
JSS Journal of Statistical Software
September 2014, Volume 60, Issue 2. http://www.jstatsoft.org/

On Best Practice Optimization Methods in R

John C. Nash
University of Ottawa

Abstract

R (R Core Team 2014) provides a powerful and flexible system for statistical com-
putations. It has a default-install set of functionality that can be expanded by the use
of several thousand add-in packages as well as user-written scripts. While R is itself a
programming language, it has proven relatively easy to incorporate programs in other
languages, particularly Fortran and C. Success, however, can lead to its own costs:

� Users face a confusion of choice when trying to select packages in approaching a
problem.

� A need to maintain workable examples using early methods may mean some tools
offered as a default may be dated.

� In an open-source project like R, how to decide what tools offer “best practice”
choices, and how to implement such a policy, present a serious challenge.

We discuss these issues with reference to the tools in R for nonlinear parameter estimation
(NLPE) and optimization, though for the present article ‘optimization‘ will be limited to
function minimization of essentially smooth functions with at most bounds constraints on
the parameters. We will abbreviate this class of problems as NLPE. We believe that the
concepts proposed are transferable to other classes of problems seen by R users.

Keywords: R, optimization methods, best practice.

1. Background

In the 1970s, I developed several optimization tools for small computers – machines with 8K
bytes for programs (usually in BASIC) and data. These were included in a rather idiosynchratic
book (Nash 1979) that is in print more than 30 years later. Three of the algorithms from that
book are the Nelder-Mead, BFGS (Broyden-Fletcher-Goldfarb-Shanno) and CG (conjugate
gradients) methods of the R optim() function, which Brian Ripley converted from their Pascal
versions with my permission. They are good programs, but better tools from similar classes

http://www.jstatsoft.org/


2 On Best Practice Optimization Methods in R

of method are now available, as discussed below.

Furthermore, at this time, a method somewhere intermediate between the conjugate-gradient
(CG) and variable metric (BFGS) has not been identified as best-practice. The L-BFGS-B tool
in optim() is apparently (see Wikipedia 2014) based on version 2.3 of this code by Zhu, Byrd,
Lu, and Nocedal (1997). However, the authors of L-BFGS-B have recently (February 2011)
released version 3.0 of the code, and there is a variant of this method in package nloptr (Ypma
2014) as well as a truncated Newton method, a class of method that offers similar storage
advantages to L-BFGS approaches.

Outside optim(), but still in the default-install collection, nlm() and nlminb() offer optimiza-
tion capabilities. That there are these tools separate from optim() openly inspires confusion
in R novices. The wrapper optimx (Nash and Varadhan 2011) is an attempt to bring such
tools under one umbrella. It has been evolving since it was introduced, with some ideas tried
and discarded while others have been streamlined. It is anticipated that this evolution will
continue as it is written entirely in R and the structure is such that it is relatively easy to
add new optimizers and other features.

optimx has been found especially useful as a way to compare the performance of more than
a dozen optimizers on particular problems. It also standardizes the call to these optimiz-
ers, so allows simpler changing from one method to another. However, it could and should
be modified to allow much more guidance about methods to users unfamiliar with NLPE
methods.

Ordinary users may also be unaware that some tools are intended to be computationally
robust – the nonlinear least squares solvers in package nlmrt (Nash 2014b) for example –
rather than trying to be very efficient on most problems. A wrong answer computed quickly
is not acceptable, but neither is it reasonable to do unnecessary work on a problem that is
known to be straightforward and is carried out frequently. The user is generally not party
to these design decisions, and may become interested only when workflow is affected by bad
solutions or what appears to be excessive run-time.

2. Inertia

A large obstacle to changing methods is that many of R’s capabilities are built up from
different building blocks. Maximum likelihood tools call optimizations, as do some of the
time series, structural equation modeling and neural network functions. An example is bbmle
(Bolker and R Core Team 2014), which suggests optimx. There is a natural reluctance to risk
breaking these tools because of these dependencies.

This inertia is also driven by costs. The R Core Team has done a great job in building a
highly successful software system. Any request such as that made here potentially implies
more work. It is, therefore, important that we offer ideas how the overall work can actually
be reduced or at least shared by others.

3. Principles for progress

To balance the need for progress with the requirement to maintain existing capabilities, con-
sider the following principles.



Journal of Statistical Software 3

� Users should be able to get reasonable results with default settings for any methods.
For example, novice users who invoke a command such as optim() with the minimum
required elements should get the best default method we can offer them for their prob-
lem.

� Developers should be able to experiment, and to test and measure performance, under
the most flexible of conditions.

� Existing functionality must remain working, including the use of legacy methods if
necessary, though the use of such functionality may be outside the defaults.

� Methods for a given class of problem, e.g., NLPE, should evolve with the accepted
wisdom in the sub-domain of expertise.

Recognizing that R is a volunteer-driven open project, we should add the requirement that
any changes should impose the minimum possible burden on members of the R Core Team.
However, failure to evolve the base methods in R would, it can be argued, imperil the future
of the project as users migrate to tools that offer more capable resources.

While the examples in this article are from the NLPE problem domain, it is also likely that
there are other statistical and graphical domains of broad utility that are equally affected.

4. The scope of the issue

Fully exercising the principles above presents a challenge with respect to the R Project for
Statistical Computing. Even restricting our attention to the tools for NLPE within the
Comprehensive R Archive Network (CRAN) and Bioconductor repositories requires that we
review many packages. There are still more tools on the developmental collections R-Forge
and Rforge, and almost certainly more in private collections on personal or academic servers
(for example, the nls2 package from INRA, Huet et al. 1996) or services like GitHub.

Using the Task View on Optimization and Mathematical Programming (Theussl 2014), which
will be abbreviated TVoO, we can list the functions that perform optimization tasks and the
packages they belong to. Where there are duplicate names, we will need to provide extra
information to identify the individual functions or packages. Besides the more than 66 R
packages listed by the TVoO at 2014-08-08, there is also a set of interface functions to AD
Model Builder, which uses Automatic Differentiation to obtain derivatives for its optimization
tools. There is also nlmrt that is intended to handle difficult nonlinear least squares problems
as well as those with small or zero residuals, which nls specifically excludes.

This large number of NLPE tools speaks to the capabilities of R, but users new to the area
need guidance or else strong default R capabilities. Even listing the number of packages, their
ongoing modification, and the variety of methods and options they offer is a serious challenge
to dedicated volunteers who try to maintain the TVoO.

It is also important that optimizers used within other R packages are as good as possible.
Unfortunately, some packages call the internal parts of optimization tools. For example, nnet
directly calls the internal C routine vmmin.c which is the principal computational engine of the
optim() method "BFGS". This adds a layer of investigation and work compared to packages
which use a more standard call to optimizers. It was encouraging while preparing this article



4 On Best Practice Optimization Methods in R

that several package developers I talked to were clearly interested in making their packages
capable of using different optimizers as they became available.

5. Current structures

NLPE tools currently in the default R facilities address the following needs:

� A relatively robust method that does not require derivatives (optim:Nelder-Mead).
This is a derivative-free method using heuristics to search the domain.

� A low-memory optimizer for unconstrained problems with large numbers of parameters
(optim:CG). This conjugate-gradient code uses just a few vectors but attempts to gen-
erate search directions that are relatively efficient in minimizing the objective function.
Unfortunately, this code, in any programming language, has given me the least satis-
faction of any that I have implemented. Much better implementations of similar ideas
are available, e.g., Rcgmin (Nash 2013b), and there is some recent literature suggesting
further improvements may be possible.

� A simple unconstrained variable metric/quasi-Newton method (optim:BFGS). This al-
gorithm solves an approximate version of the Newton equations (to seek a zero of the
gradient) by using an approximation of the inverse Hessian and multiplying this times
the gradient. A line search is applied to the resulting search direction, and a new trial
solution found. The inverse Hessian is updated at each iteration. In this simplified vari-
ant, a ‘backtrack to acceptable point’ line search is used. The inverse Hessian is updated
by the Broyden-Fletcher-Goldfarb-Shanno formula, giving the method its acronym.

� A modest-memory optimizer for bounds constrained problems (optim:L-BFGS-B). The
inverse Hessian in optim:BFGS need not be stored explicitly, and this method keeps only
the vectors needed to create it as needed. There are, however, many bells and whistles
on this code, which also allows for bounds constraints. Both the author and a reviewer
have observed disconcerting failures of this method, but it often performs very well. The
variant in R is not, however, the most recent one released by the original developers.

� A Newton-like method for unconstrained problems with at least first derivatives (nlm).
This is a variant of a code by Dennis and Schnabel (1983) that uses only first derivative
information to approximate the Hessian (but will use it if supplied) and thereby solve
the Newton equations for a zero of the gradient. This complicated code often performs
well.

� A bounds constrained quasi-Newton method (nlminb). This is a complicated code by
David Gay in the Bell Labs PORT library collection (Fox, Hall, and Schryer 1978; Fox
1997). It allows bounds constraints and uses a quasi-Newton method.

� A stochastic method that does not require derivatives (optim:SANN). This method is
unlike most others in that it does not have a termination test, but always evaluates the
objective function the specified maxit number of times.

� A nonlinear least squares solver (nls). This suite of tools solves the Gauss-Newton
equations (an approximation to the Hessian for sums-of-squares is used). This is very
efficient when it works, but often fails.



Journal of Statistical Software 5

� A linear inequality-constrained optimization tool (constrOptim).

� A one-parameter minimizer (optimizer).

� A one-parameter root-finder (uniroot).

The default tools do not appear to contain facilities for

� Mathematical programming – linear, quadratic, integer, mixed-integer, or nonlinear,
apart from constrOptim.

� Solutions of nonlinear equations, except for one-parameter root-finding.

� Convex optimization, e.g., Boyd and Vandenberghe (2004).

� Constraint satisfaction.

� A method for global optimization that includes some facility for measuring success.

� Optimization of objectives that cannot be measured or evaluated precisely, sometimes
referred to as noisy or fuzzy optimization problems, for example, as in Moré and Wild
(2009) or Joe and Nash (2003).

Methods capable of using parallel evaluation of function or gradient information appear to be
of interest from mailing list or similar postings, but at the time of writing do not seem to be
publicly available in R packages.

The lists above are not a judgement on whether facilities should or should not be in the
default collection, as that requires a consideration of user needs. They do, however, raise
the question of how decisions are made to include or – possibly more contentiously – remove
facilities. Who decides for R is clear – the R Core Team. Most large open-source projects have
a similar structure, though R is possibly less democratic than some others in that membership
of the group is decided by that group and not by the R Foundation. That there has been very
little complaint suggests that so far the R Core Team has made mostly acceptable choices.

Unfortunately, in NLPE and likely in other sub-domains, the default tools are not best prac-
tice, and the model of an aging default collection and an unstructured, largely un-mapped
host of contributed packages is at best unattractive. It is certainly an invitation to misap-
plication of tools. Sometimes this results in ill-informed complaints on the R mailing lists,
wasting time of those who try to help out.

The history of open-source projects is that they either adapt or else are forked. Users rapidly
adopt a well-executed fork or repackaging – for example, Ubuntu from Debian Linux. However,
forks and variants represent a division of energies, and for a scientific project like R, adaptation
is surely preferred to forking, and the rest of this article suggests some pathways to do this
adaptation.

6. Classification-driven sets of methods

One of the most important aspects of software is that one can rename objects so that improved
routines can be called easily. For NLPE methods, it is often relatively straightforward to



6 On Best Practice Optimization Methods in R

identify which general family of optimizer is indicated for a particular end-use. Thus, if a
function currently calls optim:CG, substitution to call, say, Rcgmin does not take much work.
While there are exceptions, most optimization methods likely to be of general applicability
can be classified as in the Current structures section above. As a reviewer has pointed out,
particular statistical applications may lead to very specialized methods being better suited
for production usage. However, reliable general-purpose optimizers can be very helpful when
there are variations or constraints required, or in reproducing and testing solutions from
specialized tools.

A proof of concept package optreplace (Nash 2013a) has been created to test the idea of
substitution of method. Given its experimental purpose, optreplace is not intended to become
a regular CRAN package. In it the nmkb routine from dfoptim (Varadhan and Borchers 2011)
is used instead of the legacy "Nelder-Mead" method, Rvmmin (Nash 2013c) is used for "BFGS"
and "L-BFGS-B" (and also whenever bounds are given with no method specified), and Rcgmin
replaces "CG". Specifying "SANN" as the method simply stops the execution of optreplace()
at the moment; that is, optreplace offers no similar capability. Thus we include a general
purpose derivative-free method, a quasi-Newton method and a conjugate-gradient method, all
of which support bounds constraints. Using their storage needs, the last two methods might
be more generally classified as a ‘Hessian approximation method’ and a ‘vector-only gradient
method’. We have (temporarily) avoided the need to have two quasi-Newton methods ("BFGS"
and "L-BFGS-B") by using the bounds constraint capability of Rvmmin, but note that this
requires a full sized matrix for the Hessian inverse approximation. We have made no attempt
yet to suggest replacements for nlm, where it would be very useful to add bounds-constraints
capability to the Newton-like method. Nor have we so far delineated when nlminb is preferred
to other quasi-Newton methods.

6.1. What is improvement?

We note that nmkb() seems to offer advantages beyond simply adding bounds constraints to
the Nelder-Mead option of optim(). My experience and some simple test scripts suggest that
it offers a modest advantage in number of function evaluations to termination, though the
test function, starting rules, and convergence tolerances will vary the results. This can be
illustrated with the simple function

R> qfn <- function(x) {

+ d <- 2

+ ff <- 1

+ for (i in seq_along(x)) ff <- ff + (x[[i]] - i)^d

+ ff

+ }

Using 1000 starting values generated by runif() between 1 and 6, we use optim() with
"Nelder-Mead" and nmk() and compare results (Figure 1).

Average function evaluations (NM vs NMk): 115 105.674

Number of cases (of 1000 ) where NM ends with lower fn than NMk is 309



Journal of Statistical Software 7

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●●
●
●●

●

●●

●

●●

●

●●●

●

●

●
●

Nelder−Mead nmk

10
0

15
0

20
0

Figure 1: Function evaluations for two Nelder-Mead methods

The main purpose in the example above is to show how some of the experience may be gathered
for comparing approaches. Different test functions or functional forms may, of course, alter
the advantages seen. In particular, for work outside this paper I have compared methods on
three forms of the logistic growth curve estimated for data given in (Nash 1979, Table 12.1),
which presents weed density (y) at each year (t). The three forms are:

(unsc) y = b1/(1 + b2 · exp(−b3 · t))
(scal) y = 100 · x1/(1 + x2 · 10 · exp(−0.1 · x3 · t))
(bates) y = q1/(1 + exp((q2 − t)/q3))

Using 100 starts (rather than 1000 as above to avoid excessive run time), but this time on
the interval 0 to 5, we find many attempts that do not result in a satisfactory solution. Some
starting points with some methods lead to points where the functional surface is essentially
“flat” but nowhere near the global minimum sum of squares at the value approximately 2.587.
Many problems share similar pathologies, and the details take too long to include here, but it
is useful to compare how many solutions are found with a sum of squares not exceeding 2.6.

model

meth bates scal unsc

Nelder-Mead 58 93 60

nmkb 100 100 71

Here we see that nmkb() does better than the legacy Nelder-Mead. However, the story is
nuanced by the function evaluation count, given in Figure 2, where nmkb() apparently uses
more function evaluations. Note, however, that the function evaluation graphs are only for



8 On Best Practice Optimization Methods in R

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

NM.bates nmk.bates NM.scal nmk.scal NM.unsc nmk.unsc

20
0

40
0

60
0

80
0

Figure 2: Function evaluations for logistic fits.

the “successful” runs where the sum of squares does not exceed 2.6. The legacy Nelder-Mead
has got to the answer quicker when it succeeds, but we have not counted the cases where it
did not get to the answer.

6.2. Issues of detail

Clearly different choices for optimizers can be made to substitute for the legacy methods
via mechanisms like optreplace. The main detail work in doing this is identifying the calls
and providing the appropriate substitutions, but there are parallel developments that would
simplify the structure and avoid confusion.

� Methods written in C or Fortran should be called via an R language handle. This allows
easier substitution of the optimizer. For example, nnet now directly calls vmmin.c

rather than specifying "BFGS" as the optim() algorithm. It would be useful, of course,
to measure the performance cost of such a change.

� The structure of some of the internal routines such as optim.c or nls.c is complicated,
and the human knowledge needed to maintain or adjust them is a relatively scarce
resource. They were written when the speed of C was required to make R viable. Even if
performance dictates that codes remain in these languages, for reliability and long-term
stability of the R infrastructure it is useful to have reference implementations of methods
in R. Rvmmin is an implementation of the algorithm used for optim:BFGS. At the time of
writing this article, iterates for equivalent invocations are slightly different, possibly due
to minor differences in the implementation. Reference implementations are a tool that
has been used with success to avoid gross errors and provide a fall-back capability, for
example, with the Basic Linear Algebra Subroutines (BLAS, Lawson, Hanson, Kincaid,
and Krogh 1979). While R implementations of optimizers are somewhat slower than C
or Fortran variants, my experience is that they are generally fast enough for everyday



Journal of Statistical Software 9

usage, but using compiled languages for the objective function and gradient may give
the most useful speed improvement.

� As some codes become less commonly used, some storage and transmission overhead
could be saved by dropping them from the base or recommended distribution files.
However, discussions with various R users and developers in preparing this article suggest
that it is important that at least some default NLPE methods be kept available in the
basic distribution of R. In any software system, removal of deprecated features is a
difficult task.

7. Providing guidance on best practice

Up to now, the R Core Team has decided on the defaults. optreplace shows one way to
redefine the defaults that does not require the involvement of the R Core Team, though of
course any cooperation would be welcome. More importantly, if some form of classification-
driven selection of methods is implemented, then it is organizationally feasible to obtain
opinions on the default choices for NLPE methods, and by extension for other domains, from
knowledgeable community members. How this is accomplished is less important here than the
concept that practitioners could guide, test and evaluate different choices. The default set of
optimizers could then be chosen by a committee of experts formally established to provide the
input, or by a choice made by the R Core Team from a list of candidate methods suggested
through the TVoO or other discussions. User groups could also develop their own sets of
choices.

A default set of methods is a silent but powerful indication to novices that leads to method
selection, possibly without thought. However, many users do seek information. The current
documentary guidance for users of optimization tools is essentially contributed material in the
form of the TVoO, mailing list contributions, journal articles, vignettes or blog entries. Much
of this is of value and some of high quality. However, it is a large and not well-structured
body of material. How can users be more efficiently educated on their choices?

It is worth underlining that the current role of the TVoO in listing available packages is very
important. It provides a starting point for evaluating options, and the author is of the opinion
that it is useful to keep that role of the TVoO separate from the selection of ‘best practice’
methods and from the ‘wish list’ of suggested needs for new packages. These latter activities
are and should be matters of debate. However, even though I am active as a developer of
NLPE tools, I have found items in the TVoO of which I was previously unaware.

One needed tool for guidance of users is a way to view the CRAN repository from different
perspectives. Currently only package lists by date and name are provided, along with a set
of task views. With several thousand packages, the human search time is becoming onerous.
A consequence may be that users do not investigate new tools that could be important for
their work.

For NLPE problems, structured listings of packages suitable to various specializations would
be helpful in reducing the volume of material the user must peruse. Moreover, like the Task
Views, the development of different perspectives on the collection does not require direct
involvement of the team maintaining CRAN. Of course, such efforts could be assisted by
package developers providing appropriate descriptors and keywords. Two reviewers noted
that RSiteSearch() (http://finzi.psych.upenn.edu/search.html) aided by sos (Graves,

http://finzi.psych.upenn.edu/search.html


10 On Best Practice Optimization Methods in R

Dorai-Raj, and François 2013) could be useful in searching for tools that satisfy particular
needs. Ultimately, the usefulness of such information must be tested by actual trials. Feeding
such outcomes back into documentation to help users remains, of course, a challenge.

8. Gathering evidence to support best practice decisions

Guidance on computational tools should be based on evidence. Far too many mailing list
postings, and even a few published articles, claim ‘method X outperforms method Y’ based
on the evidence of one or a few example problems. Worse, there may be many problems
where ‘method Y’ does very well but ‘method X’ has not been tested. Performance of NLPE
tools is extremely sensitive to starting parameters, termination tests, and to the setup, type
and structure of problems. We have as an example one problem where two formulations,
both reasonable, show an 800-fold difference in the time to compute the objective function.
See, for example, https://stat.ethz.ch/pipermail/r-devel/2011-August/061796.html
and related postings; the difference was reduced to a factor of 80 by Michael Lachmann by
programming changes. With such performance variations, it is important to be very careful
how comparisons are made.

Unfortunately, benchmarking is a tedious and often poorly-rewarded task, made more difficult
if the software to be compared uses different calling sequences and outputs. Experience with
the optimx wrapper suggests that standardization does help. optimx allows users to choose
a list of methods, or else all applicable methods. It would be fairly easy to add specialized
groups of methods, for example, all derivative-free methods or all gradient-based methods not
storing a Hessian approximation. This would permit easier comparison of candidates that are
best-practice within one group. The author welcomes discussion and collaboration to that
end.

Benchmarking problems should, of course, reflect the needs of users. For problem classes
where R has support for solving NLPE problems, methods are often compared using pub-
lished benchmarking results for certain well-known problem sets. This allows for disciplined
comparisons, but traditional test problems may be uncharacteristic of actual usage patterns.
For example, the problems in the packages NISTnls (Bates 2012) and NISTopt (Nash 2012)
which are ports of the problems described in National Institute of Standards and Technology
(1999), though interesting, are extreme cases in my opinion. It would be helpful to be able
to sample the experiences of real users. This has been proposed informally on a wiki run by
the author, using tools with names like gatherreport() and sendreport() that would in-
teract with instrumented versions of optimization codes. While this requires the cooperation
of users, it may be workable with appropriate safeguards that anonymize the users and prob-
lems, while still providing some characterization of the problem size in terms of data, number
of parameters, and possibly the types of computations involved (i.e., functions called).

With whatever data of this genre that can be collected, R itself can be used to build ongoing
profiles of usage and performance. Even an imperfect picture would be closer to the actual
experiences of R users for the NLPE class of problems than many of the traditional test
functions. Moreover, the availability of such data could advance development if it indicates

� that methods for a particular problem are either satisfactory or not; or

� that efficient tools for a problem class are not presently represented in the R packages.

https://stat.ethz.ch/pipermail/r-devel/2011-August/061796.html


Journal of Statistical Software 11

Besides a large number of methods, the user must sometimes cope with a plethora of options
and controls for each of them. A considerable part of the effort in advancing optimx has been
to try to simplify everyday usage while maintaining the flexibility to use options when they
are required. This work is far from finished.

A related, and equally difficult, implementation issue concerns the provision of diagnostic
information to verify that a solution has been found. Since many problems have multiple
solutions to the optimization sub-problem, an answer that simply seems wrong may still be
a valid output from the optimizer. optimx() will attempt to compute the Kuhn-Karush-
Tucker (KKT) tests of gradient and Hessian (Karush 1939; Kuhn and Tucker 1951). A
concern is that computing the KKT tests can cost multiples of the cost of performing the
optimization, so optimx() does not carry out the KKT tests when there are large numbers of
parameters, and this criterion is adjusted downwards for methods requiring matrix storage.
An experimental version of optimx also tried an axial search post-termination, which gives
measures of symmetry and curvature or restarts the optimizer if a better point is found. This
approach (Nash and Walker-Smith 1987) is useful as a way to avoid premature termination,
but is costly in terms of function evaluations. This is a common dilemma for the developer.

9. A way forward

The ideas above, I believe, argue strongly that optim() should be deprecated, using a warn-
ing message and/or a user-reversible replacement mechanism as suggested by the optreplace
experiment. However, I agree with one of the reviewers that “I’d rather see optim() fall into
disuse because some package provides a clearly better choice for most users, rather than see
changes made to it that mess up legacy code.” My recommendations for moving forward with
NLPE tools in R are:

� that optimx(), or preferably an evolved replacement, be adopted by users for NLPE
tasks and be added to the recommended packages;

� that work to simplify the task of obtaining guidance on NLPE methods be encouraged,
such as developing customized views of package lists for particular classes of problem;
and

� that interested R users work to provide wrappers and interfaces to simplify the us-
age of NLPE tools. In particular, stochastic optimization methods – in the family of
optim:SANN, DEoptim (Mullen, Ardia, Gil, Windover, and Cline 2011) and others –
and constraint-based optimization methods from the mathematical programming area
deserve attention.

10. Conclusion

The main concerns of this paper are that R, as a collective system, should provide tools to
solve problems of the NLPE class that:

� offer default methods that are as good as possible;

� allow users to learn about and differentiate packages and methods easily;



12 On Best Practice Optimization Methods in R

� provide a structure allowing for the evolution of methods as the general consensus in
the R community evolves as to what is best practice.

Choices need to be presented in clearer ways to both novice and experienced users. Default
tools need to be good, or at least defensible, and it should be easier to replace them, for
example in a fairly straightforward wrapper infrastructure. Users happy with the defaults
need make no extra effort, but those needing either legacy or special methods should have
them available, and with a consistent interface and the availability of tests on inputs and
outputs. For those needing still more flexibility, there is still the option of a separate package.

Some illustrations of what might be possible have been presented. The experimental package
optreplace shows how the functions of optim() could be replaced in an R session. optimx
provides a template for a common front-end to many optimizers, and is evolving as a tool
that provides guidance on their usage.

Putting best-practice methods into R is more a social and political than technical issue. If
appropriate support is provided, R community members can provide input for the selection
of suitable choices of the methods that are the defaults for various categories of calculations.
Ultimately, making available the best possible tools to users is basic to the continued use and
development of R.

Acknowledgments

Exchanges with or software help from John Fox, Ben Bolker, Ravi Varadhan, Gabor
Grothendieck and others have been extremely helpful in developing the ideas in this pa-
per. The reviewers were thorough and their comments useful in clarifying and sharpening
the material. Discussions with a number of R users in the preparation of Nash (2014a) led to
improvements in this article.

References

Bates D (2012). NISTnls: Nonlinear Least Squares Examples from NIST. R package version
0.9-13, URL http://CRAN.R-project.org/package=NISTnls.

Bolker B, R Core Team (2014). bbmle: Tools for General Maximum Likelihood Estimation.
R package version 1.0.17, URL http://CRAN.R-project.org/package=bbmle.

Boyd S, Vandenberghe L (2004). Convex Optimization. Cambridge University Press, New
York, NY, USA. ISBN 0521833787.

Dennis JE, Schnabel RB (1983). Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Englewood Cliffs.

Fox PA (1997). “The PORT Mathematical Subroutine Library, Version 3.” URL http:

//www.bell-labs.com/project/PORT/.

Fox PA, Hall AD, Schryer NL (1978). “The PORT Mathematical Subroutine Library.” ACM
Transactions on Mathematical Software, 4(2), 104–126.

http://CRAN.R-project.org/package=NISTnls
http://CRAN.R-project.org/package=bbmle
http://www.bell-labs.com/project/PORT/
http://www.bell-labs.com/project/PORT/


Journal of Statistical Software 13

Graves S, Dorai-Raj S, François R (2013). sos: Search Contributed R Packages, Sort by
Package. R package version 1.3-8, URL http://CRAN.R-project.org/package=sos.

Huet S, et al. (1996). Statistical Tools for Nonlinear Regression: A Practical Guide with
S-PLUS Examples. Springer-Verlag, Berlin.

Joe H, Nash JC (2003). “Numerical Optimization and Surface Estimation with Imprecise
Function Evaluations.” Statistics and Computing, 13(3), 277–286.

Karush W (1939). Minima of Functions of Several Variables with Inequalities as Side Con-
straints. Master’s thesis, Department of Mathematics, University of Chicago, Chicago.
M.Sc. Dissertation.

Kuhn HW, Tucker AW (1951). “Nonlinear Programming.” In J Neyman (ed.), Proceedings of
the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492.
Berkeley.

Lawson CL, Hanson RJ, Kincaid DR, Krogh FT (1979). “Basic Linear Algebra Subprograms
for Fortran Usage.” ACM Transactions on Mathematical Software, 5(3), 308–323.

Moré JJ, Wild SM (2009). “Benchmarking Derivative-Free Optimization Algorithms.” SIAM
Journal on Optimization, 20(1), 172–191.

Mullen K, Ardia D, Gil D, Windover D, Cline J (2011). “DEoptim: An R Package for Global
Optimization by Differential Evolution.” Journal of Statistical Software, 40(6), 1–26. URL
http://www.jstatsoft.org/v40/i06/.

Nash JC (1979). Compact Numerical Methods for Computers: Linear Algebra and Function
Minimisation. Adam Hilger, Bristol. Second Edition, 1990, Bristol: Institute of Physics
Publications.

Nash JC (2012). NISTopt: Nonlinear Least Squares Examples from NIST in Form of
Functions for optim() and optimx(). R package version 2012-3.12/r572, URL http:

//R-Forge.R-project.org/projects/optimizer/.

Nash JC (2013a). optreplace: Trial Package to Replace optim() Function with Bet-
ter Codes. R package version 2013.7-23/r750, URL http://R-Forge.R-project.org/

projects/optimizer/.

Nash JC (2013b). Rcgmin: Conjugate Gradient Minimization of Nonlinear Functions
with Box Constraints. R package version 2013-02.20, URL http://CRAN.R-project.org/

package=Rcgmin.

Nash JC (2013c). Rvmmin: Variable Metric Nonlinear Function Minimization with Bounds
Constraints. R package version 2013-11.11, URL http://CRAN.R-project.org/package=

Rvmmin.

Nash JC (2014a). Nonlinear Parameter Optimization Using R Tools. John Wiley & Sons,
Chichester.

Nash JC (2014b). nlmrt: Functions for Nonlinear Least Squares Solutions. R package version
2014.5.4, URL http://CRAN.R-project.org/package=nlmrt.

http://CRAN.R-project.org/package=sos
http://www.jstatsoft.org/v40/i06/
http://R-Forge.R-project.org/projects/optimizer/
http://R-Forge.R-project.org/projects/optimizer/
http://R-Forge.R-project.org/projects/optimizer/
http://R-Forge.R-project.org/projects/optimizer/
http://CRAN.R-project.org/package=Rcgmin
http://CRAN.R-project.org/package=Rcgmin
http://CRAN.R-project.org/package=Rvmmin
http://CRAN.R-project.org/package=Rvmmin
http://CRAN.R-project.org/package=nlmrt


14 On Best Practice Optimization Methods in R

Nash JC, Varadhan R (2011). “Unifying Optimization Algorithms to Aid Software System
Users: optimx for R.” Journal of Statistical Software, 43(9), 1–14. URL http://www.

jstatsoft.org/v43/i09/.

Nash JC, Walker-Smith M (1987). Nonlinear Parameter Estimation: An Integrated System
in BASIC. Marcel Dekker, New York. See http://www.nashinfo.com/nlpe.htm for a
downloadable version including some extras.

National Institute of Standards and Technology (1999). “Statistical Reference Datasets –
Nonlinear Regression.” Information Technology Laboratory, URL http://www.itl.nist.

gov/div898/strd/nls/nls_main.shtml.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Theussl S (2014). “CRAN Task View: Optimization and Mathematical Programming.” Ver-
sion 2014-08-08, URL http://CRAN.R-project.org/view=Optimization.

Varadhan R, Borchers HW (2011). dfoptim: Derivative-Free Optimization. R package version
2011.8-1, URL http://CRAN.R-project.org/package=dfoptim.

Wikipedia (2014). “Limited-Memory BFGS — Wikipedia, The Free Encyclopedia.” URL
http://en.wikipedia.org/wiki/Limited-memory_BFGS, accessed 2014-09-04.

Ypma J (2014). nloptr: R Interface to NLopt. R package version 1.04, URL http://CRAN.

R-project.org/package=nloptr.

Zhu C, Byrd RH, Lu P, Nocedal J (1997). “Algorithm 778: L-BFGS-B: Fortran Subroutines
for Large-Scale Bound-Constrained Optimization.” ACM Transactions on Mathematical
Software, 23(4), 550–560.

Affiliation:

John C. Nash
Telfer School of Management
University of Ottawa
55 Laurier Avenue E
Ottawa, ON K1N 6N5, Canada
E-mail: nashjc@uottawa.ca

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 60, Issue 2 Submitted: 2012-12-26
September 2014 Accepted: 2014-08-05

http://www.jstatsoft.org/v43/i09/
http://www.jstatsoft.org/v43/i09/
http://www.nashinfo.com/nlpe.htm
http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
http://www.R-project.org/
http://CRAN.R-project.org/view=Optimization
http://CRAN.R-project.org/package=dfoptim
http://en.wikipedia.org/wiki/Limited-memory_BFGS
http://CRAN.R-project.org/package=nloptr
http://CRAN.R-project.org/package=nloptr
mailto:nashjc@uottawa.ca
http://www.jstatsoft.org/
http://www.amstat.org/

	Background
	Inertia
	Principles for progress
	The scope of the issue
	Current structures
	Classification-driven sets of methods
	What is improvement?
	Issues of detail

	Providing guidance on best practice
	Gathering evidence to support best practice decisions
	A way forward
	Conclusion

