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Mónica López-Ratón
Universidad de Santiago de Compostela
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Abstract

Continuous diagnostic tests are often used for discriminating between healthy and
diseased populations. For the clinical application of such tests, it is useful to select a
cutpoint or discrimination value c that defines positive and negative test results. In
general, individuals with a diagnostic test value of c or higher are classified as diseased.
Several search strategies have been proposed for choosing optimal cutpoints in diagnostic
tests, depending on the underlying reason for this choice. This paper introduces an R
package, known as OptimalCutpoints, for selecting optimal cutpoints in diagnostic tests.
It incorporates criteria that take the costs of the different diagnostic decisions into account,
as well as the prevalence of the target disease and several methods based on measures of
diagnostic test accuracy. Moreover, it enables optimal levels to be calculated according to
levels of given (categorical) covariates. While the numerical output includes the optimal
cutpoint values and associated accuracy measures with their confidence intervals, the
graphical output includes the receiver operating characteristic (ROC) and predictive ROC
curves. An illustration of the use of OptimalCutpoints is provided, using a real biomedical
dataset.
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1. Introduction

Continuous diagnostic tests or biomarkers are often used for discriminating between healthy
and diseased populations (D = 0 and D = 1, respectively). For their application in clinical
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practice, it is useful to select a cutpoint or discrimination value c to define positive and
negative test results. In general, assuming that higher marker values are associated with
disease, individuals with a diagnostic test value T equal to or higher than c are classified
as diseased (positive test T+), whereas patients with a lower value are classified as healthy
(negative test T−). It should be noted, however, that this classification is not error-free. The
test may err or fail in its task of detecting disease in two different ways, namely, by classifying
a healthy patient incorrectly (false positive, FP) or, alternatively, by declaring a patient to
be healthy when he/she is in fact diseased (false negative, FN ). Conversely, the test may
correctly classify a healthy patient (true negative, TN ) or a diseased patient (true positive,
TP). Accordingly, before routine application of a diagnostic test in practice, any errors of
classification must be quantified. With respect to any given cutpoint, different measures of
a test’s diagnostic accuracy can be considered. The most popular accuracy measures are
sensitivity (Se) and specificity (Sp). Furthermore, on the basis of these two measures, other
measures can be also defined, such as positive and negative predictive values (PPV and NPV )
and diagnostic likelihood ratios (DLR+ and DLR−).

The selection of the appropriate cutpoint is crucial to avoid erroneous conclusions being drawn
in clinical practice. While the choice of the number and values of the cutpoints may be made
in accordance with criteria already established by earlier studies or, for theoretical reasons, be
based on clinical or physiological information (this is the desirable approach), at other times it
is the researcher him/herself who has to decide on the cutpoints that are to be set on the basis
of certain criteria. In medical decision-making theory and epidemiologic research, determining
a cutpoint for a quantitative variable is a common problem, and has indeed been an active
area of study (Miller and Siegmund 1982; Altman, Lausen, Sauerbrei, and Schumacher 1994;
Lausen and Schumacher 1996; Mazumdar and Glassman 2000). Depending on the ultimate
goal, several strategies for selecting optimal cutpoints in diagnostic tests have been proposed in
the literature, yet all of these have, in great measure, been based on optimizing the preceding
accuracy measures (see Youden 1950; Feinstein 1975; Metz 1978; Albert and Harris 1987;
England 1988; Schäfer 1989; Vermont, Bosson, François, Robert, Rueff, and Demongeot 1991;
Greiner 1995; Riddle and Stratford 1999, among others).

To facilitate the task of selecting optimal values in clinical practice, it is essential to have
software for implementing the different optimal-cutpoint selection criteria in an environment
which biomedical researchers will find user-friendly and easily understandable. Important con-
tributions to this issue have been made by the R (R Core Team 2014) packages DiagnosisMed
(Brasil 2010), pROC (Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, and Müller 2011)
and Epi (Carstensen, Plummer, Laara, and Hills 2013). The DiagnosisMed package includes
the estimation of optimal cutpoints by means of 10 different methods, such as the method
that selects the cutoff at which sensitivity is equal to specificity (Amaro, Gude, Gonzalez-
Juanatey, Iglesias, Fernandez-Vazquez, Garcia-Acuna, and Gil 1995; Greiner 1995; Hosmer
and Lemeshow 2000), or that based on maximizing the diagnostic odds ratio (Kraemer 1992;
Böhning, Holling, and Patilea 2011). Even though their main objective is not the selection
of an optimal cutpoint, the pROC and Epi packages also include some specific function for
selecting the optimal value using only one or two criteria. Specifically, the pROC package
provides the method based on the Youden index (Youden 1950) and the criterion for the
optimal point on the receiver operating characteristic (ROC) curve (Metz 1978; Swets and
Swets 1979; Swets and Pickett 1982) closest to the point (0, 1) (Metz 1978; Vermont et al.
1991), allowing the costs of the different diagnostic decisions to be incorporated into both
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criteria. The Epi package enables the value that maximizes the sum of sensitivity plus speci-
ficity measures to be selected as the optimal cutpoint. There are other packages which provide
methods for obtaining classification rules for specific models/contexts other than a medical
setting. These include the R packages such as, PresenceAbsence which includes 12 different
criteria (Freeman and Moisen 2008), and SDMTools with 8 methods (VanDerWal, Falconi,
Januchowski, Shoo, and Storlie 2012).

However, all these packages have some limitations. Firstly, as pointed out above, some of them
include very few selection criteria. Secondly, none of the packages include criteria based on
predictive values and/or likelihoods ratios, i.e., they only consider optimal-cutpoint selection
criteria based on sensitivity and specificity measures. This entails an important limitation
from the standpoint of clinical applicability: although sensitivity and specificity are considered
the fundamental operating characteristics of a diagnostic test, there are nevertheless times
when such measures may not be so useful in clinical practice, since clinical staff do not
have prior information about the patient’s true disease status. Indeed, the problem tends to
be just the opposite, and involves the need to ascertain the probability of the patient being
healthy (or diseased) in a case where the test result is negative (or positive). Hence, strategies
for selecting the optimal cutpoint based on predictive values can be more useful in certain
situations (see Vermont et al. 1991; Itoh, Takahashi, Nishida, Sakagami, and Okubo 1996;
Gallop, Crits-Christoph, Muenz, and Tu 2003, among others).

To address some of the remaining gaps in or limitations of the previous packages, we have
implemented an R package known as OptimalCutpoints, specifically designed for selecting
optimal cutpoints in continuous diagnostic tests. It is freely available from the Comprehensive
R Archive Network (CRAN) at http://CRAN.R-project.org/package=OptimalCutpoints.
This package enables end-users to choose from among a considerable number of strategies (34)
commonly used in clinical practice for optimal-cutpoint selection (see Table 2 in Section 3).
OptimalCutpoints includes all the methods considered in the abovementioned packages plus
others that have been proposed in the literature for selection of optimal values in diagnostic
tests, such as criteria based on predictive values or likelihood ratios. Moreover, it incorporates
several criteria that take into account the costs of the different diagnostic decisions as well as
the prevalence of the disease under study.

To illustrate the different optimal selection criteria implemented in this package, this paper
goes on to consider a study conducted on 141 consecutive patients admitted to the Cardiology
Department of a Teaching Hospital in Galicia (northwest Spain) for evaluation of chest pain
or cardiovascular disease. The study sought to investigate the clinical usefulness of leukocyte
elastase determination in the diagnosis of coronary artery disease (CAD). All patients under-
went coronary angiography during investigation: 96 had coronary lesions (diseased patients)
and 45 had non-stenotic coronaries (non-diseased patients). Fuller details of this data set can
be found in Amaro et al. (1995).

The remainder of the paper is structured as follows: Section 2 briefly reviews methods for
selecting optimal cutpoints in clinical practice; Section 3 explains the use of the main functions
and methods of OptimalCutpoints; Section 4 gives an illustration of the practical application
of the package using the CAD dataset; and lastly, Section 5 concludes with a discussion and
possible future extensions of the package.

http://CRAN.R-project.org/package=OptimalCutpoints
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2. Optimal-cutpoint selection methods

The need to determine a cutpoint in continuous diagnostic tests is widely acknowledged,
mainly in the medical sciences, and, as mentioned in the preceding section, diverse criteria
have been proposed for selecting such cutpoints. Some authors (Gönen and Sima 2013) talk in
general of two main statistical approaches to the problem of selecting an optimal cutpoint, one
of which uses the ROC curve (Metz 1978; Swets and Swets 1979; Swets and Pickett 1982),
and the other seeks to maximize an appropriately chosen statistical test (Mazumdar and
Glassman 2000). The ROC curve is a global measure of diagnostic accuracy of a continuous
test that reflects the degree of overlapping of test results in healthy and diseased populations.
Moreover, it is independent of the disease prevalence. The ROC curve is obtained by plotting
the coordinates (1 − Sp(c); Se(c)) for all possible cutpoints c, where Se(c) and Sp(c) are
defined as

Se(c) = P(T+ | D = 1) = P(T ≥ c | D = 1),

Sp(c) = P(T− | D = 0) = P(T < c | D = 0),

under the conventional assumption that larger T values are more indicative of disease. It
should be noted however that, when high marker values are linked to health, a positive test
would be one where T ≤ c, and the definition of Se and Sp should be changed accordingly. It
is common for the information of a ROC curve to be summarized in a single value or index.
Several such indices are proposed in the literature, with the most widely used being the area
under the ROC curve (AUC) (Bamber 1975; Swets 1979). The AUC takes values ranging
from 0.5 (uninformative test) to 1 (perfect test).

ROC analysis furnishes several optimal-cutpoint selection criteria based on Se and Sp mea-
sures (Green and Swets 1966; Zweig and Campbell 1993; Coffin and Sukhatme 1997; Pepe
2003), by imposing specifications of one kind or another in respect of such measures, assuming
certain values, or defining a linear combination or function of both. Furthermore, ROC curve
criteria allow for the choice of optimal cutpoints, based on the prevalence of the disease of
interest and the relative cost ratio (risks and benefits) of the possible medical decisions (cor-
rect and incorrect) flowing from the diagnostic test result. The other widely used approach
is maximization of an appropriate statistical test, often one that is based on two samples and
compares the groups resulting from dichotomization. This method first appeared in the con-
text of a binary result using the Pearson χ2 test (Miller and Siegmund 1982) and is frequently
known as the maximum χ2 or minimum p value method (Mazumdar and Glassman 2000).

Despite this initial general grouping, the large number of optimal-cutpoint selection criteria in
diagnostic tests has persuaded us to summarize the following outline by splitting the criteria
into a series of subgroups. A detailed description of all the criteria incorporated in the
OptimalCutpoints package is provided in Section 3. For the sake of clarity, however, in each
of the subgroups considered in this Section, the criteria names used in the OptimalCutpoints
package are indicated.

2.1. Criteria based on sensitivity and specificity measures

In some diagnostic situations, it is desirable to have a higher probability of detecting a TN
or TP result, or for both to exceed certain values, and in such a case the optimal cutpoint
should therefore be chosen with this aim in mind: hence, some minimum value is selected
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which one (Se or Sp) or both of the two measures are required to exceed, and subject to this
condition, the other measure is as high as possible (Schäfer 1989; Vermont et al. 1991; Gallop
et al. 2003). In the OptimalCutpoints package, these criteria have been included under the
names "MinValueSe", "MinValueSp" and "MinValueSpSe".

In a manner similar to the above strategies, analogous criteria can be defined, in which the
end-user, rather than setting a single minimum value for either or both measures, sets a single
target value for either the sensitivity or the specificity measures (Rutter and Miglioretti 2003)
("ValueSe" and "ValueSp" methods in OptimalCutpoints).

Another criterion is based on the maximization of one of the two measures, i.e., "MaxSe" and
"MaxSp" methods (Bortheiry, Malerbi, and Franco 1994; Filella, Alcover, Molina, Giménez,
Rodŕıguez, Jo, Carretero, and Ballesta 1995; Álvarez Garćıa, Collantes-Fernández, Costas,
Rebordosa, and Ortega-Mora 2003), though this procedure proves more extreme, since the
choice of an optimal cutpoint should generally imply an equilibrium between Se and Sp. Con-
sequently, the equality or simultaneous maximization of these two quantities ("SpEqualSe"
and "MaxSpSe" methods in OptimalCutpoints, Riddle and Stratford 1999; Peng and So 2002;
Gallop et al. 2003) or the maximization/minimization of a given combination tends to be
more appropriate. Some examples of criteria in this setting are: the Youden index (Youden
1950) or incorporating the costs of incorrect classifications of the diagnosis, the generalized
Youden index (GYI , Geisser 1998; Greiner, Pfeiffer, and Smith 2000; Schisterman, Perkins,
Liu, and Bondell 2005, both possibilities are included in the "Youden" method of the pack-
age); efficiency or proportion of cases correctly classified (Feinstein 1975, "MaxEfficiency"
method); criterion for the optimal point on the ROC curve closest to the point (0, 1) (Metz
1978, "ROC01" method); or criteria based on predictive values and likelihood ratios (see sec-
tions below).

As pointed out above, in clinical practice the selection of the criterion to be used should
depend on the ultimate goal of the diagnostic test. For instance, in the case of CAD, if
one wished to use leukocyte elastase determination as a screening test prior to performing a
coronary angiography for detecting CAD, one would seek high sensitivity so as to be able to
identify all the diseased patients. Thus, using the "MinValueSe" criterion with an Se ≥ 0.95,
the cutpoint obtained would be 22 µgl−1, and so coronary angiography would be performed
on any patient having a leukocyte elastase level ≥ 22 µgl−1. Using this optimal cutpoint, 96%
of CAD patients would be correctly classified, whereas only 38% of patients without CAD
would be correctly identified (28 false positive classifications). If, however, one were seeking an
equilibrium between sensitivity and specificity, by, e.g., the "SpEqualSe" method, an optimal
cutpoint of 38 µgl−1 would be obtained, with which 68% of patients with CAD and 67% of
patients without CAD would be correctly detected. This value is very close to that obtained
using the Youden index (the "Youden" method), which would afford a value of 37, similarly
seeking an equilibrium between the two measures of sensitivity and specificity (Se = 0.69 and
Sp = 0.67). It should be noted that, in some diseases which are incurable or rapidly lethal,
interest may lie in selecting the greatest specificity possible, e.g., Sp ≥ 0.95 ("MinValueSp"
method). Applied to our CAD example, a value of 54 µgl−1 would be obtained, a value that,
as will be readily appreciated, is very much higher than the previous ones. In our example,
however, this approach would not be appropriate, in view of the fact that angioplasty, with
or without a stent, is usually a successful treatment in CAD.
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Criteria based on predictive values

Despite the fact that Se and Sp are considered the fundamental operating characteristics of
a diagnostic test, in practice their capacity for quantifying medical uncertainty is limited.
A clinician (or observer of a diagnostic test) is sometimes interested in knowing what the
probability is of an individual who has tested positive actually proving to be diseased (i.e.,
the positive predictive value, PPV ), and vice-versa, i.e., the probability of an individual
who has tested negative being disease-free (the negative predictive value, NPV ). These two
quantities can be expressed, in terms of the Se and Sp, as:

PPV (c) = P(D = 1 | T+) =
pSe(c)

pSe(c) + (1− p)(1− Sp(c))
,

NPV (c) = P(D = 0 | T−) =
(1− p)Sp(c)

(1− p)Sp(c) + p(1− Se(c))
,

where p denotes the disease prevalence, i.e., p = P(D = 1). As with Se and Sp, in the case of
PPV and NPV measures, there are a number of strategies for selecting an optimal cutpoint
(Vermont et al. 1991), such as setting minimal values selected previously for a given pre-
dictive value or for both ("MinValuePPV", "MinValueNPV" and "MinValueNPVPPV" methods
in the package), setting a single target value for one of the predictive values ("ValueNPV"
and "ValuePPV" in OptimalCutpoints), selecting the point at which the predictive values are
practically the same, "NPVEqualPPV" method (Vermont et al. 1991; Gallop et al. 2003) or
using the criterion of the point on the predictive ROC (PROC) curve closest to the point
(0, 1) ("PROC01" method). Similar to the ROC curve, the PROC is defined as the plot of
(1−NPV (c); PPV (c)) for all possible cutpoints c (Vermont et al. 1991; Gallop et al. 2003).

From an applied point of view, it is usual to seek elevated positive predictive values in any case
where treating false positives may have serious consequences, be these psychological, physical
or economic (e.g., chemotherapy in cancer or AIDS). Taking the CAD example, in view of the
fact that 1) coronary disease is potentially curable (there is a treatment), 2) a false positive
does not produce serious disorders for the patient, and 3) coronary angiography enjoys good
results with low risk, one would seek elevated negative predictive values. This is related to
the ability to rule out the disease with a greater degree of certainty. For the purpose, one
could, for instance, use the "MinValueNPV" criterion. Thus, for a NPV ≥ 0.95, the cutpoint
obtained would be 13 µgl−1, with a PPV = 0.72 and an NPV = 1 (the maximum value).
This means that all patients with elastase below 13 µgl−1 are identified as patients without
CAD and can be correctly classified as healthy (i.e., there are no false negative results).

Criteria based on diagnostic likelihood ratios

Where the aim of the diagnostic test is predictive, cutpoints based on the DLR may be more
useful (Boyko 1994). DLRs provide a summary of how many times patients with a disease are
more (or less) likely to have a particular result than patients without the disease. Specifically,
the positive and negative diagnostic likelihood ratios (DLR+ and DLR− respectively) are
defined as:

DLR+(c) =
P(T+ | D = 1)

P(T+ | D = 0)
=

Se(c)

1− Sp(c)
,

DLR−(c) =
P(T− | D = 1)

P(T− | D = 0)
=

1− Se(c)

Sp(c)
.
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Optimal-cutpoint selection criteria based on these measures have also been proposed, with
pre-established values being defined in the same way as described for the Se, Sp and pre-
dictive values measures (Rutter and Miglioretti 2003). These criteria have been denoted as
"ValueDLR.Positive" and "ValueDLR.Negative" in the OptimalCutpoints package.

In our CAD data, for instance, if one wished to seek a cutpoint above which a positive result
doubled the probability of having the disease as opposed to not having it, one would seek a cut-
point that yielded a DLR+ equal to 2. To this end, one would use the "ValueDLR.Positive"

criterion implemented in OptimalCutpoints, and would obtain a cutpoint equal to 41 µgl−1.
This means that any patient having a leukocyte elastase value higher than or equal to 41 µgl−1

would be twice as likely to have than not to have coronary stenosis.

2.2. Methodology based on cost-benefit analysis of the diagnosis

When undertaking a diagnostic procedure, a price is paid (in terms of money and/or risk
of possible complications) to gain information that may be beneficial for the subsequent
treatment and care of the patient. According to ROC methodology, information so gained
on patients’ current health or disease status can be measured and described, in a statistical
sense, by attempting to respond to the following questions: (1) How can the benefits obtained
from correct diagnostic decisions be balanced (offset) against the costs of incorrect decisions?;
and (2) How can one judge if the information ‘bought’ is worth the price ‘paid’?

In this case, the benefits and costs of each type of decision are combined with the prevalence
of the disease of interest to find the Se and 1 − Sp values on the ROC curve which will
yield the minimum mean cost (maximum mean benefit) in a given diagnosis (McNeill, Keeler,
and Adelstein 1975; Metz, Starr, Lusted, and Rossmann 1975; Metz 1978; Swets and Swets
1979), where the term ‘cost’ can be construed as a combination of various aspects and not
exclusively as a monetary term (Edwards, Guttentag, and Snapper 1975). The mean cost
of the consequences of conducting a diagnostic test should include the price that must be
paid for performing the test (‘overhead cost’ C0), and the costs of the medical consequences
of each type of diagnostic decision, weighted by the probability of these occurring. Hence,
for a situation in which there are two possible alternative decisions (though it may easily be
extended to situations with a larger number of decisions), the expected cost C of the use of
the diagnostic test can be expressed as:

C(c) = C0 + CTP p Se(c) + CTN (1− p) Sp(c) +

CFP (1− p) (1− Sp(c)) + CFN p (1− Se(c)),

where CTP , CTN , CFP , CFN represent the mean costs of medical consequences flowing from
each type of diagnostic decision. On minimizing the previous expression, the optimal point
is that where the slope of the ROC curve (‘slope of iso-utility’) is given by (Lusted 1968;

England 1988; Halpern, Albert, Krieger, Metz, and Maidment 1996) S =
1− p
p

CFP − CTN

CFN − CTP
.

This criterion is included in OptimalCutpoints under the name "CB".

The problem of this approach is that it requires the consequences of each possible test result
to be quantified, and as a rule, allocating costs to different classifications is complex. In many
situations, the value of the cost ratio is determined directly, without knowing the individual
values of the four costs that appear in the expression. Without better information, one
generally tends to assume that p = 0.5, CFP = CFN , and CTN = CTP , and a cutpoint would
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thus be chosen such that S = 1. This implies that the prevalence in the study population is
around 50%, and that the costs of the FP and FN test results are the same. It is therefore
important to stress that this cutpoint might not be optimal for other prevalences and cost
ratios.

Some authors (McNeill et al. 1975; Zweig and Campbell 1993; Burgueño, Garćıa-Bastos, and
González-Buitrago 1995) talk only of the cost ratio of an FP to an FN result because the
costs of true decisions are assumed to be null. This is why another criterion for optimal-
cutpoint selection has been proposed, based on minimization of a term that measures the
cost of incorrect classifications ("MCT", Misclassification-cost term, in the package), (Smith
1991; Greiner 1995, 1996):

MCT (c) =
CFN

CFP
p(1− Se(c)) + (1− p)(1− Sp(c)).

Returning to the CAD example, if one assumed that, despite being a severe disease, coronary
stenosis is usually treated successfully with minimal risk for the patient, clinically speaking
it would make more sense to consider that the false negative results have a higher ‘cost’ than
do the false positive results. If one noted, say, that an FN had triple the cost of an FP , the
"MCT" method with a ratio of CFN /CFP = 3 could be used. One would thus obtain an optimal
value of 21 µgl−1, so that patients with elastase higher than or equal to 21 µgl−1 would be
classified as patients who present with CAD, so minimizing false negative classifications.

Finally, note that some criteria, such as the Youden index, the generalized Youden index
and efficiency (Section 2.1), can also be viewed from a cost-benefit standpoint. The slope
of the ROC curve at the optimal cutpoint obtained by means of the Youden index is equal
to 1 (Perkins and Schisterman 2006); at the optimal cutpoint calculated on the basis of the
generalized Youden index, the slope is calculated by solely considering the costs deriving

from false positive and false negative decisions, S =
1− p
p

CFP

CFN
; and lastly, at the cutpoint

that maximizes the proportion of cases correctly classified, the slope is calculated solely by

reference to the prevalence, S =
1− p
p

.

2.3. Maximum χ2 or minimum p value criterion

Another approach for selecting the optimal cutpoint consists of maximizing a statistical test
which represents the association between this marker and the binary result obtained on using
the cut value (Mazumdar and Glassman 2000). The pertinent χ2 test is calculated for each
of the observed diagnostic marker values (candidates for the optimal cutpoint) -except for a
proportion of the extreme values- with the point for which the maximum χ2 or, equivalently,
the corresponding minimum p value is obtained, being selected as the optimal value (Miller and
Siegmund 1982; Mazumdar and Glassman 2000) ("MinPvalue" method in OptimalCutpoints).
A number of correction methods have, moreover, been proposed for adjusting for the increase
in the type-I error which is associated with the minimum p value approach, such as the
maximally selected rank statistical method (Schulgen, Lausen, Olsen, and Schumacher 1994;
Lausen and Schumacher 1996) or the use of a permutation test approach (Hilsenbeck, Clark,
and McGuire 1992). The former is an easily applicable method but has the drawback of being
too conservative in cases where there are few cutpoints.
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2.4. Prevalence-based methods

Finally, strategies have also been proposed for the selection of optimal prevalence-based cut-
points, designed mainly for situations in which the marker assumes values from 0 to 1 (preva-
lence values), e.g., the probabilities obtained on the basis of a statistical model. Here the
following can be considered: (1) the observed prevalence criterion ("ObservedPrev" method
in OptimalCuptoints), which simply consists of selecting as optimal the value closest to the
observed prevalence; (2) the mean predicted probability criterion ("MeanPrev" method), in
which the closest value to the mean of the diagnostic test values is chosen as optimal, for
instance, the mean probability of occurrence based on the results of the model; (3) selection
of a cut value for which prevalence predicted on the basis of the model is practically equal to
the observed prevalence ("PrevMatching" method). Criteria (1) and (3) are useful strategies
in cases where preserving prevalence is of crucial interest (Manel, Williams, and Ormerod
2001; Kelly, Dunstan, Lloyd, and Fone 2008).

3. Description of OptimalCutpoints package

The previous section outlines several methods proposed in the literature for selecting optimal
cutpoints in diagnostic tests. This section introduces OptimalCutpoints, an R package in
which all these methods have been incorporated in a way designed to be clear and user-friendly
for the end-user. OptimalCutpoints provides numerical and graphical results. The numerical
results include the optimal cutpoint according to the selected criterion, and the associated
accuracy measures with their confidence intervals. The program’s graphical output shows the
ROC and PROC curves of the test analyzed and, where possible, the plot of the pertinent
criterion according to the different test values (candidates for the optimal cutpoint). In
addition, OptimalCutpoints enables optimal levels to be calculated automatically according to
levels of certain (categorical) covariates and this will be illustrated in the biomedical example
in the next section. This is of great interest because a diagnostic marker’s discriminatory
capacity can often depend on specific characteristics, such as a patient’s age or gender, or the
severity of the disease (Pepe 2003). Moreover, no restriction has been imposed with respect to
the range of values of the diagnostic test, i.e., it can take some values in a continuous range or
a risk score obtained from a predictive diagnostic model (values from 0 to 1). Finally, insofar
as computation is concerned, for all methods in this package, the optimal cut value obtained
is always one of the observed diagnostic marker values, and the ROC and PROC curves and
accuracy measures are empirically estimated.

In R language, programming is based on objects, and computations are basically functions
that are specialized in performing specific calculations. Table 1 provides a summary of the
main functions in the package.

The main function of the package is the optimal.cutpoints function, which uses the selected
method(s) to compute the optimal cutpoint with its accuracy measures, and creates an object
of class optimal.cutpoints. Usage is as follows:

optimal.cutpoints(X, status, tag.healthy, methods, data,

direction = c("<", ">"), categorical.cov = NULL, pop.prev = NULL,

control = control.cutpoints(), ci.fit = FALSE, conf.level = 0.95,

trace = FALSE, ...)
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Function Description

optimal.cutpoints Computes the optimal cutpoint with its accuracy measures and,
optionally, the pertinent confidence intervals for such measures.

control.cutpoints Function used to set several parameters that control the optimal-
cutpoint computing process.

print Print method for objects fitted with optimal.cutpoints.
summary Produces a summary of an optimal.cutpoints object.
plot Plot method for objects fitted with optimal.cutpoints. Includes

the plots of the ROC and PROC curves, indicating the optimal
cutpoint on these plots.

Table 1: Summary of functions in the OptimalCutpoints package.

The X argument is either a character string with the name of the diagnostic test variable or a
formula. When X is a formula, it must be an object of class formula. The right side of ~ must
contain the name of the variable that distinguishes healthy from diseased individuals, and the
left side of ~ must contain the name of the diagnostic test variable. The status argument
only applies when the X argument contains the name of the diagnostic test variable, and is
a character string with the name of the variable that distinguishes healthy from diseased
individuals. The tag.healthy argument is the value codifying healthy individuals in the
status variable.

The methods argument is a character vector specifying which method/s is/are used for select-
ing optimal cutpoints. A total of 34 methods have been implemented in OptimalCutpoints
(see Table 2). Various optimal-cutpoint selection methods can be selected simultaneously.

The data argument is a data frame which must, at minimum, contain the following variables:
diagnostic marker; disease status (diseased/healthy); and whether adjustment is to be made
for any (categorical) covariate of interest, a variable that indicates the levels of this covariate.

The direction argument is a character string specifying the direction in which the ROC
curve must be computed. By default, individuals with a test value lower than the cutoff are
classified as healthy (negative test), whereas patients with a test value greater than (or equal
to) the cutoff are classified as diseased (positive test). If this is not the case, however, and
the high values are related to health, this argument should be established at ">".

The categorical.cov argument is an optional argument, and is a character string with the
name of the categorical covariate according to which optimal cutpoints are to be calculated.
By default it is NULL, i.e., no categorical covariate is considered in the analysis.

The pop.prev argument is the value of the disease’s prevalence. By default it is NULL, and
in such a case, prevalence is estimated on the basis of sample prevalence, taking into account
the number of patients in the sample (cross-sectional study). However, the end-user can also
specify a given value for prevalence, as, say, in other types of studies (case-control study)
where it cannot be estimated on the basis of the sample. Where the categorical.cov is not
NULL, the prevalence value can be specified by a single value if the same prevalence is assumed
for the different levels of the covariate, or by a vector having as many components as levels if
different values are assumed.
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Criterion name Description

Criteria based on sensitivity and specificity measures
ValueSe A value set for sensitivity (Rutter and Miglioretti 2003): the

cutpoint c fulfilling the condition Se(c) = valueSe.
ValueSp A value set for specificity (Rutter and Miglioretti 2003): the

cutpoint c fulfilling the condition Sp(c) = valueSp.
SpEqualSe Sensitivity = specificity: the cutpoint c minimizing {|Sp(c) −

Se(c)|} (Amaro et al. 1995; Greiner 1995; Hosmer and
Lemeshow 2000).

MaxSe Maximizes sensitivity: the cutpoint c maximizing Se(c) (Filella
et al. 1995; Hoffman, Clanon, Littenberg, Frank, and Peirce
2000; Álvarez Garćıa et al. 2003).

MaxSp Maximizes specificity: the cutpoint c maximizing Sp(c)
(Bortheiry et al. 1994; Hoffman et al. 2000).

MaxSpSe Maximizes sensitivity and specificity simultaneously: the cut-
point c maximizing {min{Sp(c),Se(c)}} (Riddle and Stratford
1999; Gallop et al. 2003).

Youden Youden index: the cutpoint c maximizing YI (c) = Se(c) +
Sp(c)− 1 (Youden 1950; Aoki, Misumi, Kimura, Zhao, and Xie
1997; Greiner et al. 2000) or generalized Youden index: the

cutpoint c maximizing GYI (c) = Se(c) +
1− p
p

CFN

CFP
Sp(c) − 1

(Geisser 1998; Greiner et al. 2000).
MaxProdSpSe Maximizes the product of sensitivity and specificity: the cut-

point c maximizing {Sp(c)Se(c)} (Lewis, Chuai, Nessel, Licht-
enstein, Aberra, and Ellenberg 2008).

Minimax Minimizes the most frequent error (Hand 1987): the cutpoint
c minimizing {max{p(1− Se(c)), (1− p)(1− Sp(c))}}.

MinValueSe A minimum value set for sensitivity: the cutpoint c fulfilling the
condition Se(c) ≥ minValueSe (Schäfer 1989; Vermont et al.
1991; Gallop et al. 2003).

MinValueSp A minimum value set for specificity: the cutpoint c fulfilling the
condition Sp(c) ≥ minValueSp (Schäfer 1989; Vermont et al.
1991; Gallop et al. 2003).

MinValueSpSe A minimum value set for specificity and sensitivity (Schäfer
1989): the cutpoint c fulfilling the condition Sp(c) ≥
minValueSp and Se(c) ≥ minValueSe.

ROC01 Minimizes distance between ROC plot and point (0, 1): the
cutpoint c minimizing {(Sp(c)−1)2 +(Se(c)−1)2} (Metz 1978;
Vermont et al. 1991).

MaxDOR Maximizes Diagnostic Odds Ratio: the cutpoint c maximizing

DOR(c) =
Se(c)

1− Se(c)

Sp(c)

1− Sp(c)
(Kraemer 1992; Böhning et al.

2011).

Continued on next page
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Table 2 – continued from previous page

Criterion name Description

MaxEfficiency Maximizes efficiency or accuracy: the cutpoint c maximizing
Ef (c) = pSe(c) + (1 − p)Sp(c) (Feinstein 1975; Galen 1986;
Greiner 1995, 1996).

MaxKappa Maximizes Kappa index (Cohen 1960; Greiner et al. 2000) or
Weighted Kappa index (Kraemer 1992; Kraemer, Periyakoil,
and Noda 2002).

Criteria based on predictive values
ValueNPV A value set for negative predictive value: the cutpoint c fulfill-

ing the condition NPV (c) = valueNPV.
ValuePPV A value set for positive predictive value: the cutpoint c fulfilling

the condition PPV (c) = valuePPV.
NPVEqualPPV negative predictive value = positive predictive value (Vermont

et al. 1991): the cutpoint c minimizing |NPV (c)− PPV (c)|.
MaxNPVPPV Maximizes negative predictive value and positive predic-

tive value simultaneously: the cutpoint c maximizing
{min{NPV (c),PPV (c)}}.

MaxSumNPVPPV Maximizes the sum of negative predictive value and posi-
tive predictive value: the cutpoint c maximizing {NPV (c) +
PPV (c)}.

MaxProdNPVPPV Maximizes the product of negative predictive value and positive
predictive value: the cutpoint c maximizing {NPV (c)PPV (c)}.

MinValueNPV A minimum value set for negative predictive value (Vermont
et al. 1991): the cutpoint c fulfilling the condition NPV (c) ≥
minValueNPV.

MinValuePPV A minimum value set for positive predictive value (Vermont
et al. 1991): the cutpoint c fulfilling the condition PPV (c) ≥
minValuePPV.

MinValueNPVPPV A minimum value set for predictive values (Vermont et al.
1991): the cutpoint c fulfilling the condition NPV (c) ≥
minValueNPV and PPV (c) ≥ minValuePPV.

PROC01 Minimizes distance between PROC plot and point (0, 1) (Ver-
mont et al. 1991; Gallop et al. 2003): the cutpoint c minimizing
{(NPV (c)− 1)2 + (PPV (c)− 1)2}.

Criteria based on diagnostic likelihood ratios
ValueDLR.Negative A value set for negative diagnostic likelihood ratio: the cutpoint

c fulfilling the condition DLR−(c) = valueDLR− (Boyko 1994;
Rutter and Miglioretti 2003).

ValueDLR.Positive A value set for positive diagnostic likelihood ratio: the cutpoint
c fulfilling the condition DLR+(c) = valueDLR+ (Boyko 1994;
Rutter and Miglioretti 2003).

Continued on next page
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Table 2 – continued from previous page

Criterion name Description

Criteria based on cost-benefit analysis of the diagnosis
CB Cost-benefit method, computing slope of ROC curve at optimal

cutpoint, as S =
1− p
p

CFP − CTN

CFN − CTP
(McNeill et al. 1975; Metz

et al. 1975; Metz 1978).
MCT Minimizes Misclassification Cost Term: the cutpoint c mini-

mizing MCT (c) =
CFN

CFP
p(1−Se(c))+(1−p)(1−Sp(c)) (Smith

1991; Greiner 1995, 1996).

Maximum χ2 or minimum p value criterion
MinPvalue Minimizes p value associated with the statistical χ2 test which

measures the association between the marker and the binary
result obtained on using the cutpoint (Miller and Siegmund
1982; Altman et al. 1994).

Prevalence-based methods
MeanPrev The closest value to the mean of the diagnostic test values.

This criterion is usually used in cases where the diagnostic test
takes values in the interval (0, 1), i.e., the mean probability
of occurrence, e.g., based on the results of a statistical model
(Manel et al. 2001; Kelly et al. 2008).

ObservedPrev The closest value to the observed prevalence: the cutpoint c
minimizing |c− p|, with p being prevalence estimated from the
sample. This criterion is thus indicated/valid in cases where
the diagnostic test takes values in the interval (0, 1) (Manel
et al. 2001).

PrevalenceMatching The value for which predicted prevalence is practically equal to
observed prevalence: the cutpoint c minimizing {|p(1−Se(c))−
(1−p)(1−Sp(c))|}. This criterion is usually used in cases where
the diagnostic test takes values in the interval (0, 1), i.e., the
predicted probability, e.g., based on a statistical model (Manel
et al. 2001; Kelly et al. 2008).

Table 2: Available methods in the OptimalCutpoints package.

The control argument indicates the output of the control.cutpoints function, which con-
trols the whole optimal-cutpoint calculation process. This function will be explained in detail
in the following subsection.

The ci.fit argument is a logical value, and if it is TRUE then inference is performed on the
accuracy measures at the optimal cutpoint (by default it is FALSE). Finally, conf.level is
the value of the confidence level (1− α), and by default is equal to 0.95.

Summarizing, the X, status, tag.healthy, methods and data arguments of the
optimal.cutpoints function are essential arguments, and if one or more is not introduced,
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this will lead to error. The remaining arguments (direction, categorical.cov, pop.prev,
control, ci.fit, conf.level and trace) are optional and, in the event of having no value,
will operate with the values established by default.

3.1. Controlling the optimal-cutpoint computation/selection process

It should be noted that there are arguments that are specific to each method. We decided
to include all of these in the control argument; control is a list of control values for the
selection process designed to replace the default values yielded by the control.cutpoints

function. The arguments of the control.cutpoints function, as well as the methods for
which they apply, are shown in Table 3.

The values of the costs in general (necessary in criteria which make use of cost/benefit-
based methodology, i.e., "CB", "MCT", "Youden" and "MaxEfficiency"), and the costs ratio
and costs of incorrect classifications in particular, must be indicated in the costs.ratio,
CFP and CFN arguments, respectively. By default, the value 1 is established for all, a situ-
ation equivalent to classification costs not being considered. The values established by de-
fault for the accuracy measures (necessary in the "MinValueSp", "ValueSp", "MinValueSe",
"ValueSe", "MinValueSpSe", "MinValueNPV", "ValueNPV", "MinValuePPV", "ValuePPV",
"MinValueNPVPPV", "ValueDLR.Positive" and "ValueDLR.Negative" methods) are indi-
cated in the valueSp, valueSe, valueNPV, valuePPV, valueDLR.Positive and
valueDLR.Negative arguments, respectively. By default, a value of 0.85 appears for sen-
sitivity, specificity and predictive values measures, a value of 2 for the positive likelihood
ratio, and a value of 0.5 for the negative likelihood ratio. These values were set on the basis
of values usually indicated in the literature but end-users will have to set them in line with
their own goals.

The adjusted.pvalue argument of the control.cutpoints function should be used in the
"MinPvalue" method to indicate whether the Miller and Siegmund method ("PADJMS" option)
or Altman method ("PALT5" and "PALT10" options) is selected for adjusting the p value (Miller
and Siegmund 1982; Altman et al. 1994). The default is "PADJMS". The first method uses
the minimum p value (pmin) observed and the proportion (ε) of sample data which is below
the lowest (εlow ) (or above the highest εhigh) cutpoint considered:

pacor = φ(z)(z − 1

z
) log

(
εhigh(1− εlow )

(1− εhigh)εlow

)
+ 4

φ(z)

z
,

where z is the (1 − pmin/2) quantile of the standard normal distribution, and φ denotes
the density function of the standard Normal. Altman et al. (1994) furnished the following
simplifications of the above formula that work well for low minimum p values (0.0001 < pmin <
0.1) and are easily applicable: For ε = εlow = εhigh = 5% : palt5 = −3.13pmin(1+1.65 ln(pmin))
and for ε = εlow = εhigh = 10% : palt10 = −1.63pmin(1 + 2.35 ln(pmin))

Various approaches are considered in OptimalCutpoints for calculating the confidence intervals
of the accuracy measures. The ci.SeSp, ci.PV and ci.DLR arguments in the
control.cutpoints function indicate the methods selected for computing confidence inter-
vals for Se/Sp, PPV /NPV and DLR+/DLR−, respectively. They are meaningful only when
the argument ci.fit is TRUE.



Journal of Statistical Software 15

Argument Method Description

CFP MCT A numerical value specifying the cost of a
Youden false positive decision CFP . The default
MaxKappa value is 1.

CFN MCT A numerical value specifying the cost of a
Youden false negative decision CFN . The default
MaxKappa value is 1.

costs.ratio CB A numerical value specifying the costs ratio

CR =
CFP − CTN

CFN − CTP
. The default value is 1.

costs.benefits. Youden A logical value. If TRUE, the optimal cutpoint
Youden based on cost-benefit methodology is com-

puted. The default is FALSE.
costs.benefits. MaxEfficiency A logical value. If TRUE, the optimal cutpoint
Efficiency based on cost-benefit methodology is com-

puted. The default is FALSE.
generalized.Youden Youden A logical value. If TRUE, the generalized

Youden index is computed. The default is
FALSE.

weighted.Kappa MaxKappa A logical value. If TRUE, the weighted kappa
index is computed. The default is FALSE.

valueSe MinValueSe A numerical value specifying the (minimum
ValueSe or specific) value set for sensitivity. The
MinValueSpSe default value is 0.85.

valueSp MinValueSp A numerical value specifying the (minimum
ValueSp or specific) value set for specificity. The
MinValueSpSe default value is 0.85.

valueNPV MinValueNPV A numerical value specifying the minimum
ValueNPV value set for negative predictive value. The
MinValueNPVPPV default value is 0.85

valuePPV MinValuePPV A numerical value specifying the minimum
ValuePPV value set for positive predictive value. The
MinValueNPVPPV default value is 0.85.

valueDLR.Positive ValueDLR.Positive A numerical value specifying the value set for
the positive diagnostic likelihood ratio. The
default value is 2.

valueDLR.Negative ValueDLR.Negative A numerical value specifying the value set for
the negative diagnostic likelihood ratio. The
default value is 0.5.

Continued on next page
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Table 3 – continued from previous page

Argument Method Description

maxSp MinValueSpSe A logical value meaningful only in a case
where there is more than one cutpoint ful-
filling the conditions. If TRUE, those of the
cutpoints which yield maximum specificity are
computed. Otherwise, the cutoff that yields
maximum sensitivity is computed. The de-
fault is TRUE.

maxNPV MinValueNPVPPV A logical value meaningful only in the case
where there is more than one cutpoint ful-
filling the conditions. If TRUE, those of the
cutpoints which yield the maximum negative
predictive value are computed. Otherwise,
the cutoff that yields the maximum positive
predictive value is computed. The default is
TRUE.

ci.SeSp All methods A character string meaningful only when the
argument ci.fit of the optimal.cutpoints

function is TRUE. It indicates the method
for estimating the confidence interval
for sensitivity and specificity measures.
Options are "Exact" (Clopper and Pear-
son 1934), "Quadratic" (Fleiss 1981),
"Wald" (Wald and Wolfowitz 1939),
"AgrestiCoull" (Agresti and Coull 1998)
and "RubinSchenker" (Rubin and Schenker
1987). The default is "Exact".

ci.PV All methods A character string meaningful only when the
argument ci.fit of the optimal.cutpoints

function is TRUE. It indicates the method for
estimating the confidence interval for predic-
tive values. Options are "Exact" (Clopper
and Pearson 1934), "Quadratic" (Fleiss
1981), "Wald" (Wald and Wolfowitz 1939),
"AgrestiCoull" (Agresti and Coull 1998),
"RubinSchenker" (Rubin and Schenker
1987), "Transformed" (Simel, Samsa, and
Matchar 1991), "NotTransformed" (Koop-
man 1984) and "GartNam" (Gart and Nam
1998). The default is "Exact".

Continued on next page
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Table 3 – continued from previous page

Argument Method Description

ci.DLR All methods A character string meaningful only when the
argument ci.fit of the optimal.cutpoints

function is TRUE. It indicates the method
for estimating the confidence interval
for diagnostic likelihood ratios. Options
are "Transformed" (Simel et al. 1991),
"NotTransformed" (Koopman 1984) and
"GartNam" (Gart and Nam 1998). The
default is "Transformed".

adjusted.pvalue MinPvalue A character string specifying the method for
adjusting the p value, i.e., "PADJMS" for the
Miller and Siegmund method (Miller and
Siegmund 1982), and "PALT5", "PALT10" for
the Altman method (Altman et al. 1994). The
default is "PADJMS".

standard.deviation. MaxEfficiency A logical value. If TRUE, standard deviation
accuracy associated with accuracy at the optimal cut-

point is computed. The default is FALSE.

Table 3: Summary of arguments of the control.cutpoints function.

In the ci.SeSp argument, the options are "Exact", "Quadratic", "Wald", "AgrestiCoull"
and "RubinSchenker". "Exact" is the exact confidence interval based on the exact distribu-
tion of a proportion (Clopper and Pearson 1934). It should be noted that this method cannot
be applied for proportions where the numerator or the difference between the denominator
and the numerator is equal to zero. If this occurs for any value of the corresponding accuracy
measure, i.e., the sensitivity or the specificity, the program shows a warning message and
returns a NaN for the limit of the confidence interval that could not be computed. It is worth
noting, however, that this problem only happens for values of sensitivity/specificity equal to
zero or one, i.e., on values which are not of interest in clinical practice. "Quadratic" refers
to Fleiss’ quadratic confidence interval (Fleiss 1981), based on the asymptotic normality of
the estimator of a proportion but adding a continuity correction, and this approach is valid
in a situation where both the numerator and the difference between the denominator and the
numerator of the proportion are greater than 5. "Wald" indicates Wald’s confidence interval
(Wald and Wolfowitz 1939) with continuity correction, based on maximum-likelihood estima-
tion of a proportion, and adding a continuity correction; it is valid where the numerator and
the difference between the denominator and numerator are greater than 20. Similarly to the
"Exact" method, when "Quadratic" or "Wald" approaches are not valid for any value of the
corresponding accuracy measure, the program shows a warning message. However, in these
cases the confidence intervals are computed. We therefore recommend the user to check the
conditions under which these methods are valid at the optimal cutpoint. The "AgrestiCoull"
option computes the confidence interval proposed by Agresti and Coull (1998), and is a score
confidence interval that does not use the standard calculation for the binomial proportion.
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Finally, "RubinSchenker" means Rubin and Schenker’s logit confidence interval (1987), and
uses logit transformation and bayesian arguments with an a priori Jeffreys distribution. The
default is "Exact".
In the ci.DLR argument, "Transformed", "NotTransformed" and "GartNam" are the available
options. "Transformed" indicates the confidence interval based on the logarithmic transfor-
mation of the diagnostic likelihood ratios (Simel et al. 1991), "NotTransformed" is the con-
fidence interval without transformation (Koopman 1984), and "GartNam" is the confidence
interval based on the calculation of the interval for the ratio of two independent proportions
(Gart and Nam 1998). The default is "Transformed". Inference of the predictive values
depends on the type of study, i.e., whether cross-sectional (prevalence can be estimated on
the basis of the sample) or case-control. In the former case, the approaches for calculat-
ing the confidence intervals of the predictive values are the same as for the sensitivity and
specificity measures. Accordingly, in such a case, the possible options for the ci.PV ar-
gument are "Exact", "Quadratic", "Wald", "AgrestiCoull" and "RubinSchenker". In a
case-control study, however, the confidence intervals of the predictive values should be based
on the intervals of the likelihood ratios, so that the available options are "Transformed",
"NotTransformed" and "GartNam". The default is "Exact".

For greater detail, the help manual of the optimal.cutpoints and control.cutpoints func-
tions can be consulted. In addition, the following section gives an illustration of the use of
these two functions, based on the real biomedical CAD example.

3.2. Summaries: numerical and graphical output

Numerical and graphical summaries of the created object can be obtained by using the
summary, print and plot methods.

Numerical results are printed on the screen, and the output yielded by the summary method
always includes: the matched call to the main function optimal.cutpoints; the AUC value
with its confidence interval (Delong, Delong, and Clarke-Pearson 1988); the method used for
selecting the optimal value together with the number of optimal cutpoints (in some cases
there may be more than one value); the optimal cutoff(s) and its/their accuracy-measure
estimates (Se, Sp, etc.); the number of false positive and false negative classifications; and,
where possible, the value of the optimal criterion. Furthermore, accuracy measures will be
accompanied by their confidence levels, if the se.fit argument is TRUE. All this information
will be shown for each level of categorical covariate, if specified. Graphical output shows the
empirical ROC and PROC curves and, where possible, the plot of the chosen criterion versus
all the different test values (candidates for the optimal cutpoint).

3.3. Technical features

In this subsection, certain specific characteristics of some methods and the behavior of the
package in such cases are briefly explained. The methods in which a minimum value is
set for sensitivity, specificity or the predictive values (the "MinValueSe", "MinValueSp",
"MinValuePPV" and "MinValueNPV" methods, respectively), can take several or even zero
values. In the latter case, an error message is shown and the user can enter a new minimum
value, if desired. In a case where there is more than one cutpoint fulfilling the condition, that
which maximizes the other measure is chosen as the optimal cutpoint(s). For example, in
the "MinValueSp" method, if there is more than one cutpoint with Sp ≥ minValueSp, that
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which yields the maximum sensitivity is chosen. So, the cutpoint(s) that achieves the highest
sensitivity and specificity under the condition Sp ≥ minValueSp are finally chosen.

The same behavior has been used for the methods that set minimum values for both the
sensitivity and specificity measures ("MinValueSpSe" method) or for both predictive values
("MinValueNPVPPV" method). The only difference is that if there is more than one cutpoint
fulfilling these conditions, those which yield maximum sensitivity or maximum specificity
(in "MinValueSpSe") or maximum predictive positive value or negative predictive value (in
"MinValueNPVPPV") are chosen. The user can select one of the two options by means of the
maxSp and maxNPV arguments in the control.cutpoints function, respectively (see Table 3).
If TRUE (the default value), the cutpoint/s yielding maximum specificity or maximum negative
predictive value is/are computed as the optimal cutpoint(s).

Finally, it should be noted that there are several criteria proposed in the literature that
provide the same optimal value. For instance, the "Youden" method is identical (from an
optimization point of view) to the method that maximizes the sum of sensitivity and speci-
ficity (Albert and Harris 1987; Zweig and Campbell 1993) and to the criterion that maximizes
concordance, which is a function of the AUC defined as Se +Sp− 0.5 (Begg, Cramer, Venka-
traman, and Rosai 2000; Gönen and Sima 2013). Similarly, "MaxProdSpSe" is the same as
the method which maximizes the accuracy area just defined as the product of sensitivity and
specificity (Lewis et al. 2008). Moreover, the method that maximizes efficiency or accuracy
("MaxEfficiency" method in OptimalCutpoints) provides the same optimal cutpoint as the
method that minimizes the classification error rate (Metz 1978).

4. Practical application of the OptimalCutpoints package

This section describes the application of the OptimalCutpoints R package. As mentioned in
the Introduction, to illustrate the use of this package, we shall consider the study that sought
to investigate the clinical usefulness of leukocyte elastase for diagnosis of CAD (Amaro et al.
1995). Usefulness refers to the practical value of information when it comes to managing
patients. The main research question here is to select optimal cutpoints for elastase concen-
trations at the date of diagnosing patients with CAD. Depending on a predetermined elastase
concentration cutpoint, subjects are chosen for coronary angiography. Since it is well estab-
lished that elastase concentrations behave differently according to gender, the analyses were
performed separately for males and females.

The first step consists of loading the OptimalCutpoints package and the data set (included in
the package) in R:

R> library("OptimalCutpoints")

R> data("elas")

To view summary statistics of the variables included in the data set:

R> summary(elas)

elas status gender

Min. : 5.0 Min. :0.000 Female: 37

1st Qu.: 27.0 1st Qu.:0.000 Male :104
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Median : 39.0 Median :1.000

Mean : 43.3 Mean :0.681

3rd Qu.: 51.0 3rd Qu.:1.000

Max. :163.0 Max. :1.000

To compute the optimal cutpoint using the elas data set, simply use the syntax shown below:

R> cutpoint1 <- optimal.cutpoints(X = "elas", status = "status",

+ tag.healthy = 0, methods = c("Youden", "SpEqualSe"), data = elas,

+ categorical.cov = "gender", pop.prev = NULL,

+ control = control.cutpoints(), ci.fit = TRUE)

In this case, by way of example, two methods are considered for calculating the optimal
cutpoint, namely, the method based on the Youden index, and the sensitivity-specificity
equality criterion, since these are two of the best-known and most widely used methods in
practice (Youden 1950; Greiner 1995; Aoki et al. 1997; Shapiro 1999; Greiner et al. 2000).
If no adjustment is made for any categorical covariate, one is left with the default value of
the categorical.cov argument: categorical.cov = NULL, and so there is no need for it to
be indicated. As the intention here, however, is to perform separate analyses for males and
females, the categorical.cov = "gender" must be indicated. As this example involves a
cross-sectional study, disease prevalence is estimated on the basis of sample prevalence, and
so the default value, pop.prev = NULL. In another type of study, end-users could indicate
a given value for the population prevalence. Finally, as the argument ci.fit is TRUE, the
confidence intervals for the accuracy measures are computed. By default, the "Exact" method
is used for the sensitivity, the specificity and the predictive values. As pointed out before,
this method cannot be applied in those situations where the TPs, the FPs, the TN s or the
FN s are equal to zero. In these cases, the program produces a warning, and returns a NaN for
the limit of the confidence interval that could not be computed. Specifically, in this example
eight warning messages appear: four warnings for females (for the sensitivity, the specificity,
and the positive and negative predictive values), and four similar warnings for males.

The cutpoint1 object is a list that consists of the following components:

R> names(cutpoint1)

[1] "Youden" "SpEqualSe" "methods" "levels.cat" "call"

[6] "data"

The component "methods" is a character vector with the value of the argument methods used
in the call; "levels.cat" is a character vector indicating the levels of the categorical covariate;
"call" is the matched call; and finally, "data" is the data frame used in the analysis. The first
two components ("Youden" and "SpEqualSe") contain the results associated with each of the
methods selected for computing the optimal cutpoint. In this case, each of these components
is itself a two-component list (for "Male" and "Female") containing:

R> names(cutpoint1$Youden$Male)

[1] "measures.acc" "optimal.cutoff" "criterion"

[4] "optimal.criterion"
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Each of the previous components contains the following information:

1. "measures.acc": a list with all cutoffs, their accuracy measures (Se, Sp, PPV , NPV ,
DLR+ and DLR−), the AUC, and prevalence and sample size in healthy and diseased
populations:

R> names(cutpoint1$Youden$Male$measures.acc)

[1] "cutoffs" "Se" "Sp" "PPV" "NPV"

[6] "DLR.Positive" "DLR.Negative" "AUC" "pop.prev" "n"

2. "optimal.cutoff": a list with the optimal cutoff(s), its/their accuracy measures (Se,
Sp, PPV , NPV , DLR+ and DLR−), and the number of false positive and false negative
decisions:

R> names(cutpoint1$Youden$Male$optimal.cutoff)

[1] "cutoff" "Se" "Sp" "PPV" "NPV"

[6] "DLR.Positive" "DLR.Negative" "FP" "FN"

3. "criterion": the numerical value of the method considered for selecting the optimal
cutpoint for each cutoff:

R> cutpoint1$Youden$Male$criterion

1 2 3 4 5 6 7

0.0000000 0.0434783 0.0869565 0.1057434 0.0933977 0.1368760 0.1803543

8 9 10 11 12 13 14

0.2238325 0.2549651 0.2302738 0.2179281 0.1932367 0.1438540 0.2249061

[...]

50 51 52 53 54 55 56

0.0864198 0.0740741 0.0617284 0.0493827 0.0370370 0.0246914 0.0123457

4. "optimal.criterion": the numerical value of the criterion at the optimal cutpoint:

R> cutpoint1$Youden$Male$optimal.criterion

[1] 0.393451

Accordingly, end-users can easily access each of these components, e.g., to see the sensitivity
values for all cut values in males:

R> cutpoint1$Youden$Male$measures.acc$Se

or

R> cutpoint1$SpEqualSe$Male$measures.acc$Se
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4.1. Numerical results

A numerical summary of the results can be obtained by calling up the print or summary

methods:

R> summary(cutpoint1)

Call:

optimal.cutpoints.default(X = "elas", status = "status", tag.healthy = 0,

methods = c("Youden", "SpEqualSe"), data = elas,

categorical.cov = "gender", pop.prev = NULL,

control = control.cutpoints(), ci.fit = TRUE)

***************************************************************

Female

***************************************************************

Area under the ROC curve (AUC): 0.818 (0.684, 0.952)

CRITERION: Youden

Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit

cutoff 46.0000000 - -

Se 0.6666667 0.3838037 0.8817589

Sp 0.8181818 0.5971542 0.9481327

PPV 0.7142857 0.4516107 0.9031160

NPV 0.7826087 0.5285570 0.9359958

DLR.Positive 3.6666667 1.4096667 9.5373214

DLR.Negative 0.4074074 0.1939348 0.8558589

FP 4.0000000 - -

FN 5.0000000 - -

Optimal criterion 0.4848485 - -

CRITERION: SpEqualSe

Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit

cutoff 41.00000000 - -

Se 0.73333333 0.4489968 0.9221285

Sp 0.68181818 0.4512756 0.8613535

PPV 0.61111111 0.3762084 0.8712446

NPV 0.78947368 0.5263331 0.9157684

DLR.Positive 2.30476190 1.1634481 4.5656764

DLR.Negative 0.39111111 0.1611869 0.9490094

FP 7.00000000 - -
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FN 4.00000000 - -

Optimal criterion 0.05151515 - -

*******************************************************************

Male

*******************************************************************

Area under the ROC curve (AUC): 0.722 (0.612, 0.831)

CRITERION: Youden

Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit

cutoff 38.0000000 - -

Se 0.6543210 0.5404147 0.7565737

Sp 0.7391304 0.5159480 0.8977139

PPV 0.8983051 0.7686835 0.9355009

NPV 0.3777778 0.2738718 0.6528595

DLR.Positive 2.5082305 1.2382379 5.0807845

DLR.Negative 0.4676834 0.3180320 0.6877538

FP 6.0000000 - -

FN 28.0000000 - -

Optimal criterion 0.3934514 - -

CRITERION: SpEqualSe

Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit

cutoff 36.00000000 - -

Se 0.66666667 0.5531734 0.7675667

Sp 0.60869565 0.3854190 0.8029236

PPV 0.85714286 0.7075091 0.9083152

NPV 0.34146341 0.2429772 0.5759222

DLR.Positive 1.70370370 1.0003372 2.9016279

DLR.Negative 0.54761905 0.3492857 0.8585711

FP 9.00000000 - -

FN 27.00000000 - -

Optimal criterion 0.05797101 - -

In this case, the summary method displays the information relating to the optimal cutpoint,
i.e., the methods used for selecting the optimal value here were "Youden" and "SpEqualSe",
and the optimal cutpoints as well as their accuracy measures are shown for both methods and
for males and females. Optimal criteria refer to the Youden index (i.e., the value Se +Sp− 1
at optimal cutpoint) and the Se − Sp difference at optimal cutoff. It must be borne in mind
that, as the choice of the cutpoint is made on the basis of the empirical ROC curve, it is not
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always possible to obtain the value c of the sample for which Se(c) = Sp(c); here the cutpoint
c/minc{|Ŝe(c)− Ŝp(c)|} is obtained.

As in the call to the function, ci.fit = TRUE, the accuracy measures -as pointed out above-
appear accompanied by their corresponding confidence levels. By default, confidence intervals
for the AUC and accuracy measures are calculated for a confidence level α of 0.95, though this
value can be changed in the conf.level argument of the main optimal.cutpoints function.
Moreover, the exact confidence interval (Clopper and Pearson 1934) is being calculated by
default for the sensitivity, specificity and predictive values measures (in this case the inference
for these values is correct, since it is a cross-sectional study; if it were a case-control study,
however, the method of calculating the confidence interval for the predictive values would
have to be changed), and for the interval based on the transformation logarithm for the
likelihood ratios (Simel et al. 1991). These methods for calculating confidence intervals can
be changed by means of the ci.SeSp, ci.PV and ci.DLR arguments, which appear in the
control.cutpoints function. Hence, if one wanted to change the method of calculating the
confidence interval for the sensitivity and specificity measures, one would only have to indicate
this using the following syntax:

R> cutpoint2 <- optimal.cutpoints(X = "elas", status = "status",

+ tag.healthy = 0, methods = c("Youden", "SpEqualSe"), data = elas,

+ pop.prev = NULL, categorical.cov = "gender",

+ control = control.cutpoints(ci.SeSp = "AgrestiCoull"), ci.fit = TRUE)

R> summary(cutpoint2)

In this case, the results would be as follows:

Call:

optimal.cutpoints.default(X = "elas", status = "status", tag.healthy = 0,

methods = c("Youden", "SpEqualSe"), data = elas,

categorical.cov = "gender", pop.prev = NULL,

control = control.cutpoints(ci.SeSp = "AgrestiCoull"), ci.fit = TRUE)

*************************************************

Female

*************************************************

Area under the ROC curve (AUC): 0.818 (0.684, 0.952)

CRITERION: Youden

Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit

cutoff 46.0000000 - -

Se 0.6666667 0.4171355 0.8482368

Sp 0.8181818 0.6148339 0.9269312

[...]

CRITERION: SpEqualSe



Journal of Statistical Software 25

Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit

cutoff 41.00000000 - -

Se 0.73333333 0.4804957 0.8910255

Sp 0.68181818 0.4731860 0.8363941

[...]

*************************************************

Male

*************************************************

Area under the ROC curve (AUC): 0.722 (0.612, 0.831)

CRITERION: Youden

Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit

cutoff 38.0000000 - -

Se 0.6543210 0.5458938 0.7487735

Sp 0.7391304 0.5353000 0.8745138

[...]

CRITERION: SpEqualSe

Number of optimal cutoffs: 1

Estimate 95% CI lower limit 95% CI upper limit

cutoff 36.00000000 - -

Se 0.66666667 0.5585284 0.7597123

Sp 0.60869565 0.4078552 0.7784238

[...]

Note that the exploration of the usefulness of medical information involves many factors which,
rather than being properties of the test system, are instead properties of the circumstances of
the clinical application. With respect to clinical interpretation, the following result was ob-
tained: leukocyte elastase determination was shown to be a test that displays good ‘diagnostic
accuracy’ or ability to discriminate between patients with and without CAD, particularly in
women (AUC = 0.82 in women versus AUC = 0.72 in men). The cutpoint obtained using
the criterion based on the Youden index for women was 46 µgl−1. Accordingly, women with
an elastase value higher than or equal to 46 were classified as patients with CAD. Using this
cutpoint, 82% of women without CAD and 67% of women with CAD were correctly classified
(4 false positive and 5 false negative classifications). Furthermore, 78% of women who regis-
tered a negative test result (i.e., an elastase value lower than 46) did not really present with
CAD, while 71% of women with a positive result did in fact present with the disease. The
likelihood of a female having CAD increased by 3.67 in the case of a positive test result and,
conversely, decreased by 0.41 in the case of a negative test result.

In the case of men, the cutpoint obtained using the criterion based on the Youden index
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was 38 µgl−1, a value lower than that obtained for women. This means that men with
elastase values higher than or equal to 38 µgl−1 were classified as CAD patients. On the
basis of this value, 65% of the men who presented with the disease were correctly classified by
determination of elastase (positive value) and 74% of those who did not present with CAD
were likewise correctly classified (negative value, elastase lower than 38 µgl−1). Of the men
who registered a positive elastase value, almost 90% really had CAD but among those who
registered a negative elastase value, only 37% did not really have the disease. Moreover,
the likelihood of a male having CAD was 2.5-fold if the test result was positive (elastase ≥
38 µgl−1) and 0.47-fold if the test result was negative.

If, instead of the Youden criterion, one applies the method that selects the cutoff at which
sensitivity is equal to specificity, one obtains optimal cutpoints lower than those previously
obtained (equal to 41 µgl−1 in women and 36 µgl−1 in men), and the same conclusions can be
drawn as in the previous case. The only difference is that, when the optimal value falls, the
measures of sensitivity (and thus the false positive decisions) and negative predictive value
increase, while the measures of specificity (and false negatives), positive predictive value and
likelihood ratios all decrease.

The Youden index can also be interpreted from a cost-benefit analysis perspective. The slope
of the ROC curve at the optimal cutpoint obtained using this index is equal to 1 (Perkins
and Schisterman 2006), which is equivalent to having a prevalence equal to 0.5 and a costs
ratio equal to 1. If one wished to calculate the optimal value taking this into account, one
would have to specify that the costs.benefits.Youden argument of the control.cutpoints
function was set as TRUE:

R> cutpoint3 <- optimal.cutpoints(X = "elas", status = "status",

+ tag.healthy = 0, methods = c("Youden", "SpEqualSe"), data = elas,

+ pop.prev = NULL, categorical.cov = "gender",

+ control = control.cutpoints(costs.benefits.Youden = TRUE),

+ ci.fit = TRUE)

The Youden index gives equal weight to sensitivity and specificity. Sometimes, however, dif-
ferent weights are suitable (based on the cost of the different types of error and the prevalence
of the disease), and in such a case the generalized Youden index can be used. This possi-
bility was also implemented in the OptimalCutpoints package, within the "Youden" method.
For the purpose, this only has to be indicated in the generalized.Youden argument of the
control.cutpoints function. If generalized.Youden = TRUE, the generalized Youden in-
dex is computed. In the absence of a value being indicated for costs of incorrect diagnostic
decisions or prevalence, CFP = CFN = 1 is considered by default (a situation equivalent to hav-
ing no costs), and prevalence is estimated on the basis of the sample, in this case p = 0.77885
in males, and p = 0.40541 in females. If the end-user wishes to specify any given costs, these
must be indicated in the CFP and CFN arguments of the control.cutpoints function, within
the control argument in the main function, e.g.:

R> cutpoint4 <- optimal.cutpoints(X = "elas", status = "status",

+ tag.healthy = 0, methods = c("Youden", "SpEqualSe"), data = elas,

+ pop.prev = NULL, categorical.cov = "gender", control =

+ control.cutpoints(generalized.Youden = TRUE, CFP = 1, CFN = 3),

+ ci.fit = TRUE)
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So, in this case, assuming that an FN result has triple the cost of an FP result, the Youden
index would yield some cutpoints that were lower than those obtained without considering
misclassification costs, (25 µgl−1 in women and 13 µg−1 in men). Hence, with these optimal
values, the presence of false negatives (zero false negative decisions) is avoided, and some
maximum values (equal to 1) are attained for sensitivity and also the negative predictive
value.

To change the value of the population prevalence, this only has to be directly indicated in
the pop.prev argument of the optimal.cutpoints function. For instance, with a prevalence
equal to 0.5 and costs equal to 1, the generalized Youden index is equivalent to the Youden
index (the results would be the same):

R> cutpoint5 <- optimal.cutpoints(X = "elas", status = "status",

+ tag.healthy = 0, methods = c("Youden", "SpEqualSe"), data = elas,

+ pop.prev = 0.5, categorical.cov = "gender",

+ control = control.cutpoints(generalized.Youden = TRUE),

+ ci.fit = TRUE)

It could also be indicated as follows, by using a two-component vector (number of levels of
the covariate) to specify the prevalence:

R> cutpoint5 <- optimal.cutpoints(X = "elas", status = "status",

+ tag.healthy = 0, methods = c("Youden", "SpEqualSe"), data = elas,

+ pop.prev = c(0.5, 0.5), categorical.cov = "gender",

+ control = control.cutpoints(generalized.Youden = TRUE),

+ ci.fit = TRUE)

4.2. Graphical results

The graphical output of the results can be obtained by calling up the plot method:

R> plot(cutpoint1)

By default, the plot method depicts the plots of the ROC and PROC curves (which = c(1,

2)). However, the plot of the values of the optimal criterion as a function of the cutoffs can,
where applicable, be obtained by specifying the argument which = 3:

R> plot(cutpoint1, which = 3, ylim = c(0, 1))

Figures 1 and 2 show the figures that appear as a result of the above calls in females and
males, respectively. This is the default output but the end-user can add specific graphic
parameters, such as color, legend, etc.

Furthermore, other figures are also possible, e.g., in the method in which sensitivity and
specificity are equal, the plot of these measures (jointly) according to the cutpoint may be of
interest. This graph can be created on the basis of the pertinent components yielded with
the optimal.cutpoints function. For instance, for males, the code is as follows:
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Figure 1: Graphical output in females. From left to right, ROC curve, PROC curve and
optimal criterion (according to cutpoints). Top to bottom, the Youden index and sensitivity-
specificity equality criteria.

R> plot(cutpoint1$SpEqualSe$Male$measures.acc$cutoffs,

+ cutpoint1$SpEqualSe$Male$measures.acc$Se[, 1],

+ xlab = "Cutpoint", ylab = "Sensitivity and Specificity", type = "l",

+ lty = 2, main = "Sensitivity and Specificity \n Males")

R> lines(cutpoint1$SpEqualSe$Male$measures.acc$cutoffs,

+ cutpoint1$SpEqualSe$Male$measures.acc$Sp[, 1], xlab = "Cutpoint",

+ ylab = "Sensitivity and Specificity", type = "l")

R> legend("topright", legend = c("Se", "Sp"), lty = c(2, 1), bty = "n")

And similarly for females (see Figure 3).

5. Discussion

The selection of a cutpoint or optimal threshold is useful in continuous diagnostic tests.
This develops OptimalCutpoints, a user-friendly R package that allows users to choose from
among several popular methods in clinical practice. Unlike other packages (Freeman and
Moisen 2008; Brasil 2010), OptimalCutpoints enables optimal levels to be calculated directly
according to levels of given (categorical) covariates. This is of great interest, since discrimi-
nation of a biodiagnostic marker may often be different depending on certain characteristics,
such as a particular patient’s age group or sex (Pepe 2003), and so when it comes to select-
ing the optimal cutpoint, this must be borne in mind in order to avoid drawing erroneous
conclusions. Moreover, some packages only allow for the diagnostic test to take values from
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Figure 2: Graphical output in males. From left to right, ROC curve, PROC curve and optimal
criterion (according to cutpoints). Top to bottom, the Youden index and sensitivity-specificity
equality criteria.
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Figure 3: Sensitivity (dotted line) and specificity (solid line) plots according to cutpoints for
females (top) and males (bottom).

0 to 1, since they are specifically designed for predictive diagnostic models, but in Optimal-
Cutpoints, no restriction has been imposed with respect to the range of the values of the
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diagnostic test. Thus, it can take some values in a continuous range or a risk score obtained
from a predictive diagnostic model (values from 0 to 1). In addition, more optimal-cutpoint
selection methods proposed in the literature were included, such as criteria based on predic-
tive values or likelihood ratios, and the incorporation of costs and/or prevalence in some of
these criteria. In general, the choice of method to be applied in practice ought to be based on
the researcher’s specific goal and the diagnostic properties (sensitivity, specificity, predictive
values, etc.) sought, depending mainly on the disease under study.

Moreover, with our package, users can easily obtain numerical (point and confidence interval
estimates) and graphical output for all methods with just one input command, and make
decisions accordingly. We thus trust that a program displaying these features will prove useful
to the biomedical community; a program which we are thinking of continually improving, by
enabling, say, the incorporation of covariates of a continuous nature and implementing new,
more efficient methods for estimating optimal cutpoints under each of the criteria outlined,
e.g., under certain parametric assumptions (only empirical estimators were considered in this
first version of the package). It would also be useful to extend the OptimalCutpoints package
to the situation of partial disease verification (Begg and Greenes 1983; Zhou 1993, 1994,
1998), i.e., where the true disease status of all the patients in the sample is not known, or
the costs of incorrect classifications of diagnoses and/or prevalence of the disease must be
taken into account in other criteria. This is where the focus of our future research should be
concentrated.

This study centered on the field of diagnostic tests, but OptimalCutpoints may also be applied
in any field where signal-to-noise analysis is performed, such as screening, radio-diagnostic
techniques or biology, among others.
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Álvarez Garćıa G, Collantes-Fernández E, Costas E, Rebordosa X, Ortega-Mora LM (2003).
“Influence of Age and Purpose for Testing on the Cut-Off Selection of Serological Methods
in Bovine Neosporosis.” Veterinary Research, 34, 341–352.



Journal of Statistical Software 31

Amaro A, Gude F, Gonzalez-Juanatey R, Iglesias F, Fernandez-Vazquez F, Garcia-Acuna J,
Gil M (1995). “Plasma Leukocyte Elastase Concentration in Angiographically Diagnosed
Coronary Artery Disease.” European Heart Journal, 16, 615–622.

Aoki K, Misumi J, Kimura T, Zhao W, Xie T (1997). “Evaluation of Cutoff Levels for
Screening of Gastric Cancer Using Serum Pepsinogens and Distributions of Levels of Serum
Pepsinogens I, II and of PG I/PG II Ratios in a Gastric Cancer Case-Control Study.”
Journal of Epidemiology, 7, 143–151.

Bamber D (1975). “The Area above the Ordinal Dominance Graph and the Area below the
Receiver Operating Graph.” Journal of Mathematical Psychology, 12, 387–415.

Begg C, Greenes R (1983). “Assessment of Diagnostic Tests when Disease Verification Is
Subject to Selection Bias.” Biometrics, 39, 207–215.

Begg CB, Cramer LD, Venkatraman ES, Rosai J (2000). “Comparing Tumour Staging and
Grading Systems: A Case Study and a Review of the Issues, Using Thymoma as a Model.”
Statistics in Medicine, 19, 1997–2014.
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Schäfer H (1989). “Constructing a Cut-Off Point for a Quantitative Diagnostic Test.” Statistics
in Medicine, 8, 1381–1391.

Schisterman EF, Perkins NJ, Liu A, Bondell H (2005). “Optimal Cutpoint and Its Correspond-
ing Youden Index to Discriminate Individuals Using Pooled Blood Samples.” Epidemiology,
16, 73–81.

Schulgen G, Lausen B, Olsen JH, Schumacher M (1994). “Outcome-Oriented Cutpoints in
Analysis of Quantitative Exposures.” American Journal of Epidemiology, 140, 172–184.

http://www.R-project.org/


Journal of Statistical Software 35

Shapiro DE (1999). “The Interpretation of Diagnostic Tests.” Statistical Methods in Medical
Research, 8, 113–134.

Simel DL, Samsa GP, Matchar DB (1991). “Likelihood Ratios with Confidence: Sample Size
Estimation for Diagnostic Test Studies.” Journal of Clinical Epidemiology, 44(8), 763–770.

Smith RD (1991). “Evaluation of Diagnostic Tests.” In RD Smith (ed.), Veterinary Clinical
Epidemiology, 3rd edition, pp. 29–43. Butterworth-Heinemann, Stoneham.

Swets JA (1979). “ROC Analysis Applied to the Evaluation of Medical Imaging Techniques.”
Investigative Radiology, 14, 109–121.

Swets JA, Pickett RM (1982). Evaluation of Diagnostic Systems: Methods from Signal De-
tection Theory. Academic Press, New York.

Swets JA, Swets JB (1979). “ROC Approach to Cost/Benefit Analysis.” In Proceedings of the
Sixth IEEE Conference on Computer Applications in Radiology, pp. 203 – 206. Reprinted
in Ripley KL, Murray A (eds.).

VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C (2012). SDMTools: Species
Distribution Modelling Tools: Tools for Processing Data Associated with Species Distribu-
tion Modelling Exercises. R package version 1.1-20, URL http://CRAN.R-project.org/

package=SDMTools.

Vermont J, Bosson JL, François P, Robert C, Rueff A, Demongeot J (1991). “Strategies for
Graphical Threshold Determination.” Computer Methods and Programs in Biomedicine,
35, 141–150.

Wald A, Wolfowitz J (1939). “Confidence Limits for Continuous Distribution Functions.” The
Annals of Mathematical Statistics, 10, 105–118.

Youden WJ (1950). “Index for Rating Diagnostic Tests.” Cancer, 3, 32–35.

Zhou XH (1993). “Maximum Likelihood Estimators of Sensitivity and Specificity Corrected
for Verification Bias.” Communication in Statistics-Theory and Methods, 22, 3177–3198.

Zhou XH (1994). “Effect of Verification Bias on Positive and Negative Predictive Values.”
Statistics in Medicine, 13, 1737–1745.

Zhou XH (1998). “Correcting for Verification Bias in Studies of a Diagnostic Test’s Accuracy.”
Statistical Methods in Medical Research, 7, 337–353.

Zweig MH, Campbell G (1993). “Receiver-Operating Characteristics (ROC) Plots: A Funda-
mental Evaluation Tool in Clinical Medicine.” Clinical Chemistry, 39, 561–577.

http://CRAN.R-project.org/package=SDMTools
http://CRAN.R-project.org/package=SDMTools


36 OptimalCutpoints: Optimal Cutpoints in Diagnostic Tests in R

Affiliation:

Mónica López-Ratón
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