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Abstract

The BayesLCA package for R provides tools for performing latent class analysis within
a Bayesian setting. Three methods for fitting the model are provided, incorporating an
expectation-maximization algorithm, Gibbs sampling and a variational Bayes approxima-
tion. The article briefly outlines the methodology behind each of these techniques and
discusses some of the technical difficulties associated with them. Methods to remedy
these problems are also described. Visualization methods for each of these techniques are
included, as well as criteria to aid model selection.
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1. Introduction

Populations of interest can often be divided into homogenous subgroups, although such group-
ings may never be explicitly observed. Commonly, it is of interest both to identify such divi-
sions in a population of interest and succinctly describe their behavior. Latent class analysis
(LCA) is a type of model-based clustering which concerns the study of binary data drawn
from such populations. Examples of such data can include the correct or incorrect answers
submitted during an exam (Bartholomew and Knott 1999), the symptoms presented by per-
sons with major depressive disorder (Garrett and Zeger 2000), or a disability index recorded
by long-term survey (Erosheva, Fienberg, and Joutard 2007).

While the R (R Core Team 2014) environment for statistical computing features several pack-
ages for finite mixture models, many are concerned with continuous data, such as mixtures
of multivariate Gaussian distributions (mclust, Fraley and Raftery 2007), regression models
(flexmix, Leisch 2004), or some combination therein (mixtools, Benaglia, Chauveau, Hunter,
and Young 2009). While functions to perform LCA are available in packages such as e1071
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(Dimitriadou, Hornik, Leisch, Meyer, and Weingessel 2014) and in particular poLCA (Linzer
and Lewis 2011), these limit the user to performing inference within a maximum likelihood
estimate, frequentist framework. No dedicated package for performing LCA within a Bayesian
paradigm yet exists.

The main aims of the BayesLCA package are:

� Cluster observations into groups.

� Perform inference on the model posterior. This may be done by obtaining maximum
a posteriori (MAP) and posterior standard deviation estimates; iteratively sampling
from the posterior; or by approximating the posterior with another distribution of a
convenient form.

� Report both parameter estimates and posterior standard deviations.

� Provide plotting tools to visualize parameter behavior and assess model performance.

� Provide summary tools to help assess model selection and fit.

Users of the package may also wish to include prior information into their analysis, something
outside the scope of frequentist analysis. There may be multiple reasons for doing so: expert
information may be available; certain boundary solutions may be viewed as unrealistic, and
as such to be avoided; differing prior information may be supplied to the model in order to
check the robustness of results. However, in this paper we do not dwell on this issue, instead
emphasizing the methods for parameter estimation and visualization which are available in
the package.

Note that while the package emphasizes inference within a Bayesian framework, inference
may still be performed from a frequentist viewpoint. For example, the use of the expectation
maximization (EM) algorithm, together with the specification of (proper) uniform priors for
all model parameters, is the equivalent of obtaining the maximum likelihood estimate of the
parameters. Conversely, some of the methods available in BayesLCA are beyond the scope of
frequentist approaches.

There are three main inferential functions in BayesLCA: an EM algorithm (Dempster, Laird,
and Rubin 1977), a Gibbs sampler (Geman and Geman 1984) and a variational Bayes approx-
imation (see Ormerod and Wand 2010, for an introduction to this method). Bishop (2006)
contains excellent overviews of all three techniques. While each of the methods has been
shown to be highly effective, associated difficulties can occur when attempting to perform
inference. For example, label switching can often occur when using a Gibbs sampler, while
headlong algorithms such as the EM algorithm and variational Bayes approximation can be
sensitive to the starting values with which they are specified. While remedies for these diffi-
culties are available, some may be more effective than others and the use of all three methods
in combination may provide insight into the reliability of the statistical inferences being made.
It is hoped that the paper may also serve as a useful introduction for those unfamiliar with
the methods.

The rest of this paper is organized as follows: model specification for LCA is briefly outlined in
Section 2. Demonstrations of the main inferential functions are provided in Sections 3, 4 and 5
respectively. These three sections each follow a similar format. Firstly, a broad overview of the
inferential technique is given. The method is then applied to randomly generated synthetic
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data in order to illustrate its application in a simple manner. Some of the technical issues
associated with the method are then discussed while being applied to the Alzheimer dataset
included with the package. A description of both datasets is given in Section 2.1. Additional
features are discussed in Section 6, and a summary of the package, as well as potential future
extensions to the package are briefly discussed in Section 7.

All computations and graphics in this paper have been done with BayesLCA version 1.6. The
latest version of the package should always be available from the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=BayesLCA.

2. Latent class analysis

Latent class analysis involves performing inference within a mixture model framework, where
the class of distribution is restricted to be a Bernoulli distribution. Let X = (X1, . . . ,XN )
denote M -dimensional vector-valued random variables, composed of G sub-populations, more
commonly referred to as classes or components. Two sets of parameters, the G-dimensional
vector τ and G × M dimensional matrix θ, underly the model. These are referred to as
the parameters for class and item probability respectively. The parameter τg denotes the

prior probability of belonging to group g, so that τg ≥ 0 and
∑G

g=1 τg = 1. The parameter
θgm denotes the probability, conditional on membership of group g, that Xim = 1, for any
i ∈ 1, . . . , N , so that p(Xim|θgm) = θXim

gm (1 − θgm)1−Xim , for Xim ∈ {0, 1}. By making the
näıve Bayes assumption (Hand and Yu 2001) that observations are conditionally independent
based on group membership, the density of each Xi can then be written as

p(Xi|θ, τ ) =

G∑
g=1

τgp(Xi|θg), (1)

where p(Xi|θg) =
∏M
m=1 p(Xim|θgm).

Direct inference using Equation 1 is typically difficult. The inference techniques in Sec-
tions 3, 4 and 5 are all predicated on the introduction of missing data Z = (Z1, . . . ,ZN ).
Each Zi = (Zi1, . . . , ZiG) is a G-dimensional vector, representing the true class membership
of Xi as a multinomial random variable. That is, suppose that the true group membership is
known for each Xi, and is denoted by

Zig :=

{
1 if observation i belongs to group g
0 otherwise.

The complete-data density for an observation (Xi,Zi) is then

p(Xi,Zi|τ ,θ) =

G∏
g=1

[τgp(Xi|θg)]Zig .

Since Zi is not known, the posterior probability for the class membership of observation i is
given by

p(Zi|Xi, τ ,θ) =
G∏
g=1

[
τgp(Xi|θg)∑G
h=1 τhp(Xi|θh)

]Zig

.
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To determine the complete-data posterior distribution p(τ ,θ|Zi,Xi), we first assume con-
jugate prior distributions p(τ |δ) and p(θgm|αgm, βgm), for τ and θgm, with corresponding
hyperparameters αgm, βgm, δg ∈ R+ for each g ∈ {1, . . . , G} and m ∈ {1, . . . ,M}. That is, we
assume that they follow Dirichlet and beta distributions respectively, which have the following
forms:

p(τ |δ) ∝
G∏
g=1

τ
δg−1
g

p(θgm|αgm, βgm) ∝ θ
αgm−1
gm (1− θgm)βgm−1

for each g ∈ {1, . . . , G} and m ∈ {1, . . . ,M}.
Making these assumptions yields the posterior distribution (Garrett and Zeger 2000)

p(τ ,θ|X,Z) ∝
N∏
i=1

p(Xi,Zi|τ ,θ)p(θ)p(τ ) (2)

=

N∏
i=1

G∏
g=1

τ
Zig+δg−1
g

M∏
m=1

θ
XimZig+αgm−1
gm (1− θgm)(1−Xim)Zig+βgm−1.

Note that, as with all mixture models, latent class models are only identifiable up to a
permutation of labels (Redner and Walker 1984; Leisch 2004). While this does not affect
the inference methods discussed in Sections 3 and 5, issues do occur when employing Gibbs
sampling methods, the details of which are discussed in Section 4.2.1. For convenience, once
parameter estimates have been calculated in BayesLCA, labels are automatically indexed by
decreasing order of size with respect to the class probability parameter τ , so that, e.g., group 3
will be the third largest group in the model.

2.1. Using BayesLCA

To begin, first load the BayesLCA package into R.

R> library("BayesLCA")

While not strictly necessary, setting the seed at the start will ensure identical results to those
produced in this paper.

R> set.seed(123)

First, we simulate some data X to perform inference on. This can be done using the command
rlca(). We generate a 500-row, 4-column matrix X with two underlying latent classes with
parameters

τ =
(

0.4 0.6
)

and θ =

(
0.8 0.8 0.2 0.2
0.2 0.2 0.8 0.8

)
with the code

R> tau <- c(0.4, 0.6)

R> theta <- rbind(rep(c(0.8, 0.2), each = 2), rep(c(0.2, 0.8), each = 2))

R> X <- rlca(500, itemprob = theta, classprob = tau)
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If X is inspected, it can be seen that many rows of the data are repeated. This stands to
reason, as only 24 = 16 unique combinations are possible. To store the data in a more
efficient manner which is compatible with BayesLCA, use the command:

R> x <- data.blca(X)

This amounts to a list, consisting of a matrix of unique data patterns and a vector storing
the number of times each pattern occurs.

We will also apply our methods to a dataset of patient symptoms recorded in the Mercer
Institute of St. James’ Hospital in Dublin, Ireland (Moran, Walsh, Lynch, Coen, Coakley, and
Lawlor 2004; Walsh 2006). The data is a recording of the presence or absence of six symptoms
displayed by 240 patients diagnosed with early onset Alzheimer’s disease. Analysis of this
dataset will highlight some of the technical issues associated with the inference techniques to
be discussed. It is loaded into the R terminal using:

R> data("Alzheimer")

R> alz <- data.blca(Alzheimer)

3. EM algorithm

In an EM algorithm (Dempster et al. 1977), the expected complete-data log-posterior, which
in this case is defined to be

Q(θ, τ |θ(k), τ (k)) := E[log p(θ, τ |X,Z)|X,θ(k), τ (k)]

is iteratively maximised with respect to θ and τ , where θ(k) and τ (k) denote the values of
θ and τ at iteration k (Tanner 1996). A lower bound of the observed-data log-posterior

log p(θ(k), τ (k)|X), each successive estimate of θ(k) and τ (k) with respect to Q(θ, τ |θ(k), τ (k))
in turn forces log p(θ, τ |X) to increase also, so that log p(θ(k+1), τ (k+1)|X) ≥ log p(θ(k), τ (k)|X)
whenever Q(θ(k+1), τ (k+1)|θ(k), τ (k)) ≥ Q(θ(k), τ (k)|θ(k), τ (k)). In this way local maxima for
θ and τ are obtained (or a saddle point is reached). At the kth stage of the algorithm,
parameter estimates are updated in two steps:

E-step: Compute Q(θ, τ |θ(k), τ (k)).

M-step: Set

θ(k+1) = arg max
θ∈Θ

Q(θ, τ |θ(k), τ (k))

τ (k+1) = arg max
τ∈T

Q(θ, τ |θ(k), τ (k)).

Here Θ and T denote the sample spaces for θ and τ respectively, i.e., Θ is the G × M
dimensional unit hypercube, Θ = [0, 1]G×M , while T is the G− 1 unit simplex

T =

τ = (τ1, . . . , τG) ∈ [0, 1]G |
G∑
g=1

τg = 1

 .

The E and M steps are repeated until the algorithm is deemed to converge.

In practice, the algorithm proceeds by executing:
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E-step:

Z
(k+1)
ig =

τ
(k)
g p(Xi|θ(k)

g )∑G
h=1 τ

(k)
h p(Xi|θ(k)

h )
.

M-step:

θ(k+1)
gm =

∑N
i=1XimZ

(k+1)
ig + αgm − 1∑N

i=1 Z
(k+1)
ig + αgm + βgm − 2

τ (k+1)
g =

∑N
i=1 Z

(k+1)
ig + δg − 1

N +
∑G

h=1 δh −G
.

Note that while estimation of τ (k) necessarily includes the constraint that the values sum to 1
(Bartholomew and Knott 1999), no such constraint is imposed to obtain θ. Only the binary

nature of X and suitable prior values ensure that an estimate θ
(k)
gm lies in the interval [0, 1].

Posterior standard deviation estimates for the estimated parameter values may be obtained
from the observed information (Bartholomew and Knott 1999; Linzer and Lewis 2011), or by
using bootstrapping methods. These methods will be discussed further in Section 3.2. It is
also possible to determine whether the algorithm has converged to a local maximum rather
than a saddle point, by checking whether all eigenvalues of the observed information matrix
are positive.

3.1. Synthetic data

Let’s first use the EM algorithm method to estimate θ and τ from our synthetic data X, ig-
noring for the moment additional model output. The standard function to call when analysing
data is blca(), and then using the argument method to specify how inference is to be per-
formed, e.g., method = "em". Alternatively, one can use blca. as a prefix, and then specify
the method directly afterwards, for example blca.em(). To fit a 2-class model to the data
using the EM method, with any additional arguments set to their default values, simply use
the command:

R> fit1 <- blca(X, 2, method = "em")

R> fit1

MAP Estimates:

Item Probabilities:

Col 1 Col 2 Col 3 Col 4

Group 1 0.244 0.226 0.755 0.760

Group 2 0.846 0.822 0.162 0.146

Membership Probabilities:
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Group 1 Group 2

0.651 0.349

Warning message:

Posterior standard deviations not returned.

Note that the item and membership probability estimates are close to the true values of τ
and θ. We can also run the algorithm again, this time with prior values explicitly specified:

R> fit2 <- blca.em(x, 2, alpha = theta * 5, beta = (1 - theta) * 5,

+ delta = tau * 5)

Comparing the estimates for τ and θ of fit2 to fit1, we see that the results are highly
similar, up to three decimal places. In this case, using a somewhat informative prior has had
little impact on the result in comparison with a uniform, or non-informative, prior.

R> fit2$classprob

[1] 0.6507996 0.3492004

R> fit2$itemprob

[,1] [,2] [,3] [,4]

[1,] 0.2409866 0.2234701 0.7578669 0.7630877

[2,] 0.8492732 0.8253584 0.1584750 0.1431960

Use names(fit1) to see all items returned. The blca.em function returns an object with
classes "blca.em" and "blca", for which print, summary and plot methods exist. The
summary command provides the prior values specified to the model, as well as other infor-
mation, such as the number of iterations the algorithm ran for and the value of log-posterior
found by the estimates.

R> summary(fit2)

Bayes-LCA

Diagnostic Summary

__________________

Hyper-Parameters:

Item Probabilities:

alpha:

Col 1 Col 2 Col 3 Col 4

Group 1 1 1 4 4

Group 2 4 4 1 1

beta:
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Col 1 Col 2 Col 3 Col 4

Group 1 4 4 1 1

Group 2 1 1 4 4

Class Probabilities:

delta:

Group 1 Group 2

3 2

__________________

Method: EM algorithm

Number of iterations: 32

Log-Posterior Increase at Convergence: 0.0007128088

Log-Posterior: -1237.986

AIC: -2460.092

BIC: -2498.024

Multiple figures may be produced by the plot method, some of which depend on the inference
method used. These are specified by the argument which. Two figures common to all blca
objects illustrate parameter values and classification uncertainty respectively. The first is a
type of mosaic plot, where the y-axis denotes the size of each class, and the x-axis denotes
each column of the data. Each cell’s colour indicates the probability of a symptom being
present, with high values having a bright yellow colour and low values having dark red. The
second plot is another mosaic plot, with datapoints ordered along the x-axis according to size,
and colour denoting class membership.

R> plot(fit1, which = 1:2)

These plots are shown in Figure 1. From inspection of the figure on the right, we can see
that around half the points in the dataset are clustered with high levels of certainty, while
the other half are still quite well distinguished.

3.2. Alzheimer data

We now perform an EM algorithm analysis to the Alzheimer data, confining our interest
to 3-class models. While expert information may be available for the data, we shall assume
uniform priors for all parameters.

Local maxima

A difficulty with EM algorithms is that while the log-posterior is increased at each iteration,
they may converge to only a local maximum or saddle-point. To combat this, in blca.em
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Figure 1: The figure on the left gives a visual indication of the underlying parameters of the
model, while the figure on the right is a mosaic plot representing classification certainty.

the algorithm is restarted multiple times from randomly chosen starting values, keeping the
set of parameters achieving the highest log-posterior value. See Section 6 for a description of
the different ways which these values can be generated. The argument restarts is used to
determine the number of times the algorithm should be run, with default setting restarts

= 5. We perform an analysis of the data with a 3-class model. The following output is given
by default. The warning message will be discussed in the next section:

R> sj3.em <- blca.em(alz, 3)

Restart number 1, logpost = -742.79...

Restart number 2, logpost = -744.28...

Restart number 3, logpost = -745.03...

Restart number 4, logpost = -745.26...

Restart number 5, logpost = -742.8...

Warning message:

In blca.em(alz, 3) :

Some point estimates located at boundary (i.e., are 1 or 0).

Posterior standard deviations will be 0 for these values.

From only five starts, the algorithm obtains three distinct local maxima of the log-posterior,
each with a corresponding alternative set of parameter point estimates. If a sub-optimal set of
estimates were incorrectly identified as obtaining the global maximum, then a very different
interpretation of the dataset might be provided, potentially leading to a flawed analysis. In
this case, it seems sensible to run the algorithm more times in order to identify the optimal
parameters. The following code runs the algorithm for twenty times instead:

R> sj31.em <- blca.em(alz, 3, restarts = 20)

R> plot(sort(sj31.em$lpstarts), sequence(table(round(sj31.em$lpstarts, 2))),

+ main = "Converged Values", xlab = "Log-Posterior", ylab = "Frequency")
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Figure 2: Point stacked histogram of values to which the EM algorithm runs converged. The
algorithm appears to converge to several distinct sets of values.

A point stacked histogram of the log-posterior values is shown in Figure 2. This suggests
that while the algorithm converges to several distinct sets of point estimates, the estimates
attained by sj31.em do in fact appear to be the global maximum.

Posterior standard deviation estimation

So far, each model fitted using an EM algorithm has by default failed to return estimates of
the posterior standard deviations. There are two ways of doing this in BayesLCA. Firstly,
by using asymptotic methods. These can be obtained in two ways: setting the argument sd

= TRUE when initially calling to blca.em, or, if the model has already been fit, by using the
function blca.em.sd. The posterior standard deviation estimates for the model fit1 fitted
to the synthetic data X is given by the following code. Note that as well as the estimates, a
convergence score is returned, in this case indicating that the algorithm converged to at least
a local maximum, rather than a saddle point.

R> blca.em.sd(fit1, x)

$itemprob

[,1] [,2] [,3] [,4]

[1,] 0.02977234 0.02876512 0.02963475 0.03136158

[2,] 0.04178304 0.04354617 0.04197843 0.03859001

$classprob

[1] 0.03527256 0.03527144

$convergence

[1] 1
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However, such a method is not without drawbacks. For example, point estimates occurring
on the boundary must be obmitted from the observed information, as entries for estimates
which are exactly 1 or 0 are undefined. Thus models such as sj31.em return posterior standard
deviations of zero for some parameters when using this method. Unreliable posterior standard
deviation estimates can also occur for parameter estimates occurring close to the boundary
(Bartholomew and Knott 1999, Chapter 6).

R> blca.em.sd(sj31.em, alz)

$itemprob

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.02869858 0.05846550 0.03293656 0.04448670 0.05696966 0.08370499

[2,] 0.03347575 0.05495001 0.06590206 0.08513284 0.05744349 0.00000000

[3,] 0.00000000 0.19756863 0.57852028 0.19389442 0.00000000 0.00000000

$classprob

[1] 0.09419236 0.08956211 0.01369711

$convergence

[1] 4

An alternative method of posterior standard deviation estimation employs bootstrapping
methods (Wasserman 2007, Chapter 3). In particular, empirical bootstrapping methods in-
volve sampling the data with replacement and re-fitting parameters to the new data. When
done multiple times, posterior standard deviation of the parameter estimates may be ob-
tained. It would also be possible to obtain estimates using parametric bootstrapping methods,
whereby new datasets are generated from the fitted parameters of the model, and bootstrap
samples then obtained by re-fitting to the newly generated data. However, this method may
be comparatively unstable for our purposes; for example, when generating data from a model
containing a group with low probability of membership, there is a non-negligible probability
that some of the generated data samples will omit the group entirely.

For each bootstrapping run, values from the originally fitted model are used as the initial
starting values for the EM algorithm, which is then run on the re-sampled data. This helps
the algorithm to converge comparatively quickly over most samples. The use of these start-
ing values should also help prevent any label-switching of parameter values from occurring
during the bootstrapping run; a label-switching algorithm may also be used by specifying the
argument relabel = TRUE, although this comes at an additional computational cost. See
Section 4.2 for further details.

R> sj3.boot <- blca.boot(alz, fit = sj31.em, B = 1000, relabel = TRUE)

R> sj3.boot

MAP Estimates:

Item Probabilities:
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Figure 3: Density plots for the bootstrap estimates of the item probability parameters fitted
by sj3.boot. Note the spikes in the plots for the Affective, Diurnal and Aggression symptoms.
This indicates that the parameter estimates in question remained unchanged over all bootstrap
samples.

Hallucination Activity Aggression Agitation Diurnal Affective

Group 1 0.062 0.520 0.060 0.134 0.088 0.544

Group 2 0.098 0.793 0.384 0.610 0.372 1.000

Group 3 0.000 0.793 0.928 0.195 0.961 0.001

Membership Probabilities:

Group 1 Group 2 Group 3

0.504 0.473 0.023
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Posterior Standard Deviation Estimates:

Item Probabilities:

Hallucination Activity Aggression Agitation Diurnal Affective

Group 1 0.032 0.059 0.035 0.047 0.047 0.090

Group 2 0.035 0.061 0.077 0.096 0.060 0.000

Group 3 0.000 0.225 0.166 0.209 0.127 0.029

Membership Probabilities:

Group 1 Group 2 Group 3

0.089 0.088 0.011

Note that some Posterior standard deviations are exactly 0, indicating that identical param-
eter estimates were obtained from all bootstrap samples. blca.boot may be applied to a
previously fitted object, or be called directly, with a new model fitted to the data as an ini-
tial step in the code. There is also a plot function, which includes density estimates for the
parameters for item and class probability. Figure 3 shows the density estimates for the item
probability parameters fitted by sj3.boot.

R> par(mfrow = c(3, 2))

R> plot(sj3.boot, which = 3)

4. Gibbs sampling

Gibbs sampling (Geman and Geman 1984) is a Markov chain Monte Carlo (MCMC) method
typically used when direct sampling of the joint posterior distribution is intractable, but sam-
pling from the full conditional distribution of each parameter is reasonably straightforward.
By iteratively sampling from each conditional distribution in turn, samples of the joint pos-
terior distribution are indirectly obtained. The method relies on the Markov assumption, in
that samples drawn at iteration k + 1 depend only on parameter values sampled during the
previous iteration k:

� θ(k+1) ∼ p(θ|X, τ (k),Z(k),α, β, δ),

� τ (k+1) ∼ p(τ |X,θ(k+1),Z(k),α, β, δ),

� Z(k+1) ∼ p(Z|X,θ(k+1), τ (k+1),α, β, δ).

In this way, parameter samples are repeatedly drawn, until it is decided that a reasonable
representation of the joint posterior distribution has been obtained. The following draws are
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Figure 4: Density estimates of θ using Gibbs sampling.

thus made during a sample run (Garrett and Zeger 2000):

θ(k+1)
gm ∼ Beta

(
N∑
i=1

XimZ
(k)
ig + αgm,

N∑
i=1

Z
(k)
ig (1−Xim) + βgm

)
,

τ (k+1) ∼ Dirichlet

(
N∑
i=1

Z
(k)
i1 + δ1, . . . ,

N∑
i=1

Z
(k)
iG + δG

)
,

Z
(k+1)
i ∼ Multinomial

(
1,

τ
(k+1)
1 p(Xi|θ(k+1)

1 )∑G
h=1 τ

(k+1)
h p(Xi|θ(k+1)

h )
, . . . ,

τ
(k+1)
G p(Xi|θ(k+1)

G )∑G
h=1 τ

(k+1)
h p(Xi|θ(k+1)

h )

)
,

for each g ∈ {1, . . . , G},m ∈ {1, . . . ,M} and i ∈ {1, . . . , N}.

4.1. Synthetic data

Using a Gibbs sampler, parameters can be fit to the synthetic data using the following code:

R> fit2 <- blca.gibbs(x, 2)

R> plot(fit2, which = 3)

Density estimates for θ are shown in Figure 4, with the true values of θ clearly lying within
areas of high density. Posterior standard deviation estimates are returned as standard.
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4.2. Alzheimer data

Identifiability

To begin with, run the Gibbs sampler over its default settings, with a burn-in of 100 iterations
and thinning rate of 1. The relabel setting will be explained shortly:

R> sj3.gibbs <- blca.gibbs(alz, 3, relabel = FALSE)

R> par(mfrow = c(4, 2))

R> plot(sj3.gibbs, which = 5)

A diagnostic plot of sj3.gibbs is shown in Figure 5. This provides clear evidence of label-
switching, the phenomenon whereby group labels become permuted, causing multiple param-
eter spaces to be explored in the same run. There are many methods to deal with this prob-
lem: one approach (Stephens 2000; Celeux, Hurn, Robert, and P. 2000; Marin, Mengersen,
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Figure 5: Clear evidence of label-switching taking place during the sample run.
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and Robert 2005) is to employ a post-hoc re-labelling algorithm which attempts to minimise
the posterior expectation of some loss function of the model parameters. Another approach
is to impose an ordering constraint on parameters; however, this can lead to poor estimation
(Celeux et al. 2000).

In BayesLCA a similar approach to Wyse and Friel (2012) is taken when dealing with this
issue. The method re-labels samples by minimising a cost function of the group membership
vector Z. Let Z(1) denote the first value of Z stored during the sample run. For any subsequent

sample Z(j), a G×G cost matrix C is created containing entries Cgh =
∑N

n=1 Z
(1)
ng Z

(j)
nh .

The function matchClasses() from the e1071 package (Dimitriadou et al. 2014) is then
utilized to find the permutation σ so that the diagonal entries of C are maximised. In this
way the agreement between Z(1) and Z(j) is also maximised. The permuted values for θσ and
τ σ are then stored.

Burn-in, chain mixing

Two other key issues associated with Gibbs sampling are burn-in and mixing. Inspecting
samples with respect to these terms helps to indicate the validity of the obtained model
estimates. We again run the default model, except this time correcting for any relabelling
which may occur.

R> sj30 <- blca.gibbs(alz, 3, relabel = TRUE)

Inspecting diagnostic plots of the model provides insight into how it has performed, without
providing many clues as to how performance can be improved. One solution is to make use
of diagnostic methods such as raftery.diag, available in the coda package (Plummer, Best,
Cowles, and Vines 2006). This package is automatically loaded with BayesLCA, so there is
no need to explicitly do so to make use of its functions. Objects of class "blca.gibbs" can
be converted to type "mcmc" using the function as.mcmc.

R> raftery.diag(as.mcmc(sj30.gibbs))

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

Burn-in Total Lower bound Dependence

(M) (N) (Nmin) factor (I)

ClassProb 1 22 20778 3746 5.55

ClassProb 2 30 33320 3746 8.89

ClassProb 3 8 9488 3746 2.53

ItemProb 1 1 12 12678 3746 3.38

ItemProb 1 2 20 23284 3746 6.22

ItemProb 1 3 10 11010 3746 2.94

ItemProb 1 4 20 18042 3746 4.82

ItemProb 1 5 20 27664 3746 7.38

ItemProb 1 6 33 34095 3746 9.10

ItemProb 2 1 12 12836 3746 3.43
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Figure 6: Diagnostic plot of the sampling run with label-switching corrected for, and bet-
ter tuned parameters. These plots make clear the high uncertainty surrounding the item
probability parameters of the third group (coloured blue).

ItemProb 2 2 8 10756 3746 2.87

ItemProb 2 3 50 48235 3746 12.90

ItemProb 2 4 24 29835 3746 7.96

ItemProb 2 5 18 20925 3746 5.59

ItemProb 2 6 12 14355 3746 3.83

ItemProb 3 1 4 4955 3746 1.32

ItemProb 3 2 6 6637 3746 1.77

ItemProb 3 3 15 16236 3746 4.33

ItemProb 3 4 4 5124 3746 1.37

ItemProb 3 5 9 11538 3746 3.08

ItemProb 3 6 5 5771 3746 1.54



18 BayesLCA: Bayesian Latent Class Analysis in R

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Probability

D
en

si
ty

Hallucination

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Probability

D
en

si
ty

Activity

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Probability

D
en

si
ty

Aggression

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
1.

0
2.

0
3.

0

Probability

D
en

si
ty

Agitation

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

Probability

D
en

si
ty

Diurnal

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Probability

D
en

si
ty

Affective

Figure 7: Posterior density plots for the item probability parameters with label-switching
corrected for, and better tuned parameters. Groups are well separated for some symptoms,
such as Aggression and Agitation, but not for others, notably Hallucination. Note the flatness
of distributions from the third group (coloured blue), illustrating the lack of information
gained by the model.

This output suggests that the sampler converges quickly (burn-in values are low), but is not
mixing satisfactorily (note the high dependence factor of many parameters). A Gibbs sampler
with better tuned parameters can then be run:

R> sj31.gibbs <- blca.gibbs(alz, 3, burn.in = 150, thin = 1/10, iter = 50000)

R> par(mfrow = c(3, 2))

R> plot(sj31.gibbs, which = 3)

Figure 6 shows a diagnostic plot for this model, created using the same code as for Figure 5.
The behavior of the parameters in this case is much more satisfactory. Note that other
functions in the coda package, such as the plot and summary methods for "mcmc" objects can
also be used in this way. Density plots for θ obtained from this sampling run are shown in
Figure 7.
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5. Variational Bayes

So far methods which attempt to maximize the joint posterior p(Z,θ, τ | X,α, β, δ), or
iteratively sample from its conditional distributions have been discussed, in Sections 3 and 4
respectively. Variational Bayes methods can be thought of as an approximate combination of
both techniques, in that they can be used to obtain parameter estimates which maximize a
fully factorized posterior approximation to the joint posterior. In the general case, it can be
shown that, for some latent parameters Ω and arbitrary distribution q, a lower bound for the
log-posterior log p(X) can always be obtained, via Jensen’s inequality:

log p(X) = log

∫
p(Ω,X)dΩ

= log

∫
p(Ω,X)

q(Ω)

q(Ω)
dΩ

≥
∫
q(Ω) log

p(Ω,X)

q(Ω)
dΩ

= Eq [log p(Ω,X)]− Eq [log q(Ω)] (3)

with the discrepancy between the left and right hand sides of Equation 3 being equal to the
Kullback-Leibler divergence KL(q||p) (Kullback and Leibler 1951). Supposing that Ω can
be partitioned into J parameters, such that Ω = {Ω1, . . . ,ΩJ}, and restricting the family of
distributions to which q(Ω) belongs to such that

q(Ω) =

J∏
j=1

qj(Ωj),

it can be shown that the distribution q∗j which minimises KL(q||p) has the form:

q∗j (Ωj) ∝ exp {Ei 6=j [log p(X,Ω)]} ,

where the notation Ei 6=j [log p(X,Ω)] denotes that the expectation of the log-posterior log p(X,Ω)
is taken with respect to all model parameters excepting Ωj , i.e., Ωi, where i = 1, . . . , j−1, j+
1, . . . , J.

In practice, the form of q∗j (Ωj) will be the same as that of the conditional distribution p(Ωj |
X,Ω1, . . . ,Ωj−1,Ωj+1, . . . ,ΩJ), with the key difference that its parameters are independent
of the other variational parameters in the model. Updating each parameter iteratively, à la
the EM algorithm, then maximizes q(Ω), and by extension p(X,Ω).

The first step in applying this method to LCA is to introduce the variational distribution

q(θ, τ ,Z) = q(θ | ζ)q(τ | γ)q(Z | φ),

where ζ, τ and φ are all variational parameters. These have the following distributions,
for each i ∈ {1, . . . , N}, g ∈ {1, . . . , G}, and m ∈ {1, . . . ,M}:

θgm | ζgm1, ζgm2 ∼ Beta (ζgm1, ζgm2)

τ | γ ∼ Dirichlet (γ1, . . . , γG)

Zi | φi ∼ Multinomial (φi1, . . . , φiG) ,
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and the variational parameters take the following updates:

ζ
(k+1)
gm1 =

N∑
i=1

φ
(k)
ig Xim + αgm

ζ
(k+1)
gm2 =

N∑
i=1

φ
(k)
ig (1−Xim) + βgm

γ(k+1)
g =

N∑
i=1

φ
(k)
ig + δg

φig ∝ exp

{
Ψ
(
γ(k+1)
g

)
−Ψ

(
G∑
h=1

γ
(k+1)
h

)
+

M∑
m=1

Xim(Ψ(ζ
(k+1)
gm1 )−Ψ(ζ

(k+1)
gm1 + ζ

(k+1)
gm2 ))

+

M∑
m=1

(1−Xim)(Ψ(ζ
(k+1)
gm2 )−Ψ(ζ

(k+1)
gm1 + ζ

(k+1)
gm2 ))

}
,

where Ψ denotes the digamma function (Abramowitz and Stegun 1965).

5.1. Synthetic and Alzheimer data

The following code fits 2- and 3-class models to the synthetic data X and Alzheimer data
using variational Bayes methods:

R> fit3 <- blca.vb(x, 2)

R> sj3.vb <- blca.vb(alz, 3)

R> plot(fit3, which = 3)

Plots of density estimates for θ are shown in Figure 8. Like in Section 4, the true values
of θ appear within areas of high posterior density, although the density estimates appear
somewhat “pinched” in comparison with the plots in Figure 4. This can also be seen directly
in the models fitted to the Alzheimer data:

R> sj3.vb$itemprob.sd

Hallucination Activity Aggression Agitation Diurnal Affective

[1,] 0.02289787 0.04381683 0.02409615 0.03004852 0.02778058 0.04331132

[2,] 0.02873933 0.03830310 0.04598935 0.04591515 0.04576553 0.01537272

[3,] 0.14090801 0.16898290 0.15240892 0.16718027 0.14956479 0.15778048

R> sj31.gibbs$itemprob.sd

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.03223601 0.0726690 0.05115551 0.07451563 0.05871653 0.09384665

[2,] 0.09065832 0.1025723 0.11273175 0.15583202 0.11065335 0.11380141

[3,] 0.23396998 0.2357138 0.26530528 0.26388147 0.26755766 0.26072023
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Figure 8: Approximate density estimates for θ using a variational Bayes approximation.

This is a common feature of variational Bayes approximations, in that the enforced inde-
pendence between parameters results in diminished variance estimates. Conversely, it is this
restriction which allows such quick density estimation.

Model selection

It is worth mentioning two additional properties of the variational Bayes approach which
distinguish it from the EM algorithm. Firstly, that saddle point convergence issues , such as
those discussed in Section 3.2, which are often encountered when fitting EM algorithms, are
largely avoided (Bishop and Corduneanu 2001). The second is that, if the model is over-fitted,
with Dirichlet prior values δ < 1 specified to the model, redundant components are emptied
out, rather than the model becoming over-fitted (Bishop 2006). One method for determining
an appropriate number of classes to fit to the Alzheimer data is to deliberately over-fit the
model, and then consider only the classes for which τg > 0 (Bishop and Corduneanu 2001).
This is achieved by the following lines of code:

R> sj10.vb <- blca.vb(alz, 10, delta = 1/10)

Restart number 1, logpost = -1299.97...

Warning message:

In blca.vb(alz, 10, delta = 1/10) :

Model may be improperly specified. Maximum number of classes that

should be fitted is 9.
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Figure 9: The sequence of lower bound values as the algorithm proceeds towards convergence.

R> sj10.vb$classprob

[1] 0.5676355 0.4323645 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

[8] 0.0000000 0.0000000 0.0000000

This suggests a 2-class fit is the best suited for the variational Bayes approximation.

The plotted values of the lower bound are shown in Figure 9. The multiple jumps in the lower
bound indicate where components have “emptied” out.

R> plot(sj10.vb, which = 5)

6. Miscellaneous functions

6.1. Starting values

There are multiple ways to specify starting values in BayesLCA. This is done by specifying the
start.vals option. The argument is used to assign initial values to the group membership
vector Z, either by specifying a method for how values are assigned, or by specifying the
values directly. The default method is start.vals = "single", whereby each unique data
point is randomly assigned membership to a single class, that is,

Z
(0)
i ∼ Multinomial(1, 1/G, . . . , 1/G), for each i ∈ 1, . . . , N.

Alternatively, specifying start.vals= "across" randomly assigns class membership across
groups with respect to a uniform distribution. This is done in the following manner:
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1. for i ∈ 1, . . . , N ,

for g ∈ 1, . . . , G : Wig ∼ Uniform(0, 1).

2. Set Z
(0)
ig = Wig/

∑G
h=1Wih.

As a quick comparison, consider the following case, where two 3-class models are fit to the
Alzheimer data, using either type of starting value. The same random seed is specified, and
the values of the log-posterior are then compared:

R> set.seed(123)

R> test1 <- blca.em(alz, 3, start.vals = "across", restarts = 1)

R> set.seed(123)

R> test2 <- blca.em(alz, 3, start.vals = "single", restarts = 1)

R> c(test1$logpost, test2$logpost)

[1] -745.0332 -744.2876

In this case, using single membership starting values provides a better fit.

Starting values may also be specified using the Zscore function. For example, when attempt-
ing to fit a 2-class model to the synthetic data X, class membership can be specified with
respect to the true values of τ and θ:

R> Z1 <- Zscore(x$data, classprob = tau, itemprob = theta)

R> fit.true <- blca.em(x, 2, start.vals = Z1)

The returned output is almost identical to fit1, as fitted in Section 3.1.

Another practical use for specifying starting values would be to extend a Gibbs sampling run.
By starting a run with values of Z sampled from the previous model, parameter samples may
be drawn from the same region of sample space, negating the need for additional burn-in and,
ideally, ensuring compatibility with the previous set of parameter samples.

R> Z2 <- apply(sj31.gibbs$Z, 1, rmultinom, size = 1, n = 1)

R> sj3new.gibbs <- blca.gibbs(alz, 3, iter = 10000, start.vals = t(Z2),

+ thin = 1/10, burn.in = 0)

6.2. Model selection

While the issue of over-fitting was discussed in the case of variational Bayes methods in
Section 5.1, throughout Sections 3 and 4, the value of G, the number of underlying classes
in the model, was assumed fixed and known. In this section, methods to determine the
optimal number of classes to fit to a dataset using an EM algorithm or Gibbs sampling are
discussed, with the Alzheimer data used as an illustrative example. Note that for latent class
analysis, the number of classes which can be fit to data is at best limited by the condition
G(M +1) < 2M , or else the model becomes unidentifiable (Goodman 1974; Dean and Raftery
2010).
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While the question of identifying the appropriate number of clusters to fit to a model re-
mains an area of ongoing research, several methods involving information criteria have been
developed. Such methods are predicated on testing:

H0 : G = G0

H1 : G = G0 + 1

where G0 is some positive integer (McLachlan and Peel 2002). For the EM algorithm, two such
criteria are the Bayesian information criterion (BIC; Schwarz 1978; Kass and Raftery 1995)
and Akaike’s information criterion (AIC; Akaike 1973), while for Gibbs sampling, popular
criteria include the deviance information criterion (DIC; Spiegelhalter, Best, Carlin, and van
der Linde 2002), AIC Monte Carlo (AICM) and BIC Monte Carlo (BICM) (Raftery, Newton,
Satagopan, and Krivitsky 2007). In all cases, the model with the higher value with respect
to a criterion is considered the better fit to the data.

We will compare these criteria for a 1, 2, and 3-class model fit to the Alzheimer data. The
interested reader is invited to apply these methods to the synthetic data X and investigate
whether a 2-class model is selected.

EM algorithm

Firstly, we fit 1 and 2-class models to the data. In practice, fitting a 1-class model to
the data amounts to separately fitting a Beta distribution to each column of the data in
the standard manner, with the local independence assumption outlined in Section 2 re-
placed by the assumption that the data is independently, identically distributed. That
is, p(θ | X,α,β) =

∏M
m=1 p(θm | Xm, αm, βm), where each p(θm | Xm, αm, βm) follows

a Beta(
∑N

i=1Xim +αm,
∑N

i=1(1−Xim) +βm) distribution. For convenience, we fit the model
the same way as the others :

R> sj1 <- blca.em(alz, 1, restarts = 1)

R> sj2.em <- blca.em(alz, 2)

Comparing the BIC and AIC of these models with that of the model sj31.em fitted in Section 3
gives the following output:

R> c(sj1$BIC, sj2.em$BIC, sj31.em$BIC)

[1] -1578.733 -1570.087 -1593.816

R> c(sj1$AIC, sj2.em$AIC, sj31.em$AIC)

[1] -1557.849 -1524.839 -1524.204

The BIC indicates that the 2-class model is selected as the optimal fit, while the difference
between the AIC for the 2 and 3-class model is very small.

Gibbs sampling

In the case of Gibbs sampling, we first run a 2-class model using similarly tuned parameters
to sj31.gibbs from Section 4. We then compare the DIC between 1-, 2- and 3-class models,
using the fact that the DIC of the 1-class model is equal to twice its log-posterior:
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R> sj2.gibbs <- blca.gibbs(alz, 2, thin = 1/10, iter = 50000, burn.in = 150)

R> c(2*sj1$logpost, sj2.gibbs$DIC, sj31.gibbs$DIC)

[1] -1545.849 -1522.593 -1517.245

This suggests that a 3-class fit may be best, although the difference between the 2- and 3-class
models is small. Inspection of Figure 7 is also indicative of weak identifiability (Garrett and
Zeger 2000), in that the posterior density of item probability parameters for the third group
in the model are highly similar to their prior distributions (in this case, uniform Beta(1,1)
distributions). This suggests that a 3-class model may be overfitting the data.

7. Discussion

In this paper we have demonstrated tools to perform LCA in a Bayesian setting using
BayesLCA. The functions in this package do this by utilizing one of three methods: max-
imization of parameters a posteriori; sampling parameters via their conditional distributions;
or by approximation of the joint posterior. While all three methods have been examined in
detail, the computational cost of Gibbs sampling means that in many cases its implemen-
tation may be infeasible, particularly for data sets of a larger scale than those investigated
here. Nevertheless, it remains something of a gold standard in terms of posterior estimation,
and may be of benefit as a comparative tool, such as when the posterior standard deviation
estimates of variational Bayes approximations were examined in Section 5. Future versions
of the package may include a version of the method implemented using C code, which would
substantially increase performance speed.

Currently, the package does not provide as many inference tools as poLCA: for example,
it cannot be generalized to polytmous outcome variables, and cannot incorporate covariate
information into a model. It is hoped to extend the package in the near future to include these
features, so that a Bayesian alternative to such methods is available. A function to perform
parametric bootstrapping may also be introduced, providing an alternative to the currently
implemented non-parametric version.

In future versions of BayesLCA it may be of interest to include functions to perform collapsed
Gibbs sampling (Nobile and Fearnside 2007). This has been successfully applied to latent
block modeling (Wyse and Friel 2012), a class of models of which LCA is a subset. The method
entails integrating out the item and class probability parameters τ and θ, and iteratively
sampling from the posterior p(Z|X,α,β, δ). The method is primarily concerned with the
clustering of data points, and parameter estimation can only be achieved via a post-hoc
analysis. However, the comparative increase in speed between the collapsed and conventional
sampler would be substantial. In addition the number of clusters can be included into the
model as a random variable, providing an alternative method for model selection.
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