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Abstract

Improved score tests are modifications of the score test such that the null distribu-
tion of the modified test statistic is better approximated by the chi-squared distribution.
The literature includes theoretical and empirical evidence favoring the improved test over
its unmodified version. However, the developed methodology seems to have been over-
looked by data analysts in practice, possibly because of the difficulties associated with the
computation of the modified test. In this article, we describe the mdscore package to com-
pute improved score tests in generalized linear models, given a fitted model by the glm()

function in R. The package is suitable for applied statistics and simulation experiments.
Examples based on real and simulated data are discussed.

Keywords: asymptotic test, Bartlett-type correction, chi-square distribution, Lagrange mul-
tiplier test, R, score test.

1. Introduction

The Lagrange multiplier or score test (Rao 1948) is a useful procedure in parametric statistical
inference. The score test statistic is based on maximum likelihood estimation theory and one
of its attractive features is the requirement of maximization of the likelihood function only
under the null hypothesis. The null distribution of the test statistic is usually unknown or
not obtained analytically. However, the traditional application of the score test employs the
chi-squared distribution as an approximate reference distribution. Although this limiting
approximation makes the test simple in practice, it may not yield a valid test procedure when
the sample size is not sufficiently large.

http://www.jstatsoft.org/
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One approach to improve the statistical properties of the score test when the sample size is
not “large enough” was developed by Cordeiro and Ferrari (1991). These authors proposed
a general formula to modify the score test statistic using a correction factor that is defined
by a second-degree polynomial of the score statistic itself. The correction factor, known as a
Bartlett-type correction, is obtained in such a way that the asymptotic error in the approxi-
mation between the null distribution of the modified statistic and the chi-squared distribution
converges more rapidly to zero, as the sample size increases, than the corresponding error in
the chi-squared approximation for the original score statistic. In the context of generalized
linear models (Nelder and Wedderburn 1972; McCullagh and Nelder 1989) with known disper-
sion parameter, a Bartlett-type correction to the score statistic is given by Cordeiro, Ferrari,
and Paula (1993). Analogous results for generalized linear models with unknown dispersion
are given in Cribari-Neto and Ferrari (1995). An extension of these works for heteroskedas-
tic generalized linear models, where the dispersion depends on covariates, is addressed by
Cordeiro, Botter, Barroso, and Ferrari (2003). Another interesting extension is given in Fer-
rari and Cordeiro (1996), where the correction for the score test is derived for exponential
family nonlinear models.

The aforementioned references demonstrate both theoretically and empirically better sta-
tistical properties for the modified score testing methodology over its original counterpart.
Despite this superior performance, the former test has not yet been incorporated into the sta-
tistical practice. One possible explanation for this lack of attention might be the difficulties of
computation of the terms involved in the factor that defines the modified test statistic. Such
terms involve partial derivatives of the mean and variance functions. For a given generalized
linear model, i.e., a model with specified linear predictor, variance and link functions, it can
be tedious but possible to obtain a set of expressions for the computation of the correction
factor using software that allows standard operations with vectors and matrices. However, in
the analysis of a particular data set, it is sometimes necessary to try different link functions,
or different random components for the data, or to modify the linear predictor. Naturally,
each such change may require new expressions to compute the improved test statistic, which
may be a quite undesirable approach in practice.

In this article, we describe the R (R Core Team 2014) package mdscore (da Silva-Junior
and da Silva 2014) to produce improved score hypothesis tests for regression coefficients in
generalized linear models. The computations follow the theory given by Cordeiro et al. (1993)
and Cribari-Neto and Ferrari (1995), therefore allowing models with known and unknown
dispersion parameter. This program is designed to be used in addition to the fit of the model
by the glm() function in R. One of the distinguishing features of this program is that the users
need not obtain the analytical expressions involved in the computations of the corrected score
test. The required computations are performed using vector- and matrix-based operations,
where the components of the required vectors and matrices are expressions involving partial
derivatives of the mean and variance functions of the specified generalized linear model. This
is properly handled by the package because of capabilities in R to work with vectors and
matrices and to compute symbolic derivatives. A similar program is described in da Silva and
Cordeiro (2009) for a correction with the same purpose as here for the likelihood ratio test.

This article is organized as follows: In Section 2, we present the theory involved in the
computation of the corrected score test statistic. In Section 3, we provide some details about
the mdscore package and its implementation. In Section 4, we present the results of a Monte
Carlo simulation experiment in which the package was applied to investigate the properties of
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the two score statistics. Section 5 illustrates the use of the program with real data examples.
Finally, in Section 6, we provide a summary for the article and concluding remarks.

2. Theoretical background

Let us consider the problem of hypothesis testing in generalized linear models. Let y1, . . . , yn
be n independent random variables, with each yl having probability density function or prob-
ability function

f(y; θl, φ) = exp[φ{yθl − b(θl) + c(yl)}+ a(y, φ)], (1)

where b(·), c(·) and a(·, ·) are known appropriate functions. The mean and the variance of
yl are E(yl) = µl = db(θl)/dθl and VAR(yl) = φ−1Vl, respectively, where Vl = dµl/dθl is
called the variance function, and φ > 0 is regarded as a precision parameter. The variance
function characterizes the distribution. For the normal, gamma, inverse Gaussian, binomial
and Poisson distributions we have (omitting index) V = 1, V = µ2, V = µ3, V = µ(1 − µ)
and V = µ, respectively. The systematic component of the model is defined by d(µl) =
ηl = x>l β (l = 1, . . . , n), where d(·) is a known one-to-one twice differentiable link function,
x>l = (xl1, . . . , xlp) is a vector of covariates for the lth observation and β = (β1, . . . , βp)

>

is a vector of unknown parameters to be estimated (p < n). Let X = (x1, . . . ,xn)> and
assume that it is of full column rank, i.e., rank(X) = p. The null hypothesis being tested is
H0 : β1 = β0

1, which is to be tested against the alternative hypothesis H1 : β1 6= β0
1, where β

is partitioned as β = (β>1 ,β
>
2 )>, with β1 = (β1, . . . , βq)

> and β2 = (βq+1, . . . , βp)
>.

The score statistic, say SR, for testing H0 versus H1 is given in a compact form in Equa-
tion (2.3) of Cordeiro et al. (1993). The limiting null distribution of SR is χ2

q with an approx-

imation error of order O(n−1). The approximation error can be reduced to O(n−3/2) if the
corrected score statistic, S∗R, proposed by Cordeiro and Ferrari (1991) is used in place of SR:

S∗R = SR{1− (γ3 + γ2SR + γ1S
2
R)}, (2)

where γ1, γ2 and γ3 are of order O(n−1). The multiplying factor is known as a Bartlett-type
correction, and it is an extension of the well-known Bartlett correction for the likelihood ratio
statistic. The coefficients γ1, γ2 and γ3 in (2) are given by γ1 = A3/{12q(q + 2)(q + 4)},
γ2 = (A2 − 2A3)/{12q(q + 2)} and γ3 = (A1 − A2 + A3)/(12q), where the constants A1, A2

and A3 depend on the cumulants of the derivatives of the log-likelihood function up to the
fourth order; see Appendix A.

3. Implementation

The improved score statistic (2) considers, as the score test, the estimation of the model
parameters only under the null hypothesis. For a particular fitted model, the program applies
partial symbolic differentiation and matrix-based operations to compute the coefficients of
the Bartlett-type correction required by the improved statistic. These tasks are well handled
by R as a result of its capabilities to obtain symbolic derivatives and perform vector or matrix
operations through a wide range of functions.

The mdscore package contains a small set of functions. The main function is mdscore(),
which yields the score and the corrected score tests of the null hypothesis H0 : β1 = β0

1

against H1 : β1 6= β0
1 for model (1). The general syntax of mdscore() is as follows:
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mdscore(fit.model, X1, phi = NULL)

where

� fit.model: an object that stores the results of a glm() fit of the model under the null
hypothesis H0 : β1 = β0

1, as described in Section 2;

� X1: the matrix with the columns of the model matrix X that correspond to the coeffi-
cients specified in the null hypothesis;

� phi: the precision parameter φ.

Some remarks about these arguments follow.

� The object fit.model is obtained using the usual options passed to the glm() function.
For example, consider a generalized linear model for a response variable y with mean µ
and linear predictor

d(µ) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5,

where x1, x2, . . . , x5 are explanatory variables and β0, β1, . . . , β5 are regression coeffi-
cients. If we wish to test H0 : β4 = β5 = 0, then

fit.model <- glm(y ~ x1 + x2 + x3, data = dataset,

family = family-name("link"))

where dataset is the object containing the data and family-name("link") is the R
specification of the model random component and the link function d. If the test of
interest is H0 : β1 = 2, β3 = −3, one could use

fit.model <- glm(y ~ x2 + x4 + x5 + offset(2 * x1) + offset(-3 * x3),

data = dataset, family = family-name("link"))

where the purposes of the offset() function are to fix the terms 2 * x1 and -3 * x3

with known coefficients equal to one and conform the estimation of the model parameters
to the null hypothesis.

� One way to obtain the matrix X1 is to first extract the model matrix from the glm()

fit of the full model and then choose the columns that correspond to H0. For example,
consider again the test of H0 : β4 = β5 = 0. The commands are:

fit.full <- glm(y ~ x1 + x2 + x3 + x4 + x5, data = dataset,

family = family-name("link"))

X <- model.matrix(fit.full)

X1 <- X[, c(5, 6)]

Another method is to apply the model.matrix() function directly to the explanatory
variables, i.e.,

X1 <- model.matrix(~ x4 + x5 - 1, data = dataset)
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The -1 in the formula passed to model.matrix() prevents the addition of a column of
ones into the matrix, which would be the case if β0 = 0 was part of the null hypothesis:

� If the precision parameter is known, e.g., in a binomial, Poisson or exponential general-
ized linear model, it must be supplied in the place of NULL in the option phi = NULL of
the mdscore() function. If φ is not informed, the value NULL is passed to the function
and the theory is implemented with the maximum likelihood estimate of φ. When the
Gamma family is specified in fit.model, the program uses the maximum likelihood es-
timate of φ provided by the R package MASS (Venables and Ripley 2002), which must
be installed beforehand.

� When the family argument in the glm() object passed to fit.model is binomial, then
the function mdscore() will produce the correct score and the improved score tests when
the response variable is either 0 or 1. The situation in which the data are independent
binomials based on m > 1 trials is not currently implemented.

The function mdscore() returns the following list of values:

� Sr: the value of the score statistic;

� Srcor: the value of the modified score statistic;

� coef: a vector with the coefficients A1, A2 and A3;

� n: the total sample size;

� df: the number of degrees of freedom of the chi-squared approximations for the tests;

� phi: the precision parameter used in the computations.

Although one can easily extract Sr and Srcor from an object obj containing the results from
a call to mdscore(), a cleaner summary is produced by the function summary(obj), e.g., as

obj <- mdscore(fit.model, X1, phi = NULL)

summary(obj)

When the value of the score statistic is too large, the value of the improved test statistic may
become negative. This is due to the quadratic form of the adjustment made. In such cases,
the mdscore() function provides a warning message.

We illustrate the use of the functions in the package with some practical examples in Section 5.

4. Simulation experiment

In this section, we apply the mdscore package in a simulation experiment to compare the
finite sample properties of the score (SR) and modified score (S∗R) test statistics under three
different generalized linear models. Such an experiment is useful for checking that differences
in the two tests are due to the adjustment made to the score statistics and not because of any
violation of the model assumptions. To demonstrate the practical value of the two tests, we
compare their properties with those of the Wald and likelihood ratio (LR) tests because they
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also use a chi-square reference distribution. The computation of the Wald and LR tests was
made by using specific functions added to the package. Code to reproduce the experiment is
provided in the supplementary material.

The experiment considered the three continuous models yl ∼ N(µl, φ
−2), yl ∼ Gamma(shape =

φ, scale = µl/φ) and yl ∼ InverseGaussian(µl, φ), l = 1, 2, . . . , n. We took the following sys-
tematic component for the models

d(µl) = ηl = β1 + β2xl2 + β3xl3 + β4xl4 + β5xl5 + β6xl6, (3)

where d(·) was given by the identity (normal model), log (gamma model) and inverse (inverse
Gaussian model) transformations and the values of the explanatory variables were generated
from the Gamma(shape = 2, scale = 0.2) distribution.

For each model of interest, we generated 30,000 independent samples of sizes n = 20, 30
and 40 for the response variable keeping the values of the explanatory variables fixed. The
parameter φ was equal to 4 for the normal model and 40 for the other two models. For each
sample size, the linear predictor was restricted to conform to the null hypothesis H0 : β2 =
β3 = β4 = 0 and the non-null parameters (β1, β5, β6) were taken as (20, 10, 10), (2, 1, 1) and
(2/15, 1/15, 1/15) for the normal, gamma and inverse Gaussian models, respectively. The
observations of the inverse Gaussian distribution were generated using the rinv.gaussian()

function from the VGAM package (Yee and Wild 1996; Yee 2010). For each generated sample,
the four test statistics SR, S∗R, Wald and LR were computed. The SR and S∗R statistics
required the maximum likelihood estimates of the regression coefficients and the precision
parameter φ under the model restricted by H0. The Wald and LR statistics also required the
maximum likelihood estimates of β1, . . . , β6 and φ under the unconstrained model. The values
of the four statistics were compared with the 1−α quantile of the chi-square distribution with
three degrees of freedom, with nominal significance levels α = 0.10, 0.05, and 0.01.

Table 1 gives the type I error rates (null rejection rates) of the four tests. For all three models
and sample sizes, the results show that the Wald and LR tests have much higher rejection
rates than the score test for all significance levels considered. For instance, under the normal
model, the rates corresponding to the 5% nominal level are 18.8% (Wald), 12.9% (LR) and
6.5% (score), for n = 20, and 10.4% (Wald), 8.1% (LR) and 5.9% (score), for n = 40. Under
the gamma model, the same rates are 19.0% (Wald), 13.1% (LR) and 6.6% (score), for n = 20,
and 10.5% (Wald), 8.2% (LR) and 5.8% (score), for n = 40. The null rejection rates under
the inverse Gaussian model are 21.2% (Wald), 12.3% (LR) and 6.9% (score), for n = 20, and
11.8% (Wald), 7.5% (LR) and 5.9% (score), for n = 40. The performances of these three tests
improve as the sample increases, but the Wald and LR test seem to require a larger sample
size than the score test to produce rejection rates near the nominal level.

The last column of Table 1 gives the rejection rates of the modified score test. It is seen that
these rates are generally closer to the nominal levels than the rejection rates of the score test.
Consider for example the case of n = 20 and nominal level 10%. The correction to the score
statistic reduces the type I error rate from 14.2% to 10.2% in the normal model, from 14.3%
to 10.3% in the gamma model and from 14.6% to 11.6% in the inverse Gaussian model. For
the same sample size with the nominal level of 5%, the reductions in the type I error rates for
the normal, gamma and inverse Gaussian models are from 6.5% to 4.8%, 6.6% to 5.0% and
6.9% to 5.5%, respectively. Smaller changes are observed in most cases when α = 0.01.
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Model n α (%) Wald LRT Score Mod. Score

Normal 20 10 26.9 21.0 14.2 10.2
5 18.8 12.9 6.5 4.8
1 8.9 4.0 0.6 0.6

30 10 19.9 16.2 12.4 10.0
5 12.6 9.3 6.0 5.1
1 5.0 2.6 0.9 0.9

40 10 17.0 14.5 11.8 10.1
5 10.4 8.1 5.9 5.1
1 3.6 2.1 0.9 0.9

Gamma 20 10 26.8 21.1 14.3 10.3
5 19.0 13.1 6.6 5.0
1 9.1 4.2 0.8 0.8

30 10 20.4 16.6 12.8 10.2
5 13.3 9.6 6.1 5.0
1 4.9 2.6 0.9 0.9

40 10 17.4 14.7 11.9 10.2
5 10.5 8.2 5.8 5.0
1 3.6 2.0 0.9 0.9

Inverse Gaussian 20 10 29.2 20.0 14.6 11.6
5 21.2 12.3 6.9 5.5
1 10.4 3.9 0.8 0.7

30 10 22.2 15.4 12.4 10.9
5 14.5 8.8 5.8 5.3
1 5.9 2.2 0.8 0.8

40 10 19.0 13.9 12.0 10.9
5 11.8 7.5 5.9 5.4
1 4.2 1.9 1.2 1.0

Table 1: Type I error rates of four statistics to test the hypothesis that β2 = β3 = β4 = 0 in
(3) based on 30,000 samples of size n from three generalized linear models.

5. Applications

We now provide two examples to illustrate the use of the mdscore package with real data.
The first example is based on a gamma model fitted to a dataset with 34 observations. The
second example illustrates the application of the inverse Gaussian distribution to a dataset
with 30 observations. The results in each example can be reproduced with code available in
the supplementary material. Before running this code, it is necessary to first load the mdscore
package.

R> library("mdscore")

5.1. A gamma model with log-link

Ramsey and Schafer (2013) discuss a controlled experiment to test a disruption mechanism
of the blood-brain barrier system. In this experiment, a set of 34 rats was initially inoculated
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with brain-tumor cancer cells. In periods varying from 9 to 11 days post inoculation, half
of the animals were infused with a barrier disruption solution (BD) and the other half with
a control solution (NS). After receiving a therapeutic antibody treatment, the rats were
sacrificed and the amounts of antibody in the brain tumor and liver were determined. The
data are available in the R package Sleuth3 (Ramsey, Schafer, Sifneos, and Turlach 2013) under
the name “case1102”. The variables in this dataset are Brain (brain tumor count, per gm),
Liver (liver count, per gm), Time (time of sacrifice after the therapeutic antibody treatment, in
hours), Treatment (treatment received, BD or NS), Days (number of days between inoculation
and the treatment administration), Sex (sex of the rat), Weight (rat initial weight, in grams),
Loss (rat weight loss, in grams) and Tumor (tumor weight, in 10−4 grams). We can read this
dataset by using the code

R> data("case1102", package = "Sleuth3")

R> d <- transform(case1102, TLrat = Brain / Liver, Ltime = log(Time),

+ Lwrat = log((Weight + Loss) / Weight),

+ Treat = factor(Treatment == "BD", labels = c("NS", "BD")))

where we added the ratio between the concentrations of antibody in the brain and in the liver
(TLrat), the logarithm of the sacrifice time (Ltime), the logarithm of the ratio of the rat final
weight to its initial weight (Lwrat) and a reformatted treatment variable.

Suppose Yijk denotes the value of a variable Y for the kth observation under the ith treatment,
where i=0 (“NS”), 1 (“BD”), and the jth sacrifice time, j =1 (0.5 h), 2 (3 h), 3 (24 h) and
4 (72 h). Using the ratio of antibody concentrations as the response variable, one regression
model that can applied to these data considers

TLrat ijk
ind∼ Gamma(scale = µij/φ, shape = φ), (4)

where

logµij = β1 + β2Ltimeij + β3I(Treat ij = “BD”) + β4I(Treat ij = “BD”) ∗ Ltimeij +

β5Days ij + β6I(Sex ij == “Male”) + β7Lwrat ij + β8Tumor ij +

β9I(Treat ij = “BD”) ∗ Lwrat ij , i = 0, 1, j = 1, 2, 3, 4

and φ > 0. A summary of the fit of this model by maximum likelihood estimation is obtained
by running

R> fitf <- glm(TLrat ~ Ltime * Treat + Days + Sex + Lwrat + Tumor +

+ Treat * Lwrat, data = d, family = Gamma("log"))

R> library("MASS")

R> summary(fitf, dispersion = gamma.dispersion(fitf))

R> gamma.shape(fitf)

The maximum likelihood estimates and standard errors of the nine regression coefficients
and the estimate of the shape parameter of the model are given in Table 2. Figure 1 shows a
normal quantile-quantile plot of the deviance residuals of the fitted model. This plot indicates
that the gamma distribution is a reasonable random component for the model.

Suppose we are interested in the test of no interaction between the treatment and the log-
arithm of the ratio of the rat final weight to its initial weight, that is H0 : β9 = 0. The
commands to obtain the score and modified score statistics are
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Parameter Estimate SE

(Intercept) −8.752 1.977
Ltime 1.076 0.072
TreatBD 1.203 0.267
Days 0.473 0.200
SexMale 0.114 0.249
Lwrat 7.359 8.621
Tumor 0.001 0.001
Ltime:TreatBD −0.036 0.086
TreatBD:Lwrat −24.707 10.012
Shape (φ) 4.584 1.074

Table 2: Maximum likelihood estimates for the parameters of model (4).
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Figure 1: Normal quantile-quantile plot with an envelope for the deviance residuals of
model (4).

R> X <- model.matrix(fitf)

R> fit0 <- glm(TLrat ~ Ltime * Treat + Sex + Lwrat + Tumor + Days,

+ data = d, family = Gamma("log"))

R> test <- mdscore(fit0, X1 = X[, 9], phi = NULL)

R> summary(test)

The results are shown in Table 3, which also presents the Wald and LR tests for the same
hypothesis. These statistics and p values for the two tests can be obtained by

R> wald.test(fitf, terms = 9)

R> lr.test(fit1 = fit0, fit2 = fitf)

These results can be interpreted based on the findings in the simulation experiment in Sec-
tion 4. The Wald test has the lowest p value, followed by the LR test that has the second
lowest p value, because these tests tend to be more liberal than the score test. The score test
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Wald LR Score Mod. Score

Statistic 6.0897 5.2293 4.3808 3.7226
p value 0.0136 0.0222 0.0363 0.0537

Table 3: Four statistical tests of the hypothesis H0 : β9 = 0 in model (4). The p values
were computed using the chi-square distribution with one degree of freedom as the reference
distribution.

still rejects the null hypothesis of no interaction at the 0.05 level, but after the correction the
conclusion is reversed.

5.2. An inverse Gaussian model

As a second example, we take the data from a 5 × 2 factorial experiment given by Ostle
and Mensing (1963). It is of interest to investigate how the impact strength of an insulating
material is affected by the lot (I, II, III, IV, V) of the material and the type of specimen cut
(lengthwise and crosswise). The experiment was replicated ten times, but for the purposes
of illustrating the behavior of the test statistics under a smaller sample size, we randomly
selected three replicates in each of the ten cells of this factorial experiment. The resulting
dataset is stored in the object strength and the column y in this object refers to the impact
strength observations.

An earlier analysis of the original dataset is given in Shuster and Miura (1972). In our analysis,
we consider that the impact strength measurements of a given replicate corresponding to the
ith cut and jth lot are independently distributed as inverse Gaussian distributions with means
µij and a fixed dispersion parameter. Suppose the linear predictor in the inverse link scale
corresponds to the two-way interaction model

µ−1ij = τ0 + τi + βj + (τβ)ij , i = 1, 2, j = 1, 2, . . . , 5, (5)

where τ1 = 0, β1 = 0, and (τβ)11 = · · · = (τβ)15 = (τβ)21 = 0. This model can be fitted by
the commands

R> fitf <- glm(y ~ cut * lot, data = strength,

+ family = inverse.gaussian("inverse"))

R> summary(fitf)

The adequacy of this model for the data is supported by the normal quantile-quantile plot of
the deviance residuals given in Figure 2.

To test the hypothesis of no interaction between the two factors, that is H0 : (τβ)22 =
(τβ)23 = (τβ)24 = (τβ)25 = 0, we first construct the model matrix

R> X <- model.matrix(fit.model, data = strength)

R> fit0 <- glm(y ~ cut + lot, data = strength,

+ family = inverse.gaussian("inverse"))

Inspecting the matrix X, it is observed that the interaction terms being tested in the null
hypothesis are in columns 7 to 10. Therefore, the score and modified score tests are computed
using
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Figure 2: Normal quantile-quantile plot with envelope for the deviance residuals of model (5).

Wald LR Score Mod. Score

Statistic 10.5518 8.9572 7.6889 6.4179
p value 0.0321 0.0622 0.1037 0.1700

Table 4: Four statistical tests of the hypothesis H0 : (τβ)22 = (τβ)23 = (τβ)24 = (τβ)25 = 0
in model (5). The p values were computed using the chi-square distribution with four degrees
of freedom as the reference distribution.

R> test <- mdscore(fit0, X1 = X[, 7:10])

R> summary(test)

The Wald and LR are easily computed with the functions

R> wald.test(fitf, terms = 7:10)

R> lr.test(fit1 = fit0, fit2 = fitf)

The results of the four tests are shown in Table 4. The Wald test suggests rejecting the null
hypothesis at the 0.05 significance level, which is contrary to the other three tests. However,
the ordering of the four statistics is consistent with those observed in the experiment in
Section 4. Therefore, it seems sensible to conclude that the correction here not only helps
support the conclusions of the LR and score tests but also presents much weaker evidence to
reject H0.

6. Concluding remarks

The R package mdscore computes improved score tests in the context of generalized linear
models. The user does not need to develop expressions for the modified test statistic, as
the program computes them automatically. The program basically requires the fit of the
model under the null hypothesis by the glm() function and the model matrix associated
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with the parameters in the null hypothesis. One of the advantages of the package is the
use of the R resources to handle symbolic differentiation to compute the derivatives that are
necessary by adjustment theory. In addition to the modified score test, the program also
computes the original score test and the corresponding p values, using the chi-square as the
reference distribution. These summaries are useful in practice and can be used to compare
the properties of the modified and original tests, such as type I error probabilities, in finite
samples.
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A. Technical material

Consider a parametric model indexed by an unknown k-vector parameter θ and let `(θ) be
the log-likelihood function. The parameter θ is partitioned as θ = (θ>1 ,θ

>
2 )>, the dimensions

of θ1 and θ2 being q and k − q, respectively. The interest lies in testing the composite null
hypothesis H0 : θ1 = θ01 against H1 : θ1 6= θ01, where θ01 is a specified vector. Let Uθ and Kθ

denote the score function and the Fisher information matrix for θ, respectively. The partition
for θ induces the corresponding partitions

Uθ = (U>
1
,U>

2
)>, Kθ =

(
K11 K12

K21 K22

)
, K−1θ =

(
K11 K12

K21 K22

)
,

whereK−1θ is the inverse ofKθ. Let θ̃ = (θ0>1 , θ̃>2 )> denote the maximum likelihood estimator
of θ under H0. The Rao score statistic (SR) for testing H0 versus H1 is given by SR =

Ũ>1 K̃
11Ũ1, where a tilde indicates evaluation at θ̃. The limiting distribution of SR is χ2

q

under H0 with an approximation error of order O(n−1). The null hypothesis is rejected for
a given nominal level, α, if the test statistic exceeds the upper 1 − α quantile of the χ2

q

distribution. Clearly, SR only involves estimation under H0.

The corrected score statistic proposed by Cordeiro and Ferrari (1991) is given by (2). It
involves three coefficients, γ1, γ2 and γ3, which depend on three other quantities, A1, A2 and
A3. General expressions for the A’s involving cumulants of log-likelihood derivatives are given
by Harris (1985); see also Equations (3.2)–(3.4) in Cordeiro et al. (1993). The coefficients
A1, A2 and A3 are functions of joint cumulants of log-likelihood derivatives up to the fourth
order. Whenever they depend on unknown parameters, they can be evaluated at θ̃. The null
distribution of S∗R is χ2

q with approximation error reduced from order O(n−1) to O(n−3/2).

To present the formulas for the coefficients A1, A2 and A3 in generalized linear models,
which enables us to obtain the corrected score statistic (2), it is useful to introduce some
notation. Let X = (X1,X2) be partitioned following the partition of the vector β, Z =
X(X>WX)−1X>,Z2 = X2(X

>
2 WX2)

−1X>2 ,W = diag(w1, . . . , wn), F = diag(f1, . . . , fn),
G = diag(g1, . . . , gn), B = diag(b1, . . . , bn) and H = diag(h1, . . . , hn), with

wl = w(µl) =
1

Vl

(
dµl
dηl

)2

,

fl = f(µl) =
1

Vl

dµl
dηl

d2µl
dη2l

,

gl = g(µl) =
1

Vl

dµl
dηl

d2µl
dη2l
− 1

V 2
l

dVl
dµl

(
dµl
dηl

)3

,

bl = b(µl) =
1

V 3
l

(
dµl
dηl

)4
{(

dVl
dµl

)2

+ Vl
d2Vl
dµ2l

}
,

and

hl = h(µl) =
1

V 2
l

dVl
dµl

(
dµl
dηl

)2 d2µl
dη2l

+
1

V 2
l

d2Vl
dµ2l

(
dµl
dηl

)4

,

for l = 1, . . . , n. The A’s can be written as

A1 = A1,β +A1,βφ, A2 = A2,β +A2,βφ, A3 = A3,β,
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where

A1,β = φ−1
[
31>FZ2d(Z −Z2)Z2dF1 + 61>FZ2dZ2(Z −Z2)d(F −G)1

−61>F {Z(2)
2 ∗ (Z −Z2)}(2G− F )1− 61>H(Z −Z2)dZ2d1

]
,

A2,β = φ−1
[
−31>(F −G)(Z −Z2)dZ2(Z −Z2)d(F −G)1

− 61>FZ2d(Z −Z2)(Z −Z2)d(F −G)1

−61>(F −G){(Z −Z2)
(2) ∗Z2}(F −G)1 + 31>B(Z −Z2)

(2)
d 1

]
,

and

A3,β = φ−1
[
31>(F −G)(Z −Z2)d(Z −Z2)(Z −Z2)d(F −G)1

+21>(F −G)(Z −Z2)
(3)(F −G)1

]
.

Here “∗” represents the Hadamard product (elementwise product), Z(2) = Z ∗ Z, Z(3) =
Z(2) ∗Z and Zd = diag(z11, . . . , znn), with zll denoting the lth diagonal element of Z. When
φ is known, A1,βφ and A2,βφ are equal to zero (Cordeiro et al. 1993). For unknown φ, we
assume that the term a(y, φ) in (1) can be written as a(y, φ) = d1(φ) + d2(y). Let d(2) =
d(2)(φ) = φ2d′′1(φ) and d(3) = d(3)(φ) = φ3d′′′1 (φ). Cribari-Neto and Ferrari (1995) showed
that

A1,βφ =
6q{d(3) + (2− p+ q)d(2)}

nd2(2)

and

A2,βφ =
3q(q + 2)

nd(2)
.

Affiliation:

Antonio Hermes M. da Silva-Júnior, Damião Nóbrega da Silva
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