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Abstract

The RgoogleMaps package provides (1) an R interface to query the Google and the
OpenStreetMap servers for static maps in the form of PNGs, and (2) enables the user to
overlay plots on those maps within R. The loa package provides dedicated panel functions
to integrate RgoogleMaps within the lattice plotting environment.

In addition to solving the generic task of plotting on a map background in R, we intro-
duce several specific algorithms to detect and visualize spatio-temporal clusters. This task
can often be reduced to detecting over-densities in space relative to a background density.
The relative density estimation is framed as a binary classification problem. An integrated
hotspot visualizer is presented which allows the efficient identification and visualization of
clusters in one environment. Competing clustering methods such as the scan statistic and
the density scan offer higher detection power at a much larger computational cost. Such
clustering methods can then be extended using the lattice trellis framework to provide
further insight into the relationship between clusters and potentially influential parame-
ters. While there are other options for such map ‘mashups’ we believe that the integration
of RgoogleMaps and lattice using loa can in certain circumstances be advantageous, e.g.,
by providing a highly intuitive working environment for multivariate analysis and flexible
testbed for the rapid development of novel data visualizations.

Keywords: scan statistic, RgoogleMaps, loa, hotspots, supervised learning, PRIM, lattice,
conditional clusters.

1. Introduction

This paper summarizes recent advances in the conditional visualization of spatial/spatio-
temporal data as implemented by the R packages RgoogleMaps (Loecher 2015) and loa (Rop-
kins 2015). We further suggest that the computationally demanding task of searching for
regions of very high or very low count density can be expedited by supervised learning tech-
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Figure 1: Left: meuse data set visualized by the bubble() command in the sp package
(Pebesma and Bivand 2005; Bivand et al. 2013). Right: meuse data set visualized by the
commands data("lat.lon.meuse", package = "loa") and bubbleMap(lat.lon.meuse,

coords = c("longitude", "latitude"), zcol = "zinc") in the R package RgoogleMaps.

niques such as classification trees and generalized additive models. The motivation to want to
draw on map tiles directly within R (R Core Team 2014) is twofold. While the R environment
boasts a long history of spatial analysis tools and packages, the plots have traditionally been
created without any spatial context that a map would provide. Figure 1 shows as an example
two different ways of plotting the meuse (Rikken and Van Rijn 1993) data set. (As with all
later figures, R scripts for Figure 1 are provided in the supporting material for this paper.)
There are times when the left plot will be the preferred choice: a clean and simple graph of
the locations of interest with no clutter and no distractions. The analyst can focus on the
pattern itself and the marker attributes.

However, a lot of the modern massive data sets gathered such as location information from
mobile devices, surveys, crime data, vehicle tracks, demographic data, etc. require a map
based spatial context for even the most basic data explorations. In those settings, the some-
what narrow or “blind” exploration of spatial data on a blank background can be rather
limiting and often leads to less insight than would be possible had the data been graphed on
a map canvas. Anecdotally, we dare to speculate that the British physician John Snow might
have been slower to identify contaminated drinking water as the cause of the cholera epidemic
in 1854, had he not used a dot map to illustrate the cluster of cholera cases around one of the
pumps in London (Johnson 2006).

While there exist many HTML and/or GIS based solutions to this simple problem, the over-
head of switching tools and environments can be detrimental to efficient development. In
addition, the user often has to obey a number of constraints with respect to number of data
points, size and shape of the markers or polygons, etc. The Google Static Maps API (Google
Developers 2014b), for example, allows easy download of Google Maps images without re-
quiring JavaScript. The Google Static Map service creates a map based on URL parameters
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Figure 2: Top: The by-panel visualization of multiple heavy metals in the meuse data set
using the GoogleMap() command in loa. Bottom left: Single panel visualizations of such
information can easily become cluttered or ‘over-plot’, even with moderately sized data sets,
as in the case of the first pie plot. Bottom right: Merging data binning and pie plot functions,
as illustrated in supporting code for this paper, provides a simple ‘work around’.

sent through a standard HTTP request and returns the map as an image in a wide range
of formats and color schemes. For a complete list of parameters such as zoom level, center,
size, map type and style and other options we refer the reader to the online documentation
(Google Developers 2014b). But URL calls are restricted to 2048 characters in length which
in practice can be very limiting when adding additional data.

The RgoogleMaps work flow for creating spatial overlays in R is broken down into two steps:
Firstly, the function GetMap() – or its close cousin GetMap.bbox() – fetches the appropriate
map png image from the chosen server (Google or OpenStreet Maps) and stores it along
with meta information in a list structure. Secondly, RgoogleMaps plot functions, such as
bubbleMap() as illustrated in Figure 1, PlotOnStaticMap() as illustrated in Figure 4 and
ColorMap() as illustrated in Figure 5, merge this map and supplied data layers to generate
an appropriate georeferenced visualization. The incorporation of the trellis plotting frame-
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work described by Cleveland and colleagues (Cleveland 1993; Becker, Cleveland, and Shyu
1996) and implemented in lattice (Sarkar 2008) provides an elegant and flexible means of
introducing multivariate information. The use of loa to integrate RgoogleMaps and lattice is
illustrated in Figure 2, which uses trellis paneling to introduce additional data series to the
previous bubble plot (Figure 1) first as discrete maps, and then with combined panel func-
tions to overcome over-plotting issues ‘on the fly’ when merging such information on a single
map. Whilst the recent package ggmap (Kahle and Wickham 2013a) elegantly embeds most
of RgoogleMaps’ abilities into the ggplot2 (Wickham 2009) framework and provides some
obvious advantages, e.g., a larger range of map types and geo-coding (Kahle and Wickham
2013b), we believe the inherent flexibility in the lattice framework makes it a particularly
attractive working environment for those looking to develop novel visualization methods or
rapidly modify existing plots to their own (sometimes unique) requirements.

Note that RgoogleMaps focuses exclusively on static map display within R and does not offer
any dynamic map mashup capabilities. For such facilities we refer the interested reader to
the packages plotGoogleMaps (Kilibarda and Bajat 2012) and googleVis (Gesmann and de
Castillo 2011) instead.

1.1. Google Maps limitations

We give a brief overview of the practical and legal limitations of using Google map tiles in
reports, Web sites or other applications. For more detail, we refer the reader to (Google
Developers 2014a,b). Besides the above mentioned URL length, the Google Static Maps API
has the following usage limits:

� When using an API key: 25000 Static Maps requests per 24 hour period.

� Without an API key: 1000 Static Maps requests per IP address per 24 hour period. 50
Static Maps requests per IP address per minute. This means that if you have a single
page containing more than 50 maps, the page will exceed this limit.

The maximum size of the map tiles in pixels is 640×640 (or 1280×1280 if the parameter scale
is set to 2) for the free API. The business API delivers map tiles up to 2048 × 2048 pixels.
We refer the reader to Potere (2008) for details on the horizontal accuracy of the maps.

Legal restrictions include: (i) No unauthorized copying, modification, creation of derivative
works, or display of the content. (ii) No pre-fetching, caching, or storage of content. (iii) No
mass downloads or bulk feeds of content.

1.2. San Francisco crime data

The following examples in this paper use a data set of reported police incidents (excluding
homicide and manslaughter) from San Francisco in 2012. The full data set is freely available
for download (City and County of San Francisco 2013) and contains date, time of day, and day
of week for each incident, along with the incident category, a brief description, and location
(as police district, lat-long coordinates, and address to the nearest 100 block). Following
WinVector (2013) we define the following crimes as violent: assault, robbery, rape, kidnapping,
and purse snatching, which leads to an overall proportion of violent crime of about 12%.
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2. Temporal view of the data

Before presenting a spatial analysis of the crime data, it is informative to get an overview
of its temporal patterns such as long term trends, seasonality as well as hour-of-day and
day-of-week signatures. Figure 3 (top) displays the daily crime counts for the last ten years
along with the proportion of violent crimes. We observe an almost linear downward trend in
overall crime until a structural change appears around May 2012, where the trend is reversed
after another drop. Many of the dominant peaks/outliers can be attributed to holidays such
as New Year’s Eve, July 4th, etc. The proportion of violent crimes (measured in percent),
however, remains relatively stable over the same period and a decomposition of the time series
revealed no strong seasonal component.

What is the pattern of crime as one cycles through the hours of the weekdays and the weekend?
Crime is generally higher on the weekends, beginning with Friday and is lowest during the
late hours of the night (3am–5am). The hour with the largest number of crimes reported
is Sunday morning around 1am. The dependence on hour-of-day is very strong. Figure 3
(bottom) displays the results of a binomial generalized additive model (GAM). The peak of
the proportion of violent crimes around 3am on the weekends coincides with the lowest volume
of crimes. The interaction of hour-of-day and day-of-week reveals a marked weekend surge.
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Figure 3: Top: Daily volume of crimes and rate of violence in San Francisco between 2003
and 2014. A moving average (sliding window size of 60 days) is overlaid in black. No marked
seasonality is discernible. Overall crime seemed on the decline from 2003 until May 2010
where a change point appears: the volume drops rather abruptly and has been slowly rising
ever since. The proportion of violent crimes (measured in percent), on the other hand shows
no such trends. Bottom: Weekhour pattern of the rate of violent crimes. Shown is the
multiplicative effect on the baseline as a function of weekhour as estimated by a generalized
additive model (package mgcv). We notice a strong day-of-week effect.
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3. Spatial view of the data

The three core functions within RgoogleMap are:

1. GetMap() fetches a map tile from the Google API. This returns a list containing the im-
age as well as all parameters needed to properly scale coordinates in form
map <- GetMap(...).

2. PlotOnStaticMap() adds point type data to an existing map in form PlotOnStaticMap(

map, lat, lon, ...). Note that the full graphical power of R could be utilized in this
step, i.e., hundreds of thousands of points or lines in any possible style and color and
size can be overlaid.

3. PlotPolysOnStaticMap() adds polygon type data stored in a data structure defined
by the package PBSmapping (Schnute, Boers, Haigh, Grandin, Johnson, Wessel, and
Antonio 2014) to an existing map in form PlotPolysOnStaticMap(map, poly, ...).

To illustrate this process Figures 4 and 5 were generated using the San Francisco dataset and
these functions using full code provided in the supporting information for this paper.

In closing this section we point out that while RgoogleMaps focuses on plotting spatial infor-
mation that is encoded in simple classes such as vectors, matrices and data frames, most of

Figure 4: Crimes color coded by violent (red) and non-violent (cyan) category overlaid on a
map with the RgoogleMaps package.
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Figure 5: Rate of violent crime spatially aggregated at the census block level. The legend
color codes are in percent units. Note that we applied empirical Bayes smoothing (package
epiR) to avoid spikes due to low counts.

its functions can also handle sp classes directly. In particular, SpatialPoints(DataFrame)s,
SpatialPolygons(DataFrame)s and SpatialLines(DataFrame)s can be overlayed on a map
canvas. At this point we expect the user take care of the projection attribute, i.e. to first
project such data back to latitude, longitude values.

3.1. Adding conditional paneling

Once we start to observe clusters or other spatial features within a data set, one of the first
questions is what drives the formation of these clusters? For example, were higher densities of
violent crimes associated with particular types of areas or times-of-day or times-of-week in the
San Francisco data set? In Figure 2 (top) we use trellis panels to compare the concentrations
of three different heavy metals measured in sediments in the Meuse area. However, we could
just as easily use the trellis structure to subset a single data series and generate discrete plot
panels for each data subset. This approach, known as conditional paneling, can then be used
investigate such complex interactions.

The loa function GoogleMap() uses lattice-style plot definition by formulae z ~ lat * lon,
where z values are plotted on (longitude, latitude) axes. Conditional paneling can be incor-
porated into a plot by adding one or more conditioning term, e.g., z ~ lat * lon |cond1 +

cond2, etc. An example of this type of extended conditioning is provided as Figure 6 (top),
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Figure 6: The 2012 San Francisco incidents dataset plotted using loa GoogleMap() and crime
type (violent versus non-violent) and time-of-day as conditioning variables. Note the use of
non-standard aggregation (about dawn, about midday, about dawn, about midnight). Top:
A point plot using default GoogleMap panel settings. Bottom: A density surface plot using
panel.kernelDensity().

which shows the full 2012 San Francisco data set conditioned by both crime type (violent vs
non-violent) and time of day (aggregated into four 6-hour intervals).

Note, while some other packages provide similar capabilities, e.g., retrospective paneling by
facet() in ggplot2 (Wickham 2009), the formula structure of lattice is perhaps one of the
most intuitive and flexible.

An initial inspection of this plot suggests that there is a lot more non-violent crime than
violent crime and that there is more crime at night than in the day time. However, it is
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likely that several of the panels in this plot are subject to some degree of over-plotting,
and this hinders further interpretation of, e.g., the similarity of clusters in the non-violent
about dusk and non-violent about midnight subsets of data. Therefore, we replot the infor-
mation as a density surface plot to generate a less ambiguous visualization, Figure 6 (bot-
tom). For this, we modify the plot call used to generate the previous plot by adding the loa
function panel.kernelDensity() as the panel argument. panel.kernelDensity() com-
bines kde2d() in the MASS package (Venables and Ripley 2002) and the lattice function
panel.contourplot() to generate a kernel-density based frequency surface for the number
of incidents.

One of the acknowledged limitations of lattice is that it includes no mechanism for formal
panel-to-panel and panel-to-legend communication. If values are calculated within panels,
as here with the density surfaces generated by the panel.kernelDensity() function, ranges
would not be known by other panels or any keys preventing the synchronization of associ-
ated color schemes and sizing. The hexagonal binning package hexbin (Carr 2014) includes
the method hexbinplot which provides a (single output) solution for this issue by retro-
spectively merging the results of all the hexbin counts made in individual panels and up-
dating the plot using this ‘all counts’ range before passing the plot on to the user. (See
relevant discussion in Chapter 14 of Sarkar (2008) or open up hexbinplot(), e.g., using
edit(hexbin:::hexbinplot.formula), and have a look at maxcnt handling.) The package
loa (Ropkins 2015) includes the function panelPal() that provides a generic extension of this
solution to multiple output panel-to-panel and panel-to-legend communication. GoogleMap(),
like other loa plot functions, uses panelPal() to automatically synchronize plot panels and
keys.

3.2. Efficient spatial polygon search via kd trees

Given spatial partitions such as census blocks, ZIP codes or police district boundaries, we are
frequently faced with the need to spatially aggregate data, e.g., in order to create views such
as Figure 5. Unless efficient data structures are used, this can be a daunting task. In this case
the crime data for 2012 contains more than 120K location records, each one necessitating a
spatial polygon matching. The operation point.in.polygon() from the package sp (Pebesma
and Bivand 2005) is computationally expensive and its use should be minimized. A brute
force search would require us to execute this function for a large fraction of the appr. 200
polygons in the San Francisco area. Instead we exploit kd trees as an efficient nearest neighbor
search algorithm to dramatically reduce the effective number of polygons being searched. In
particular, our massive point-in-polygon search strategy consists of the following steps:

1. Compute the centroids for each polygon using the function calcCentroid() from the
package PBSmapping.

2. Find the 10 nearest centroids for each crime location using the function nn2() from the
package RANN (Kemp and Jefferis 2014).

3. In this ordered search list we then execute point.in.polygon() until we find a match.

On average we need to look up less than 2 polygons per point. The recent package Rapid-
PolygonLookup (Loecher and Kumar 2014) on CRAN (Comprehensive R Archive Network)
implements the ideas outlined above.
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As variations on the proportion of violent crimes depicted in Figure 5 one could compute
various baselines for the census blocks such as area or total population and display the density
of crimes relative to that reference. In addition, demographic covariates available at the census
block level could be used in spatial models explaining crime.

The census information (polygons and demographic attributes) are obtained from the package
UScensus2010 (Almquist 2010).

As the distribution of crimes is very heterogeneous, there are many census blocks with low
counts, which makes rate estimation notoriously difficult. One solution to this dilemma is gen-
erally referred to as shrinkage: we estimate a prior distribution on the rate from all data and
compute the posterior rate for each polygon as a weighted average of the measured proportion
and the prior. We use the function epi.empbayes() from the package epiR (Stevenson 2014)
for this purpose.

4. Hot spot analysis

Hot spots which are usually thought of as relatively compact areas of “high intensity” can be
defined in various ways; most important here is the definition of the baseline. We might be
interested in simply the density of crimes or locations of a high rate of, for example, violent
crimes or vehicle theft or some other category of crime. We can also define the baseline as
historical counts and look for deviations from the regular patterns that have been established.
The variations on what constitutes the background are as diverse as the applications needing
them.

Before we let algorithms identify and isolate spatial clusters, it is informative to manually pick
two areas of visibly high crime volume and inspect them in detail. We chose the strikingly
dense cluster below the bend of I-80 as well as the elongated region along Mission Street in
the Mission District, both of which are displayed in Figure 7. The insight gained from the
contextual information of the map tile is particularly useful for the first cluster on Bryant
street which is located right adjacent to the San Francisco (SF) police department “field
operations” as well as the SF county jail. In order to provide a multifaceted view of the data
in a cluster, we overlay the violent crime crate rate as a function of time-of-day using the
par(fig) method of creating insets. Such extra graphs can be used to compare with either
the overall patterns or other hot spots.

4.1. Spatial cluster detection

Monitoring spatially and temporally varying activity of various kinds is an important tool for
many technologies and scientific disciplines. The spatial scan statistic (Kulldorff 1997, 2001;
Kulldorff, Heffernan, Hartman, Assuncao, and Farzad 2005) and its associated public domain
software SatScan (Kulldorff and Information Management Services Inc. 2014) are widely used
for the detection and evaluation of disease clusters.

Here, instead we follow an idea proposed by (Hastie, Tibshirani, and Friedman 2009, pp. 594–
501) by transforming the density estimation problem into one of supervised function approx-
imation.

In earlier work (Loecher 2012) we chose to apply two very different learning algorithms to a
simulated Gaussian bump embedded in uniform background data. The first natural choice is
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Figure 7: Left: One “hot spot” found where the contextual information provided by the map
is invaluable. This cluster of crimes is found right at 850 Bryant Street, which happens to
be adjacent to the SF police department “field operations” as well as the SF county jail. We
have overlaid the violent crime crate rate as a function of time-of-day (compare to Figure 3
bottom). Right: Another cluster of crime activity spread along the street grid.

classification trees (Breiman, Friedman, Olshen, and Stone 1984) as implemented by the R
package tree (Ripley 2014): A tree is grown by binary recursive partitioning using the class
label and choosing splits from the two spatial coordinates. Numeric variables are divided into
X < a and X > a; the split which maximizes the reduction in impurity is chosen, the data
set split and the process repeated. Splitting continues until the terminal nodes are too small
or too few to be split. For illustration purposes we pretend that these artificial data were
measured in the Manhattan area and plot them on a map background as shown in Figure 8
left.

We also plot the partitions found by the binary recursive algorithm and find that the location
and extent of the spatial cluster is identified rather accurately. The labels indicate the fraction
of the positive class labels found in the respective rectangle. Note that the computational time
needed to identify this cluster constitutes a tiny fraction of the exhaustive search conducted
by both SaTScan (Kulldorff and Information Management Services Inc. 2014) and even the
“fast scan statistic” (Neill 2012). There are no guarantees that all significant clusters are
found but in many situations that would be considered a fair tradeoff.

Tree-based methods try to make the response averages in each box as different as possible.
The most common choices for the cost functions used when growing and pruning the tree are
the misclassification error, the Gini index and the cross entropy (Breiman et al. 1984; Hastie
et al. 2009). We believe that the tree growing/pruning algorithm could be easily extended to
optimize a score function instead.

The patient rule induction method (PRIM) as outlined in (Hastie et al. 2009, pp. 317–320)
also finds boxes in the feature space, but seeks boxes in which the response average is high.
The main box construction method in PRIM works from the top down, starting with a box
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Figure 8: Left: A cluster found by a classification tree visualized on a Google map tile.
The numeric labels indicate the fraction of the positive class labels found in the respective
rectangle (Figure 6 in Loecher 2012). Right: A cluster found with the patient rule induction
method (PRIM), this time visualized on an OpenStreetMap tile (Figure 7 in Loecher 2012) .

containing all of the data. The box is compressed along one face by a small amount, and
the observations then falling outside the box are peeled off. After the top-down sequence
is computed, PRIM reverses the process, expanding along any edge, if such an expansion
increases the box mean. The result of these steps is a sequence of boxes, with different
numbers of observation in each box. Cross-validation, combined with the judgment of the
data analyst, can be used to choose the optimal box size. We found this algorithm to be
naturally tailored to spatial cluster detection and applied it (R package prim, Duong 2014)
to the same artificial data described above. Two of the resulting boxes found are visualized
in Figure 8 right where – to illustrate a possible choice in map style – we chose a map tile
obtained from the OpenStreetMap server instead of Google. Both resources can be queried
by the GetMap() function.

The simulated data are not challenging enough due to their uni modal and symmetric nature.
The crime data exhibit multiple clusters at many different scales at various angles. The
aggregation at the census block level in the previous section found a very heterogeneous
distribution of violent crime rates. What happens if we do not start with a given spatial
partition and instead want algorithms such as trees find those regions with high and low
densities or rates w.r.t. some baseline? We follow the ideas outlined above and grow trees on
various rotations of the data, thereby identifying rectangular “leafs” of high or low incidence
of one of the two classes. While a binary recursive tree partitions space exhaustively and
in that sense is not naturally suited as a hotspot detector, we depart from this traditional
view and simply retain the most “interesting boxes”, typically those with an average rate
above a chosen threshold. Results are shown in Figure 9 where the tree succeeds in finding
spatial rectangles with odds ratios varying greatly. At this point of the analysis no statistical
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Figure 9: Classification tree (Ripley 2014) fitted to the crime data, where the positive class is
given by drug crimes (left) and robbery-related incidents (right). The labels indicate the odds
ratios of the respective crimes inside the outlined rectangular leafs. The classification trees
are grown on several rotations of the data. The baseline distribution is a uniform background
density.

significance accompanies these cells. Note that the user needs to specify a baseline distribution
that corresponds to the negative class. For specific crime categories, a natural choice could
be ”all other categories” which would identify clusters where a much higher/lower rate of
that crime occurs relative to overall crime. If on the other hand we only wanted to detect
over densities, the baseline distribution would be a uniform background incidence which we
achieve by artificially adding uniformly distributed points to the data set. Note that future
enhancements of this clustering method are planned that directly modify the cost function
of the tree algorithm such that deviations from any theoretical baseline distribution can be
computed directly, eliminating the need for artificial data augmentations.

5. Extending analyses using trellis structures

Sometimes, especially when we are working with novel data sets, we approach the limits
of what a plotting package is capable of. For example, having a priori knowledge of our
data set we might want to visualize it in a non-conventional fashion that is not supported
by the plot package’s existing plots but more appropriate to our data set. One of the most
powerful elements of R is that it allows users to work with code of multiple levels: Users can
generate complex research-grade plots with minimal input using default versions of specialist
functions in existing packages, or, with a little extra effort, access and modify the code the
existing functions to produce novel visualizations of their own. Here, we provide two examples
to demonstrate how particularly amenable the trellis lattice framework is to such working
practices.

Firstly, we consider the comparison of different surface fitting functions, much like the dis-
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Figure 10: The frequency density of incidents in the San Francisco 2012 data set, estimated
using kernel density (left) and GAM (right) surface fits. Note here the GAM outputs are much
smoother. However, this effect is most likely in part due to the binning step, an issue that
would not be as apparent or easily investigated when working with third-party plot options.

cussion of Trees, GAMs and PRIM in the previous section. We could, for example, decide we
would like to compare the performance of one or more of these with surface fitting functions
in our own visualizations. However, our plot package might not contain an option to surface
fit using, e.g., a GAM. The trellis framework functions can be passed to plots at several levels
(e.g., as arguments supplied to panels, or in modified panels or full plot functions). Code in
the supporting information for this paper shows how the loa panel.kernelDensity function
was be modified to generate a density surface using a GAM function. As the standard form
of the GAM would be count s(x, y) we also incorporate a ‘bin and count’ step to generate
a suitable data set for fitting. The output of this operation is compared with a standard
GoogleMap(..., panel = panel.kernelDensity) kernel density surface in Figure 10, and
both plots are generated within the lattice/loa framework, so readily amenable to trellis-style
conditioning allowing more detailed investigation.

Secondly, we consider the post-plot situation. With most plotting tools the user plots some
data, identifies features of interest, but then returns to the pre-plot data to do further work.
Because loa provides a mechanism for isolating data processing and plotting steps and can
retain the results of processing steps, this information can be extracted from the plots them-
selves. This means, for example, that we can recover the z information generated and used
by the plots to make the surfaces in Figure 10 and work directly with this information in
further analysis. This provides a much more robust link between data visualization and any
subsequent data analysis. We can also extend this approach to conditioned data, so, e.g.,
having plotted surfaces for different types of crimes we can extract and work directly with
those different surfaces.

Another common post-plot situation is that we plot data and see (or think we see) clusters
that even our most sophisticated data visualization techniques do not seem to be able to
isolate. In such cases it is useful to be able to ‘snatch’ data manually from the plot. loa
includes a function getLatLon() that can be used to manually select points on an existing
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Figure 11: The manual selection of data ranges using a previously generated plot. Left:
Three regions manually selected by the authors from a plot similar to Figure 4 using example
code supplied in the supporting information for this paper, and shown as red, green and blue
polygons. Right: The post-plot manipulation of data within these ranges, here the relatively
trivial color-coding of in- and out-of-range data. Note these regions were manual drawn, and
used to illustrated options to study features that conventional clustering methods might not
identify. The regions are areas of potential interest, that, having been isolated, a user might
test for cluster-like characteristics.

loa GoogleMap() and recover the latitude and longitude coordinates of these. (Note latitudes
and longitudes are locally scaled by the GoogleMap API, and RgoogleMaps uses a series of
conversion functions, LatLon2XY(), XY2LatLon(), etc., to work with these. So, getLatLon
is actually a wrapper for another function, getXY(), which gets the raw (x, y) points and
the RgoogleMaps converter that resets these to latitudes and longitudes.) The supporting
information for this paper includes an example that demonstrates how this function can be
used with inout() in splancs (Rowlingson and Diggle 2014) to manually draw a series of
polygons on an existing plot and isolate all points within specified polygons. Such an output
could then be used to investigate the validity of such suspected but not independently detected
clusters. The use of this function is illustrated in Figure 11.

6. Conclusion

In this paper, we have demonstrated how the contextual information of a map tile can enrich
the visualization of spatial data. The packages RgoogleMaps and loa enable the user to
execute GIS type operations all within the same R environment that allows for advanced
statistical analysis of the data. Not having to switch environments can be invaluable. While
many tools nowadays enable easy map overlays and “mashups”, the user typically does not
have full flexibility and the graphical prowess that R offers.
We should point out the dangers of mixing colors in the overlay and the map background
which can lead to ambiguous graphs. We have taken great care to separate the color spaces of
the png map tiles and the information overlaid. The risk of color collisions can be minimized
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by choosing gray scale or terrain-style map tiles.
We also feel that annotating clusters or polygons with additional graphics created in R is
potentially valuable. The benefits of trellis type conditioning cannot be overstated with
data that also have a temporal or categorical dimension. Density maps or clusters typically
vary greatly over time or with conditioning case; and such structural plots can be generated
with a few commands in loa. In addition, we believe that the supervised methods employed
here offer great potential for spatial partitioning and finding over densities with respect to
a background that is chosen by the user. Future work will include the refinement of the
clustering functions and their integration into the RgoogleMaps package as well as further
development of functions to manipulate existing plots in loa.
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