13 4.2e—13

Table 1: Precision of the convolution of binomial distributions via FFT; see Example 1.
Note: For values beyond le—13, minor differences may occur between different R hardware
architectures; e.g., on Ubuntu, 64bit, in case, n = 10, kK = 30, p = 0.8, we get dE) = 2.4e—15,
while in Windows 7, 32bit, we get 2.5e—15 (both on R 3.1.1); the tables in this paper come
from Ubuntu, 64bit.

n € q " o dE, al,h.i
—10.0 100.0 1.2e—06 2.1e—06
—-2.0 5.0 1.1e—06 2.1e—06
2 l1le—08 12 0.0 1.0 1.2e—06 2.1e—06
1.0 50.0 1.2e—06 2.1e—06
100.0 1000.0 1.2e—06 2.1e—06

Table 2: Precision of the convolution of normal distributions via FFT is independent of the
parameters p and o; see Example 2.

we obtain A = 0A+ p and B = 0B + p in case of N (i, 0?). That is, the grid transforms
in the same way as the normal distributions do. Thus, we expect the precision of the results
to be independent of p and o. This is indeed confirmed by the numerical calculations; see
Table 2. We therefore may consider g4 = 0 and o = 1 for the study of the accuracy of the
convolution algorithm subject to n € N, ¢ > 0 (Step 1) and ¢ € N (Step 2). The results
included in Table 3 show that the precision is almost independent of n. It mainly depends
on ¢ where the maximum accuracy, we can reach, is of order €. The results can be computed
with our R packages distr and distrEx similarly to the binomial and Poisson case.

R> library("distrEx")

R> distroptions(TruncQuantile = 1e-10)

R> distroptions(DefaultNrFFTGridPointsExponent = 14)
R> N1 <- Norm(mean = 0, sd = 1)

R> N2 <- convpow(N1, N = 2)

R> D1 <- as(N1, "AbscontDistribution")

R> D2 <- convpow(D1, N = 2)

R> distroptions(TruncQuantile = 1e-15)

R> TotalVarDist (N2, D2, rel.tol = 1le-10)

total variation distance
9.768635e-08

R> KolmogorovDist (N2, D2)

16 General Purpose FFT Convolution Algorithm in 54

n € q df, di n € q di di

2 le—06 8 22e—04 3.9e—04 5 1e—08 12 3.3e—06 9.7e—04
10 1.3e—05 2.3e—05 16 6.6e—08 6.1e—05
12 3.4e—06 1.8e—06 10 1e—08 12 1.2e—05 1.1e—05

2 1le—08 10 1.9e—05 3.4e—05 16 6.3e—08 3.5e—08
12 1.2e—06 2.1e—06 50 1e—08 12 1.6e—04 9.6e—05
14 8.2e—08 1.2e—07 18 1.0e—07 5.3e—08

2 le—=10 12 1.6e—06 2.7e—06
14 9.8e—08 1.7e—07
18 4.9e—10 5.3e—10

Table 3: Precision of the convolution of normal distributions via FFT; see Example 2.

Kolmogorov distance
1.700888e-07

Next we turn to the convolution of exponential distributions leading to gamma distributions.

Example 3 We consider F' = Exp (A\) = I'(1,\) with A € (0,00). Then, for n € N, it holds
F*" =T (n,A). Analogously to the normal case in Example 2, the grid transforms according
to A = A/\ and B =B JA\. As expected, the precision of the results is confirmed to be
independent of A by our numerical computations; see Table 4. Next we study the dependence
of the accuracy of Algorithm 1 onn € N, ¢ > 0 and ¢ € N where we may choose A = 1.0.
As in Example 2 the precision is almost independent of n. It mainly depends on ¢ where the
maximum accuracy, we can reach, is of order &; see Table 5. The results can be computed
with our R packages distr and distrEx similarly to the previous cases.

R> library("distrEx")

R> distroptions (TruncQuantile = 1e-8)

R> distroptions (Defaul tNrFFTGridPointsExponent = 16)
R> E1 <- Exp(rate = 1)

R> E2 <- convpow(El, N = 5)

R> D1 <- as(E1, "AbscontDistribution")

R> D2 <- convpow(D1, N = 5)

R> distroptions(TruncQuantile = 1le-15)

R> TotalVarDist(E2, D2, rel.tol = 1e-10)

total variation distance
1.39883e-07

R> KolmogorovDist (E2, D2)

Kolmogorov distance
9.455868e-08

Journal of Statistical Software

n € q A dE, di
0.01 5.7e—06 4.0e—05
0.5 5.7e—06 4.0e—05
2 1le—08 12 1.0 5.7¢e—06 4.0e—05
5.0 5.7e—06 4.0e—05
10.0 5.7e—06 4.0e—05

Table 4: Precision of the convolution of exponential distributions via FFT is independent of
the parameter \; see Example 3.

n € q dEJ di n € q dE, d,h.i

2 le—06 8 7.4e—04 4.7e—03 5 1e—08 12 2.6e—05 2.8e—05
10 5.0e—05 3.4e—04 16 1.4e—07 9.5e—08
12 4.5e—06 2.2e—05 10 1e—08 12 1.4e—04 1.4e—04

2 1le—08 10 7.9e—05 6.0e—04 16 6.2e—07 5.3e—07
12 5.7¢e—06 4.0e—05 50 1e—08 12 4.9e—03 4.9¢—03
16 3.6e—08 1.6e—07 20 3.8e—07 3.8e—07

2 le—=10 12 8.0e—06 6.2e—05
14 4.9e—07 3.9e—06
20 2.7e—10 9.6e—10

Table 5: Precision of the convolution of exponential distributions via FFT; see Example 3.

Remark 2 Example 3 reveals one minor flaw of Algorithm 1. The support of I'(n, \) is [0, c0)
whereas the convolution algorithm is only very accurate in 24+ (n/2+0.5)h,...,2B—(n/2+
0.5)h]. That is, for small n (n < 5) the Kolmogorov distance is F'([0,24 + (n/2 + 0.5)h)) —
X ([0,2A + (n/2 + 0.5)h)). However, for bigger n this inaccuracy disappears as there is less
and less mass in [0, 24 + (n/2 + 0.5)h). Moreover, since (n/2 4 0.5)h is very small, this also
causes the numerical inaccuracy of dE, for small n and leads to d,u.i > dy.

Example 4 In this last example we show how our FFT approach can be used to compute
probabilities for non-central y? distributions where the exact values are difficult to obtain.
Let X be a non-central x? distributed random variable with df degrees of freedom and non-
centrality parameter ncp; i.e., X ~ Y3 (ncp). Our goal is to approximate the CDF P(X < z)
at z € (0,00). In Table 6 we reproduce the values of Patnaik (1949) and Ittrich, Krause, and
Richter (2000), and compare them to approximations by function pchisq of package stats (R
Core Team 2014), as well as the results of three FFT approaches (FFT1-FFT3). In the first
case (FFT1) we approximate X by

X~Z2+Z2+...+2Z% with z~N(Wfﬁ> (19)

Secondly (FFT2) we use
XmZi+Z5+...+ 23| + 2%, (20)

where Z; ~ N (0,1) for i = 1,...,df — 1 and Zgs ~ N (y/ncp,1). Our third approximation
(FFT3) reads
X~Y+ 272 (21)

17

18 General Purpose FFT Convolution Algorithm in 54

df ncp x Patnaik Ittrich et al. R Core Team FFT1 FFT2 FFT3
1.765 0.0500 0.0499994 Lol 86 2
4 10.000 0.7118 0.7117928 5
4 17.309 0.9500 0.9499957 . e e e
24.000 0.9925 0.9924604 ... e e e
10 10.000 0.3148 0.3148207 Lo 4 6 ...
1 4.000 0.1628 0.1628330 L. 13 15 ...
16.004 0.9500 0.9500015 ... Ll 4 o 6
7 10.257 0.0500 0.0499942 Lol 39 ... 39 ...
16 24.000 0.5898 0.5863368 6 ... 4 o
38.970 0.9500 0.9499992 ..o o e
6 24.000 0.8187 0.8173526, 10 11 ..o
12 18 24.000 0.2901 0.2900495 oLl 73 4 S
8 30.000 0.7880 0.7880015 L...7994879994 ...l
16 40.000 0.9632 0.9632255 ... Lo 43 .. 1 o
32 30.000 0.0609 0.0628420 392 ... 09
60.000 0.8316 0.8315635 4 oo 23
36.000 0.1567 0.1567111 018 023
24 24 48.000 0.5296 0.5296284 177 174
72.000 0.9667 0.9666954 Lol 44 ... 41 ...

Table 6: Approximations of the CDF of non-central x? distributions via FFT; see Example 4.
(e = 1e—08, ¢ = 18, only the decimal places which are different to Ittrich et al. are given).

where Y ~ x3; ;(0) (a central x? distribution) and Z ~ N (,/ncp, 1).

For the FFT computations we used ¢ = 1e—08 and ¢ = 18. All three FFT approaches give
very good approximations. In particular, FFT3 yields results which have the same accuracy
as pchisq and the approximation of Ittrich et al. (2000).

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
+

R>

library("distr")

distroptions(withgaps = FALSE, TruncQuantile = 1e-8)
distroptions (DefaultNrFFTGridPointsExponent = 18)

df0 <- ncp0O <- 4

x0 <- 1.765

Z2 <- Norm(mean = sqrt(ncp0/df0)) "2
resl <- convpow(Z2, N = df0)

Z2 <- Norm() "2

X2 <- convpow(Z2, N = df0 - 1)

Y2 <- Norm(mean = sqrt(ncp0)) "2
res2 <- X2 + Y2

res3 <- Chisq(df = df0 - 1) + Y2
res <- c(FFT1 = p(res1) (x0), FFT2 =

p(res2) (x0), FFT3 = p(res3) (x0),

R = pchisq(x0, df = df0, ncp = ncp0))

res

FFT1 FFT2 FFT3

R

0.04999865 0.04999924 0.04999936 0.04999937

Journal of Statistical Software

5.2. Computational efficiency

To judge the computational efficiency of our algorithm, let us check it in a situation where
the exact solution of the convolution is known, i.e., at the 10-fold convolution of independent
x3(0) distributions. As timings are of course subject to hardware considerations we report
relative timings, where as reference we use the implementation in R package actuar. As
for general distributions, actuar already needs probabilities evaluated on a grid, we have to
wrap the respective function aggregateDist into a function convActuar first, providing a
respective discretization.

R>
R>
R>
R>

v]
\

+ + + + + + + + + + + + 4+

gc()

library("actuar")

distroptions (TruncQuantile = 1le-5)
distroptions(DefaultNrFFTGridPointsExponent = 12)

convActuar <- function(N = 2, df = 1, ncp = 0, method = "lower") {

D1 <- Chisq(df = df, ncp = ncp)

lo <- getLow(D1); up <- getUp(D1)

dGPExp <- getdistrOption("DefaultNrFFTGridPointsExponent")

M <- 2"max(dGPExp - floor(log(N)/log(2)), 5)

h <- (up - lo)/M

probs <- discretize(pchisq(x, df = df, ncp = ncp), from = lo,
to = up, by = h, method = method)

x <- seq(from = N * 1o + N/2 * h, to = N * up - N/2 * h, by = h)

x <- c¢(x[1] - h, x[1], x + h)

dx <- aggregateDist(method = "convolution",
model.freq = c(rep(0, N), 1), model.sev = probs)

list(d = dx, x = x)

}

Our algorithm compares well as to both timings and accuracy with each of the methods im-
plemented in function discretize of package actuar, i.e., "rounding", "lower", or "upper":

R>
R>
R>
R>
R>
R>
+

R>
R>
+

R>

.rd 2.005e-05 2.005e-05 2.018e-05 1.905e-04
.1lo 1.463e-18 2.000e-05 2.017e-05 2.006e-04
.up 3.597e-08 1.968e-05 2.000e-05 7.301e-05

resl <- convActuar(method = "rounding")
res2 <- convActuar (method = "upper")
res3 <- convActuar(method = "lower")

D1 <- as(Chisq(), "AbscontDistribution")
D2 <- convpow(D1 = D1, N = 2)

.rd <- summary (abs(res1$d(knots(resi$d))
resi$x[c(-1, -length(res1$x))])))

.lo <- summary (abs(res3$d(knots(res3$d))

.up <- summary (abs (res2$d(knots(res2$d))
res2$x[c(-1, -length(res2%$x))])))

p(D2)(

p(D2) (res3$x)))
p(D2) (

rbind(.rd, .lo, .up)

Min. 1st Qu. Median Mean 3rd Qu. Max.
.636e-05 0.002910
.664e-05 0.004855
.000e-05 0.001317

SRS

19

20 General Purpose FFT Convolution Algorithm in 54

To see the differences more clearly, let us repeat this 100 times.

R> speedref <- function(expr.ref, rep.times = 100) {

+ ref.time <- system.time(for(i in 1:rep.times)

+ res <- eval(expr.ref))[1]

+ names (ref.time) <- NULL

+ return(list(res = res, ref.time = ref.time))

+ }

R> speedcheck <- function(expr, ref.time, rep.times = 100) {
+ r.time <- system.time(for(i in 1:rep.times)

res <- eval(expr))[1]/ref.time
names (r.time) <- NULL
return(list(res = res, r.time = r.time))

}

+ + + +

Comparing the relative timings we get the following result (where timings are reported as
percentages relative to convActuar):

R> rep <- 100

R> refset <- speedref (quote(convActuar(N = 10, method = "lower")),
+ rep.times = rep)

R> r1 <- speedcheck(expr = quote(convpow(D1 = D1, N = 10)),

+ ref.time = refset$ref.time, rep.times = rep)
R> r2 <- speedcheck(expr = quote(convpow(D1 = Chisq(), N = 10)),
+ ref.time = refset$ref.time, rep.times = rep)
R> r3 <- speedcheck(expr = quote(Chisq(df = 10)),
+ ref.time = refset$ref.time, rep.times = rep)

R> res <- refset$res
R> D10 <- ri$res; Dex <- r2$res; Dcheck <- r3$res
R> round(refset$ref.time, 2)

[1] 3.8

R> print(round(c("actuar" = 1,"FFT" = ri1$r.time,

+ "Chisq-Meth" = r2%r.time, "exact" = r3$r.time) * 100, 2))
actuar FFT Chisq-Meth exact
100.00 29.92 12.96 3.16

As to accuracy, our algorithm still is competitive:

R> .actu.D10 <- summary(abs (res$d(knots(res$d)) [-c(1:8)] - p(D10) (res$x)))
R> .actu.Dex <- summary(abs(res$d(knots(res$d))[-c(1:8)] - p(Dex) (res$x)))
R> .Dex.D10 <- summary (abs(p(Dex) (res$x) - p(D10) (res$x)))

R> rbind(.actu.D10, .actu.Dex, .Dex.D10)

Journal of Statistical Software 21

Min. 1st Qu. Median Mean 3rd Qu. Max.
.actu.D10 4.927e-17 1.00e-04 1.000e-04 1.927e-04 1.000e-04 0.001900
.actu.Dex 2.011e-08 1.00e-04 1.000e-04 2.455e-04 1.000e-04 0.003120
.Dex.D10 0.000e+00 2.22e-16 4.441e-16 6.111e-05 1.758e-07 0.001253

Note that the computations with aggregateDist of actuar get considerably more expensive
when passing to finer discretizations, as we show in the following illustration which now cuts
off lower and upper 1079 quantiles (instead of 10~® beforehand) and which uses 4 times as
many discretization points (with only 30 replications)—again we report percentages relative
to convActuar:

R> distroptions (TruncQuantile = 1e-6)

R> distroptions(DefaultNrFFTGridPointsExponent = 14)
R> rep <- 30

R> round(refset$ref.time,2)

[1] 83.25

R> print(round(c("actuar" = 1,"FFT" = ri$r.time,

+ "Chisq-Meth" = r2%r.time, "exact" = r3%r.time) * 100, 2))
actuar FFT Chisq-Meth exact
100.00 1.38 0.19 0.05

R> .actu.D10 <- summary(abs(res$d(knots(res$d)) [-c(1:8)] - p(D10) (res$x)))
R> .actu.Dex <- summary(abs (res$d(knots(res$d)) [-c(1:8)] - p(Dex) (res$x)))
R> .Dex.D10 <- summary(abs(p(Dex) (res$x) - p(D10) (res$x)))

R> rbind(.actu.D10, .actu.Dex, .Dex.D10)

Min. 1st Qu. Median Mean 3rd Qu. Max.
.actu.D10 7.384e-17 1.00e-05 1.000e-05 3.401e-05 1.00e-05 0.0005745
.actu.Dex 5.694e-11 1.00e-05 1.000e-05 4.172e-05 1.00e-05 0.0007835
.Dex.D10 0.000e+00 2.22e-16 4.441e-16 8.643e-06 1.56e-09 0.0002149

6. Conclusion

With our implementation of a general default convolution algorithm for distributions in the
object oriented framework of R, we provide a flexible framework which combines scalable ac-
curacy and reasonable computational efficiency. This framework lends itself for introductory
courses in statistics where students can easily sharpen their intuition about how convolu-
tion and other arithmetic operations work on distributions. It is however not limited to
educational purposes but can be fruitfully applied to many problems where one needs accu-
rate representations of distributions of convolutions, as arising e.g., in finite sample risk of
M-estimators (Ruckdeschel and Kohl 2010), actuarial sciences and risk management (Singh
2010), linguistics (Schaden 2012), and Bingo premia calculations (Kroisandt and Ruckdeschel
2012).

22 General Purpose FFT Convolution Algorithm in 54

Acknowledgments

The first implementation of our FFT algorithm from end of 2003 is due to our former stu-
dent, T. Stabla, who also collaborated with us on this topic until he left academia in 2006
and whom we warmly thank for his efforts. We thank Prof. Griibel for drawing our attention
to relevant literature on this topic and two anonymous referees for their valuable comments.
Financial support from Volkswagen Foundation in the framework of project “Robust Risk Esti-
mation” (http://www.mathematik.uni-k1l.de/ wwwfm/RobustRiskEstimation/) for which
distr provides indispensable infrastructure, is gratefully acknowledged.

References

Abate J, Whitt W (1992). “The Fourier-Series Method for Inverting Transforms of Probability
Distributions.” Queueing Systems, 10(1-2), 5-88.

Abate J, Whitt W (1995). “Numerical Inversion of Laplace Transforms of Probability Distri-
butions.” ORSA Journal on Computing, 7(1), 36-43.

Aptech Systems, Inc (2006). GAUSS Mathematical and Statistical System 8.0. Aptech Sys-
tems, Inc., Black Diamond, Washington. URL http://www.Aptech.com/.

Bengtsson H (2003). “The R.oo Package — Object-Oriented Programming with References
Using Standard R Code.” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 20083). Vienna, Austria.
URL http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/.

Bertram J (1981). “Numerische Berechnung von Gesamtschadenverteilungen. (Numerical
Computation of Aggregate Loss Distributions).” Bldtter der Deutschen Gesellschaft fiir
Versicherungs- und Finanzmathematik e.V. (DGVFM), 15(2), 175-194.

Booch G (1995). Objektorientierte Analyse und Design. (Object Oriented Analysis and De-
sign). 1st edition. Addison-Wesley. Corrected reprint, German translation.

Bithlmann H (1984). “Numerical Evaluation of the Compound Poisson Distribution: Recur-
sion or Fast Fourier Transform?” Scandinavian Actuarial Journal, 1984(2), 116-126.

Cavers JK (1978). “On the Fast Fourier Transform Inversion of Probability Generating Func-
tions.” IMA Journal of Applied Mathematics, 22(3), 275-282.

Chambers JM (1993a). “Classes and Methods in S. I: Recent Developments.” Computational
Statistics, 8(3), 167-184.

Chambers JM (1993b). “Classes and Methods in S. II: Future Directions.” Computational
Statistics, 8(3), 185-196.

Chambers JM (2008). Software for Data Analysis. Programming with R. Springer-Verlag,
Berlin.

Chung KL (1974). A Course in Probability Theory. 2nd edition. Academic Press, New York.

http://www.mathematik.uni-kl.de/~wwwfm/RobustRiskEstimation/
http://www.Aptech.com/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/

Journal of Statistical Software 23

Cooley JW, Tukey JW (1965). “An Algorithm for the Machine Calculation of Complex Fourier
Series.” Mathematics of Computation, 19(90), 297-301.

Embrechts P, Griibel R, Pitts SM (1993). “Some Applications of the Fast Fourier Transform
Algorithm in Insurance Mathematics.” Statistica Neerlandica, 47(1), 59-75.

Feilmeier M, Bertram J (1987). Anwendung numerischer Methoden in der Risikotheorie. (Ap-
plication of Numerical Methods in Risk Theory), volume 16 of Schriftenreihe Angewandte
Versicherungsmathematik. Deutsche Gesellschaft fiir Versicherungsmathematik. Verlag Ver-
sicherungswirtschaft e.V., Karlsruhe.

Gasquet C, Witomski P (1999). Fourier Analysis and Applications. Filtering, Numerical Com-
putation, Wavelets, volume 30 of Texts in Applied Mathematics. Springer-Verlag. Translated
from the French by R. Ryan.

Gentleman R (2003). Object Oriened Programming. Slides of a Short Course Held in Auckland.
URL http://www.stat.auckland.ac.nz/S-Workshop/Gentleman/Methods.pdf.

Goulet V (2008). “actuar: An R Package for Actuarial Science.” Journal of Statistical Software,
25(7), 1-37. URL http://www. jstatsoft.org/v25/i07/.

Griibel R (1991). “Algorithm AS 265: G/G/1 via Fast Fourier Transform.” Applied Statistics,
40(2), 355-365.

Griibel R, Hermesmeier R (1999). “Computation of Compound Distributions. I. Aliasing
Errors and Exponential Tilting.” ASTIN Bulletin, 29(2), 197-214.

Griibel R, Hermesmeier R (2000). “Computation of Compound Distributions. II. Discretiza-
tion Errors and Richardson Extrapolation.” ASTIN Bulletin, 30(2), 309-331.

Gupta A, Kumar V (1993). “The Scalability of FFT on Parallel Computers.” IEEE Transac-
tions on Parallel and Distributed Systems, 4(8), 922-932.

Ittrich C, Krause D, Richter WD (2000). “Probabilities and Large Quantiles of Noncentral
Generalized Chi-Square Distributions.” Statistics: A Journal of Theoretical and Applied
Statistics, 34(1), 53-101.

Kohl M (2005). Numerical Contributions to the Asymptotic Theory of Robustness. PhD
Thesis, Universitdt Bayreuth, Bayreuth. URL http://www.stamats.de/ThesisMKohl.
pdf.

Kohl M (2013). RobLoxBioC: Infinitesimally Robust Estimators for Preprocessing Omics
Data. R package version 0.9, URL http://robast.R-Forge.R-project.org/.

Kohl M, Deigner HP (2010). “Preprocessing of Gene Expression Data by Optimally Robust
Estimators.” BMC Bioinformatics, 11(583).

Kohl M, Ruckdeschel P (2010). “R package distrMod: Object-Oriented Implementation of
Probability Models.” Journal of Statistical Software, 35(10), 1-27. URL http://www.
jstatsoft.org/v35/i10/.

Kohl M, Ruckdeschel P (2013a). RobAStBase: Robust Asymptotic Statistics. R package
version 0.9, URL http://robast.R-Forge.R-project.org/.

http://www.stat.auckland.ac.nz/S-Workshop/Gentleman/Methods.pdf
http://www.jstatsoft.org/v25/i07/
http://www.stamats.de/ThesisMKohl.pdf
http://www.stamats.de/ThesisMKohl.pdf
http://robast.R-Forge.R-project.org/
http://www.jstatsoft.org/v35/i10/
http://www.jstatsoft.org/v35/i10/
http://robast.R-Forge.R-project.org/

24 General Purpose FFT Convolution Algorithm in 54

Kohl M, Ruckdeschel P (2013b). ROptEst: Optimally Robust Estimation. R package version
0.9, URL http://robast.R-Forge.R-project.org/.

Kroisandt G, Ruckdeschel P (2012). “Bingo und Stochastik: Wieviele Spieler wie hiufig und
wieviel im allgemeinen Bingo gewinnen. (Bingo and Stochastics. How Many Players Win
How Often and How Much in General Bingo).” Mathematische Semesterberichte, 59(2),
155-181.

Lumely T (2007). “Tail Area of Sum of Chi-square Variables.” Message posted to the R-help
mailing list, archived at http://tolstoy.newcastle.edu.au/R/e2/help/07/03/13491.
html.

MD*Tech (2007). XploRe Version 4.8. MD*Tech — Method and Data Technologies. URL
http://www.xplore-stat.de/.

Monahan JF (2011). Numerical Methods of Statistics. 2nd edition. Cambridge University
Press, Cambridge.

Patnaik PB (1949). “The Non-Central x2- and F-Distributions and Their Applications.”
Biometrika, 36(1-2), 202-232.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Ruckdeschel P, Kohl M (2010). “Computation of the Finite Sample Risk of M-Estimators on
Neighborhoods.” Technical report, Bayreuth university. URL http://www.mathematik.
uni-k1l.de/"ruckdesc/pubs/howtoap.pdf.

Ruckdeschel P, Kohl M, Stabla T, Camphausen F (2006). “S4 Classes for Distributions.” R
News, 6(2), 2-6. URL http://CRAN.R-project.org/doc/Rnews/.

Ruckdeschel P, Kohl M, Stabla T, Camphausen F (2013). S4 Classes for Distributions —
A Manual for Packages distr, distrEzx, distrEllipse, distrMod, distrSim, distrTEst,
and distrTeach. Version 2.5, URL http://CRAN.R-project.org/package=distrDoc.

Ruckdeschel P, Kohl M, Stabla T, Camphausen F (2014). distr: S4 Classes for Distributions.
R package version 2.5.3, URL http://distr.R-Forge.R-project.org/.

SAS Institute Inc (2011). The SAS System, Version 9.3. SAS Institute Inc., Cary, NC. URL
http://www.sas.com/.

Schaden G (2012). “Modelling the “Aoristic Drift of the Present Perfect” as Inflation An Essay
in Historical Pragmatics.” International Review of Pragmatics, 4(2), 261-292.

Schaller P, Temnov G (2008). “Efficient and Precise Computation of Convolutions: Applying
FFT to Heavy Tailed Distributions.” Computational Methods in Applied Mathematics, 8(2),
187-200.

Singh R (2010). A Comparison of the Methods Used to Determine the Portfo-
lio Credit Loss Distribution and the Pricing of Synthetic CDO Tranches. M.Sc.
thesis, University of the Witwatersrand, Faculty of Science, Witwatersrand, South
Africa. URL http://wiredspace.wits.ac.za/bitstream/handle/10539/9273/Renay/
20Singh%20MSc.pdf?sequence=1.

http://robast.R-Forge.R-project.org/
http://tolstoy.newcastle.edu.au/R/e2/help/07/03/13491.html
http://tolstoy.newcastle.edu.au/R/e2/help/07/03/13491.html
http://www.xplore-stat.de/
http://www.R-project.org/
http://www.mathematik.uni-kl.de/~ruckdesc/pubs/howtoap.pdf
http://www.mathematik.uni-kl.de/~ruckdesc/pubs/howtoap.pdf
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=distrDoc
http://distr.R-Forge.R-project.org/
http://www.sas.com/
http://wiredspace.wits.ac.za/bitstream/handle/10539/9273/Renay%20Singh%20MSc.pdf?sequence=1
http://wiredspace.wits.ac.za/bitstream/handle/10539/9273/Renay%20Singh%20MSc.pdf?sequence=1

Journal of Statistical Software 25

Stroustrup B (1987). Die C++ Programmiersprache. (The C++ Programming Language).
Internationale Computer-Bibliothek. Addison-Wesley, Bonn. German translation.

Temnov G, Warnung R (2008). “A Comparison of Loss Aggregation Methods for Operational
Risk.” Journal of Operational Risk, 3(1), 3-23.

The MathWorks, Inc (2011). MATLAB - The Language of Technical Computing, Ver-
ston R2011b. The MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.
com/products/matlab/.

Warnes G (2002). “HYDRA: A Java Library for Markov Chain Monte Carlo.” Journal of
Statistical Software, 7(4), 1-32. URL http://www. jstatsoft.org/v07/1i04/.

Affiliation:

Peter Ruckdeschel

Fraunhofer ITWM Kaiserslautern

Department of Financial Mathematics
Fraunhofer-Platz 1

67663 Kaiserslautern, Germany

E-mail: Peter.Ruckdeschel@itwm.fraunhofer.de

Matthias Kohl

Department of Medical and Life Sciences Furtwangen University
Jakob-Kienzle-Str. 17

78054 Villingen-Schwenningen, Germany

E-mail: Matthias.Kohl@stamats.de

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/
Volume 59, Issue 4 Submitted: 2012-10-02

August 2014 Accepted: 2014-04-15

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.jstatsoft.org/v07/i04/
mailto:Peter.Ruckdeschel@itwm.fraunhofer.de
mailto:Matthias.Kohl@stamats.de
http://www.jstatsoft.org/
http://www.amstat.org/

	Motivation
	OOP for probability distributions and convolution
	OOP for probability distributions
	OOP in S: The S4 class concept
	Implementation of distribution classes
	Convolution as a particular method in distr
	General arithmetics of distributions in distr

	General purpose FFT algorithm
	Discrete Fourier transform (DFT)
	Convolution algorithm
	Ramifications and extensions of this algorithm

	Connections to other approaches
	Algorithms based on DFT
	Other algorithms

	Accuracy and computational efficiency of our algorithm
	Accuracy
	Computational efficiency

	Conclusion

