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Abstract

Survival estimates are an essential compliment to multivariable regression models for
time-to-event data, both for prediction and illustration of covariate effects. They are
easily obtained under the Cox proportional-hazards model. In populations defined by
an initial, acute event, like myocardial infarction, or in studies with long-term follow-
up, the proportional-hazards assumption of constant hazard ratios is frequently violated.
One alternative is to fit an interaction between covariates and a prespecified function of
time, implemented as a time-dependent covariate. This effectively creates a time-varying
coefficient that is easily estimated in software such as SAS and R. However, the usual
programming statements for survival estimation are not directly applicable. Unique data
manipulation and syntax is required, but is not well documented for either software.
This paper offers a tutorial in survival estimation for the time-varying coefficient model,
implemented in SAS and R. We provide a macro coxtvc to facilitate estimation in SAS
where the current functionality is more limited. The macro is validated in simulated data
and illustrated in an application.

Keywords: time-dependent covariates, time-varying coefficients, Cox proportional-hazards
model, survival estimation, SAS, R.

1. Introduction

Clinical studies with long-term follow-up regularly measure time-to-event outcomes, such as
survival time, for which multivariable models are used to identify covariate associations and
make predictions. The most common regression modeling framework is the Cox proportional-
hazards model. The name implies the restrictive assumption of constant hazard ratios over
time, though Cox proposed a simple extension in which covariates are allowed to vary ac-
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cording to a pre-defined function of time (Cox 1972). This time-varying coefficient model is
implemented in SAS (SAS Institute Inc. 2008) and R (R Core Team 2014) via the inclusion
of an appropriately constructed time-dependent covariate. Due to its simplicity and avail-
able software, this approach is widely used in medical literature to account for violations of
proportional-hazards (Buchholz and Sauerbrei 2011; Natarajan et al. 2009; Guanghui and
Schaubel 2008; Gao, Grunwald, Rumsfeld, Schooley, MacKenzie, and Shroyer 2006). The
forgoing articles do not provide survival estimates despite the fact that these are a standard
complement to proportional-hazards regression. This is likely due to uncertainty about the
capacity of statistical software for the time-varying coefficient model.

Allison (2010) provides an excellent review of alternative ways to implement time-dependent
covariates and time-varying coefficients in SAS. As usual, survival estimation can be requested
by the baseline statement in proc phreg (SAS Institute Inc. 2010), but the log contains a
warning:

NOTE: Since the counting process style of response was specified

in the MODEL statement, the SURVIVAL = statistics in the baseline

statement should be used with caution.

Allison (2010) comments that “For most applications, however, this should not be a concern.”
We aim to provide more explicit guidance. Specifically, SAS Institute Inc. (2010) provides two
alternative survival estimators in proc phreg: the product-limit and the empirical cumulative
hazard. The documented equations are written with time-constant coefficients, though the
latter approach can easily substitute time-dependent covariates or time-varying coefficients.
Compared to the documentation, a less flexible simplification of the empirical cumulative
hazard estimator is actually implemented by the baseline statement and, given a time-
varying coefficient model, is only applicable to the reference individual with all covariates
equal to zero. Subsequently, we describe additional programming statements that can be
used to obtain estimates for any set of covariates.

The survival (Therneau 2014) package in R has functions, coxph and survfit, that will
produce survival estimates in the presence of time-varying coefficients. However, the function
inputs and data need to be carefully structured. Documentation with examples for this topic
is sparse. Fox and Weisberg (2011) provides a related example for time-dependent covariates
using the fold function for data manipulation. This function is a bit cumbersome and we
prefer survSplit as demonstrated below. Other approaches to flexible survival modeling are
available in R. Martinussen and Scheike (2006) provide an especially comprehensive review of
“Dynamic Regression Models for Survival Data,” with a corresponding timereg (Scheike and
Zhang 2011) package. This includes a function, timecox for fitting an extended version of
the Cox model with unspecified, smooth, time-varying coefficients. A resampling algorithm
for estimating survival is provided with examples, but not incorporated into the function
(Chapter 6). This provides a flexible alternative, but is not required for the present goal of
allowing coefficients to vary according to a pre-defined function of time.

We aim to exemplify the utility of the SAS and R softwares for survival estimation in the time-
varying coefficient model and provide SAS macros to facilitate this process. In Section 2,
we review survival estimation in various generalizations of the Cox model that fall under
the classification of multiplicative hazard models. In Section 3, we exemplify the syntax
required to obtain appropriate estimates in SAS and R, including data manipulation which is
facilitated by a simple SAS macro cpdata. The SAS macro coxtvc is introduced in Section 4
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and illustrated in Section 5. In Section 6, we discuss the utility of the two softwares and
highlight potential applications that may be overlooked because of the current uncertainty
about existing software.

2. Survival estimation in multiplicative hazard models

2.1. Cox proportional-hazards model

Cox proportional-hazards regression (Cox 1972) is thoroughly described elsewhere (Therneau
and Grambsch 2000; Kalbfleisch and Prentice 2002; Klein and Moeschberger 2003; Harrell
2006; Allison 2010). Here we provide a short background that may facilitate the discussion
of survival estimation. In his 1972 paper, Cox introduced two key ideas: a simple model for
the relationship between covariates and the hazard of experiencing an event, and a partial-
likelihood approach to estimate the model parameters. For subjects i = 1, . . . , n, let Ti denote
the failure time, Ci denote the censoring time, and Ni(t) represent a counting process such
that Ni(t) = I(Ti >= t), where I(u) is the indicator function taking value 1 if event u occurs
and 0 otherwise. A subject is at risk until they experience an event or are censored. Yi(t)
indicates whether the ith subject is at risk at time t, i.e., Yi(t) = I{min(Ti, Ci) < t}. Let
Xi denote a predictor of interest; and Zi a (p × 1) vector of additional covariates, where Ti
and Ci are independent given Xi and Zi. The failure time Ti is not available for all subjects,
but instead min(Ti, Ci) and δi = I(Ti ≤ Ci) are observed. The hazard of failure λ(t|X,Z) is
related to the covariates by

λ(t|X,Z) = lim
h→0+

{
h−1P(t ≤ T ≤ t+ h|T ≥ t,X,Z)

}
= λ0(t) exp(βX + β>ZZ), (1)

where λ0(t) is an unspecified baseline hazard function for the reference subject with all co-
variates equal to 0. The effect of a one unit increase in X, given common covariates Z, is
measured by the hazard ratio λ(t|X = x + 1,Z)/λ(t|X = x,Z) = exp(β). This does not
depend on t, reflecting the “proportional-hazards” assumption of a constant hazard ratio over
time. The coefficients in Equation 1 can be estimated from a partial-likelihood in which the
unknown baseline hazard drops out, leaving a function of coefficients and observed data, free
from assumptions on the distribution of event times (Cox 1972). In the following, we drop
the covariates Z to simplify notation.

Hazard ratios alone do not provide a complete picture of longitudinal survival. Survival
estimates are a standard complement. The survival function, S(t|X) = P(T > t|X), is
related to the hazard by S(t|X) = exp{−Λ(t|X)}, where Λ(t|X) =

∫ t
0 λ(u|X)du denotes the

cumulative hazard. This relationship holds regardless of the particular model for the hazard.
However, under the Cox proportional-hazards model, the cumulative hazard has a convenient
simplification:

Λ(t|X) =

∫ t

0
λ0(u) exp(βX)du

= exp(βX)Λ0(t),

(2)

where Λ0(t) =
∫ t
0 λ0(u)du. A consistent estimator of Λ0(t) can be used along with β̂ to

estimate survival. A familiar estimator, available in SAS and R, is the empirical cumulative
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hazard function,

Λ̂0(t) =
n∑

i=1

∫ t

0

dNi(u)∑
j Yj(u) exp(β̂Xj)

.

Let x∗ denote a particular value of X. Substituting estimators for the unknown quantities we
obtain the empirical cumulative hazard estimator given x∗,

Λ̂(t|x∗) = exp(β̂x∗)Λ̂0(t)

=
n∑

i=1

∫ t

0

exp(β̂x∗)dNi(u)∑
j Yj(u) exp(β̂Xj)

,

and the corresponding estimated survival probability at time t is

Ŝ(t|x∗) = exp{− exp(β̂x∗)Λ̂0(t)}. (3)

This equation is computationally convenient. A single integral must be calculated to estimate
the baseline hazard Λ̂0(t), and survival probabilities for any value of x∗ are then obtained by
scalar multiplication and exponentiation.

2.2. Cox model with time-dependent covariates

Suppose that updated values of X are observed over time. This is referred to as a time-
dependent covariate, denoted by X(t). Let x∗(t) be a known function, specifying a particular
set of values over time. For example, in a model for 5 year mortality, where time is measured
in years and X(t) denotes the occurrence of surgery prior to time t, x∗(t) = I(t > 1) describes
the covariate function for an individual who has surgery at 1 year. The Cox model is easily
generalized to allow time-dependent covariates. Since the hazard is conditional on time t, the
relationship to X(t) is straightforward:

λ{t|X(t)} = λ0(t) exp{βX(t)}. (4)

As before, the probability of survival is S(t|X) = exp [−Λ{t|X(t)}]. However,

Λ{t|X(t)} =

∫ t

0
λ0(t) exp{βX(u)}du,

and the term exp{βX(u)} does not factor out of the integral, as in Equation 2. The empirical
cumulative hazard estimator, given a particular covariate trajectory x∗(t), is

Λ̂{t|x∗(t)} =
n∑

i=1

∫ t

0

exp{β̂x∗(u)}dNi(u)∑
j Yj(u) exp{β̂Xj(u)}

, (5)

and the corresponding estimated survivor function is,

Ŝ{t|x∗(t)} = exp
[
−Λ̂{t|x∗(t)}

]
. (6)

Note that the estimate Ŝ{t|x∗(t)} does not simplify to exp
[
− exp{β̂x∗(t)Λ̂0(t)}

]
, as it did in

the case of time-invariant covariates. A unique integration is required to estimate Λ̂{t|x∗(t)}
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for every value of x∗(t), rather than scalar multiplication of Λ̂0(t). This is more computation-
ally burdensome. Only when interest is focused on a time invariant value, i.e., x∗(t) = x∗,
will the survival estimate have the simplified form of Equation 3.

In the presence of time-dependent covariates, it may not make sense to calculate survival
probabilities or predictions. This requires knowledge of X(t), which may be unknown until
time t, at which point its observation frequently implies survival. In the above example,
individuals who have surgery at 1 year are alive at 1 year, by definition. Hence, survival
estimation is rarely implemented in this case. There are exceptions, where it is conceptually
reasonable to calculate survival, conditioned on a pre-determined trajectory of time-dependent
covariates x∗(t), 0 < t < ∞. Generally, such exceptions fall under the class of exogenous
covariates, that occur according to a mechanism external to the individual subject; seasonal
effects, for example. In our experience, a more common application is the use of a time-
dependent covariate to implement a model with a time-varying coefficient. For the remainder
of this article we focus on the case of time-varying coefficients.

2.3. Time-varying coefficients

Both models for the hazard, given in Equations 1 and 4, involve the proportional-hazards
assumption of constant covariate effects. Standard survival texts include multiple options for
testing this assumption and addressing violations (Allison 2010; Harrell 2006; Martinussen
and Scheike 2006). One approach is to include an interaction with a deterministic function
of time. The hazard of failure λ(t|X) is related to the covariates by

λ(t|X) = λ0(t) exp{g(β, t)X},

where β is a vector of coefficients and g(β, t) is a function of time that is specified by the
analyst. For example, when the hazard is assumed to change by a factor of log time β =
(β1, β2) and g(β, t) = β1+β2 log(t), corresponding to a hazard of λ0(t) exp{β1X+β2 log(t)X}.
Alternatively, the coefficient may be piecewise constant; before and after t

′
. Then, g(β, t) =

β1I(t < t
′
) + β2I(t ≥ t

′
) and the hazard is λ0(t) exp{β1I(t < t

′
)X + β2I(t ≥ t

′
)X}. The

benefit of this approach is that changes in the hazard over time are summarized by a simple,
interpretable equation.

Generally, g(β, t) is a simple function such that g(β, t) = β>G(t), where G(t) = {g1(t), g2(t),
. . . }. In the first example above, G(t) = {1, log(t)}. Consequently, the hazard can be factored
into

λ(t|X) = λ0(t) exp{β>G(t)X}
= λ0(t) exp{β>X(t)},

where X(t) = {G(t)X}. This formulation makes it clear that the time-varying coefficient
model can be fitted by constructing a set of time-dependent covariates. For a given covariate
x∗, define x∗(t) = {G(t)x∗} and cumulative hazard and survival estimates are:

Λ̂{t|G(t), x∗} =
n∑

i=1

∫ t

0

exp{β̂>x∗(u)}dNi(u)∑
j Yj(u) exp{β̂>Xj(u)}

, (7)

and
Ŝ{t|G(t), x∗} = exp

[
−Λ̂{t|G(t), x∗}

]
. (8)



6 Tutorial: Cox Models with Time-Varying Coefficients in SAS and R

3. Implications to SAS and R

In this section we assume that the reader is generally familiar with survival analysis in proc

phreg, coxph and survfit, but less clear about the case of time-varying coefficients. For
an additional review see Allison (2010); Therneau (2014); Therneau and Grambsch (2000).
Here, we demonstrate code to implement the above models and identify the corresponding
equations that are used to calculate survival probabilities.

For this illustration, we fabricate a toy data set SURV, which contains all relevant variables in
a single-record-per-patient style for six subjects. The data is as follows:

id time death age female

1 1 1 1 20 0

2 2 4 0 21 1

3 3 7 1 19 0

4 4 10 1 22 1

5 5 12 0 20 0

6 6 13 1 24 1

The unique subject identifier is id. The variable death takes on a value of 1 if the subject
dies and 0 if the subject is censored. The time of death or censoring is captured by time.
The predictors of interest are age and gender female.

3.1. Data preparation

Both proc phreg and coxph have relevant functionalities that require a counting process
style of input. The counting process data structure is nicely described by Allison (2010) and
Fox and Weisberg (2011). Essentially, the data are expanded from one record-per-patient
to one record-per-interval between each event time, per patient. This structure is motivated
by the fact that the partial-likelihood includes a contribution at each event time. Covariate
information needs to be updated and available at these times, but not in between. In R, the
survival package has a function survSplit that can be used for this purpose and we provide
a SAS macro, cpdata, with similar utility.

The inputs to survSplit are defined by Therneau (2014). We describe them for the present
application.

� data = R data frame
that identifies the single-record-per-patient data set that we want to expand into the
counting process style.

� cut = numeric vector
of unique event times.

� end = character string
corresponding to the variable name for time of event or censoring in data. This will
become the variable representing the end, or stop time, of each time interval in the
counting process style.

� event = character string
corresponding to the name of the binary variable that indicates events in data. It is
important that this variable takes a value of 1 for events and 0 otherwise.
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� start = character string
providing a name for the new time variable that will be created to identify the beginning
of each interval.
. . .

To convert SURV into the counting process style, we first define a vector of unique event times:

R> cut.points <- unique(SURV$time[SURV$death == 1])

We then call survSplit and save the result to SURV2.

R> library("survival")

R> SURV2 <- survSplit(data = SURV, cut = cut.points, end = "time",

+ start = "time0", event = "death")

To make the appearance match SAS, we sort SURV2 by subject then rename and reorder the
columns.

R> SURV2 <- SURV2[order(SURV2$id), ]

R> colnames(SURV2) <- c("id", "time1", "death", "age", "female", "time0")

R> SURV2 <- SURV2[, c("id", "age", "female", "time0", "time1", "death")]

R> SURV2

id age female time0 time1 death

1 1 20 0 0 1 1

2 2 21 1 0 1 0

8 2 21 1 1 4 0

3 3 19 0 0 1 0

9 3 19 0 1 7 1

4 4 22 1 0 1 0

10 4 22 1 1 7 0

16 4 22 1 7 10 1

5 5 20 0 0 1 0

11 5 20 0 1 7 0

17 5 20 0 7 10 0

23 5 20 0 10 12 0

6 6 24 1 0 1 0

12 6 24 1 1 7 0

18 6 24 1 7 10 0

24 6 24 1 10 13 1

This data set contains four “at-risk” intervals, (0, 1], (1, 7], (7, 10] and (10, 13], representing
segments between event times. The follow-up period for each person is broken up into seg-
ments, one for each interval they began at-risk (event free and uncensored). The endpoints
of the intervals are defined by time0 and time1 in the SURV2 data set. The benefit of this
structure is that the value of a time-dependent covariate (time-varying coefficient) can be
updated to occupy a row at each event time. survSplit creates one extra, final interval for
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people who are censored. In the example, these correspond to rows three and twelve, which
could be deleted. However, they will be ignored by coxph so we leave them. The first subject
survived only through the first event time and gets one record. The second person survived
through event time 1, but was censored prior to event time 2, and gets two records although
the later is extraneous. The third person died at the end of the second at-risk interval, gets
two records, and so on.

In order to perform the same data manipulation in SAS, we provide the following SAS macro
with similar utility. The original data set is transformed by a call to cpdata:

%cpdata(data = , time = , event = , outdata = );

The input arguments are defined as follows:

� data = SAS data set
that identifies the single-record-per-patient data set that we want to expand into the
counting process style.

� time = variable
in data for the time of event or censoring.

� event = SAS code
that identifies the event/censoring indicator as used in PROC PHREG. Specifically, this is
the variable name of the event/censoring indicator, immediately followed by the value(s)
that correspond to censoring, enclosed in parenthesis. Examples include: censor(1) or
death(0).

� outdata = SAS data set
name for the data set to be output in the counting process format.

The full macro definition is given in the supplementary material. To convert SURV we call:

%let FILEPATH = C:\ ;

%include "&FILEPATH.cpdata.sas";

%cpdata(data = SURV, time = time, event = death(0), outdata = SURV2)

proc print data = SURV2; run;

Obs id death age female time0 time1

1 1 1 20 0 0 1

2 2 0 21 1 0 1

3 3 0 19 0 0 1

4 3 1 19 0 1 7

5 4 0 22 1 0 1

6 4 0 22 1 1 7

7 4 1 22 1 7 10

8 5 0 20 0 0 1

9 5 0 20 0 1 7

10 5 0 20 0 7 10
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11 6 0 24 1 0 1

12 6 0 24 1 1 7

13 6 0 24 1 7 10

14 6 1 24 1 10 13

This data set resembles SURV2 above, with the exception that extraneous records are elimi-
nated.

3.2. Estimation using R

For completeness, we begin with the simple Cox proportional hazard model for the effect of
age and gender on survival, and estimate survival probabilities for a person of average age
(21) and male gender. The following code accomplishes the task in R:

R> library("survival")

R> model.1 <- coxph(Surv(time, death) ~ female + age, data = SURV)

R> covs <- data.frame(age = 21, female = 0)

R> summary(survfit(model.1, newdata = covs, type = "aalen"))

Call: survfit(formula = model.1, newdata = covs, type = "aalen")

time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 6 1 0.9475 0.108 7.58e-01 1

7 4 1 0.8672 0.236 5.08e-01 1

10 3 1 0.7000 0.394 2.32e-01 1

13 1 1 0.0184 0.117 7.14e-08 1

The newdata option is used in survfit to provide a data frame with the desired covariate
values. Otherwise, survfit provides estimates for the average of all predictors, regardless
of whether they are numeric or categorical. The type = "aalen" option specifies that the
empirical cumulative hazard estimator be used. This is the only option available for the time-
dependent model. The variable survival in the output is calculated according to Equation 3.

Suppose age does not have a constant effect, but instead the hazard ratio varies by a factor
of log(time). Specifically, X(t) = {age, age * log(t)}. In order to accommodate time-
varying coefficients coxph requires that a counting process syntax be used. We add a time
dependent covariate to SURV2 and fit the model:

R> SURV2$lt_age <- SURV2$age * log(SURV2$time1)

R> model.2 <- coxph(Surv(time0, time1, death) ~ female + age + lt_age,

+ data = SURV2)

Note that the interaction between age and log(time) is specified using the end of the interval,
time1. To estimate survival for a 21 year old male we might be inclined to try the following:

R> summary(survfit(model.2, newdata = covs, type = "aalen"))

This fails, however, with the error message, “object ‘lt_age’ not found”. The function
survfit requires that values be specified for every covariate in the model, including time-
dependent ones. We need to enter the changing values of lt_age and communicate to survfit
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that these correspond to changing values over time for a single individual. According to the
documentation, “When the original model contained time-dependent covariates, then the
path of that covariate through time needs to be specified in order to obtain a predicted curve.
This requires newdata to contain multiple lines for each hypothetical subject which gives the
covariate values, time interval, and strata for each line (a subject can change strata), along
with an id variable which demarks which rows belong to each subject. The time interval must
have the same (start, stop, status) variables as the original model: although the status

variable is not used and thus can be set to a dummy value of 0 or 1, it is necessary for the
variables to be recognized as a ‘Surv’ object” (Therneau 2014).

In order to achieve this, we take the time interval values corresponding to an individual with
the last event time in SURV2. This contains all the necessary time intervals. The code is as
follows:

R> last <- SURV2$id[which.max(SURV2$time1)]

R> intervals <- SURV2[SURV2$id == last, c("time0", "time1", "death")]

We then add on the constant values of interest for age and gender and create the special
interaction between our fixed age of interest and log(time).

R> covs <- data.frame(age = 21, female = 0, intervals)

R> covs$lt_age <- covs$age * log(covs$time1)

Next we call survfit using the newdata = covs and individual = TRUE options.

R> summary(survfit(model.2, newdata = covs, individual = TRUE))

Call: survfit(formula = model.2, newdata = covs, individual = TRUE)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 6 1 0.9625 9.12e-02 0.799 1

7 4 1 0.8798 9.26e+02 0.000 1

10 3 1 0.7188 3.36e+03 0.000 1

13 1 1 0.0815 1.12e+03 0.000 1

The variable survival in the output is calculated correctly, according to Equation 8.

3.3. Estimation using SAS

As before, we first estimate survival for a standard Cox proportional hazards model. The
following SAS code fits a Cox proportional hazards model for the effect of age and gender on
survival, and estimates survival for a person of average age and male gender:

proc phreg data = SURV;

class female (ref = "0");

model time * death(0) = female age;

baseline out = outset survival = survival / method = emp;

run;
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The option method = emp specifies that the empirical cumulative hazard estimator is used,
corresponding to the type = "aalen" option in R. The variable survival in the outset data
set is calculated according to Equation 3.

Consider the case where age does not have a constant effect. Unlike R, we do not immediately
have to switch to the counting process style of input to fit the model. Instead, the special
time-dependent covariate can be included in proc phreg as follows:

proc phreg data = SURV;

class female (ref = "0");

model time * death(0) = female age lt_age;

lt_age = age * log(time);

run;

The baseline statement will not work with this syntax. Therefore, in order to obtain survival
estimates, we must opt for the counting process syntax.

Having created SURV2, we can add lt_age to the data set and fit the model. As before,
lt_age is defined using the ending interval time time1.

data SURV2;

set SURV2;

lt_age = age * log(time1);

run;

proc phreg data = SURV2;

class female (ref = "0");

model (time0, time1) * death(0) = female age lt_age;

baseline out = outset survival = survival / method = emp;

run;

This syntax allows the baseline statement to run. However, the resulting estimates are not
useful. SAS cannot tell that lt_age is time-varying and survival is predicted at the average
value of lt_age, which is the default for all numeric variables. Correspondingly, the value
of lt_age in outset is constant over all time. The logical remedy is to specify a covariate
data set as we did in R. A similar covs data set can easily be created, but there is no way to
tell proc phreg that the multiple records correspond to time epochs for a single individual.
SAS will not use the data set correctly and instead repeats the time-invariant Equation 3,
over each record as if lt_age were set to various constant values. There is not a ready-made
syntax in proc phreg to correctly calculate Equation 8.

However, there is a simple work-around. First, note that the reference subject has x∗ = 0
and therefore Equation 7 simplifies to

Λ̂{t|G(t), 0} =

n∑
i=1

∫ t

0

dNi(u)∑
j Yj(u) exp{β̂>Xj(u)}

.

For x∗ = 0, this estimator is correctly provided by the baseline statement in proc phreg,
using time-varying information in the denominator. We observe that when x∗ 6= 0 Equation 7
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can be re-written as

Λ̂{t|G(t), x∗} =
n∑

i=1

∫ t

0

dNi(u)∑
j Yj(u) exp

[
β̂
>{Xj(u)− x∗(u)}

] .
We can make a change of variables and run the procedure on a new variable, X

′
i(t) = Xi(t)−

x∗(t). The baseline cumulative hazard and survival estimators, corresponding to an individual
with X

′
(t) = 0, are identical to Equations 7 and 8.

Thus, we change the reference to a desired value using a data step, redefine the time-dependent
covariate that accounts for changing hazards and use proc phreg to estimate the baseline
hazard and corresponding survival. For example, we can correctly estimate survival for a
male of average age by specifying:

data SURV3;

set SURV2;

age = age - 21;

lt_age = age * log(time1);

run;

data covs;

age = 0;

lt_age = 0;

female = 0;

run;

proc phreg data = SURV3;

class female (ref = "0");

model (time0, time1) * death(0) = age lt_age female;

baseline out = outset survival = survival covariates = covs / method = emp;

run;

This gets around the problem of specifying changing values for lt_age because it remains
constant at 0 for the reference individual. We print outset to see that the result closely
matches that obtained in R:

Obs age lt_age female time1 survival

1 0 0 0 0 1.00000

2 0 0 0 1 0.96246

3 0 0 0 7 0.87980

4 0 0 0 10 0.71882

5 0 0 0 13 0.08155

4. Introduction to coxtvc

When survival estimation is desired for multiple covariate values, such as prediction for the
entire sample, it is relatively straightforward in R and we demonstrate this below. In SAS it
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is cumbersome to organize the data and re-fit the model for every individual prediction. A
call to coxtvc essentially encapsulates these steps:

%coxtvc(data = , y = , x = , tvvar = , nontvvar = , covs = , ests = ,

modopts = , procopts = , addstmts = , out = SurvEsts);

The required input arguments are as follows:

� data = SAS data set
including outcome and predictor variables in the counting-process format specified in
Section 3.1.

� y = SAS code
for the response as specified for the counting-process style of input in proc phreg. Most
often, this takes the form Y = (time0, time1) * event(0).

� x = variable list
including all variables that appear in the model statement within a call to proc phreg.
Each variable is separated by a space.

� tvvar = variable list
including all variables that have time-varying coefficients. Note that each variable listed
in tvvar may not necessarily be in x, depending on how the model is parameterized.

� nontvvar = variable list
including all variables that do not have time-varying coefficients. These variables must
appear in x as well.

� covs = SAS data set
containing covariate values at which to estimate survival. This data set should contain
values for variables listed in both nontvvar and tvvar. Variables not specified in the
covs data set will be set to their average values if the variable is numeric and their
reference values if categorical. class variables are determined as in proc phreg when
the baseline statement is used. However, averages are calculated based on one-record
per-patient, which differs from proc phreg calculations when using the counting-process
style of input.

� ests = SAS data set
containing the estimates from the fitted model. If unspecified, the survival model is
fit to obtain these estimates. Depending on the complexity of the model, this fitting
procedure could be time-costly. See proc phreg documentation on the inest = option
within the phreg statement for more details on specifying this data set.

The following arguments are optional. Each governs the options used in fitting the survival
model and / or in obtaining survival estimates. It may be easier to fit the model externally
and obtain the ests data set to avoid possible complications from using these parameters.

� modopts = SAS code
specifying options to use in fitting the model that are specified after a / in the model

statement of proc phreg (ignored if ests is specified above). This should be enclosed
in %str() to ensure proper evaluation.
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� procopts = SAS code
specifying options to use in the proc phreg statement when fitting the model (ignored if
ests is specified above). This should be enclosed in %str() to ensure proper evaluation.

� addstmts = SAS code
including additional statements that should be used when fitting the model and gener-
ating survival estimates. Usually, these will be restricted to the freq statement, weight
statement, and possibly class statement. This should be enclosed in %str() to ensure
proper evaluation.

� out = name of a SAS data set
that will store the resulting survival estimates (default is SurvEsts).

The full macro definition is given in the supplementary material. In addition to the above
parameters, a special macro vardefn must be defined by the user prior to a call to coxtvc.
This macro contains the processing statements used to create the variables that account for
the time-varying coefficients. All time-dependent variable definitions go inside the vardefn

macro as if they were encountered in a data step. We do note that the use of the coxtvc

macro requires SAS 9.1 or higher.

We first exemplify the macro syntax for the toy data set SURV2 and then address practical
applications in the following section. In the example of SURV2 where the coefficient for age
varies by a factor of log(time), the following code is used to estimate survival for a 21-year
old male:

data covs;

age = 21;

female = 0;

run;

%macro vardefn;

lt_age = age * log(time1);

%mend;

%include "&FILEPATH.coxtvc.sas";

%coxtvc(data = SURV2,

y = (time0, time1) * death(0),

x = age lt_age female,

tvvar = age,

nontvvar = female,

covs = covs;

Note that vardefn is just an excerpt of the code that was used to create lt_age in the data
step when constructing SURV2. Observe that the covs data set no longer requires us to change
the reference value for age, nor define a value for lt_age; these steps are taken care of within
the macro.

Suppose that, in addition to the time-varying coefficient on age, we want to allow the co-
efficient for female gender to differ before and after 7 days. Corresponding time-dependent
variables have not yet been added to the SURV2 data set. We can let the macro take care of
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that by redefining the vardefn macro and then appropriately calling the coxtvc macro as
follows:

%macro vardefn;

if (time1 < 7) then do;

female_lt7 = female;

female_ge7 = 0;

end;

if (time1 >= 7) then do;

female_lt7 = 0;

female_ge7 = female;

end;

lt_age = age * log(time1);

%mend;

%coxtvc(data = SURV2,

y = (time0, time1) * death(0),

x = female_lt7 female_ge7 age lt_age,

tvvar = female age,

nontvvar = ,

covs = covs);

The covs data set is no different than before, since we are still interested in survival for a
21-year old male. Since the ests parameter is left empty, ests is created internally by fitting
the corresponding model. The variables used to account for the time-varying coefficients
(female_lt7 female_ge7 lt_age) are added to the SURV2 data set prior to fitting the model.
Again, the data set survests contains the estimated survival values.

5. Examples

5.1. Simulated example

The coxtvc macro is validated in a simulated example. For each of 500 replications, we
generate n = 2500 event times T with the following survival function,

S(t) = exp

{
−t
8

exp(−0.8x)

}
I(t ≤ 4)+

exp

{
−1

2
exp(−0.8x)−

(
t− 4

8

)
exp(0.8x)

}
I(t > 4),

where x is a treatment indicator, taking the value 1 if the subject is randomized to treatment
and 0 otherwise. Censoring times were uniformly distributed on the interval [0, 8], and treat-
ment was randomly assigned to each subject with probability 0.5. For each replication, the
survival function was estimated using the SAS macro coxtvc where we assume the cutpoint
(t = 4) is known. Figure 1 shows the true survival function with the range of estimates
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Figure 1: Range of survival estimates from 500 simulated data sets on n = 2500 subjects.

obtained overlaid. We also investigated the Monte Carlo confidence band for the mean esti-
mated survival function. It was so narrow as to be indistinguishable from the true survival
function on the plot. We conclude that the true survival function is estimated well by this
method. The SAS code for running this simulation and R code for creating the figures is given
in the supplementary material.

5.2. Application

Allison (2010) describes a study following inmates released from a state prison. The study’s
aim was to determine factors associated with the first arrest following release. We use the
coxtvc macro to create survival estimates and assist with the interpretation of the analysis
for this recidivism data set. For completeness, we repeat the analysis in R, demonstrating the
relative simplicity. The data are publicly available at http://ftp.sas.com/samples/A61339.
Define the macro variable FILEPATH to be your working directory which contains the cpdata

and coxtvc macros, as well as a text file for the recidivism data.

Consider a model associating the time (in weeks) until first arrest with age of the inmate
at the time of release, whether the inmate received financial aid, and the number of prior
arrests. Following Allison (2010), we establish that the variables age (age) and financial aid
(fin) violate the assumption of proportional hazards in the survival model.

libname proj "&FILEPATH.";

data rossi; set proj.recid;

keep week arrest fin age race wexp mar paro prio educ;

run;

proc phreg data = rossi;

model week * arrest(0) = age fin prio age_week fin_mid / rl;

http://ftp.sas.com/samples/A61339
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age_week = age * week;

fin_mid = fin * (20 < week < 30);

run;

An excerpt from the proc phreg output shows that the parameters for age_week and fin_mid

are significantly different from 0. That is, there is evidence that the parameter estimate
corresponding to each of these predictors varies over time. Specifically, the coefficient for age
changes linearly with time, while the coefficient for financial aid differs between 20 and 30
weeks following release.

Analysis of Maximum Likelihood Estimates

Parameter Standard

Parameter DF Estimate Error Chi-Square Pr > ChiSq

age 1 0.03186 0.03924 0.6592 0.4169

fin 1 -0.15979 0.20501 0.6075 0.4357

prio 1 0.09770 0.02725 12.8520 0.0003

age_week 1 -0.00380 0.00146 6.7863 0.0092

fin_mid 1 -1.45337 0.66473 4.7803 0.0288

At baseline, the hazard ratio for those who receive financial aid compared to those who do
not (holding age and the number of prior arrests constant) is exp(−0.160) = 0.85 while it is
exp(−0.160− 1.453) = 0.20 between 20 and 30 weeks. This violation of proportional hazards
seems fairly important since those receiving financial aid status are at much lower risk of
being arrested around six months after release. How does this translate to event probabilities
on average? Specifically, we are interested in knowing how receiving financial aid reduces the
probability of being arrested over time. For that, we want to look at adjusted survival curves.

To obtain a direct adjusted survival curve (Zhang, Loberiza, Klein, and Zhang 2007), we want
to compute the survival curve for every subject in the sample size twice – once with fin = 0

and once with fin = 1. These estimated curves are then averaged across subjects to obtain
two adjusted curves. These curves estimate the chance of remaining free from arrest, among
two cohorts with equivalent age and prior arrests: one that receives financial aid and one that
does not. Computing the adjusted curves would be cumbersome using the centering approach
of Section 3.3 as there are several unique values of age in the sample. However, this is easily
accomplished using the coxtvc macro.

data covs;

set rossi (keep = age prio);

do fin = 0 to 1;

output;

end;

run;

%cpdata(data = rossi,

time = week,

event = arrest(0),
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outdata = rossi2);

%macro vardefn;

age_week = age * week1;

fin_mid = fin * (20 < week1 < 30);

%mend vardefn;

%coxtvc(data = rossi2,

y = (week0, week1) * arrest(0),

x = age fin prio age_week fin_mid,

tvvar = age fin,

nontvvar = prio,

covs = covs,

out = survest);

proc sort data = survest;

by fin week1;

run;

data avgsurv;

set survest;

by fin week1;

retain sumshat total;

if (first.week1) then do;

sumshat = 0;

total = 0;

end;

sumshat = sumshat + shat;

total = total + 1;

if (last.week1) then do;

avgshat = sumshat / total;

output;

end;

run;

The survest data set created by the coxtvc macro looks exactly like the standard output
data set from the baseline statement in proc phreg; it contains survival curves for every
subject. The call to proc sort and the final data step condense the output to create the two
survival curves.

The adjusted survival curves contained in avgsurv are plotted in Figure 2 along with estimates
that assume proportional hazards for financial aid status and age (code for generating plots
can be found in the supplementary material).

In the curves that allow time-varying coefficients, we see that whether an inmate receives
financial aid has minimal impact on the arrest probability prior to 20 weeks and substantial
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Figure 2: Adjusted effect of financial aid status on survival.

impact beyond. This is completely consistent with the hazard ratios. However, we also see
that the proportional hazards model gives a very similar message, that financial aid is bene-
ficial for avoiding arrest. For some applications, this plot may provide reassurance that the
proportional hazard model is adequate. For a more refined purpose, nuance in event prob-
abilities could be important. Either way, the implications of alternative modeling strategies
have been translated to a scientifically meaningful scale. The survival curves allowing a time-
varying coefficient help to reveal the true effect of financial aid on the probability of being
arrested.

The analysis in R is sufficiently simple that a macro is not required. We exemplify the steps,
first bringing in the data and converting to the counting process style, as in the previous
example.

R> rossi <- read.csv(paste(FILEPATH, "rossi.csv", sep = ""),

+ header = TRUE)[, 1:10]

R> rossi$id <- 1:nrow(rossi)

R> cut.points <- unique(rossi$week[rossi$arrest == 1])

R> rossi2 <- survSplit(data = rossi, cut = cut.points, end = "week",

+ start = "week0", event = "arrest")

Then, we define and run a function that generates the special time-dependent covariates that
will allow for time-varying effects of age and financial aid. We name this function vardefn

exactly as it was named in SAS.

R> vardefn <- function(data) {

+ data$age_week <- data$age * data$week

+ data$fin_mid <- data$fin * (20 < data$week & data$week <30)

+ return(data)

+ }

R> rossi2 <- vardefn(rossi2)
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Now we are able to fit the time-varying coefficient model.

R> model <- coxph(Surv(week0, week, arrest) ~ age + fin + prio + age_week +

+ fin_mid, ties = "breslow", data = rossi2)

In order to obtain predictions from this time-varying model, we create a data set with the
intervals between event times and another for covariate values at which we want predictions.

R> last <- rossi2$id[which.max(rossi2$week)]

R> intervals <- rossi2[rossi2$id == last, c("week0", "week", "arrest")]

R> covs <- data.frame(rbind(cbind(rossi[c("age", "prio")], fin = 0),

+ cbind(rossi[c("age", "prio")], fin = 1)))

Notice that we do not join the intervals and covs data sets yet. covs is now a matrix with
rows corresponding to the covariate vectors of interest. Specifically, we have repeated the
entire data set twice, first letting fin equal 0 and then letting fin equal 1. Next we create a
loop where the rows of covs are picked off and predictions are obtained exactly as in the toy
example above. Covariate values are merged back onto the corresponding predictions shat.

R> survest <- NA

R> r <- nrow(covs)

R> for (i in 1:r) {

+ newdata <- data.frame(covs[i, ], intervals, row.names = NULL)

+ newdata <- vardefn(newdata)

+ out <- cbind(newdata, shat = summary(survfit(model, newdata = newdata,

+ individual = TRUE))$surv)

+ survest <- rbind(survest, out)

+ }

Taking a simple average over the adjustment variable, age, within week and fin, gives us the
same results as avgsurv, obtained by SAS.

R> avgsurv2 <- t(tapply(survest$shat, INDEX = survest[, c("fin", "week")],

+ FUN = mean))

These data can be plotted to obtain Figure 2. We do not repeat this exercise because the
results are identical.

6. Discussion

In this article, we describe the utility of the R function coxph, and SAS procedure proc

phreg, for survival estimation with time-varying coefficient models and provide SAS macros
to facilitate calculations. Statisticians often recommend that our collaborators focus on find-
ing clinically important differences, rather than simply statistical significance. It is hard to
define clinical importance in terms of the hazard. When survival curves are plotted for two
groups of individuals, differences in net survival are easily perceived. Additionally, in large
data sets, a statistically significant violation of proportional hazards may be detected for all
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covariates, when in fact, the practical significance of such violations is very minor. As we
see in the recidivism data, survival estimates may assist scientists when evaluating whether
differences between statistical models translate to practical differences, for a given purpose.
In applications like this, hypothesis testing may proceed on the hazard scale and figures are
used to show clinical importance of the point estimates. In this case, confidence intervals
would greatly distract from the figure. However, estimation of uncertainty around survival
estimates can be very important. For prediction on a single vector of covariates, standard
errors are easily obtained with the usual proc phreg and coxph options. The calculation of
standard errors for direct adjusted survival curves is complex, even in the simple proportional
hazards model (Zhang et al. 2007). This is an important avenue of future work.

Once it is understood how each function processes information and implements calculations,
extensions to this application are straightforward. For example, one might implement a
proportional hazards model for the effect of treatment on outcome, allowing for time-varying
effects. Adjustment for imbalance in covariates could be implemented by inverse probability
of treatment weighting, in contrast to the regression adjustment shown here. The techniques
illustrated here would allow for survival estimation according to treatment with a parametric
time-varying hazard. Weights could be included for adjustment. The data processing steps
would be the same, and the analytical steps would be easily extended. For that reason, we
emphasize strategies to understand and utilize the software, as much as the macros.

Other methods of flexible hazard modeling should be considered. The time-varying coefficient
models described by Martinussen and Scheike (2006) have advantages over the current ap-
proach, in that coefficients are not required to vary in a predefined fashion. When a predefined
function is not known, the approach we have described can be made more general with the use
of cubic splines (Hess 1994). However, our scientific collaborators often prefer a pre-specified
model for the hazard, where all coefficients change according to a simple, interpretable func-
tion. Like any hazards regression, survival estimation is an important complement. This
article may help to alleviate confusion about the utility of SAS and R softwares for survival
estimation in the context of time-varying coefficients and increase its utilization.
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