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Abstract

Hierarchical Bayesian modeling of large point-referenced space-time data is increas-
ingly becoming feasible in many environmental applications due to the recent advances
in both statistical methodology and computation power. Implementation of these meth-
ods using the Markov chain Monte Carlo (MCMC) computational techniques, however,
requires development of problem-specific and user-written computer code, possibly in a
low-level language. This programming requirement is hindering the widespread use of the
Bayesian model-based methods among practitioners and, hence there is an urgent need to
develop high-level software that can analyze large data sets rich in both space and time.

This paper develops the package spTimer for hierarchical Bayesian modeling of stylized
environmental space-time monitoring data as a contributed software package in the R
language that is fast becoming a very popular statistical computing platform. The package
is able to fit, spatially and temporally predict large amounts of space-time data using
three recently developed Bayesian models. The user is given control over many options
regarding covariance function selection, distance calculation, prior selection and tuning
of the implemented MCMC algorithms, although suitable defaults are provided. The
package has many other attractive features such as on the fly transformations and an
ability to spatially predict temporally aggregated summaries on the original scale, which
saves the problem of storage when using MCMC methods for large datasets. A simulation
example, with more than a million observations, and a real life data example are used to
validate the underlying code and to illustrate the software capabilities.

Keywords: Bayesian spatio-temporal modeling, Markov chain Monte Carlo, Gibbs sampling,
autoregressive, predictive processes.

1. Introduction

Model-based Bayesian analysis methods are becoming popular for taking account of uncer-
tainties in the analysis and spatial and temporal prediction of environmental space-time data.

http://www.jstatsoft.org/
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Practitioners are increasingly benefiting from their ability to reduce uncertainty in the infer-
ence statements that arise from joint space-time modeling (Cressie and Wikle 2011). Bayesian
methods are also popular because of their ability to combine information from several sources
using melding or data fusion (Sahu, Gelfand, and Holland 2010). However, currently there
is no suitable software package for Bayesian modeling and analysis of large space-time data.
In this paper, our interest is on modeling and analyzing spatio-temporal point-referenced
data (Banerjee, Carlin, and Gelfand 2004), where random observations are measured over
time at a number of spatial locations, which vary continuously over a study region.

A number of R (R Core Team 2014) packages are available for modeling and analyzing spatial
data, e.g., the packages sp (Pebesma and Bivand 2005) and spacetime (Pebesma 2012; Bivand,
Pebesma, and Gómez-Rubio 2013). Furthermore, packages gstat (Pebesma 2004), splm (Millo
and Piras 2012), fields (Nychka, Furrer, and Sain 2014) and nlme (Pinheiro, Bates, DebRoy,
Sarkar, and R Core Team 2014) are able to fit spatial regression models and perform spatial
interpolation-based on Kriging (Krige 1951). Some packages are also available for analyzing
spatial point pattern data (Banerjee et al. 2004), see e.g., spatial (Ripley 2013; Venables and
Ripley 2002) and spatstat (Baddeley and Turner 2005). However, none of these packages
implement MCMC-based Bayesian modeling methods.

General purpose R software packages, such as MCMCpack (Martin, Quinn, and Park 2011),
MCMCglmm (Hadfield 2010), and BLR (de los Campos and Perez Rodriguez 2014), are avail-
able for implementing Bayesian models. However, these are not suitable for analyzing spatially
correlated data. Packages that can handle spatial correlations include spBayes (Finley, Baner-
jee, and Carlin 2007; Finley, Banerjee, and Gelfand 2015), geoR (Ribeiro and Diggle 2001),
geoRglm (Christensen and Ribeiro 2002), rjags (Plummer 2014) and R2WinBUGS (Sturtz,
Ligges, and Gelman 2005) which is an R interface to WinBUGS (Spiegelhalter, Thomas, Best,
and Lunn 2003). However, these are not suitable and sometimes complicated for modeling
data rich in both space and time, although the package spBayes can model spatially varying
short-length time series data. These packages are not intended to handle large, e.g., more
than a million, space-time data and these packages do not allow incorporation of popular
models in the time series literature such as the auto-regressive models.

Non-Bayesian packages implementing the generalized additive models such as gam (Hastie
2014) and mgcv (Wood 2006) can also fit models for spatial data by implementing functional
relationships between the response and the coordinates of the spatial locations, e.g., latitude
and longitude. However, these modeling approaches are not process-based, i.e., do not incor-
porate random spatial and temporal processes, and we find that our process-based models
implemented in spTimer have superior performance in out of sample spatial predictions, see
Sections 4 and 5.

The main contribution of this paper is the development of the R package spTimer that is avail-
able from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=
spTimer. The package enables Bayesian modeling of regularly monitored point-referenced
data obtained from a sparse spatial network of monitoring stations. Data at each monitoring
station are obtained as a regular time series but may contain missing data. The package is also
able to incorporate an arbitrary number of explanatory variables that may vary in both space
and time. The residual spatio-temporal variation is modeled using three different recently
developed modeling methods appropriate for analyzing space-time environmental monitoring
data. All the inferences in this package and the paper are proposed to be under the Bayesian
paradigm using MCMC methods.

http://CRAN.R-project.org/package=spTimer
http://CRAN.R-project.org/package=spTimer
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Using Bayesian computation methods, the package spTimer is able to process, i.e., fit and
predict, both spatially and temporally, large space-time data sets that may contain missing
data. In so doing, the user is able to choose a particular covariance function from the Matérn
family (Cressie 1993) for the underlying Gaussian process and also a suitable method for calcu-
lating distances between two locations. In addition, the user can select the hyper-parameters
of the prior distributions and is also given the ability to choose the tuning parameters for the
implemented MCMC algorithms. The package also allows the user to select one of the two
possible (log and square-root) on the fly transformations for the response variable. Another
attractive feature of the package is the ability to spatially predict temporally aggregated sum-
maries, e.g., annual mean from daily data, on the original scale, which only requires storage
of the annual aggregate, instead of the full length time series, for each prediction location at
each MCMC iteration when we fit and predict for large data sets.

Users of spTimer only need to provide the model specifications in the high-level R language,
but the main body of the code is developed using the C programming language, that is hidden
from the user. This enables faster computation and better data handling capacity than what
can be achieved by simply using R. However, once the MCMC iterations have been finished
the output can be analyzed using any other contributed R package such as coda (Plummer,
Best, Cowles, and Vines 2006). For model selection purposes, the package automatically
reports the values of a predictive model selection criteria (Gelfand and Ghosh 1998). Many
other utility functions for model validation and output analyzes are also provided. The main
functions of the package spTimer are discussed in detail in Section 3.

The first of the three models (see Section 2) implemented in spTimer is a hierarchical nugget
effect model together with an independent Gaussian process (GP) model at each time point.
The Gaussian process implies a spatio-temporal random effect that captures the space-time
interactions, see e.g., Cressie and Wikle (2011, Chapter 6). Overall, this model parallels the
spatial random effect model in spatial only data analysis and naturally provides a very simple
starting model in many investigations involving space-time data, see Banerjee et al. (2004);
Diggle and Ribeiro (2007); and Gelfand, Diggle, Fuentes, and Guttorp (2010).

The second implemented model is the hierarchical auto-regressive model for space-time data
developed by Sahu, Gelfand, and Holland (2007). An explicit auto-regressive term for the
underlying true spatio-temporal process is assumed in a hierarchical set-up that includes the
overall nugget effect. This model is included in the spTimer package because of its supe-
rior performance in modeling air-pollution data, see e.g., Cameletti, Ignaccolo, and Bande
(2009) and Sahu and Bakar (2012a). This auto-regressive (AR) model is modified, as the
third and final implemented model, to include the recently developed Gaussian predictive
process approximation technique for handling large spatial and spatio-temporal data follow-
ing Banerjee, Gelfand, Finley, and Sang (2008), Finley, Sang, Banerjee, and Gelfand (2009)
and Sahu and Bakar (2012b). This last paper illustrates the capability of spTimer in handling
and processing more than a million space-time observations within a reasonable amount of
computing time in a standard personal computer.

This paper illustrates the package spTimer with two examples. The first is a simulation
example (see Section 4) that is used for code verification and illustration of the software
capabilities. The highlight of this example is that it simulates more than a million space-time
observations from the third model-based on a Gaussian predictive process approximation. It
then fits the model and illustrates prediction using MCMC methods. The code for the other
two models are verified using a smaller simulation data set. A real data example, modeling
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the daily 8-hour maximum ozone concentration in the months of July and August 2006 in the
state of New York, is used for rapid illustration of the models and methods, see Section 5.

2. Spatio-temporal models

2.1. Preliminaries

The Bayesian spatio-temporal models can be represented in a hierarchical structure, where,
according to Gelfand (2012), we specify distributions for data, process and parameters in
three stages:

First [data|process, parameter ]

Second [process|parameter ]

Third [parameter ]

In the second stage, the process can add different levels, for example in Gaussian process
(GP) models (Cressie and Wikle 2011; Gelfand et al. 2010) we have true underlying process
in the first level and the spatio-temporal random effect in the second level of the hierarchy.
Some illustrations are provided below in Section 2.2. Further examples, based on temporal
processes, are given in Sections 2.3 and 2.4. In the third stage of the hierarchy we introduce
the prior distribution of the parameters or hyper-parameters.

The models are described for time series data that are segmented using two different units
of time, such as hours within days or days within years, to have extra flexibility in modeling
and inputting data into the package. This enables us, for example, to model observed ozone
concentration levels during the high ozone season (May to September in the United States)
in each year for several years without having to model data for the remaining months in
each year when ozone concentration levels are low and not harmful (Sahu and Bakar 2012b).
However, by default, the package works for modeling data indexed by just one unit of time.

Let l and t denote the two units of time where l denotes the longer unit, e.g., year, l = 1, . . . , r,
and t denotes the shorter unit, e.g., day, t = 1, . . . , Tl where r and Tl denote the total number
of two time units, respectively. Let Zl(si, t) denote the observed point-referenced data and
Ol(si, t) be the true value corresponding to Zl(si, t) at site si, i = 1, ..., n at time denoted
by two indices l and t. Let Zlt = (Zl(s1, t), ..., Zl(sn, t))

> and Olt = (Ol(s1, t), ..., Ol(sn, t))
>.

We shall denote all the observed data by z and z∗ will denote all the missing data. Let
N = n

∑r
l=1 Tl be the total number of observations to be modeled.

Throughout, the notation εlt = (εl(s1, t), ..., εl(sn, t))
> will be used to denote the so called

nugget effect or the pure error term assumed to be independently normally distributed
N(0, σ2

ε In), where σ2
ε is the unknown pure error variance and In is the identity matrix of

order n. The spatio-temporal random effects will be denoted by ηlt = (ηl(s1, t), ..., ηl(sn, t))
>

and these will be assumed to follow N(0,Ση) independently in time, where Ση = σ2
ηSη, σ

2
η

is the site invariant spatial variance and Sη is the spatial correlation matrix obtained from
the, often used, general Matérn correlation function (Matérn 1986; Handcock and Stein 1993;
Handcock and Wallis 1994) defined as:

κ(si, sj ;φ, ν) =
1

2ν−1Γ(ν)
(2
√
ν||si − sj ||φ)νKν(2

√
ν||si − sj ||φ), φ > 0, ν > 0, (1)



Journal of Statistical Software 5

where Γ(ν) is the standard gamma function, Kν is the modified Bessel function of second kind
with order ν, and ||si− sj || is the distance between sites si and sj . The parameter φ controls
the rate of decay of the correlation as the distance ||si − sj || increases and the parameter ν
controls smoothness of the random field (Banerjee et al. 2004; Cressie 1993). The package
spTimer allows several possibilities regarding estimation of the correlation parameters φ and
ν that range from fixing them (point mass prior) to estimating them by assuming suitable
prior distributions, see Section 2.5 for further details. In addition, spTimer is also able to
incorporate the spherical correlation function, see Banerjee et al. (2004).

In the development below, we assume that there are p covariates, including the intercept,
denoted by the n× p matrix Xlt. Some of these covariates may vary in space and time. The
notation β = (β1, ..., βp) will be used to denote the p× 1 vector of regression coefficients. We
shall use the generic notation θ to denote all the parameters.

2.2. GP model specification

The independent Gaussian process (GP) model is specified hierarchically by:

Zlt = Olt + εlt, (2)

Olt = Xltβ + ηlt, (3)

for each l = 1, . . . , r and t = 1, . . . , Tl, where we assume that εlt and ηlt are independent and
each are normally distributed with their respective parameters as given in Section 2.1. Let
O denote all the random effects, Olt, l = 1, . . . , r and t = 1, . . . , Tl. Let θ = (β, σ2

ε , σ
2
η, φ, ν)

denote all the parameters of this model and let π(θ) denote the prior distribution that we
shall specify later. The logarithm of the joint posterior distribution of the parameters and
the missing data for this GP model is given by:

log π(θ,O, z∗|z) ∝ −N
2

log σ2
ε −

1

2σ2
ε

r∑
l=1

Tl∑
t=1

(Zlt −Olt)
>(Zlt −Olt)−

∑r
l=1 Tl
2

log |σ2
η Sη|

− 1

2σ2
η

r∑
l=1

Tl∑
t=1

(Olt −Xltβ)>S−1
η (Olt −Xltβ) + log π(θ). (4)

The prior distribution π(θ) is specified in Section 2.5 and the full conditional distributions of
the parameters, required for Gibbs sampling, are provided in Appendix A.

2.3. AR model specification

Following Sahu et al. (2007), we specify the hierarchical AR models as follows:

Zlt = Olt + εlt, (5)

Olt = ρOlt−1 + Xltβ + ηlt, (6)

for all l and t; where, ρ denotes the unknown temporal correlation parameter assumed to
be in the interval (−1, 1). Obviously, for ρ = 0, these models reduce to the GP models
described above in Section 2.2. We continue to assume the Gaussian distributions, introduced
in Section 2.1, for εlt and ηlt for all values of l and t.

The auto-regressive models require specification of the initial term Ol0 for each l = 1, . . . , r.
Here we specify an independent spatial model for each Ol0 with mean µl and the covariance
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matrix σ2
l S0 where the correlation matrix S0 is obtained using the Matérn correlation function

in Equation (1) with the same set of correlation parameters φ and ν for ηlt.

Let θ denote all the parameters, i.e., θ = (β, ρ, σ2
ε , σ

2
η, φ, ν,µl, σ

2
l ) and we also suppose that

O contains all the parameters Olt for l = 1, . . . , r, t = 0, . . . , Tl. The logarithm of the joint
posterior distribution of the parameters and the missing data is now given by:

log π(θ,O, z∗|z) ∝ −N
2

log σ2
ε −

1

2σ2
ε

r∑
l=1

Tl∑
t=1

(Zlt −Olt)
>(Zlt −Olt)−

∑r
l=1 Tl
2

log |σ2
η Sη|

− 1

2σ2
η

r∑
l=1

Tl∑
t=1

(Olt − ρOlt−1 −Xltβ)>S−1
η (Olt − ρOlt−1 −Xltβ)

−1

2

r∑
l=1

log |σ2
l S0| −

1

2

r∑
l=1

1

σ2
l

(Ol0 − µl)
>S−1

0 (Ol0 − µl) + log π(θ). (7)

As for the GP models of previous section, the prior distributions are specified in Section 2.5.
Full conditional distributions are provided in Appendix B.

2.4. Spatio-temporal models based on GPP

These models are based on the recent work by Sahu and Bakar (2012b) and the main idea here
is to define the random effects ηl(si, t) at a smaller number, m, of locations, called the knots,
and then use kriging to predict those random effects at the data and prediction locations.
Here, an AR model is only assumed for the random effects at the knot locations and not for
all the random effects at the observation locations. At the top level we assume the model:

Zlt = Xltβ +Awlt + εlt, (8)

for all l and t, where A = CS−1
η and C denotes the n by m cross-correlation matrix between

the random effects at the n observation locations and m knot locations, s∗1, . . . , s
∗
m, and Sη

is the m by m correlation matrix of the m random effects wlt. We specify wlt at the knots
conditionally given wlt−1 as:

wlt = ρwlt−1 + ηlt, (9)

for all l and t, where ηlt ∼ N(0,Ση) independently, Ση = σ2
ηSη. Note that, here Ση is an

m×m matrix which is of much lower dimensional than the same for two previous models GP
and AR since we assume that m << n.

The auto-regressive models are completed by the assumption for the initial conditions, wl0 ∼
N(0, σ2

l S0) independently for each l = 1, . . . , r, where the correlation matrix S0 is obtained by
using the Matérn correlation function in Equation (1) with decay parameter φ. Let w denote
the random effects wlt for l = 1, . . . , r and t = 0, 1, . . . , Tl. Let θ denote all the parameters
β, ρ, σ2

ε , σ
2
w, φ, ν, σ2

l , l = 1, ..., r. The logarithm of the joint posterior distribution of the
parameters and the missing data is given by:

log π(θ,w, z∗|z) ∝ −N
2

log σ2
ε −

1

2σ2
ε

r∑
l=1

Tl∑
t=1

(Zlt −Xltβ −Awlt)
>(Zlt −Xltβ −Awlt)

−m
∑r
l=1 Tl
2

log σ2
η −

∑r
l=1 Tl
2

log |Sη| −
1

2σ2
η

r∑
l=1

Tl∑
t=1

(wlt − ρwlt−1)>S−1
η
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(wlt − ρwlt−1)− m

2

r∑
l=1

log σ2
l −

r

2
log |S0| −

1

2

r∑
l=1

1

σ2
l

wl0S
−1
0 wl0

+ log π(θ). (10)

As previously in Sections 2.2 and 2.3, we specify the prior distributions in Section 2.5. The
full conditional distributions for Gibbs sampling are provided in Appendix C.

2.5. Prior distributions

The Bayesian model for each of the above three specifications is completed by assuming
suitable prior distributions for the underlying parameters. For simplicity and convenience,
we group the model parameters of different spatial processes and data into three different
types depending on whether those describe: the mean, the variance or the correlation. All
the parameters describing the mean, e.g., β, ρ, other than the random effects, are given
independent normal prior distributions, where the user can specify the means (µβ, µρ) and
variances (δ2

β, δ2
ρ). In our illustrations in Section 3, we have taken all those means to be 0

and variances to be 1010, that correspond to our assumption of flat prior distributions. We
also define an independent normal prior distribution with mean 0 and σ2

µ, assumed to be 1010

in our illustrations, for each component of the n-dimensional vector µl in the autoregressive
model.

The prior distribution for a typical precision (inverse of variance) parameter is specified
through a gamma distribution with mean a/b and variance a/b2. The user can specify any
suitable values for a and b, but in our illustrations we have chosen a = 2 and b = 1 to have a
proper prior distribution for any variance component that will guarantee a proper posterior
distribution (Gelman, Carlin, Stern, and Rubin 2004).

There is a large literature regarding the identifiability and the consistency of the parameters
describing the correlation in a Gaussian process; see for example, Stein (1999) and Zhang
(2004). These problems manifest themselves in the Bayesian estimation literature as well,
see e.g., Sahu, Gelfand, and Holland (2006), who use an empirical Bayes (EB) approach. To
facilitate estimation using this EB approach, spTimer allows the user to run Gibbs sampling
by fixing the correlation parameters φ and ν so that a grid search can be performed to find
the optimal values of these parameters.

Full Bayesian estimation of φ and ν is also allowed in spTimer corresponding to discrete
uniform prior distributions for both these parameters. In all our illustrations the smoothing
parameter ν is estimated using a discrete uniform prior distribution taking values from 0 to
1.5 with the increment 0.05. In addition to a discrete uniform distribution, we also allow a
Gamma prior distribution with suitable hyper-parameter values for the decay parameter φ.

In practice, in any Bayesian analysis, the sensitivity with respect to the chosen distribution
must be studied, and the spTimer package that we have developed here makes it easy to do
so without much programming effort.

2.6. Model fitting

All the models are fitted using Gibbs sampling (Gelfand and Smith 1990). The conjugate prior
distributions assumed for all the parameters except for the φ and ν enable standard conjugate
sampling from the full conditional distributions. These details are given in Appendices A, B,
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and C. Missing data values are sampled from their conditional distributions at each iteration
of the Gibbs sampler.

The full conditional distributions of the correlation parameters φ and ν are non-standard.
The package provides two options for sampling these parameters corresponding to the two
different prior distributions. The full conditional distribution will be discrete, and hence
easy to sample from, if a discrete uniform prior distribution has been assumed for them. The
second option, only allowed for the decay parameter φ, is to assign a continuous uniform prior
distribution over an interval or a Gamma prior distribution and then to use the random-walk
Metropolis-Hastings algorithm to draw samples from it. The proposal distribution is taken
as the normal distribution with the mean at the current value and the variance σ2

p which is
tuned to have an acceptance rate between 15 to 40%, see Gelman et al. (2004) for theoretical
justifications. The Metropolis algorithm is implemented on the log-scale for φ, i.e., we work
with the density of log(φ) instead of φ since the support of the normal proposal distribution
is the real line. In this sampling scheme, keeping φ within a range, as may be required by the
assumed prior distribution, is trivial since any proposal value outside the range is rejected
forthwith.

The quality of the model fit and its predictive abilities are assessed by calculating the predic-
tive model choice criteria (PMCC, Gelfand and Ghosh 1998) which is given by,

PMCC =
n∑
i=1

r∑
l=1

Tl∑
t=1

{
E(Zl(si, t)rep − zl(si, t))2 + Var(Zl(si, t)rep)

}
, (11)

where, Zl(si, t)rep denotes a future replicate of the data zl(si, t). The first term in the PMCC
assesses the goodness of fit and second term is a penalty term for model complexity. The
PMCC, justified using a squared error loss function, is most suitable for comparing Bayesian
hierarchical models that involve a first stage Gaussian model. The values of the criteria are
estimated by sampling from the posterior predictive distributions discussed below.

2.7. Prediction details

Spatial prediction at a new location and temporal prediction at future time points proceed
with the posterior predictive distribution for Zl(s0, t

′), where s0 denotes a new location and t′

is a time point, which can be in the future. The posterior predictive distribution for Zl(s0, t
′)

is obtained by integrating over the parameters with respect to the joint posterior distribution
as:

π(Zl(s0, t
′)|z) =

∫
π
(
Zl(s0, t

′)|Ol(s0, t
′), σ2

ε

)
× π

(
Ol(s0, t

′)|θ,O, z∗
)

×π (θ,O, z∗|z) dOl
(
s0, t

′) dO dθ dz∗. (12)

Note that for the GPP models in Section 2.4 we replace the random effects Ol(s, t
′) by wl(s, t

′).
Predictions are obtained by composition sampling. First, a random sample θ(j),O(j) is drawn
from the posterior distribution π(θ,O, z∗|z) using the details in the model fitting described in

Sections 2.2, 2.3, 2.4. Then, Bayesian kriging is applied to draw a sample, O
(j)
l (s0, t

′) from the

conditional distribution of Ol(s0, t
′) given Ol(s1, t), . . . , Ol(sn, t). Finally a sample Z

(j)
l (s0, t

′)

is drawn from the top level model π(Zl(s0, t
′)|O(j)

l (s0, t
′), σ

2(j)
ε ).

At the end of the MCMC run, the samples Z
(j)
l (s0, t

′), j = 1, . . . , J where J is a large number,
are summarized to make predictive inference. If a transformation, such as the log or the square
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Function Description

spT.Gibbs For model fitting using Gibbs sampling approach.
It can also predict simultaneously if suitable options are turned on.

predict.spT Using output from spT.Gibbs this is able to perform prediction,
or predict either spatially or temporally or both.

Table 1: Two main functions in spTimer.

root, has been applied then the posterior predictive samples Z
(j)
l (s0, t

′) are first transformed
back to the original scale before their summaries are calculated. Further, details regarding
these predictions are provided in Bakar (2012) for the GP models, Sahu et al. (2007) for the
AR models and Sahu and Bakar (2012b) for the GPP-based models.

3. Main functions in spTimer

There are two main functions in the spTimer package, namely, spT.Gibbs for model fitting
and predict to obtain spatial and temporal predictions based on the fitted models. Table 1
provides a snapshot of these two main functions. In the following sub-sections we discuss
these functions more elaborately.

3.1. spT.Gibbs

The function spT.Gibbs is used to fit all three models using the Gibbs sampling approach
and it takes a number of arguments that define and control its behavior. For example, the
argument formula is used to specify the linear part of the model. It is an object of class
formula, which is same as that for the lm function to fit linear regression models in R.

The argument data provides the data frame to be used for model fitting. The package also
has the capability to support data classes STFDF of spacetime and SpatialPointsDataFrame

of sp. The data set must be first ordered by the location index, and for each location the data
must be ordered by time. Time series data with more than one segment, for example, Tl unit
(e.g., daily) observations in the lth segment (l = 1, . . . , r) (e.g., month), must be ordered first
by the longer unit (e.g., month) and then by the shorter unit (e.g., day). The total length
of the time series at each location,

∑r
l=1 Tl, must be the same for each location and the data

rows in each site must correspond to the same basic time unit.

Varying segment length time series are also allowed, e.g., T1 = 31, T2 = 28, T3 = 31, and
T4 = 30 when it is intended to model daily data for the first four calendar months (r = 4) in a
year which is not a leap year. Moreover, all sites must have data rows for the exact same total
number of time units and the rows for the shorter time units in each site must correspond to
those for all other sites. This is to prohibit passing of irregularly observed time series to the
data argument, i.e., in the current example one observation site cannot replace, for example,
2 days of January data by data for two extra days in May when all the other sites have daily
data for the first four months. However, it is possible to have missing observations for the
response variable and the missing values must be denoted by the standard NA identifier. No
missing data values are allowed for the covariates since handling of such situations requires
additional modelling. Details on how to define the time segments are provided in Section 3.3.

A typical code for the GP model is written as:
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spT.Gibbs(formula, data = parent.frame(), model = "GP", time.data = NULL,

coords, knots.coords, newcoords = NULL, newdata = NULL, priors = NULL,

initials = NULL, nItr = 5000, nBurn = 1000, report = 1, tol.dist = 0.05,

distance.method = "geodetic:km", cov.fnc = "exponential",

scale.transform = "NONE", annual.aggrn = "NONE",

spatial.decay = spT.decay(distribution = "FIXED"))

The model argument specifies the model to be fitted which can be any one of the three: GP,
AR, and GPP with GP being the default. In spT.Gibbs the argument priors specify the hyper-
parameter values of the prior distributions. The default value of this argument is NULL when
automatic values are chosen. More details regarding this are provided in Section 3.3.

The required argument coords can be supplied in different formats. It can be specified as
an n × 2 matrix or data frame containing the co-ordinates of the n spatial locations, or as
a formula object defining the coordinates, e.g., coords = ~ Longitude + Latitude. The
optional argument knots.coords is used only for the GPP model and, must be provided as
an m× 2 matrix of coordinates of the m (< n) knot locations.

The two optional arguments newcoords and newdata need to be provided if it is intended
to do model fitting and prediction simultaneously. The argument newcoords provides the
new coordinate points where we want to predict and newdata must contain the values of the
covariates at the prediction locations. No predictions are performed if these two arguments
are omitted. In that case, predcitions can still be performed after model fitting by calling the
predict function, see Section 3.2.

The argument initials specifies the starting values for the model parameters. Default
initial values can be chosen by specifying the option initials = NULL, and in that case the
following values will be set: σ2

η = 0.1, σ2
ε = 0.01. The default initial value for the spatial

decay parameter, φ, is set as − log(0.05)/dmax ≈ 3/dmax (Finley et al. 2007), where dmax is
the maximum distance calculated from the coordinates of the model fitting locations, which
ensures that the effective spatial range (the distance by which the spatial correlation becomes
negligible) is dmax. The initial values for the regression parameters and the auto-regressive
parameter are obtained by fitting a simple linear model using the lm function.

The arguments nItr, nBurn, and report control the running of the MCMC algorithm where:
nItr specifies the total number of iterations, nBurn denotes the number of burn-in iterations
to discard, and report allows how many reports of progress of MCMC to print on screen.

The distance.method argument allows the distance between any two locations to be calcu-
lated using "geodetic:km" (the default), "geodetic:mile" and "euclidean" for distance
in kilometers, miles and Euclidean unit respectively. Related to this is the tol.dist, which
defaults to 0.05, that allows the user to avoid modelling locations which are less than the
tol.dist away. This is to avoid singularity in the covariance matrices. The argument
cov.fnc provides the choice of the spatial covariance function and can take any one of the val-
ues: "exponential" (the default), "gaussian", "spherical", and "matern". The handling
of the spatial decay parameters is discussed in Section 3.3.

The argument scale.transform specifies the on-the-fly transormation for the response vari-
able and it can take one of the three possible values "SQRT", "LOG" and "NONE" with the last
one being the default. Note that all the predictions will be performed on the orginal scale
of the data and it is not possible to use any on-the-fly transformation for the explanatory
variables.
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An optional argument annual.aggrn is also used only if the predictions are to be made
using spT.Gibbs. This argument specifies the required type of time series aggregation in the
predictions and, currently it can take any of the values: "ave" for annual average, "an4th" for
obtaining the annual 4th highest value and "NONE" for no annual aggregates. For example,
if dataset has 365 daily observations in each of 10 years, then the use of annual.aggrn =

"ave" yields the 10 annual averages at each MCMC iteration without having to store 3650
iterates of the daily values. Thus, this argument helps to solve the storage problem when it is
of interest to predict the aggregated summaries rather than the individual atomic space-time
data.

3.2. predict

The function predict is used to get spatial and temporal predictions based on the re-
sults obtained from the routine spT.Gibbs. The two required arguments of predict are
the newcoords, which must contain the new coordinate points where we want to predict
and newdata, which contains the values of the covariates. The argument type in predict

specifies the type of prediction the user wants to make which can be either "spatial" or
"temporal". If the value is "spatial" then only spatial prediction will be performed at the
newcoords which must be different from the fitted sites provided by the coords argument.
When the "temporal" option is specified then forecasting will be performed and in this case
the newcoords may also contain elements of the fitted sites in which case only temporal
forecasting beyond the last fitted time point will be performed.

3.3. Some other useful functions

The package spTimer includes several utility functions, e.g., spT.time, spT.priors,
spT.decay, spT.initials, and spT.validation for performing various important tasks.

The function spT.time is used to specify the temporal structure of the data that can be used
in spT.Gibbs. It has two arguments: (i) t.series that specifies the number of observations
in each segment of the time series and (ii) segments that specifies the total number of seg-
ments. For example, to model data for 5 years with 30 days in each year we call the function
spT.time(t.series = 30, segments = 5) and send the output to spT.Gibbs. The default
value for segments is 1 and this is what should be used for simple time series modelling
problems where time is described by one unit only, e.g., day.

The package can also handle unequal length time segments which can be specified by a vector
valued t.series argument in spT.time. For example, to model daily data for the first four
calendar months in a non-leap year, the appropriate code is spT.time(t.series = c(31,

28, 31, 30), segments = 4). However, in this paper we only illustrate with equal segment
length time series data.

The spT.priors function is used to define the hyper-parameter values of the prior distribu-
tions. As the parameters are model dependent, the call to this function requires a model

argument and then a list of prior distributions for the associated parameters. The abbrevi-
ation "Gamm" denotes the gamma prior distribution, while the abbreviation "Norm" denotes
the normal prior distribution. For example, the call

R> prior <- spT.priors(model, inv.var.prior = Gamm(a = 2, b = 1),

+ beta.prior = Norm(0, 10^10), rho.prior = Norm(0, 10^10))
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will specify independent gamma prior distribution with parameters 2 and 1 for the inverse
of the each variance component, and each of the regression parameters β and the auto-
regressive parameter ρ will be assigned an independent normal prior distribution with mean
0 and variance 1010. A default proper prior with large variance will be assumed if prior for
any parameter is missing.

The spT.decay function is used to assign prior distribution for the spatial decay parameter
φ in one of the following three possible ways:

1. Fixed: This choice fixes φ at a particular value, which is achieved by writing
distribution = "FIXED" in the argument. For example, for fixing φ at 0.01 we write:

spatial.decay = spT.decay(distribution = "FIXED", value = 0.01)

The default initial value, 3/dmax, will be assumed if the particular value is not provided.
This "FIXED" option is the package default.

2. Uniform distribution: This option corresponds to assuming a discrete uniform prior for
φ in a specified interval. A typical specification is provided below:

spatial.decay = spT.decay(distribution=Unif(.01,.02), npoints=5)

where the npoints argument specifies the number of support points in the prior distribu-
tion under this option. Default value for npoints is 5. At the moment it is not possible
to specify a continuous uniform distribution as the prior for the decay parameter.

3. Gamma distribution: The gamma prior distribution for φ can be assumed by the state-
ment:

spatial.decay = spT.decay(distribution = Gamm(a = 2, b = 1),

tuning = 0.08)

where the tuning parameter specifies the standard deviation of the normal proposal
distribution centered at the current value for the random-walk Metropolis sampling
algorithm implemented for sampling φ on the log-scale.

The function spT.initials is used to gather initial values for the parameters in the model.

The function spT.validation calculates the following validation criteria: mean squared error
(MSE), root mean squared error (RMSE), mean absolute error (MAE), relative bias (rBIAS),
and relative mean separation (rMSEP).

MSE = 1
m

∑m
i=1(ẑi − zi)2, MAE = 1

m

∑m
i=1 |ẑi − zi|,

MAPE = 1
m

∑m
i=1 |(ẑi − zi)/zi|, BIAS = (ẑi − zi),

rBIAS = 1
mz̄

∑m
i=1(ẑi − zi), rMSEP =

∑m
i=1(ẑi − zi)2/

∑m
i=1(z̄p − zi)2,

where, m is the total number of observations we want to validate, zi is the data indexed by i,
ẑi is the prediction value, z̄ and z̄p are the arithmetic mean of the observations and predictions
respectively.
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4. Simulation study

The main purpose of this example is to validate the body of code underpinning the package
spTimer. The code for carrying out the main inference tasks: estimation of model parameters
and predictions are validated for each of three models GP, AR and GPP. This section reports
the results from experiments on larger data sets using GPP-based models. We examine
different scenarios, for example an intercept only model and a model with four covariates
to test inference of the regression (β) parameters. We also provide a sensitivity analysis for
different signal-to-noise ratios and compare the performance of spTimer with spBayes and
mgcv, which adopts a non-Bayesian framework. The code lines for doing this analysis are
provided in the accompanying R file, v63i15.R.

4.1. Simulation design and results

The spatial domain of the simulation study is taken as a square ranging from zero to 1000
units, and for fitting GP and AR models we suppose that the sampling locations form a
regular grid of 12 × 12 = 144 points (see Figure 1(a)) inside the square. For the GPP-
based approximation model we consider 55 × 55 = 3025 grid points inside the square, that
is moderately large (see Figure 1(b)). The number of knots are defined for the GPP-based
models is a 10×10 square grid inside the range. The temporal domain is taken as 365 days in
a year. Hence, for GP and AR models we obtain 52, 560 (= 144× 365) observations in total,
and for the GPP model we generate a data set with 1, 104, 125 (= 3025× 365) observations.

Out of these data locations (144 for the GP and AR models; and 3025 for the GPP-based
model), we randomly choose 10% locations, as validation sites and model data from the
remaining 90% sites. Hence, we model data from 129 locations for the GP and AR models
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Figure 1: (a) A representation of the 144 grid locations (+) used for simulating the data
for GP and AR models. (b) 3025 grid locations (+) are used for data simulation for the
GPP-based approximation model and 100 knot points are superimposed using (red) solid
circles.
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Model Parameter True Value Median 95% Interval

GP

β0 5.0 4.99 (4.96, 5.03)
β1 2.0 1.95 (1.83, 2.11)
β2 1.0 0.94 (0.80, 1.27)
β3 0.5 0.52 (0.46, 0.57)

AR

β0 5.0 5.10 (4.98, 5.27)
β1 2.0 1.98 (1.81, 2.30)
β2 1.0 1.05 (0.78, 1.21)
β3 0.5 0.47 (0.41, 0.55)
ρ 0.2 0.19 (0.15, 0.27)

GPP

β0 5.0 4.89 (4.75, 5.13)
β1 2.0 1.90 (1.77, 2.07)
β2 1.0 0.96 (0.81, 1.13)
β3 0.5 0.46 (0.38, 0.55)
ρ 0.2 0.17 (0.09, 0.26)

Table 2: True values of the parameters and their estimates using the summary statistics of
the MCMC samples for all three models. The column Median represents the posterior median
and a 95% credible interval is also provided for each of the parameters.

and validate them for the set aside data from the remaining 15 locations. Similarly for the
GPP-based models we set aside data from 300 locations for validations and model data from
the remaining 2725 locations. We also assume that 5% data are missing at random for the
GP, AR and GPP-based models. This is done to test the missing data handling capabilities of
the Bayesian approach which is very common in practice. The Euclidean distance is used in
the simulation study while the real life example in the next section uses the geodetic distance
for a geographic spatial domain. We illustrate throughout using the exponential covariance
function (ν = 0.5) for both simulation and model fitting, although we have validated using
all other covariance functions.

Three different data sets are simulated from the three models using the following values of
the model parameters.

We assume that four covariate effects are captured including the intercept term, and take the
true value of the parameters as β0 = 5.0, β1 = 2.0, β2 = 1.0 and β3 = 0.5. The covariates
x1, . . . , x3 are generated from the standard normal distribution. The spatial effect variance,
i.e., the signal σ2

η under GP, AR and GPP-based models is assumed to be randomly chosen
from the uniform distribution in (0, 1) and the pure error (or nugget effect) variance is set
at σ2

ε = 0.01. We have also provided a sensitivity analysis of the signal-to-noise ratio later
in this section. The spatial decay parameter φ is assumed to be 0.003 that implies high
spatial correlation even at large distances. The temporal auto-correlation parameter, ρ is set
at 0.2 for the GP and GPP-based models. This moderate value was deemed to be enough
for simulating space-time dependent data over and above the previously assumed high spatial
correlation. For the AR model, the initial mean and variance for Ol(si, 0) are taken to be
5.0 and 0.5 for l = 1. The number of knots for the GPP-based model is taken to be 100 (see
Figure 1(b) for their locations) and we assume that the initial values for wl(si, 0) follow the
normal distribution with 0 and variance 0.5 independently for l = 1 under this model.

In this study we illustrate throughout with the Metropolis-Hastings algorithm for simulating
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Figure 2: Fitted surface plots for (a) mean and corresponding (b) residuals using GPP-based
model for time point five.

from the conditional distribution of the spatial decay parameter since that was found to be
the best among all three methods available in the package (Bakar 2012). In all our MCMC
implementations we use a small number of iterations to choose the tuning parameter (mostly
by trial and error) that achieves an acceptance rate between 15 to 40%, see Section 2.6.
For the simulation example, the Gibbs sampler is then run for 5,000 iterations for making
inference with first 1,000 iterations as burn-in. We replicate the experiment 25 times and
store the MCMC iterates of the model parameters, see Table 2 for the summary statistics.

The Gibbs sampler produced estimates of the parameters that were very close to the true sim-
ulation values, see Table 2. Moreover, the acceptance rate for sampling the decay parameter
φ was also reasonable.

Fitted plots and missing values

Figure 2(a) shows the fitted mean surface plots for time point 5 with the GPP-based model.
Note that, in this simulation example we only take 30 time points to reduce the computational
burden of model fitting. The fitted surface plot for the mean is obtained using spTimer S3
class function plot, by using the argument surface inside the function. The argument
surface is set to "Mean" or "SD" to plot the fitted mean or standard deviations respectively.
It is also possible to change the color pallete of the surface plot using the argument col; for
example, we can use package colorspace (Zeileis, Hornik, and Murrell 2009) and write col

= rainbow_hcl(100, start = 200, end = 0). In addition, argument a3d = TRUE can be
used to obtain a 3-dimensional plot of the fitted observations. Moreover, contours can be
added to the plots. The accompanying R file, v63i15.R contains the detailed code for doing
this by sending the fitted model output to two new functions plot.spT and contour.spT

which are also provided. Note that these functions will require the akima (Akima 2013)
package.
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Figure 3: (a) Time series plots of the true and fitted values at one randomly chosen location.
(b) Time series plots of the residuals at 4 randomly chosen locations.

In Figure 2(b) we provide a residual (z − ẑ) surface plot. We observe that the residual
surface plot varies from −0.4 to 0.4 and in most places the fitted values are close to the true
observations.

A time series plot of the fitted values is shown in Figure 3(a), for the first location in the
simulated data set, using the GPP model. We see that the fitted mean is very close to the
true value, and in addition it also shows that the estimates of the missing values are very
close to the true value. We also provide residual plots for 4 randomly chosen locations in
Figure 3(b), where we see the time series plots for the error are close to zero without any
visible dependence structure. The missing values are indicated by circles, which are fitted
using the Bayesian modeling discussed in Section 2.

Sensitivity of the signal-to-noise ratio (SNR)

We also check the sensitivity of the fit for different signal-to-noise ratio (SNR), i.e., ζ = σ2
η/σ

2
ε ,

through the simulated data. We use 3 different scenarios: (1) σ2
η and σ2

ε are same, i.e., ζ = 1,
(2) when σ2

η is 10 times higher than σ2
ε , i.e., ζ = 10 and (3) when ζ = 15. We do not allow

ζ to be less than one since it is very unusual for the nugget effect, σ2
ε , to be larger than the

spatial variance, σ2
η.

We simulate data sets in 144 locations for 365 days for the intercept only model defined earlier
in Section 4.1. We also replicate the procedure 25 times and obtain the MCMC results for the
variance parameters. Figure 4 shows density plots of ζ for the MCMC samples obtained from
the GP model. The true value of ζ is shown using a vertical line. We observe, the distribution
of ζ’s for different scenarios include its true value. The MCMC summary statistics for β0, i.e.,
the intercept coefficient is given in Table 3. Note that the 95% credible intervals are almost
totally unaffected by the value of ζ.
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Figure 4: Distribution of signal-to-noise ratio (SNR), ζ, for 3 different true values: 1, 10 and
15.

True β0 Median 95% Interval

ζ = 1 5.0 5.01 (4.96, 5.07)
ζ = 10 5.0 4.98 (4.94, 5.03)
ζ = 15 5.0 5.02 (4.97, 5.08)

Table 3: Summary statistics for β0 for different scenarios of signal-to-noise ratio (ζ).

4.2. Comparison study

In this section we compare the performance of spTimer models with spBayes and also with
a non-Bayesian model, e.g., the additive model as implemented in the mgcv package. From
a modeling perspective we particularly focus on the issues of model fitting, prediction and
computation time. To proceed, we start with a simple time series data having just 5 time
points and then increase this to 10, 20 and 60. We simulate 49 locations (see Figure 5(a)) from
the spatial domain defined in Section 4.1; where in addition to the grid points, the sampling
locations are also chosen randomly, see Figure 5(b). We use the same model parameters as
defined earlier in Section 4.1. Note that in this section we consider the intercept only model
and obtain 4,000 MCMC samples after discarding first 1,000 samples as burn-in.

Figure 6 represents the density plots for the coefficients used in the models. As expected,
we observe that all three packages provide estimates of the β0 parameter close to the true
value. However, we also observe that the estimate obtained from spTimer has a shorter length
credible interval than that using the spBayes package.

Table 4 shows a comparison of approximate computation times for the GP models using
spTimer, and spBayes for data sets with different length of time series. Computation times
for using the mgcv package are not included in this table since that package does not require
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Figure 5: A representation of the 49 (a) grid and (b) random locations (+) used for simulating
the data for comparison study.

4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6

0
1

2
3

4

Data with time point = 5

D
e
n
s
it
y

True
GAM
spBayes
spTimer

(a)

0 2 4 6 8 10

0
1

2
3

4
5

6

Data with time point = 10

D
e
n
s
it
y

True
GAM
spBayes
spTimer

(b)

Figure 6: Density plots for the estimated β parameters obtained from the simulated data sets
with time points (a) 5 and (b) 10. True value for β = 5 is also superimposed using vertical
solid line.

an iterative fitting method such as MCMC. This table clearly shows that spTimer provides
faster model fitting than spBayes when the number of time points in the data is greater than
one. Computation times for implementing the model when there is data for exactly one time
point are comparable for the spTimer and spBayes packages and hence are not shown here.

To compare the off-site predictive performance we set aside 20% data for validation purposes.
We use a small number of time points T = 5 and a large number T = 60 to compare
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Computation time
Models T = 5 T = 10 T = 20 T = 60

GP (spBayes) 3 Minutes 25 Minutes 4 Hours -
GP (spTimer) 10 Seconds 12 Seconds 16 Seconds 40 Seconds

Table 4: Approximate computation time for model fitting using spTimer and spBayes using
data sets simulated from different time series.

T = 5 T = 60

Models MSE MAE MSE MAE

Grid-based
GP (spTimer) 0.0898 0.2380 0.0759 0.2202
GP (spBayes) 1.0692 0.5918 – –
GAM (mgcv) 0.1359 0.3021 0.1021 0.2555

Random
GP (spTimer) 0.0970 0.2530 0.0680 0.2090
GP (spBayes) 1.0897 0.6306 – –
GAM (mgcv) 0.1097 0.2689 0.1004 0.2579

Table 5: Comparison of validation statistics, mean squared error (MSE) and mean absolute
error (MAE) obtained from spTimer, spBayes and mgcv models.

the models. We observe that both the validation criteria, MSE and MAE, are smallest
for the spTimer model for the spatio-temporal data, see Table 5. Note that we omit the
predictive results for spBayes at T = 60, because it is computationally prohibitive as it
does not finish computations for predictions even after running continuously for several days,
although the model fitting job finishes within a day as reported in Table 4. We also provide
further comparison of predictive performance of the models using the real life data example
in Section 5.

5. A practical example

We use a real life data set, previously analysed by Sahu and Bakar (2012a), on daily maximum
8-hour average ground level ozone concentration for the months of July and August in 2006,
observed at 28 monitoring sites in the state of New York. We consider three important
covariates: maximum temperature (cMAXTEMP in degree Celsius), wind speed (WDSP in nautical
miles) and percentage average relative humidity (RH) for building a spatio-temporal model
for ozone concentration. Further details regarding the covariate values and their spatial
interpolation are provided in Bakar (2012). Figure 7 represents a map of the study region
together with the 28 monitoring locations of which 8 have been set aside for model validation
purposes. Moreover, we also set aside the data for the last 2 days (August 30 and 31) for
validating the temporal forecasts. The following set of code lines are used for data preparation.

R> data("NYdata")

R> s <- c(8, 11, 12, 14, 18, 21, 24, 28)

R> DataFit <- spT.subset(data = NYdata, var.name = "s.index", s = s,

+ reverse = TRUE)

R> DataFit <- subset(DataFit,

+ with(DataFit, !(Day %in% c(30, 31) & Month == 8)))
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Fitted sites

Validation sites

Figure 7: A map of the state of New York showing locations of the 28 ozone monitoring sites
of which data from 8 are used for validation purposes.

R> DataValPred <- spT.subset(data = NYdata, var.name = "s.index", s = s)

R> DataValPred <- subset(DataValPred,

+ with(DataValPred, !(Day %in% c(30, 31) & Month == 8)))

where, DataFit is for model fitting, and the data sets DataValPred is for model validation.

To fit GP model using spTimer we use the following code:

R> set.seed(11)

R> post.gp <- spT.Gibbs(formula = o8hrmax ~ cMAXTMP + WDSP + RH,

+ data = DataFit, model = "GP",

+ coords = ~ Longitude + Latitude, scale.transform = "SQRT",

+ spatial.decay = spT.decay(distribution = Gamm(2, 1), tuning = 0.1))

A number of remarks are in order. The fitted model is the GP model, see Equations 2 and 3.
The linear (covariate) part of the model is specified by the formula argument that automat-
ically includes the intercept. Secondly, the square-root transformation is used, on the fly, to
stabilize the variance (Sahu et al. 2007; Sahu and Bakar 2012a). The initial values and the
values of the hyper-parameters for the prior distributions are assumed by default. Moreover,
by default MCMC is run for 5,000 further iterations after discarding first 1,000. The spTimer
user manual lists all the defaults and the ways to change them.

The package spTimer provides the usual R print and summary commands for obtaining
summaries of the model fit. Here is some sample output:
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R> print(post.gp)

-----------------------------------------------------

Model: GP

Call: o8hrmax ~ cMAXTMP + WDSP + RH

Iterations: 5000

nBurn: 1000

Acceptance rate for phi (%): 32.58

-----------------------------------------------------

Goodness.of.fit Penalty PMCC

values: 253.31 631.76 885.07

-----------------------------------------------------

Computation time: 6.38 - Sec.

We can also view the MCMC trace plots of the parameters using the plot function as:

R> plot(post.gp)

Figure 8 shows the MCMC trace plots for the four model parameters for 15000 iterations.
Further MCMC diagnostics can be done using coda (Plummer, Best, Cowles, and Vines 2012).
For example, one can use the code

R> autocorr.diag(as.mcmc(post.gp))

to generate the autocorrelation plots. One can also obtain residual plots using the function
plot with the additional argument residuals = TRUE as:

R> plot(post.gp, residuals = TRUE)

However, none of these plots are included here for brevity.

The predictive model choice criteria (PMCC) described in Section 2.6 is obtained as post.gp$PMCC.
We obtain the parameter estimates from the MCMC samples using the familiar summary com-
mand:

R> summary(post.gp)

-----------------------------------------------------

Model: GP

Call: o8hrmax ~ cMAXTMP + WDSP + RH

Iterations: 5000

nBurn: 1000

Acceptance rate for phi (%): 32.58

-----------------------------------------------------

Goodness.of.fit Penalty PMCC

values: 253.31 631.76 885.07

-----------------------------------------------------

Computation time: 6.38 - Sec.
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Figure 8: MCMC traceplots for four model parameters using GP model.

-----------------------------------------------------

Parameters:

Mean Median SD Low2.5p Up97.5p

(Intercept) 3.1790 3.1058 0.8474 1.7178 5.1722

cMAXTMP 0.1337 0.1374 0.0262 0.0685 0.1746

WDSP 0.0770 0.0787 0.0303 0.0134 0.1331

RH -0.0544 -0.0655 0.0977 -0.2141 0.1752

sig2eps 0.0167 0.0160 0.0043 0.0105 0.0268

sig2eta 0.8305 0.6905 0.4747 0.4789 2.1902

phi 0.0069 0.0072 0.0023 0.0020 0.0108

-----------------------------------------------------

These parameter estimates show that except for RH, all regression coefficients are statistically
significant for the GP model since the 95% credible intervals do not contain zero. The estimate
of the spatial decay parameter φ = 0.007 implies an effective range of 427 kilometers. We
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also observe that, as expected, the spatial variance σ2
η is higher than the nugget effect σ2

ε .

Prediction capabilities of spTimer are explored using the predict function, as noted in Ta-
ble 1. After the above model fitting we can use the following code lines to perform and
examine prediction.

R> set.seed(11)

R> pred.gp <- predict(post.gp, newdata = DataValPred,

+ newcoords = ~ Longitude + Latitude)

R> print(pred.gp)

--------------------------------------

Spatial prediction with Model: GP

Covariance function: exponential

Distance method: geodetic:km

Computation time: 3.39 - Sec.

--------------------------------------

For model validation spTimer has a built-in function for different validation criteria which
have been discussed in Section 3.3. Hence, we write:

R> spT.validation(DataValPred$o8hrmax, c(pred.gp$Median))

##

Mean Squared Error (MSE)

Root Mean Squared Error (RMSE)

Mean Absolute Error (MAE)

Mean Absolute Percentage Error (MAPE)

Bias (BIAS)

Relative Bias (rBIAS)

Relative Mean Separation (rMSEP)

##

MSE RMSE MAE MAPE BIAS rBIAS rMSEP

43.3210 6.5819 5.0803 11.8626 0.6350 0.0136 0.2621

The package spTimer can also perform temporal forecasting at both observed and unobserved
locations using the same predict function when it is called with the additional argument type
= "temporal" – details are provided in the package manual.

A predictive map can be drawn using the predictive output obtained from the predict func-
tion. Figure 9 provides such maps for daily ozone concentration levels and their standard
deviations on August 29, 2006. The accompanying R file v63i15.R provides the code to
produce these figures.

We conclude this example with a comparison study with the non-Bayesian generalized additive
models (Hastie and Tibshirani 1990) using the R package mgcv (Wood 2006) as suggested by
a reviewer. The GP models, with typical code as given above, are fitted to the data from the
20 fitting sites and then spatial predictions are obtained for the 8 set aside validation sites.
The code for implementing this comparison study is provided in the accompanying R file,
v63i15.R.
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Figure 9: Spatially interpolated plots of the daily maximum 8-hour ozone concentration levels
and (b) their standard deviations obtained from the GP models for 29 August, 2006. Actual
observations and their locations are also superimposed in plots (a) and (b) respectively.

Models MSE MAE rBIAS rMSEP

Bayesian space-time GP 43.32 5.08 0.01 0.26
Non-Bayesian GAM 100.76 7.89 −0.03 0.60

Table 6: Validation statistics for the GP and additive models (GAM).

For the additive model we use the gam function and fit additive model and report the predictive
performance of the model, see Table 6. We observe that the MSE for the Bayesian space-time
GP model is reduced by about 56% compared to the generalized additive models, showing
superiority of the spatio-temporal models implemented in the package spTimer. Further
similar comparison studies have been performed by Crimp, Bakar, Kokic, Jin, Nicholls, and
Howden (2015), where spTimer GP model also shows better predictive performance compared
to the additive models for analyzing frost levels in south-east Australia.

6. Summary

This paper introduces the contributed R package spTimer that enables model fitting, spa-
tial and temporal predictions for large structured point-referenced spatio-temporal data sets.
Currently, the package is able to analyze data using three substantial and well established
spatio-temporal models. The package also includes a number of attractive features ranging
from on the fly transformation to the ability to infer for certain temporal aggregates. The
main body of the code has been validated using a substantial simulation example and a real
life data example.

The underlying code for the package has been written using the C programming language that
is very portable across many different operating systems such as Microsoft Windows, Linux
and Macintosh. The end-user, however, does not need to work with the C language as all the
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analysis can be performed by using commands in R. The MCMC-based Bayesian hierarchical
modeling, as implemented in the package, is relatively fast for moderate (a few thousand) to
large (more than a million) data sets. In particular, the GPP-based model is the fastest to
run as we have reported in our related work (Sahu and Bakar 2012b).

The package can be extended in several ways, for example, for modeling multivariate data
and for modeling data with a non-Gaussian first stage model. In addition, it will be very
fruitful to add modeling capabilities for spatially varying coefficient process models. Other
possible extensions include the ability to handle data from sensor networks that vary over
time. Moreover, the implemented models can be enhanced to model mixture of discrete
and continuous data such as rainfall. Lastly, extension of the package for handling spatially
mis-aligned data will also be of considerable interest in the literature.
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A. Full conditional distributions for the GP model

� The full conditional distribution of β can be obtained from the kernel of (4) as: π(β|..., z) ∼
N(∆χ,∆), where

∆−1 =
r∑
l=1

Tl∑
t=1

X>ltΣ
−1
η Xlt + Ip/δ

2
β

χ =
r∑
l=1

Tl∑
t=1

X>ltΣ
−1
η Olt.

� Similarly from (4), we sample σ2
ε and σ2

η from the following conditional distributions
respectively:

π(1/σ2
ε |..., z) ∼ G

N
2

+ a, b+
1

2

r∑
l=1

Tl∑
t=1

(Zlt −Olt)
>(Zlt −Olt)

 ,

π(1/σ2
η|..., z) ∼ G

N
2

+ a, b+
1

2

r∑
l=1

Tl∑
t=1

(Olt −Xltβ)>S−1
η (Olt −Xltβ)

 .
� From the kernel of the joint density (4), we obtain the full conditional distribution for
Olt as π(Olt|..., z) ∼ N(∆ltχlt,∆lt), where:

∆−1
lt = In/σ

2
ε + Σ−1

η

χlt = Zlt/σ
2
ε + Σ−1

η Xltβ.

� The full conditional distribution of φ is non-standard and is given by:

π(φ|..., z) ∝ π(φ)×|Sη|−
∑r

l=1
Tl/2×exp

− 1

2σ2
η

r∑
l=1

Tl∑
t=1

(Olt −Xltβ)>S−1
η (Olt −Xltβ)

 .

B. Full conditional distributions for the AR model

� The full conditional distribution of β can be obtained from the joint posterior distribu-
tion of AR models (7) as: π(β|..., z) ∼ N(∆χ,∆), where:

∆−1 =
r∑
l=1

Tl∑
t=1

X>ltΣ
−1
η Xlt + Ip/δ

2
β

χ =
r∑
l=1

Tl∑
t=1

X>ltΣ
−1
η (Olt − ρOlt).
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� The full conditional distribution of ρ can be obtained from (7) as: π(ρ|..., z) ∼ N(∆χ,∆),
where:

∆−1 =
r∑
l=1

Tl∑
t=1

O>ltΣ
−1
η Olt + Ip/δ

2
ρ

χ =
r∑
l=1

Tl∑
t=1

O>ltΣ
−1
η (Olt −Xltβ).

� For σ2
ε and σ2

η we sample from the following conditional distributions respectively:

π(1/σ2
ε |..., z) ∼ G

N
2

+ a, b+
1

2

r∑
l=1

Tl∑
t=1

(Zlt −Olt)
>(Zlt −Olt)

 ,

π(1/σ2
η|..., z) ∼ G

N
2

+ a, b+
1

2

r∑
l=1

Tl∑
t=1

(Olt − ρOlt−1 −Xltβ)>S−1
η (Olt − ρOlt−1 −Xltβ)

 .
� From the joint posterior (7), we obtain the full conditional distribution for Olt for two

cases: (1) when 1 ≤ t ≤ Tl − 1 and (2) when t = Tl. Hence, we write π(Olt|..., z) ∼
N(∆ltχlt,∆lt), where:

Case 1:
∆−1
lt = In/σ

2
ε + (1 + ρ2)Σ−1

η

χlt = Zlt/σ
2
ε + Σ−1

η (ρOlt−1 + Xltβ + ρ(Olt+1 −Xlt+1β)) .

Case 2:
∆−1
lt = In/σ

2
ε + Σ−1

η

χlt = Zlt/σ
2
ε + Σ−1

η (ρOlt−1 + Xltβ) .

� The full conditional distribution for Ol0 is N(∆lχl,∆l), l = 1, . . . , r where
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σ2
l

S−1
0
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1
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� We write the full conditional distribution for µl as N(∆lχl,∆l), l = 1, . . . , r, where
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l |..., z) ∼ G
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n
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2
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>S−1
0 (Ol0 − µl)

)
, l = 1, . . . , r.



Journal of Statistical Software 31

� The full conditional distribution of φ parameter is obtained from the kernel (7) as:

π(φ|..., z) ∝ π(φ)× |Sη|−
∑r

l=1
Tl/2 ×

exp

− 1

2σ2
η

r∑
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Tl∑
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×|S0|−r/2 × exp

[
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2

r∑
l=1

1

σ2
l

(Ol0 − µl)
>S−1

0 (Ol0 − µl)

]
.

C. Full conditional distributions for the GPP-based AR model

The joint posterior distribution (10) is used to derive the full conditional distributions listed
below.

� The full conditional distribution of β is N(∆χ,∆) where,

∆−1 =
1

σ2
ε

r∑
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Tl∑
t=1

X>ltXlt + Ip/δ
2
β,

χ =
1
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ε

r∑
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� The full conditional distribution of ρ is N(∆χ,∆)I(0 < ρ < 1) where,
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ρ
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� The variance parameters σ2
ε , σ

2
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l are sampled from:
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� The full conditional distribution of wlt is given by: N(∆ltχlt,∆lt) where
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ε

A>A+ (1 + ρ2)Σ−1
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χlt =
1

σ2
ε

A>(Zlt −Xltβ) + ρΣ−1
η (wlt−1 + wlt+1),

for 1 ≤ t ≤ Tl − 1. For t = Tl, we have

∆−1
lt =

1

σ2
ε

A>A+ Σ−1
η

χlt =
1

σ2
ε

A>(Zlt −Xltβ) + ρΣ−1
η wlt−1.

� Full conditional distribution for wl0 is N(∆lχl,∆l), l = 1, . . . , r where

∆−1
l = ρ2Σ−1

η +
1

σ2
l

S−1
0

χl = ρΣ−1
η wl1.

� The full conditional distribution is not available in closed form and it is proportional to
the joint posterior distribution provided in (10), Section 2.4.
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