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Abstract

Spatial statistics is a growing discipline providing important analytical techniques in
a wide range of disciplines in the natural and social sciences. In the R package GWmodel,
we present techniques from a particular branch of spatial statistics, termed geographi-
cally weighted (GW) models. GW models suit situations when data are not described
well by some global model, but where there are spatial regions where a suitably localized
calibration provides a better description. The approach uses a moving window weighting
technique, where localized models are found at target locations. Outputs are mapped to
provide a useful exploratory tool into the nature of the data spatial heterogeneity. Cur-
rently, GWmodel includes functions for: GW summary statistics, GW principal compo-
nents analysis, GW regression, and GW discriminant analysis; some of which are provided
in basic and robust forms.

Keywords: geographically weighted regression, geographically weighted principal components
analysis, spatial prediction, robust, R package.

1. Introduction

Spatial statistics provides important analytical techniques for a wide range of disciplines in the
natural and social sciences, where (often large) spatial data sets are routinely collected. Here
we present techniques from a particular branch of non-stationary spatial statistics, termed
geographically weighted (GW) models. GW models suit situations when spatial data are not
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described well by some universal or global model, but where there are spatial regions where a
suitably localized model calibration provides a better description. The approach uses a moving
window weighting technique, where localized models are found at target locations. Here, for an
individual model at some target location, we weight all neighboring observations according
to some distance-decay kernel function and then locally apply the model to this weighted
data. The size of the window over which this localized model might apply is controlled by the
bandwidth. Small bandwidths lead to more rapid spatial variation in the results while large
bandwidths yield results increasingly close to the universal model solution. When there exists
some objective function (e.g., the model can predict), a bandwidth can be found optimally,
using cross-validation and related approaches.

The GW modelling paradigm has evolved to encompass many techniques; techniques that are
applicable when a certain heterogeneity or non-stationarity is suspected in the study’s spatial
process. Commonly, outputs or parameters of the GW model are mapped to provide a use-
ful exploratory tool, which can often precede (and direct) a more traditional or sophisticated
statistical analysis. Subsequent analyses can be non-spatial or spatial, where the latter can in-
corporate stationary or non-stationary decisions. Notable GW models include: GW summary
statistics (Brunsdon, Fotheringham, and Charlton 2002); GW principal components analysis
(GW PCA, Fotheringham, Brunsdon, and Charlton 2002; Lloyd 2010a; Harris, Brunsdon,
and Charlton 2011a); GW regression (Brunsdon, Fotheringham, and Charlton 1996, 1998,
1999; Leung, Mei, and Zhang 2000; Wheeler 2007); GW generalized linear models (Fother-
ingham et al. 2002; Nakaya, Fotheringham, Brunsdon, and Charlton 2005); GW discriminant
analysis (Brunsdon, Fotheringham, and Charlton 2007); GW variograms (Harris, Charlton,
and Fotheringham 2010a); GW regression kriging hybrids (Harris and Juggins 2011) and GW
visualization techniques (Dykes and Brunsdon 2007).

Many of these GW models are included in the R (R Core Team 2014) package GWmodel
that we describe in this paper. Those that are not, will be incorporated at a later date. For
the GW models that are included, there is a clear emphasis on data exploration. Notably,
GWmodel provides functions to conduct: (i) a GW PCA; (ii) GW regression with a local
ridge compensation (for addressing local collinearity); (iii) mixed GW regression; (iv) het-
eroskedastic GW regression; (v) a GW discriminant analysis; (vi) robust and outlier-resistant
GW modelling; (vii) Monte Carlo significance tests for non-stationarity; and (viii) GW mod-
elling with a wide selection of distance metric and kernel weighting options. These functions
extend and enhance functions for: (a) GW summary statistics; (b) basic GW regression; and
(¢) GW generalized linear models — GW models that are also found in the spgwr R package
(Bivand, Yu, Nakaya, and Garcia-Lopez 2013). In this respect, GWmodel provides a more
extensive set of GW modelling tools, within a single coherent framework (GWmodel similarly
extends or complements the gwrr R package (Wheeler 2013b) with respect to GW regression
and local collinearity issues). GWmodel also provides an advanced alternative to various ex-
ecutable software packages that have a focus on GW regression — such as GWR 3 (Charlton,
Fotheringham, and Brunsdon 2003); the ArcGIS GW regression tool in the Spatial Statistics
Toolbox (ESRI 2013); SAM for GW regression applications in macroecology (Rangel, Diniz-
Filho, and Bini 2010); and SpaceStat for GW regression applications in health (BioMedware
2011).

Noting that it is not feasible to describe in detail all of the available functions in GWmodel,
our paper has a robust theme and is structured as follows. Section 2 describes the example
data sets that are available in GWmodel. Section 3 describes the various distance metric and
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kernel weighting options. Section 4 describes modelling with basic and robust GW summary
statistics. Section 5 describes modelling with basic and robust GW PCA. Section 6 describes
modelling with basic and robust GW regression. Section 7 describes ways to address local
collinearity issues when modelling with GW regression. Section 8 describes how to use GW
regression as a spatial predictor. Section 9 relates the functions of GWmodel to those found
in the spgwr, gwrr and McSpatial (McMillen 2013) R packages. Section 10 concludes this
work and indicates future work.

2. Data sets

The GWmodel package comes with five example data sets, these are: (i) Georgia, (ii)
LondonHP, (iii) USelect, (iv) DubVoter, and (v) EWHP. The Georgia data consists of se-
lected 1990 US census variables (with n = 159) for counties in the US state of Georgia; and
is fully described in Fotheringham et al. (2002). This data has been routinely used in a GW
regression context for linking educational attainment with various contextual social variables
(see also Griffith 2008). The data set is also available in the GWR 3 executable software
package (Charlton et al. 2003) and the spgwr R package.

The LondonHP data is a house price data set for London, England. This data set (with
n = 372) is sampled from a 2001 house price data set, provided by the Nationwide Building
Society of the UK and is combined with various hedonic contextual variables (Fotheringham
et al. 2002). The hedonic data reflect structural characteristics of the property, property
construction time, property type and local household income conditions. Studies in house
price markets with respect to modelling hedonic relationships has been a common application
of GW regression (e.g., Kestens, Thériault, and Rosiers 2006; Bitter, Mulligan, and Dall’Erba
2007; Péez, Long, and Farber 2008).

The USelect data consists of the results of the 2004 US presidential election at the county
level, together with five census variables (with n = 3111). The data is a subset of that
provided in (Robinson 2013). USelect is similar to that used for the visualization of GW
discriminant analysis outputs in Foley and Demsar (2013); the only difference is that we
specify the categorical, election results variable with three classes (instead of two): (a) Bush
winner, (b) Kerry winner and (c) Borderline (for marginal winning results).

For this article’s presentation of GW models, we use as case studies, the DubVoter and
EWHP data sets. The DubVoter data (with n = 322) is the main study data set and is used
throughout Sections 4 to 7, where key GW models are presented. This data is composed of
nine percentage variables', measuring: (1) voter turnout in the Irish 2004 D4il elections and
(2) eight characteristics of social structure (census data); for 322 Electoral Divisions (EDs)
of Greater Dublin. Kavanagh, Fotheringham, and Charlton (2006) modelled this data using
GW regression; with voter turnout (GenE12004) the dependent variable (i.e., the percentage
of the population in each ED who voted in the election). The eight independent variables
measure the percentage of the population in each ED, with respect to:

e DiffAdd: One year migrants (i.e., moved to a different address one year ago).

e LARent: Local authority renters.

!Observe that none of the DubVoter variables constitute a closed system (i.e., the full array of values sum
to 100) and as such, we do not need to transform the data prior to a (univariate or multivariate) GW model
calibration.
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SC1: Social class one (high social class).

Unempl: Unemployed.

LowEduc: Without any formal educational.

Agel18_24: Age group 18-24.

Age25_44: Age group 25-44.

e Agedb5_64: Age group 45-64.

Thus the eight independent variables reflect measures of migration, public housing, high social
class, unemployment, educational attainment, and three adult age groups.

The EWHP data (with n = 519) is a house price data set for England and Wales, this time
sampled from 1999, but again provided by the Nationwide Building Society and combined
with various hedonic contextual variables. Here for a regression fit, the dependent variable
is PurPrice (what the house sold for) and the nine independent variables are: BldIntWr,
B1dPostW, B1d60s, B1d70s, B1d80s, TypDetch, TypSemiD, TypFlat and FlrArea. All inde-
pendent variables are indicator variables (1 or 0) except for FlrArea. Section 8 uses this data
when demonstrating GW regression as a spatial predictor; where PurPrice is considered as
a function of FlrArea (house floor area), only.

3. Distance matrix, kernel and bandwidth

A fundamental element in GW modelling is the spatial weighting function (Fotheringham
et al. 2002) that quantifies (or sets) the spatial relationship or spatial dependency between
the observed variables. Here W (u;,v;) is a n xn (with n the number of observations) diagonal
matrix denoting the geographical weighting of each observation point for model calibration
point ¢ at location (u;,v;). We have a different diagonal matrix for each model calibration
point. There are three key elements in building this weighting matrix: (i) the type of distance,
(ii) the kernel function and (iii) its bandwidth.

3.1. Selecting the distance function

Distance can be calculated in various ways and does not have to be Euclidean. An important
family of distance metrics are Minkowski distances. This family includes the usual Euclidean
distance having p = 2 and the Manhattan distance when p = 1 (where p is the power of
the Minkowski distance). Another useful metric is the great circle distance, which finds the
shortest distance between two points taking into consideration the natural curvature of the
Earth. All such metrics are possible in GWmodel.

3.2. Kernel functions and bandwidth

A set of commonly used kernel functions are shown in Table 1 and Figure 1; all of which
are available in GWmodel. The ‘Global Model’ kernel, that gives a unit weight to each
observation, is included in order to show that a global model is a special case of its GW
model.
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Global Model wij =1
N2
Gaussian Wij = €xp (‘% (d#) >
Exponential Wij = €Xp { — ‘dliﬂ
o 1 if ’dij|<b,
Box-car Yii=Y 0  otherwise
' (= (diy/0)?)?*if |di| < b,
Bi-square Wi = 0 otherwise
133 T
Tri-cube Wij = (1= (Ids1/0)*) if || < b,
0 otherwise

Table 1: Six kernel functions; w;; is the j-th element of the diagonal of the matrix of geo-
graphical weights W (u;, v;), and d;; is the distance between observations ¢ and j, and b is the
bandwidth.

The Gaussian and exponential kernels are continuous functions of the distance between two
observation points (or an observation and calibration point). The weights will be a maximum
(equal to 1) for an observation at a GW model calibration point, and will decrease according
to a Gaussian or exponential curve as the distance between observation/calibration points
increases.

The box-car kernel is a simple discontinuous function that excludes observations that are
further than some distance b from the GW model calibration point. This is equivalent to
setting their weights to zero at such distances. This kernel allows for efficient computation,
since only a subset of the observation points need to be included in fitting the local model at
each GW model calibration point. This can be particularly useful when handling large data
sets.

The bi-square and tri-cube kernels are similarly discontinuous, giving null weights to obser-
vations with a distance greater than b. However unlike a box-car kernel, they provide weights
that decrease as the distance between observation/calibration points increase, up until the
distance b. Thus these are both distance-decay weighting kernels, as are Gaussian and expo-
nential kernels.

The key controlling parameter in all kernel functions is the bandwidth b. For the discontin-
uous functions, bandwidths can be specified either as a fixed distance or as a fixed number
of local data (i.e., an adaptive distance). For the continuous functions, bandwidths can be
specified either as a fixed distance or as a ‘fixed quantity that reflects local sample size’ (i.e.,
still an ‘adaptive’ distance, but the actual local sample size will be the sample size, as func-
tions are continuous). In practise a fixed bandwidth suits fairly regular sample configurations
whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive band-
widths ensure sufficient (and constant) local information for each local calibration of a given
GW model. Bandwidths for GW models can be user-specified or found via some automated
(e.g., cross-validation) procedure provided some objective function exists. Specific functions
(bw.guwr, bw.gwr.lcr, bw.ggwr, bw.gwpca, bw.gwda) can be used to find such optimal band-
widths, depending on the chosen GW model.
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Figure 1: Plot of the six kernel functions, with the bandwidth b = 1000, and where w is the
weight, and d is the distance between two observations.

3.3. Example

As an example, we find the distance matrix for the house price data for England and Wales
(EWHP), as described in Section 2. Here, the distance matrix can be calculated: (a) within a
function of a specific GW model or (b) outside of the function and saved using the function
gw.dist. This flexibilty is particularly useful for saving computation time when fitting several
different GW models. Observe that we specify the Euclidean distance metric for this data.
Other distance metrics could have been specified by: (1) modifying the parameter p, the power
of the Minkowsky distance or (2) setting longlat = TRUE for the great circle distance. The
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output of the function gw.dist is a matrix containing in each row the value of the diagonal
of the distance matrix for each observation.

R> library("GWmodel")

R> data("EWHP")

R> houses.spdf <- SpatialPointsDataFrame(ewhp[, 1:2], ewhp)
R> houses.spdf[1:6, ]

Easting Northing PurPrice BldIntWr BldPostW B1d60s B1d70s B1d80s TypDetch

1 599500 142200 65000 0 0 0 0 1 0
2 575400 167200 45000 0 0 0 0 0 0
3 530300 177300 50000 1 0 0 0 0 0
4 524100 170300 105000 0 0 0 0 0 0
5 426900 514600 175000 0 0 0 0 1 1
6 508000 190400 250000 0 1 0 0 0 1

TypSemiD TypFlat  FlrArea
1 1 0 78.94786
2 0 1 94.36591
3 0 0 41.33153
4 0 0 92.87983
5 0 0 200.52756
6 0 0 148.60773
R> DM <- gw.dist(dp.locat = coordinates (houses.spdf))
R> DM[1:7, 1:7]

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.00 34724.78 77592.848 80465.956 410454.0 103419.00 236725.0
[2,] 34724.78 0.00 46217.096 b51393.579 377808.2 71281.13 202563.8
[3,] 77592.85 46217.10 0.000 9350.936 352792.9 25863.10 160741.1
[4,] 80465.96 51393.58 9350.936 0.000 357757.4 25753.06 160945.0
[5,] 410454.04 377808.17 352792.928 357757.362 0.0 334189.84 232275.4
[6,] 103419.00 71281.13 25863.101 25753.058 334189.8 0.00 135411.2
[7,] 236725.01 202563.77 160741.096 160945.022 232275.4 135411.23 0.0

4. GW summary statistics

This section presents the simplest form of GW modelling with GW summary statistics (Bruns-
don et al. 2002; Fotheringham et al. 2002). Here, we describe how to calculate GW means,
GW standard deviations and GW measures of skew; which constitute a set of basic GW sum-
mary statistics. To mitigate against any adverse effect of outliers on these local statistics, a
set of robust alternatives are also described in GW medians, GW inter-quartile ranges and
GW quantile imbalances. In addition, to such local univariate summary statistics, GW cor-
relations are described in basic and robust forms (Pearson’s and Spearman’s, respectively);
providing a set of local bivariate summary statistics.
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Although fairly simple to calculate and map, GW summary statistics are considered a vital
pre-cursor to an application of any subsequent GW model, such as a GW PCA (Section 5)
or GW regression (Sections 6 to 8). For example, GW standard deviations (or GW inter-
quartile ranges) will highlight areas of high variability for a given variable, areas where a
subsequent application of a GW PCA or a GW regression may warrant close scrutiny. Basic
and robust GW correlations provide a preliminary assessment of relationship non-stationarity
between the dependent and an independent variable of a GW regression (Section 6). GW
correlations also provide an assessment of local collinearity between two independent variables
of a GW regression; which could then lead to the application of a locally compensated model
(Section 7).

4.1. Basic GW summary statistics

For attributes z and y at any location ¢ where w;; accords to some kernel function of Section 3,
definitions for a GW mean, a GW standard deviation, a GW measure of skew and a GW
Pearson’s correlation coefficient are respectively:

D1 WijZ;

m(z;) = ST g

L e wig (2 — m(2)”
S(ZZ) - Zn

j=1 Wij

o wij(z—m(z:))°
3

and

with the GW covariance:

o w5 — m(z) (Y —m(y)]
c(zi, yi) = S

j=1 Wij

4.2. Robust GW summary statistics

Definitions for a GW median, a GW inter-quartile range and a GW quantile imbalance, all
require the calculation of GW quantiles at any location 4; the calculation of which are detailed
in Brunsdon et al. (2002). Thus if we calculate GW quartiles, the GW median is the second
GW quartile; and the GW inter-quartile range is the third minus the first GW quartile. The
GW quantile imbalance measures the symmetry of the middle part of the local distribution
and is based on the position of the GW median relative to the first and third GW quartiles.
It ranges from —1 (when the median is very close to the first GW quartile) to 1 (when the
median is very close to the third GW quartile), and is zero if the median bisects the first and
third GW quartiles. To find a GW Spearman’s correlation coefficient, the local data for z
and for y, each need to be ranked using the same approach as that used to calculate the GW
quantiles. The locally ranked variables are then simply fed into Equation 1.
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GW standard deviations for GenEI2004 (basic) GW inter-quartile ranges for GenEI2004 (robust)

Figure 2: (a) Basic and (b) robust GW measures of variability for GenE12004 (turnout).

4.3. Example

For demonstration of basic and robust GW summary statistics, we use the Dublin voter
turnout data. Here we investigate the local variability in voter turnout (GenE12004), which
is the dependent variable in the regressions of Sections 6 and 7. We also investigate the
local relationships between: (i) turnout and LARent and (ii) LARent and Unempl (i.e., two
independent variables in the regressions of Sections 6 and 7).

For any GW model calibration, it is prudent to experiment with different kernel functions.
For our chosen GW summary statistics, we specify box-car and bi-square kernels; where the
former relates to an un-weighted moving window, whilst the latter relates to a weighted one
(from Section 3). GW models using box-car kernels are useful in that the identification of
outlying relationships or structures are more likely (Lloyd and Shuttleworth 2005; Harris and
Brunsdon 2010). Such calibrations more easily relate to the global model form (see Section 7)
and in turn, tend to provide an intuitive understanding of the degree of heterogeneity in the
process. Observe that it is always possible that the spatial process is essentially homogeneous,
and in such cases, the output of a GW model can confirm this.

The spatial arrangement of the EDs in Greater Dublin is not a tessellation of equally sized
zones, so it makes sense to specify an adaptive kernel bandwidth. For example, if we specify
a bandwidth of N = 100, the box-car and bi-square kernels will change in radius but will
always include the closest 100 EDs for each local summary statistic. We also user-specify the
bandwidths. Note that bandwidths for GW means or medians can be found optimally via
cross-validation, as an objective function exists. That is, ‘leave-one-out’ predictions can be
found and compared to the actual data, across a range of bandwidths. The optimal band-
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GW correlations: GenEI2004 and LARent (box-car kernel) GW correlations: GenEI2004 and LARent (bi-square kernel)
00

0.0
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Figure 3: (a) Box-car and (b) bi-square specified GW correlations for GenE12004 and LARent.

width is that which provides the most accurate predictions. However, such bandwidth selec-
tion functions are not yet incorporated in GWmodel. For all other GW summary statistics,
bandwidths can only be user-specified, as no objective function exists for them.

Commands to conduct our local analysis are as follows, where we use the function gwss with
two different specifications to find our GW summary statistics. We specify box-car and bi-
square kernels, each with an adaptive bandwidth of N = 48 (approximately 15% of the data).
To find robust GW summary statistics based on quantiles, the gwss function is specified with
quantiles = TRUE (observe that we do not need to do this for our robust GW correlations).

R> data("DubVoter")

R> gw.ss.bx <- gwss(Dub.voter, vars = c("GenE12004", "LARent", "Unempl"),
+ kernel = "boxcar", adaptive = TRUE, bw = 48, quantile = TRUE)

R> gw.ss.bs <- gwss(Dub.voter,vars c("GenE12004", "LARent", "Unempl"),
+ kernel = "bisquare", adaptive = TRUE, bw = 48)

From these calibrations, we present three pairs of example visualizations: (a) basic and robust
GW measures of variability for GenE12004 (each using a box-car kernel) in Figure 2; (b) box-
car and bi-square specified (basic) GW correlations for GenE12004 and LARent in Figure 3; and
(c) basic and robust GW correlations for LARent and Unempl (each using a bi-square kernel)
in Figure 4. Commands to conduct these visualizations (using palettes from RColorBrewer,
Neuwirth 2011), are as follows:

R> library("RColorBrewer")
R> map.na = list("SpatialPolygonsRescale", layout.north.arrow(),
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GW correlations: LARent and Unempl (basic)

GW correlations: LARent and Unempl (robust)

Figure 4: (a) Basic and (b) robust GW correlations for LARent and Unempl.

offset = ¢(329000, 261500), scale = 4000, col = 1)
map.scale.1 = list("SpatialPolygonsRescale", layout.scale.bar(),

offset = c(326500, 217000), scale = 5000, col = 1,

fill = c("transparent", "blue"))

0.8

0.6

0.4

r 0.0

map.scale.2 = list("sp.text", c(326500, 217900), "0", cex = 0.9, col =

map.scale.3 = list("sp.text", c(331500, 217900), "5km", cex = 0.9,

map.layout <- list(map.na, map.scale.l, map.scale.2, map.scale.3)

mypalette.l <- brewer.pal(8, "Reds")

mypalette.2 <- brewer.pal(5, "Blues")

mypalette.3 <- brewer.pal(6, "Greens")

spplot (gw.ss.bx$SDF, "GenE12004_LSD", key.space = "right",
col.regions = mypalette.1l, cuts = 7, sp.layout = map.layout,
main = "GW standard deviations for GenE12004 (basic)")

spplot (gw.ss.bx$SDF, "GenE12004_IQR", key.space = "right",
col.regions = mypalette.1l, cuts = 7, sp.layout = map.layout,

main = "GW inter-quartile ranges for GenE12004 (robust)")

spplot (gw.ss.bx$SDF, "Corr_GenE12004.LARent", key.space = "right",
col.regions = mypalette.2, at = c(-1, -0.8, -0.6, -0.4, -0.2, 0),
main = "GW correlations: GenE12004 and LARent (box-car kernel)",
sp.layout = map.layout)

spplot (gw.ss.bs$SDF, "Corr_GenE12004.LARent", key.space = "right",
col.regions = mypalette.2, at = c(-1, -0.8, -0.6, -0.4, -0.2, 0),
main = "GW correlations: GenE12004 and LARent (bi-square kernel)",

col

1)

11

1)
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+ sp.layout = map.layout)

R> spplot(gw.ss.bs$SDF, "Corr_LARent.Unempl", key.space = "right",

+ col.regions = mypalette.3, at = ¢(-0.2, 0, 0.2, 0.4, 0.6, 0.8, 1),

+ main = "GW correlations: LARent and Unempl (basic)",

+ sp.layout = map.layout)

R> spplot(gw.ss.bs$SDF, "Spearman_rho_LARent.Unempl", key.space = "right",
+ col.regions = mypalette.3, at = c(-0.2, 0, 0.2, 0.4, 0.6, 0.8, 1),

+ main = "GW correlations: LARent and Unempl (robust)",

+ sp.layout = map.layout)

From Figure 2, we can see that turnout appears highly variable in areas of central and west
Dublin. From Figure 3, the relationship between turnout and LARent appears non-stationary,
where this relationship is strongest in areas of central and south-west Dublin. Here turnout
tends to be low while local authority renting tends to be high. From Figure 4, consistently
strong positive correlations between LARent and Unempl are found in south-west Dublin. This
is precisely an area of Dublin where local collinearity in the GW regression of Section 7 is
found to be strong and a cause for concern.

From these visualizations, it is clearly important to experiment with the calibration of a GW
model, as subtle differences in our perception of the non-stationary effect can result by a
simple altering of the specification. Experimentation with different bandwidth sizes is also
important, especially in cases when an optimal bandwidth cannot be specified. Observe that
all GW models are primarily viewed as exploratory spatial data analysis (ESDA) tools and
as such, experimentation is a vital aspect of this.

5. GW principal components analysis

Principal components analysis (PCA) is a key method for the analysis of multivariate data
(see Jolliffe 2002). A member of the unconstrained ordination family, it is commonly used
to explain the covariance structure of a (high-dimensional) multivariate data set using only
a few components (i.e., provide a low-dimensional alternative). The components are linear
combinations of the original variables and can potentially provide a better understanding
of differing sources of variation and structure in the data. These may be visualized and
interpreted using associated graphics. In geographical settings, standard PCA, in which the
components do not depend on location, may be replaced with a GW PCA (Fotheringham et al.
2002; Lloyd 2010a; Harris et al. 2011a), to account for spatial heterogeneity in the structure
of the multivariate data. In doing so, GW PCA can identify regions where assuming the same
underlying structure in all locations is inappropriate or over-simplistic. GW PCA can assess:
(i) how (effective) data dimensionality varies spatially and (ii) how the original variables
influence each spatially-varying component. In part, GW PCA resembles the bivariate GW
correlations of Section 4 in a multivariate sense, as both are unlike the multivariate GW
regressions of Sections 6 to 8, since there is no distinction between dependent and independent
variables. Key challenges in GW PCA are: (a) finding the scale at which each localized PCA
should operate and (b) visualising and interpreting the output that results from its application.
As with any GW model, GW PCA is constructed using weighted data that is controlled by
the kernel function and its bandwidth (Section 3).
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5.1. GW PCA

More formally, for a vector of observed variables z; at spatial location ¢ with coordinates (u, v),
GW PCA involves regarding x; as conditional on u and v, and making the mean vector p and
covariance matrix ¥, functions of v and v. That is, u(u,v) and ¥(u,v) are the local mean
vector and the local covariance matrix, respectively. To find the local principal components,
the decomposition of the local covariance matrix provides the local eigenvalues and local
eigenvectors. The product of the i-th row of the data matrix with the local eigenvectors for
the ¢-th location provides the i-th row of local component scores. The local covariance matrix
is:

Y(u,v) = X "W (u,v)X

where X is the data matrix (with n rows for the observations and m columns for the variables);
and W (u,v) is a diagonal matrix of geographic weights. The local principal components at
location (u;,v;) can be written as:

L(ui, ’UZ‘)V(’LLi, vi)L(ui, Ui)T = E(Ui, Ui)

where L(u;,v;) is a matrix of local eigenvectors; V (u;, v;) is a diagonal matrix of local eigen-
values; and X (u;,v;) is the local covariance matrix. Thus for a GW PCA with m variables,
there are m components, m eigenvalues, m sets of component scores, and m sets of component
loadings at each observed location. We can also obtain eigenvalues and their associated eigen-
vectors at un-observed locations, although as no data exists for these locations, we cannot
obtain component scores.

5.2. Robust GW PCA

A robust GW PCA can also be specified, so as to reduce the effect of anomalous observations
on its outputs. Outliers can artificially increase local variability and mask key features in local
data structures. To provide a robust GW PCA, each local covariance matrix is estimated using
the robust minimum covariance determinant (MCD) estimator (Rousseeuw 1985). The MCD
estimator searches for a subset of h data points that has the smallest determinant for their
basic sample covariance matrix. Crucial to the robustness and efficiency of this estimator is
h, and we specify a default value of h = 0.75n, following the recommendation of Varmuza
and Filzmoser (2009).

5.3. Example

For applications of PCA and GW PCA, we again use the Dublin voter turnout data, this
time focussing on the eight variables: DiffAdd, LARent, SC1, Unempl, LowEduc, Agel8_24,
Age25_44 and Age45_64 (i.e., the independent variables of the regression fits in Sections 6
and 7). Although measured on the same scale, the variables are not of a similar magnitude.
Thus, we standardize the data and specify our PCA with the covariance matrix. The same
(globally) standardized data is also used in our GW PCA calibrations, which are similarly
specified with (local) covariance matrices. The effect of this standardization is to make each
variable have equal importance in the subsequent analysis (at least for the PCA case)?. The

2The use of un-standardized data, or the use of locally-standardized data with GW PCA is a subject of
current investigation.
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basic and robust PCA results are found using scale, princomp and covMcd functions, as
follows:

R> Data.scaled <- scale(as.matrix(Dub.voter@datal, 4:11]))
R> pca.basic <- princomp(Data.scaled, cor = FALSE)
R> (pca.basic$sdev™2 / sum(pca.basic$sdev™2)) * 100

Comp.1 Comp.2 Comp. 3 Comp .4 Comp.5 Comp.6 Comp.7
36.084435 25.586984 11.919681 10.530373 6.890565 3.679812 3.111449
Comp.8
2.196701

R> pca.basic$loadings

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
DiffAdd 0.389 -0.444 -0.149 0.123 0.293 0.445 0.575
LARent 0.441 0.226 0.144 0.172 0.612 0.149 -0.539 0.132
SC1 -0.130 -0.576 -0.135 0.590 -0.343 -0.401
Unempl 0.361 0.462 0.189 0.197 0.670 -0.355
LowEduc 0.131 0.308 -0.362 -0.861
Agel18_24 0.237 0.845 -0.359 -0.224 -0.200
Age25_44 0.436 -0.302 -0.317 -0.291 0.448 -0.177 -0.546

Aged45_64 -0.493 0.118 0.179 -0.144 0.289 0.748 0.142 -0.164

R> R.COV <- covMcd(Data.scaled, cor = FALSE, alpha = 0.75)
R> pca.robust <- princomp(Data.scaled, covmat = R.COV, cor = FALSE)
R> pca.robust$sdev"2 / sum(pca.robust$sdev.2)

Comp.1 Comp.2 Comp. 3 Comp.4 Comp.5
0.419129445 0.326148321 0.117146840 0.055922308 0.043299600
Comp. 6 Comp.7 Comp. 8

0.017251964 0.014734597 0.006366926

R> pca.robust$loadings

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
DiffAdd 0.512 -0.180 0.284 -0.431 0.659
LARent -0.139 0.310 0.119 -0.932
SC1 0.559 0.591 0.121 0.368 0.284 -0.324
Unempl -0.188 -0.394 0.691 -0.201 0.442 0.307
LowEduc -0.102 -0.186 0.359 -0.895 0.149
Agel8_24 -0.937 0.330
Age25_44 0.480 -0.437 -0.211 -0.407 -0.598

Agedb5_64 -0.380 0.497 -0.264 0.178 -0.665 -0.241
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From the ‘percentage of total variance’ (PTV) results, the first three components collectively
account for 73.6% and 86.2% of the variation in the data, for the basic and robust PCA,
respectively. From the tables of loadings, component one would appear to represent older
residents (Age45_64) in the basic PCA or represent affluent residents (SC1) in the robust
PCA. Component two, appears to represent affluent residents in both the basic and robust
PCA. These are whole-map statistics (Openshaw, Charlton, Wymer, and Craft 1987) and
interpretations that represent a Dublin-wide average. However, it is possible that they do not
represent local social structure particularly reliably. If this is the case, an application of GW
PCA may be useful, which will now be demonstrated.

Kernel bandwidths for GW PCA can be found automatically using a cross-validation ap-
proach, similar in nature to that used in GW regression (Section 6). Details of this automated
procedure are described in Harris et al. (2011a), where, a ‘leave-one-out’ cross-validation (CV)
score is computed for all possible bandwidths and an optimal bandwidth relates to the small-
est CV score found. With this procedure, it is currently necessary to decide a priori upon the
number of components to retain (k, say), and a different optimal bandwidth results for each
k. The procedure does not yield an optimal bandwidth if all components are retained (i.e.,
m = k); in this case, the bandwidth must be user-specified. Thus for our analysis, an optimal
adaptive bandwidth is found using a bi-square kernel, for both a basic and a robust GW PCA.
Here, k = 3 is chosen on an a priori basis. With GWmodel, the bw.gwpca function is used
in the following set of commands, where the standardized data is converted to a spatial form
via the SpatialPointsDataFrame function.

R> Coords <- as.matrix(cbind(Dub.voter$X, Dub.voter$Y))

R> Data.scaled.spdf <- SpatialPointsDataFrame (Coords,

+ as.data.frame(Data.scaled))

R> bw.gwpca.basic <- bw.gwpca(Data.scaled.spdf, vars = colnames(

+ Data.scaled.spdf@data), k = 3, robust = FALSE, adaptive = TRUE)
R> bw.gwpca.basic

[1] 131

R> bw.gwpca.robust <- bw.gwpca(Data.scaled.spdf, vars = colnames(
+ Data.scaled.spdf@data), k = 3, robust = TRUE, adaptive = TRUE)
R> bw.gwpca.robust

[1] 130

Inspecting the values of bw.gwpca.basic and bw.gwpca.robust show that (very similar)
optimal bandwidths of N = 131 and N = 130 will be used to calibrate the respective basic
and robust GW PCA fits. Observe that we now specify all k = 8 components, but will focus
our investigations on only the first three components. This specification ensures that the
variation locally accounted for by each component, is estimated correctly. The two GW PCA
fits are found using the gwpca function as follows:

R> gwpca.basic <- gwpca(Data.scaled.spdf,
+ vars = colnames(Data.scaled.spdf@data), bw = bw.gwpca.basic, k = 8,
+ robust = FALSE, adaptive = TRUE)
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R>
+
+

The GW PCA outputs® may now be now visualized and interpreted, focusing on: (1) how data
dimensionality varies spatially and (2) how the original variables influence the components.
For the former, the spatial distribution of local PTV for say, the first three components can
be mapped. Commands to conduct this mapping for basic and robust GW PCA outputs are
as follows, where the prop.var function is used to find the PTV data, which is then added to
the Dub.voter spatial data frame, so that it can be easily mapped using the spplot function.

R>
+
+
+
R>
R>
R>
R>
R>
R>
+

GWmodel: Geographically Weighted Models in R

PTV for local components 1 to 3 (basic GW PCA) PTV for local components 1 to 3 (robust GW PCA)

Figure 5: (a) Basic and (b) robust PTV data for the first three local components.

gwpca.robust <- gwpca(Data.scaled.spdf,
vars = colnames(Data.scaled.spdf@data), bw = bw.gwpca.robust, k = 8
robust = TRUE, adaptive = TRUE)

prop.var <- function(gwpca.obj, n.components) {
return ((rowSums (gwpca.obj$var[, 1:n.components]) /
rowSums (gwpca.obj$var)) * 100)
}
var.gwpca.basic <- prop.var(gwpca.basic, 3)
var.gwpca.robust <- prop.var(gwpca.robust, 3)
Dub.voter$var.gwpca.basic <- var.gwpca.basic
Dub.voter$var.gwpca.robust <- var.gwpca.robust
mypalette.4 <- brewer.pal(8, "Y1GnBu")
spplot (Dub.voter, "var.gwpca.basic", key.space = "right",
col.regions = mypalette.4, cuts = 7, sp.layout = map.layout,

(say that found optimally for the basic fit) may be preferable.

b

3For a more objective and direct comparison of the basic and robust fits, the use of the same bandwidth
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Winning variable: highest abs. loading on local Comp.1 (basic) Winning variable: highest abs. loading on local Comp.1 (robust)

Figure 6: (a) Basic and (b) robust GW PCA results for the winning variable on the first
component. Map legends are: DiffAdd - light pink; LARent - blue; SC1 - grey; Unempl -
purple; LowEduc - orange; Age18_24 - green; Age25_44 - brown; and Age45_64 - yellow.

+ main = "PTV for local components 1 to 3 (basic GW PCA)")
R> spplot(Dub.voter, "var.gwpca.robust", key.space = "right",
+ col.regions = mypalette.4, cuts = 7, sp.layout = map.layout,
+ main = "PTV for local components 1 to 3 (robust GW PCA)")

Figure 5 presents the local PTV maps for the two GW PCA fits. There is clear geographical
variation in the PTV data and a higher PTV is generally accounted for in the local case,
than in the global case. The spatial patterns in both maps are broadly similar, with higher
percentages located in the south, whilst lower percentages are located in the north. As would
be expected, the robust PTV data is consistently higher than the basic PTV data. Variation
in the basic PTV data is also greater than that found in the robust PTV data. Large (relative)
differences between the basic and robust PTV outputs (e.g., in south-west Dublin) can be
taken to indicate the existence of global or possibly, local multivariate outliers.

We can next visualize how each of the eight variables locally influence a given component,
by mapping the ‘winning variable’ with the highest absolute loading. For brevity, we present
such maps for the first component, only. Commands to conduct this mapping for basic and
robust GW PCA outputs are as follows:

R> loadings.pcl.basic <- gwpca.basic$loadings[, , 1]
R> win.item.basic = max.col(abs(loadings.pcl.basic))
R> loadings.pcl.robust <- gwpca.robust$loadings[, , 1]
R> win.item.robust = max.col(abs(loadings.pcl.robust))

17
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R> Dub.voter$win.item.basic <- win.item.basic

R> Dub.voter$win.item.robust <- win.item.robust

R> mypalette.5 <- c("lightpink", "blue", '"grey", "purple", "orange",

+ "green", "brown", "yellow")

R> spplot(Dub.voter, "win.item.basic", key.space = "right",

+ col.regions = mypalette.5, at = c(1, 2, 3, 4, 5, 6, 7, 8, 9),

+ main = "Winning variable: highest abs. loading on local Comp.1 (basic)",
+ colorkey = FALSE, sp.layout = map.layout)

R> spplot(Dub.voter, "win.item.robust", key.space = "right",

+ col.regions = mypalette.5, at = c¢(1, 2, 3, 4, 5, 6, 7, 8, 9),

+ main = "Winning variable: highest abs. loading on local Comp.1 (robust)",
+ colorkey = FALSE, sp.layout = map.layout)

Figure 6 presents the ‘winning variable’ maps for the two GW PCA fits, where we can observe
clear geographical variation in the influence of each variable on the first component. For basic
GW PCA, low educational attainment (Low_Educ) dominates in the northern and south-
western EDs, whilst public housing (LARent) dominates in the EDs of central Dublin. The
corresponding PCA ‘winning variable’ is Age45_64, which is clearly not dominant through-
out Dublin. Variation in the results from basic GW PCA is much greater than that found
with robust GW PCA (reflecting analogous results to that found with the PTV data). For
robust GW PCA, Aged45_64 does in fact dominate in most areas, thus reflecting a closer
correspondence to the global case - but interestingly only the basic fit, and not the robust fit.

6. GW regression

6.1. Basic GW regression

The most popular GW model is GW regression (Brunsdon et al. 1996, 1998), where spatially-
varying relationships are explored between the dependent and independent variables. Explo-
ration commonly consists of mapping the resultant local regression coeflicient estimates and
associated (pseudo) t-values to determine evidence of non-stationarity. The basic form of the
GW regression model is:

m
vi = Bio+ Y _ Bistik + €
k=1
where y; is the dependent variable at location i; x;; is the value of the kth independent
variable at location 4; m is the number of independent variables; (3,9 is the intercept parameter
at location ; 81 is the local regression coefficient for the kth independent variable at location
i; and ¢; is the random error at location i.

As data are geographically weighted, nearer observations have more influence in estimating
the local set of regression coefficients than observations farther away. The model measures the
inherent relationships around each regression point ¢, where each set of regression coefficients
is estimated by a weighted least squares approach. The matrix expression for this estimation
is:

R -1
Bi = (XTW(UZ',’UZ‘)X> XTW(UZ'?vi)y
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where X is the matrix of the independent variables with a column of 1s for the intercept; y
is the dependent variable vector; Bl = (Bio, - - - ,Bim)T is the vector of m + 1 local regression
coefficients; and W; is the diagonal matrix denoting the geographical weighting of each ob-
served data for regression point i at location (u;,v;). This weighting is determined by some
kernel function as described in Section 3.

An optimum kernel bandwidth for GW regression can be found by minimising some model fit
diagnostic, such as a leave-one-out cross-validation (CV) score (Bowman 1984), which only
accounts for model prediction accuracy; or the Akaike Information Criterion (AIC) (Akaike
1973), which accounts for model parsimony (i.e., a trade-off between prediction accuracy and
complexity). In practice, a corrected version of the AIC is used, which unlike basic AIC is a
function of sample size (Hurvich, Simonoff, and Tsai 1998). For GW regression, this entails
that fits using small bandwidths receive a higher penalty (i.e., are more complex) than those
using large bandwidths. Thus for a GW regression with a bandwidth b, its AICc can be found

from:
n + tr(S)
n—2—tr(S)
where n is the (local) sample size (according to b); & is the estimated standard deviation

of the error term; and tr(S) denotes the trace of the hat matrix S. The hat matrix is the
projection matrix from the observed y to the fitted values, 3.

AIC.(b) = 2nlIn(6) + nln(27) + n{

6.2. Robust GW regression

To identify and reduce the effect of outliers in GW regression, various robust extensions have
been proposed, two of which are described in Fotheringham et al. (2002). The first robust
model re-fits a GW regression with a filtered data set that has been found by removing obser-
vations that correspond to large externally studentized residuals of an initial GW regression
fit. An externally studentized residual for each regression location i is defined as:

e
0—i/Tii

where e; is the residual at location ¢; 6_; is a leave-one-out estimate of &; and ¢;; is the ith
element of (I — S)(I —S)". Observations are deemed outlying and filtered from the data
if they have |r;| > 3. The second robust model, iteratively down-weights observations that

correspond to large residuals. This (non-geographical) weighting function w, on the residual
e; is typically taken as:

ri =

1, if |€z| S 26
we(er) = [1— (Jei] — 2)%]%, if 26 < |ei| < 36
0 otherwise

Observe that both approaches have an element of subjectivity, where the filtered data ap-
proach depends on the chosen residual cut-off (in this case, 3) and the iterative (automatic)
approach depends on the chosen down-weighting function, with its associated cut-offs.

6.3. Example

We now demonstrate the fitting of the basic and robust GW regressions described, to the
Dublin voter turnout data. Our regressions attempt to accurately predict the proportion of
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the electorate who turned out on voting night to cast their vote in the 2004 General Election
in Ireland. The dependent variable is GenE12004 and the eight independent variables are
DiffAdd, LARent, SC1, Unempl, LowEduc, Age18_24, Age25_44 and Age45_64.

A global correlation analysis suggests that voter turnout is negatively associated with the
independent variables, except for social class (SC1) and older adults (Age45_64). Public
renters (LARent) and unemployed (Unempl) have the highest correlations (both negative),
in this respect. The GW correlation analysis from Section 4 indicates that some of these
relationships are non-stationary. The global regression fit to this data yields an R-squared
value of 0.63 and details of this fit can be summarized as follows:

R> 1m.global <- 1m(GenE1l2004 ~ DiffAdd + LARent + SC1 + Unempl + LowEduc +
+ Agel8_24 + Age25_44 + Age45_64, data = Dub.voter)
R> summary(1lm.global)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 77.70467 3.93928 19.726 < 2e-16 **xx*
DiffAdd -0.08583 0.08594 -0.999 0.3187
LARent -0.09402 0.01765 -5.326 1.92e-07 *x*x
SC1 0.08637 0.07085 1.219 0.2238
Unempl -0.72162 0.09387 -7.687 1.96e-13 **x
LowEduc -0.13073 0.43022 -0.304 0.7614
Agel8_24 -0.13992 0.05480 -2.554 0.0111 =*
Age25_44 -0.35365 0.07450 -4.747 3.15e-06 *x*x
Aged5_64 -0.09202 0.09023 -1.020 0.3086

Next, we conduct a model specification exercise in order to help find an independent variable
subset for our basic GW regression. As an aide to this task, a pseudo stepwise procedure is
used that proceeds in a forward direction. The procedure can be described in the following
four steps, where the results are visualized using associated plots of each model’s AIC, values:

1. Start by calibrating all possible bivariate GW regressions by sequentially regressing a
single independent variable against the dependent variable;

2. Find the best performing model which produces the minimum AIC,, and permanently
include the corresponding independent variable in subsequent models;

3. Sequentially introduce a variable from the remaining group of independent variables
to construct new models with the permanently included independent variables, and
determine the next permanently included variable from the best fitting model that has
the minimum AIC,;

4. Repeat step 3 until all independent variables are permanently included in the model.

The function to perform this procedure is model.selection.gwr, whose AICc outputs are
sorted using model.sort.gwr and then inputted to model.view.gwr to provide a useful vi-
sualization of the AIC. data (see Figure 7). This approach can be conducted in a rudi-
mentary form, where the bandwidth is user-specified beforechand and remains the same for
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View of GWR model selection with different variables
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Figure 7: Model view of the stepwise specification procedure.

each GW regression fit. Alternatively, a more refined model specification exercise enables the
re-calculation of an optimal bandwidth for each GW regression fit. As a demonstration, a
rudimentary specification is conducted, by running the following sequence of commands. Ob-
serve that a bi-square kernel is specified with a user-specified adaptive bandwidth of N = 80.

R> DeVar <- "GenE12004"

R> InDeVars <- c("DiffAdd"," LARent", "SC1", "Unempl", "LowEduc",

+ "Agel8_24", "Age25_44", "Age45_64")

R> model.sel <- model.selection.gwr(DeVar, InDeVars, data = Dub.voter,
+ kernel = "bisquare", adaptive = TRUE, bw = 80)

R> sorted.models <- model.sort.gwr(model.sel, numVars = length(InDeVars),
+ ruler.vector = model.sell[[2]][,2])

R> model.list <- sorted.models[[1]]

R> model.view.gwr(DeVar, InDeVars, model.list = model.list)

R> plot(sorted.models[[2]][,2], col = "black", pch = 20, 1ty = 5,

+ main = "Alternative view of GWR model selection procedure",

+ ylab = "AICc", xlab = "Model number", type = "b")

Figure 7 presents a circle view of the 36 GW regressions (numbered 1 to 36) that result from
this stepwise procedure. Here the dependent variable is located in the centre of the chart and
the independent variables are represented as nodes differentiated by shapes and colors. The
first independent variable that is permanently included is Unempl, the second is Age25_44,
and the last is LowEduc. Figure 8 displays the corresponding AIC, values from the same fits
of Figure 7. The two graphs work together, explaining model performance when more and
more variables are introduced. Clearly, AIC, values continue to fall until all independent
variables are included. Results suggest that continuing with all eight independent variables
is worthwhile (at least for our user-specified bandwidth).

We can now proceed to the correct calibration of our chosen GW regression specification.
Here, we find its true (i.e., optimal) bandwidth using the function bw.gwr and then use this
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Alternative view of GWR model selection procedure
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Figure 8: AIC, values for the same 36 GW regressions of Figure 7.

bandwidth to parametrize the same GW regression with the function gwr.basic. The optimal
bandwidth is found at N = 109. Commands for these operations are as follows, where the
print function provides a useful report of the global and GW regression fits, with summaries of
their regression coefficients, diagnostic information and F-test results (following Leung et al.

2000). The report is designed to match the output of the GW regression v3.0 executable
software Charlton et al. (2003).

R> bw.gwr.1 <- bw.gwr(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl +
+ LowEduc + Agel8_24 + Age25_44 + Age45_64, data = Dub.voter,

+ approach = "AICc", kernel = "bisquare", adaptive = TRUE)
R> bw.gwr.1

[1] 109

R> gwr.res <- gwr.basic(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl +
+ LowEduc + Agel8_24 + Age25_44 + Age45_64, data = Dub.voter,

+ bw = bw.gwr.1, kernel = "bisquare", adaptive = TRUE, F123.test = TRUE)
R> print(gwr.res)

To map the GW regression outputs, the following commands can be used to each field of
spatial data frame object gwr.res$SDF. As an example, we map the coefficient estimates for
LowEduc in Figure 9a, where this variable’s relationship to voter turnout has clear geographical
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Basic GW regression coefficient estimates for LowEduc Robust GW regression coefficient estimates for LowEduc

Figure 9: (a) Basic and (b) robust GW regression coefficient estimates for LowEduc.

variation, ranging from —7.67 to 3.41. Its global regression coefficient estimate is —0.13.
Commands for a robust GW regression fit (the second, iterative approach) of the same model,
using the same bandwidth, are also given. Here a slightly different set of coefficient estimates
for LowEduc result (Figure 9b), to that found with the basic fit. Evidence for relationship non-
stationarity is now slightly weaker, as the robustly estimated coefficients range from —7.74 to
2.57, but the broad spatial pattern in these estimates remain largely the same.

names (gwr.res$SDF)
mypalette.6 <- brewer.pal(6, "Spectral")
spplot (gwr.res$SDF, "LowEduc", key.space = "right",
col.regions = mypalette.6, at = c(-8, -6, -4, -2, 0, 2, 4),
main = "Basic GW regression coefficient estimates for LowEduc',
sp.layout = map.layout)
rgwr.res <- gwr.robust(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl +
LowEduc + Agel8_24 + Age25_44 + Age45_64, data = Dub.voter,
bw = bw.gwr.1l, kernel = "bisquare", adaptive = TRUE, F123.test = TRUE)
print(rgwr.res)
spplot (rgwr.res$SDF, "LowEduc", key.space = "right",
col.regions = mypalette.6, at = c(-8, -6, -4, -2, 0, 2, 4),
main = "Robust GW regression coefficient estimates for LowEduc',
sp.layout = map.layout)
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7. GW regression and addressing local collinearity

7.1. Introduction

A problem which has long been acknowledged in regression modelling is that of collinearity
among the predictor (independent) variables. The effects of collinearity include a loss of
precision and a loss of power in the coefficient estimates. Collinearity is potentially more of
an issue in GW regression because: (i) its effects can be more pronounced with the smaller
spatial samples used in each local estimation and (ii) if the data are spatially heterogeneous
in terms of its correlation structure, some localities may exhibit collinearity while others may
not. In both cases, collinearity may be a source of problems in GW regression even when no
evidence is found for collinearity in the global model (Wheeler and Tiefelsdorf 2005; Wheeler
2007, 2013a). A further complication is that in the case of a predictor which has little local
spatial variation, the possibility of collinearity with the intercept term is raised (Wheeler
2007, 2010, 2013a). Simulation studies have indicated that in the presence of collinearity,
GW regression may find patterns in the coefficients where no patterns are actually present
(Wheeler and Tiefelsdorf 2005; Péez, Farber, and Wheeler 2011).

To this extent, diagnostics to investigate the nature of collinearity in a GW regression anal-
ysis should always be conducted; this includes finding: (a) local correlations amongst pairs
of predictors; (b) local variance inflation factors (VIFs) for each predictor; (c) local variance
decomposition proportions (VDPs); and (d) local design (or cross-product) matrix condition
numbers; all at the same spatial scale of each local regression of the GW regression model.
Accordingly, the following rules of thumb can be taken to indicate likely local collinear-
ity problems in the GW regression fit: (a) absolute local correlations greater than 0.8 for
a given predictor variable pair; (b) VIFs greater than 10 for a given predictor; (¢) VDPs
greater than 0.5; and (d) condition numbers greater than 30. Such diagnostics and associated
rules of thumb are directly taken from the global regression case (Belsley, Kuh, and Welsch
1980; O’Brien 2007) and have been proposed in a GW regression context through the works
of Wheeler and Tiefelsdorf (2005); Wheeler (2007). All four diagnostics can be found and
mapped using the function gwr.collin.diagno in GWmodel and a similar function exists in
the gwrr R package, see Section 9. Here it should be noted that local correlations and local
VIFs cannot detect collinearity with the intercept; Wheeler (2010) provides a useful example
of this. To this extent, the combined use of local VDPs and local condition numbers are su-
perior diagnostics to local correlations and local VIFs for investigating collinearity (Wheeler
2007).

There are several possible actions in the light of discovering high levels of collinearity. These
include: (1) doing nothing, (2) removing the offending predictors, (3) transforming the pre-
dictors to some orthogonal form or (4) using a different non-stationary regression model.
The removal of a predictor is recommended if it clearly creates a global and local collinear-
ity issue. However removing a predictor is not ideal, when only a local collinearity effect
is present. Transforming the predictors should be done locally, at the same spatial scale of
the GW regression (e.g., with a GW PCA), rather than globally (with PCA). However, such
operations entail a loss of meaning in the regression outputs. For local collinearity issues, the
fourth option is the best option and here Wheeler (2007, 2009) proposed significant modifica~
tions to the GW regression model, designed to cater for the adverse effects of collinearity. In
particular, penalized regression models were transferred to a local form with the GW ridge
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regression model (Wheeler 2007, 2009) and the GW lasso (Wheeler 2009). Both penalized
GW models are biased estimators, providing no measures of coefficient uncertainty, but the
GW lasso has the advantage in that it can also provide a local model selection function. In
the presence of collinearity, both penalized GW models should provide more accurate local
coefficient estimates, than that found with basic GW regression. Thus an investigation of
relationship non-stationary should be more assured in this respect.

In this section, our aim is to present the use of local condition numbers as a diagnostic for
local collinearity and also to relate this diagnostic to the ridge parameter of a GW ridge
regression model. This relationship enables us to provide an alternative GW ridge regression
to that demonstrated in Wheeler (2007). We call our new model, GW regression with a
locally-compensated ridge term. This model differs to any existing GW ridge regression,
in that: (A) it fits local ridge regressions with their own ridge parameters (i.e., the ridge
parameter varies across space) and (B) it only fits such ridge regressions at locations where
the local condition number is above a user-specified threshold. Thus a biased local estimation
is not necessarily used everywhere; only at locations where collinearity is likely to be an issue.
At all other locations, the usual un-biased estimator is used. GWmodel functions that we
demonstrate are bw.gwr.lcr, to optimally estimate the bandwidth, and gwr.lcr, to fit the
locally-compensated GW regression.

7.2. Ridge regression

A method to reduce the adverse effects of collinearity in the predictors of a linear model is
ridge regression (Hoerl 1962; Hoerl and Kennard 1970). Other methods include principal
components regression and partial least squares regression (Frank and Friedman 1993). In
ridge regression the estimator is altered to include a small change to the values of the diagonal
of the cross-product matrix. This is known as the ridge, indicated by A in the following
equation:

A= (XTX + /\I) X7y

The effect of the ridge is to increase the difference between the diagonal elements of the matrix
and the off-diagonal elements. As the off-diagonal elements represent the co-variation in the
predictors, the effect of the collinearity among the predictors in the estimation is lessened.
The price of this is that 3 becomes biased, and the standard errors (and associated t-values)
of the estimates are no longer available. Of interest is the value to be given to the ridge
parameter; Lee (1987) presents an algorithm to find a value which yields the best predictions.

7.3. GW regression with local compensation

There exists a link between the definition of the condition number for the cross-product
matrix (X T X) and the ridge parameter based on the observation that if the eigenvalues of
XTX are €1, €9, .. ., €p then the eigenvalues of XTX 4+ A are e + N, ea + )\, .. .,€p+ A. The
condition number  of a square matrix is defined as €; /ey, so the condition number for the
ridge-adjusted matrix will be €; + A/e, + A. By re-arranging the terms, the ridge adjustment
that will be required to yield a particular condition number x is A = {(e; —€p)/(k — 1)} — €.
Thus given the eigenvalues of the un-adjusted matrix, and the desired condition number, we
can determine the value of the ridge which is required to yield that condition number.

For GW regression, this can be applied to the GW cross-product matrix, which permits a
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local compensation of each local regression model, so that the local condition number never
exceeds a specified value of k. The condition numbers for the un-adjusted matrices may
also be mapped to give an indication of where the analyst should take care in interpreting
the results, or the local ridge parameters may also be mapped. For cases where collinearity
is as much an issue in the global regression as in the GW regression; the local estimations
will indicate precisely where the collinearity is a problem. The estimator for this locally
compensated ridge (LCR) GW regression model is:

~

ﬁ(ui,vi) = (XTW(ui,vi)X + )\I(ui,vi)>_1 XTW(Ui,’UZ‘)Y

where AI(u;,v;) is the locally-compensated value of A at location (u;,v;). Observe that the
same approach to estimating the bandwidth in the basic GW regression (Section 6) can be
applied to the LCR GW regression model. For a cross-validation approach, the bandwidth
is optimized to yield the best predictions. Collinearity tends to have a greater affect on the
coefficient estimates rather than the predictions from the model, so in general, little is lost
when using the locally-compensated form of the model. Details on this and an alternative
locally-compensated GW regression can be found in Brunsdon, Charlton, and Harris (2012),
where both models are performance tested within a simulation experiment.

7.4. Example

We examine the use of our local compensation approach with the same GW regression that
is specified in Section 6, where voter turnout is a function of the eight predictor variables of
the Dublin election data. For the corresponding global regression, the vif function in the
car package (Fox and Weisberg 2011) computes VIFs using the method outlined in Fox and
Monette (1992). These global VIFs are given below and (noting their drawbacks given above)
suggest that weak collinearity exists within this data.

R> library("car")

R> Im.global <- 1m(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl +
+ LowEduc + Agel8_24 + Age25_44 + Age45_64, data = Dub.voter)
R> summary(1m.global)

R> vif(Im.global)

DiffAdd LARent SC1  Unempl LowEduc Agel8_24 Age25_44 Aged45_64
3.170044 2.167172 2.161348 2.804576 1.113033 1.259760 2.879022 2.434470

In addition, the PCA from Section 5 suggests collinearity between DiffAdd, LARent, Unempl,
Age25_44 and Age45_64. As the first component accounts for some 36% of the variance
in the data set, and of those components with eigenvalues greater than 1, the proportion of
variance accounted for is 73.6%, we might consider removing variables with higher loadings.
However for the purposes of illustration, we decide to keep the model as it is. Further global
findings are of note, in that the correlation of turnout with Age45_64 is positive, but the sign
of the global regression coefficient is negative. Furthermore, only four of the global regression
predictors are significant. Unexpected sign changes and relatively few significant variables are
both indications of collinearity.

We can measure the condition number of the design matrix using the method outlined in
Belsley et al. (1980). The method, termed BKW, requires that the columns of the matrix
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are scaled to have length 1; the condition number is the ratio of the largest to the smallest
singular value of this matrix. The following code implements the BKW computations, where
X is the design matrix consisting of the predictor variables and a column of 1s.

R> X <- as.matrix(cbind(1, Dub.voter@datal, 4:11]))
R> BKWcn <- function(X) {
p <- dim(X) [2]
Xscale <- sweep(X, 2, sqrt(colSums(X~2)), "/")
Xsvd <- svd(Xscale)$d
Xsvd[1] / Xsvd[p]
}
R> BKWcn(X)

+ + + + +

[1] 41.06816

The BKW condition number is found to be 41.07 which is high, indicating that collinearity
is at least, a global problem for this data. We can experiment by removing columns from
the design matrix and test which variables appear to be the source of the collinearity. For
example, entering:

R> BKWen (X[, c(-2, -8)1)
[1] 18.69237

allows us to examine the effects of removing both DiffAdd and Age25_44 as sources of
collinearity. The reduction of the BKW condition number to 18.69 suggests that removing
these two variables is a useful start. However, for demonstration purposes, we will persevere
with the collinear (full specification) model, and now re-examine its GW regression fit, the
one already fitted in Section 6. The main function to perform this collinearity assessment is
gur.lcr, where we aim to compare the coefficient estimates for the un-adjusted basic GW
regression with those from a LCR GW regression.

In the first instance, we can use this function to find the global condition number (as that
found with the global regression). This can be done simply by specifying a box-car kernel with
a bandwidth equal to the sample size. This is equivalent to fitting n global models. Inspection
of the results from the spatial data frame show that the condition numbers are all equal to
41.07, as hoped for. The same condition number is outputted by the ArcGIS Geographically
weighted Regression tool in the Spatial Statistics Toolbox (ESRI 2013). Commands to conduct
this check on the behavior of the lcr.gwr function are as follows:

R> nobs <- dim(Dub.voter)[1]

R> lcrml <- gwr.lcr(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl + LowEduc +
+ Agel8_24 + Age25_44 + Age45_64, data = Dub.voter, bw = nobs,

+ kernel = "boxcar", adaptive = TRUE)

R> summary (1crm1$SDF$Local_CN)

Min. 1st Qu. Median Mean 3rd Qu. Max.
41.07 41.07 41.07 41.07 41.07 41.07
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To obtain local condition numbers for a basic GW regression without a local compensation,
we use the bw.gwr.lcr function to optimally estimate the bandwidth, and then gwr.lcr to
estimate the local regression coefficients and the local condition numbers?. To match that
of Section 6, we specify an adaptive bi-square kernel. Observe that the bandwidth for this
model can be exactly the same as that obtained using bw.gwr, the basic bandwidth function.
With no local compensation (i.e., local ridges of zero), the cross-products matrices will be
identical, but only provided the same optimization approach is specified. Here we specify
a cross-validation (CV) approach, as the AICc approach is currently not an option in the
bw.guwr.lcr function. Coincidently, for our basic GW regression of Section 6, a bandwidth of
N = 109 results for both CV and AICc approaches. Commands to output the local condition

numbers from our basic GW regression, and associated model comparisons are as follows:

R> lcrm2.bw <- bw.gwr.lcr(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl +
+ LowEduc + Agel8_24 + Age25_44 + Age45_64, data = Dub.voter,

+ kernel = "bisquare", adaptive = TRUE)

R> lcrm2.bw

[1] 109

R> lcrm2 <- gwr.lcr(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl + LowEduc +
+ Agel8_24 + Age25_44 + Age45_64, data = Dub.voter, bw = lcrm2.bw,

+ kernel = "bisquare", adaptive = TRUE)

R> summary (1crm2$SDF$Local_CN)

Min. 1st Qu. Median Mean 3rd Qu. Max.
32.88 52.75 59.47 59.28 64.85 107.50

R> gwr.cv.bw <- bw.gwr(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl +
+ LowEduc + Agel8_24 + Age25_44 + Age45_64, data = Dub.voter,

+ approach = "CV", kernel = "bisquare", adaptive = TRUE)

R> gwr.cv.bw

[1] 109

R> mypalette.7 <- brewer.pal(8, "Reds")

R> spplot(lcrm2$SDF, "Local CN", key.space = "right",

+ col.regions = mypalette.7, at = seq(30, 110, length = 9),
+ main = "Local condition numbers from basic GW regression",
+ sp.layout = map.layout)

Thus the local condition numbers can range from 32.88 to 107.50, all worryingly large every-
where. Whilst the local estimations are potentially more susceptible to collinearity than the
global model, we might consider removing some of the variables which cause problems globally.
The maps will show where the problem is worst, and where action should be concentrated.
The local condition numbers for this estimation are shown in Figure 10a.

“Local condition numbers can also be found using the function gwr.collin.diagno.
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Local condition numbers from basic GW regression Local condition numbers before adjustment

Figure 10: Local condition numbers from: (a) basic GW regression and (b) before adjustment.

We can now calibrate a LCR GW regression, where the application of local ridge adjustment
to each local X TW (u;, v;)X matrix, only occurs at locations where the local condition num-
ber exceeds some user-specified threshold. At these locations, the local compensation forces
the condition numbers not to exceed the same specified threshold. In this case, we follow
convention and specify a threshold of 30. As a consquence, a local ridge term will be found
at all locations, for this particular example. The lambda.adjust = TRUE and cn.thresh =
30 arguments in the gwr.lcr function are used to invoke the local compensation process, as
can be seen in following commands:

R> lcrm3.bw <- bw.gwr.lcr(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl +
+ LowEduc + Agel8_24 + Age25_44 + Age45_64, data = Dub.voter,

+ kernel = "bisquare", adaptive = TRUE, lambda.adjust = TRUE,

+ cn.thresh = 30)

R> lcrm3.bw

[1] 157

R> lcrm3 <- gwr.lcr(GenE12004 ~ DiffAdd + LARent + SC1+ Unempl + LowEduc +
+ Agel8_24 + Age25_44 + Age45_64, data = Dub.voter, bw = lcrm3.bw,

+ kernel = "bisquare", adaptive = TRUE, lambda.adjust = TRUE,

+ cn.thresh = 30)

R> summary (1crm3$SDF$Local_CN)
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Min. 1st Qu. Median Mean 3rd Qu. Max.
34.34 47.08 53.84 52.81 58.66 73.72

R> summary(1lcrm3$SDF$Local_Lambda)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01108 0.03284 0.04038 0.03859 0.04506 0.05374

R> spplot(lcrm3$SDF, "Local CN", key.space = "right",

+ col.regions = mypalette.7, at = seq(30, 110, length = 9),

+ main = "Local condition numbers before adjustment"”,

+ sp.layout = map.layout)

R> spplot(1crm3$SDF, "Local_Lambda', key.space = "right",

+ col.regions = mypalette.7,cuts = 7, sp.layout = map.layout,
+ main = "Local ridge terms for LCR GW regression")

Observe that the bandwidth for the locally compensated GW regression is larger at N = 157,
than for the un-adjusted (basic) GW regression (at N = 109). We could have specified the
bandwidth from the un-adjusted model, but this would not provide the best fit. The larger
bandwidth provides greater smoothing. Observe also that the local condition numbers (the
Local_CN outputs) from this model are the local condition numbers before the adjustment
(or compensation)®. They will tend to be smaller than those for the basic model because we
are using a larger bandwidth. They will tend to that of the global model (i.e., 41.07).

The Local_Lambda outputs are the local ridge estimates used to adjust the local cross-products
matrices. Both the local condition numbers and the local ridges can be mapped to show where
the GW regression has applied different levels of adjustment in relation to the different levels
of collinearity among the predictors. The local condition numbers are mapped in Figure 10b,
and the local ridges in Figure 11a for our LCR GW regression. The greatest adjustments
were required in central Dublin, and in the north, south-west and south-east extremities of
the study area.

Figure 11b plots the adjusted coefficient estimates for LARent from the locally compensated
model, against those from the corresponding basic model. The general pattern would appear
to be that the larger coefficients for the basic model are reduced in magnitude, and that the
smaller coefficients are raised. The relationship is non-linear and a loess fit is shown in the
plot. Commands for this comparison are as follows:

R> gwr.cv <- gwr.basic(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl +
+ LowEduc + Agel18_24 + Age25_44 + Age45_64, data = Dub.voter

+ bw = gwr.cv.bw, kernel = "bisquare", adaptive = TRUE)

R> small <- min(min(gwr.cv$SDF$LARent), min(lcrm3$SDF$LARent))

R> large <- max(max(gwr.cv$SDF$LARent), max(lcrm3$SDF$LARent))

R> plot(gwr.cv$SDF$LARent,1crm3$SDF$LARent,

+ main = "LARent coefficients: basic vs. locally compensated",
+ xlab = "GW regression coefficient",

+ ylab = "LCR GW regression coefficient",

+ xlim = c(small, large), ylim = c(small, large))

5 After the adjustment, the local condition numbers will all equal 30 in this case.
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Local ridge terms for LCR GW regression
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Figure 11: (a) Local ridge terms and (b) comparison of coefficient estimates for LARent.

R> lines(lowess(gwr.cv$SDF$LARent, 1crm3$SDF$LARent), col = "blue")
R> abline(0, 1, col = "gray60")

Model building with collinear data

If we explore the local condition numbers for models with different structures, it may be
possible to build GW regression models which avoid collinearity. Here, we code a function
to calibrate and then estimate a basic (un-adjusted) GW regression. This function can then
be used to assess various forms of the model, where the output each time is a vector of local
condition numbers for the model that has been fitted. This function is presented as follows,
together with an example model run.

R> test.CN <- function(model, data) {

+ lcrmx.bw <- bw.gwr.lcr(model, data = data, kernel = "bisquare",
+ adaptive = TRUE)

+  print(model)

+ print(lcrmx.bw)

+ lcrmx <- gwr.lcr(model, data = data, bw = lcrmx.bw,

+ kernel = "bisquare", adaptive = TRUE)

+  print(summary (1crmx$SDF$Local_CN))

+ lcrmx$SDF$Local_CN

+ }

R> data <- Dub.voter
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Distribution of local condition numbers from 11 different model specs.
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Figure 12: Distribution of local condition numbers from 11 different GW regression fits.

R> model <- as.formula(GenE12004 ~ DiffAdd + LARent + SC1 + Unempl +
+ LowEduc + Agel8_24 + Age25_44 + Age45_64)
R> A11D <- test.CN(model, data)

On using this function with eleven different GW regression models, Figure 12 shows the
boxplots of the local condition numbers from GW regressions with: (i) all variables (ALL),
(ii) removing each variable in turn (DiffAdd, LARent, SC1, Unempl, LowEduc, Age18_24,
Age25_44, Aged5_64), (iii) removing DiffAdd and Aged5_64 together, and (iv) removing
LARent, Age25_44 and Age45_64 together. The last grouping was suggested by the output
of the global PCA from Section 5. Removing variables individually has little effect on the
local condition number distributions, although removing the last two age variables induces
a noticeable drop. Removing the most collinear variables produces a model where no local
condition number is above 30.

Figure 13 shows the local condition number distributions as a scatterplot matrix. Here the
least effective variable removals have high correlations between the condition number distribu-
tions, whereas removing the most collinear variables tends to provide lower condition number
correlations with other model forms. This opens up the possibility of semi-automating the
model building process to yield a GW regression with acceptably low levels of collinearity.
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Figure 13: Scatterplot matrix of local condition numbers from 11 different GW regression
fits.

7.5. LCR GW regression vs. previous penalized GW regression models

It is important to clarify the difference between our LCR GW regression (say, LCR-GWR)
and the GW ridge regression (GWRR) demonstrated in Wheeler (2007). Essentially, LCR-
GWR is more locally-focused than GWRR. GWRR similarly applies a local compensation,
but for each local regression, the ridge parameter is global (i.e., it does not vary across space).
This global ridge is used everywhere, ensuring that all local regressions of GWRR are biased.
Whereas for LCR-GWR, local ridge parameters are used, and they are only used at locations
where they are most needed (as set by a condition number threshold). At other locations,
ridges of zero are specifed. Thus depending on the condition number threshold set, not all of
the local regressions of a LCR-GWR model are necessarily biased. Wheeler actually noted this
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short-coming of GWRR and suggested the use of local ridge terms (Wheeler 2007, p.2480),
but provided no details on such a model’s implemention. Thus the advance for LCR-GWR
is the actual implementation of a such a model, and in particular, the relating of the local
condition number to the local ridge parameter (Section 7.3).

LCR-GWR should not only be placed in context with GWRR, but also the GW lasso (GWL).
Ridge regression and the lasso (Tibshirani 1996) both penalize or shrink regression coefficients,
so as to reduce collinearity effects, where the lasso shrinks the least significant coefficents to
zero, and in doing so, additionally (and simultaneously) provides a model selection function.
Wheeler (2009) provides two versions of GWL; one that estimates a single (global) lasso
parameter to control coefficient shrinkage (GWL-global), and one that estimates multiple
(local) lasso parameters (GWL-local). Thus GWL-global can be viewed as an alternative to
GWRR (as both are globally-focused), whilst GWL-local can be viewed as an alternative to
LCR-GWR (as both are locally-focused).

A simple way to demonstrate the differences between the competing models is to run them
(togther with a basic GW regression), using the same data and the same kernel weighting
specification. Here the functions, gwrr.est and gwl.est from the gwrr R package are needed
to fit the GWRR and GWL models, respectively. Correspondence with the author of gwrr
indicated that gwl.est only fits GWL-local models, and that an option for GWL-global is
not provided. Furthermore, gwrr.est, gwl.est and gur.est (a basic GW regression function
in gwrr), only allow for fixed bandwidths with Gaussian or exponential kernel functions (see
Section 9). As the bandwidth for GWL-local is optimally estimated (via cross-validation)
within the gwl.est function, and cannot be user-specified, we use this particular bandwidth
for all models. Thus, only GWL-local will be correctly specified with respect to its weighting
function. For a data set, we choose the columbus neighborhood crime rate data available in
gWIT.

Commands to conduct this rudimentary comparison are given below, where an exponential
kernel bandwidth of 1.68 is used for all models. For GWRR and LCR-GWR, only the latter
provides local ridges, 16 of which are non-zero (as their corresponding local condition numbers
are above 30). The only outputs that are directly comparable between all four models, are the
local regression coefficients themselves. For example, if we view the coefficients for income, 26
are zero with GWL-local, indicating that this variable is not needed in the corresponding local
regressions. If we compare the income coefficients for the penalized models with those from
the basic model, both GWRR and GWL-local apply some form of penalty at all locations,
whereas LCR-GWR only penalizes at certain (in this case, 16) locations. Thus as would
be expected, coefficients from the basic GW regression have the strongest correlation with
those from the LCR-GWR model. An objective and detailed comparison of all such penalized
models, using simulated data, is a subject of our current research (Brunsdon et al. 2012).

R> library("gwrr")

R> data("columbus")

R> locs <- cbind(columbus$x, columbus$y)

R> columbus.spdf <- SpatialPointsDataFrame(locs, columbus)

R> gwl.comp <- gwl.est(crime ~ income + houseval, locs, columbus, "exp")
R> gwl.comp$phi

[1] 1.678067
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R> summary(gwl.comp$betal2, 1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.6690 -1.1400 0.0000 -0.5731 0.0000 0.6526

R> lcr.gwr.comp <- gwr.lcr(crime ~ income + houseval, data = columbus.spdf,
+ bw = gwl.comp$phi, kernel = "exponential, lambda.adjust = TRUE,

+ cn.thresh = 30)

R> summary(lcr.gwr.comp$SDF$Local_CN)

Min. 1st Qu. Median Mean 3rd Qu. Max.
8.245 18.150 22.000 32.120 39.800 109.000

R> summary(lcr.gwr.comp$SDF$Local_Lambda)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000000 0.000000 0.000000 0.008032 0.014580 0.042930

R> gwrr.comp <- gwrr.est(crime ~ income + houseval, locs, columbus,
+ "exp", bw = gwl.comp$phi)
R> gwrr.comp$lambda

(1] TRUE

R> gwr.comp <- gwr.est(crime ~
+ "exp", bw = gwl.comp$phi)
R> cor(cbind(gwl.comp$betal[2, ], lcr.gwr.comp$SDF$income,
+ gwrr.comp$betal[2, ], gwr.comp$betal2, 1))

income + houseval, locs, columbus,

[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.5923885 0.2228593 0.6160248
[2,] 0.5923885 1.0000000 0.2165015 0.9187365
[3,] 0.2228593 0.2165015 1.0000000 0.3579617
[4,] 0.6160248 0.9187365 0.3579617 1.0000000

7.6. Concluding remarks: Criticisms and Bayesian models

Collinearity is a problem in any form of regression modelling and the importance of assessing
and taking action has been raised by the many commentaries on local collinearity in GW
regression (Wheeler and Tiefelsdorf 2005; Wheeler 2007, 2009, 2010, 2013a; Griffith 2008;
Paez et al. 2011). Collinear data require care and the tools available in GWmodel should
help the analyst assess the magnitude of the problem, where it is a problem, and lead the
analyst to take appropriate action.

Properly accounting for the effects of collinearity in GW regression is one of three recommen-
dations for the practical application of GW regression, given in the simulation study of Paez
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et al. (2011). A second and similarly important recommendation is that the bandwidth should
be chosen with care. In our view, if an optimally found bandwidth tends to its maximum,
then the underlying process should be viewed as stationary. Optimal bandwidths that are
very small should also be viewed suspiciously, suggesting a underlying random process. In this
respect, GWmodel provides additional functions to more fully interrogate bandwidth choice,
complementing the automated procedures (see Section 10). It should always be noted that
an optimal bandwidth for GW regression is based on the accurate prediction of the response
variable, not (as it ideally should be) the accurate prediction of the coefficients (which after-
all, are the ones used to assess relationship non-stationarity). A further consideration is that
bandwidth size will directly affect the nature of local collinearity. In this respect, Brunsdon
et al. (2012) propose an alternative locally-compensated GW regression, where the bandwidth
is increased only at locations most seriously effected by collinearity. In essence, the bandwidth
selection function in any GW model should always be thoroughly investigated, and can be
considered analogous to a thorough investigation of the variogram in geostatistics; where both
investigations aim to identify spatial structure in some way (see also Cressie 1989).

A third recommendation of Péez et al. (2011) concerns sample size, where it is not recom-
mended to use GW regression for data sets of n < 160. In our view, this threshold could
be set lower, but provided a thorough and thoughtful GW regression analysis is undertaken,
using many of the tools described here. As indicated by Péaez et al. (2011), the interpreta-
tion of the results should "proceed with extreme caution”, in such cases. Observe that this
third recommendation can be just as applicable to any non-stationary spatial model, not just
GW regression. Considering all three recommendations together, ensures that GW regression
should never be viewed as a ‘black box’ technique.

Once a thorough GW regression analysis has been conducted, the exploratory and hope-
fully, reliable results may need to be extended for statistical inference. Here, GW regression
does not provide a coherent inferential framework, since no one model exists. Instead GW
regression yields a collection of models, calibrated with the same data, but with different
weighting schemes. In this respect, any hypothesis testing with GW regression (for example
an investigation of the local (pseudo) ¢-values) should only ever be viewed as explorative.

To this extent, it may be worthwhile to consider a Bayesian spatially varying coefficient (SVC)
model (Gelfand, Kim, Sirmans, and Banerjee 2003; Assuncao 2003; Wheeler and Calder 2007;
Waller, Zhu, Gotway, Gorman, and Grunewald 2007; Wheeler and Waller 2009; Finley 2011).
These non-stationary regressions do provide a coherent inferential framework (as a single
model exists) and re-assuringly, do not suffer from the local collinearity problems found in
GW regression. Bayesian SVC models do however suffer from their computational complexity,
where often only the simplest models can be run (e.g., with only two or three predictors). Fur-
thermore, software for their implementation is often not readily available (Finley 2011, p.153).
Until these modelling issues are resolved, it is likely that GW regression will continue to pro-
vide an important exploratory technique for the investigation of relationship non-stationarity;
which on occasion, may help direct and parameterize, a subsequent Bayesian SVC model fit
and analysis.

8. GW regression for spatial prediction

The use of GW regression as a spatial predictor has attracted much attention (e.g., the
empirical evaluations of Gao, Asami, and Chung 2006; Péez et al. 2008; Lloyd 2010b), where
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it has often performed well, relative to a geostatistical (kriging) alterative. More objective,
simulation experiments can be found in Harris, Fotheringham, Crespo, and Charlton (2010b),
where kriging performed the best, but GW regression still performed with merit. Conceptual
links between GW regression and kriging are discussed in Harris, Brunsdon, and Fotheringham
(2011b) and various hybrid predictors can be found in Lloyd (2010b); Harris et al. (2010b);
Harris and Juggins (2011), where GW regression can provide a useful trend component of a
kriging model.

Thus studies have demonstrated value in using GW regression as a spatial predictor. This
is not surprising given that GW regression and associated tools, directly stem from the non-
parametric, locally weighted regression models of Cleveland (1979); Cleveland and Devlin
(1988), for curve fitting and interpolation. Furthermore, when used as spatial predictor, the
many criticisms levelled at GW regression, such as problems with collinearity (Section 7), are
not expected to be of such importance. In this respect, our current research is investigating
this topic, via simulated data experiments.

To use GW regression as a spatial predictor is straight-forward, a GW regression prediction
at a location s can be found using:

Jawr(s) = z(s) " B(s)

where z(s) and 3(s) are cach vectors of independent data values and parameter estimates,
respectively. Following Leung et al. (2000), the corresponding GW regression prediction
variance at s can be estimated using:

oZuwn(s) = VAR{i(s) — y()} = 52[1 + S(s)]

where

S(s) = 2(9)" [XTWEX] T XWX [XTWEX] 2

Here an unbiased estimate of the residual variance is taken as 6 = RSS/(n — ENP), where
RSS is the residual sum of squares and ENP is the effective number of parameters of the
GW regression model. Observe that the prediction variance for GW regression is for a single
observation and not for the mean, and in doing so, is directly comparable with that found
with kriging, in say, the gstat R package (Pebesma 2004).

8.1. Example

To demonstrate GW regression as spatial predictor, we use the EWHP data set. Here our aim is
to predict the dependent variable, house price (PurPrice) using a subset of the nine indepen-
dent variables described in Section 2, each of which reflect some hedonic characteristic of the
property. A correlation analysis reveals that FlrArea (floor area or the effective size of the
property) provides the strongest correlation with house price at p = 0.65. For demonstration
purposes, we choose to focus our prediction models using only this single hedonic variable.
Two additional R package are required for this analysis: ModelMap (Freeman and Frescino
2009) and gstat (Pebesma 2004).

R> library("ModelMap")
R> library("gstat")

37
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GW Correlations: House Price and Floor Area GW Regression House Price predictions
Correlation 1000's UK Pounds
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Figure 14: (a) GW correlations between house price and floor area and (b) GW regression
predictions of house price.

A GW correlation analysis between house price and our retained hedonic variable® can be con-
ducted using the gwss function, where GW correlations (and other GW summary statistics)
are specified using an adaptive bi-square kernel with a bandwidth of N = 52 (approximately
10% of the sample data). The quick.map function allows the GW correlations to be mapped.
Figure 14a displays the resultant map, where the relationship between house price and floor
area tends to weaken in rural areas. This is expected, as large properties are more likely to
sell for a premium in urban areas (with the notable exception of some properties located in
central London). Commands for this analysis are as follows:

R> ewhp.spdf <- SpatialPointsDataFrame(ewhp[, 1:2], ewhp)

R> data("EWOutline")

R> gw.sum.stats <- gwss(ewhp.spdf, vars = c("PurPrice", "FlrArea"),
+ kernel = "bisquare", adaptive = TRUE, bw = 52)

R> quick.map <- function(spdf, var, legend.title, main.title) {

+ x <- spdf@datal,var]

+ cut.vals <- pretty(x)

+ x.cut <- cut(x, cut.vals)

+ cut.levels <- levels(x.cut)

+ cut.band <- match(x.cut, cut.levels)

5Observe that discarding hedonic variables that correlate weakly at the global scale does not directly entail
similarly weak correlations, locally. As such, a comprehensive analysis would have locally investigated all
relationships with their respective GW correlations (see Section 4).
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+ colors <- rev(brewer.pal(length(cut.levels), "Y10rRd"))

+ par(mar = c(1, 1, 1, 1))

+ plot(ewoutline, col = "olivedrab", bg = "lightbluel")

+ title(main.title)

+ plot(spdf, add = TRUE, col = colors[cut.band], pch = 16)

+ legend("topleft", cut.levels, col = colors, pch = 16, bty = "n",
+ title = legend.title)

+ }

R> quick.map(gw.sum.stats$SDF, "Corr_PurPrice.FlrArea",

+ "Correlation", "GW Correlations: House Price and Floor Area")

GW correlations provide evidence of non-stationarity in a specific house price relationship and
as such, the use of GW regression to predict house price is worth pursuing. To this extent,
we compare the prediction accuracy of a GW regression fit with that of its corresponding
(ordinary least squares) global regression fit”. Here we split the EWHP data into model
calibration and model validation data sets of equal size using the function get.test in the
ModelMap R package. To find an optimal bandwidth for the GW regression, the function
bw.gwr is used with the calibration data and an optimal adaptive bandwidth of N = 34
results (for a bi-square kernel, via the CV approach). We then parameterize the function
guwr.predict with this bandwidth, to find the GW regression predictions and prediction
variances at the validation sites. The necessary distance matrices are found using the function
gw.dist. The corresponding global regression is also found using gwr . predict; and as a check
for consistency, similarly found using functions gstat and predict from the gstat package.
The commands used are as follows:

R> write.table(ewhp, "ewhp.csv", col.names = TRUE, row.names = FALSE,

+ sep = ",")

R> get.test(proportion.test = 0.5, "ewhp.csv", seed = 42, folder = getwd(),
+ qdata.trainfn = "ewhp_calib.csv", qdata.testfn = "ewhp_valid.csv")

R> ewhp_calib <- read.table("ewhp_calib.csv", header = TRUE, sep = ",")

R> attach(ewhp_calib)

R> ewhp_calib.spdf <- SpatialPointsDataFrame (ewhp_calib[, 1:2],

+ as.data.frame(ewhp_calib[c(3, 12)]))

R> dm.calib <- gw.dist(dp.locat = coordinates(ewhp_calib.spdf))

R> gwr.bw.cv <- bw.gwr(PurPrice ~ FlrArea,data = ewhp_calib.spdf,

+ approach = "CV", kernel = "bisquare", adaptive = TRUE, dMat = dm.calib)
R> ewhp_valid <- read.table("ewhp_valid.csv", header = TRUE, sep = ",")

R> attach(ewhp_valid)

R> ewhp_valid.spdf <- SpatialPointsDataFrame (ewhp_valid[, 1:2],

+ as.data.frame (ewhp_valid[c(3, 12)]))

R> dm.valid <- gw.dist(dp.locat = coordinates(ewhp_calib.spdf),

+ rp.locat = coordinates (ewhp_valid.spdf))

R> gur.pred <- gwr.predict(PurPrice ~ FlrArea,data = ewhp_calib.spdf,

+ predictdata = ewhp_valid.spdf ,bw = gwr.bw.cv, kernel = "bisquare",

+ adaptive = TRUE, dMatl = dm.valid, dMat2 = dm.calib)

7A more complete analysis would also calibrate geostatistical /autocorrelation-based predictors for compar-
ison (e.g., Pdez et al. 2008, with respect to house price prediction).
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Model RMSPE MAPE Mean.ZS SD.ZS
GW regression 27.03 17.55 —0.04 1.10
Global regression (GWmodel) 31.58  20.65 0.16 1.10
Global regression (gstat) 31.58  20.65 0.16 1.10

Table 2: Performance results for GW Regression as a spatial predictor (RMSPE and MAPE
in £1000).

R> ols.pred.gwmodel <- gwr.predict (PurPrice ~ FlrArea,

+ data = ewhp_calib.spdf, predictdata = ewhp_valid.spdf, bw = 519,

+ kernel = "boxcar", adaptive = TRUE, dMatl = dm.valid, dMat2 = dm.calib)
R> ols <- gstat(id = "mlr",formula = PurPrice ~ FlrArea,

+ loc = ~ Easting + Northing, data = ewhp_calib)

R> ols.pred.gstat <- predict(ols, newdata = ewhp_valid, BLUE = TRUE)

Performance results are reported in Table 2, in terms of prediction accuracy and prediction
uncertainty accuracy. Prediction accuracy is measured by the root mean squared prediction
error (RMSPE) and the mean absolute prediction error (MAPE), both of which should tend
to zero. Prediction uncertainty accuracy is measured by the mean and standard deviation
(SD) of the prediction z-score data (mean.ZS and SD.ZS, respectively). These z-scores are
defined as:

Z'Scorepred(s) = (y(S) - Q(S)) /Upred (S)

where for unbiased prediction standard errors, the mean and SD of the z-scores should tend
to zero and unity, respectively. As would be expected, GW regression provides the best set
of results and there is near exact correspondence between the two global regression results.
Finally, a map depicting the GW regression predictions is given in Figure 14b. Commands to
conduct this model performance analysis, just for the GW regression model, are as follows:

R> RMSPE.gwr <-
+ (mean ((ewhp_valid.spdf$PurPrice - gwr.pred$SDF$prediction)"2))"0.5

R> MAPE.gwr <- mean(abs(ewhp_valid.spdf$PurPrice - gwr.pred$SDF$prediction))
R> zscore.gwr <- (ewhp_valid.spdf$PurPrice - gwr.pred$SDF$prediction)/

+ (gwr.pred$SDF$prediction_var) 0.5

R> MeanZ.gwr <- mean(zscore.gwr)

R> SDZ.gwr <- (var(zscore.gwr)) 0.5

R> gwr.pred$SDF$prediction <- gwr.pred$SDF$prediction/1000

R> quick.map(gwr.pred$SDF, "prediction", "1000's UK Pounds",

+ "GW Regression House Price predictions")

9. Comparisons with spgwr, gwrr and McSpatial

In this section, we compare the functions of GWmodel with those found in the related packages
of spgwr (Version 0.6-24), gwrr (Version 0.2-1) and McSpatial (Version 2.0). Here we establish
where they duplicate (or have strong similarities with) each other and where they diverge.
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GWmodel spgwr gwrr McSpatial
Kernel Box-car, Bi-square, Gaussian Rectangular,
functions: Bi-square, Tri-cube and Exponential Triangular,
Tri-cube, and Gaussian Epanechnikov,
Gaussian Bi-square,
and Exponential Tri-cube,
Tri-weight
and Gaussian
Adaptive Yes Yes with No No
bandwidth? gur .adapt
Fixed Yes Yes Yes Yes
bandwidth?
Spatial Euclidean, Euclidean Euclidean Euclidean
distance Great Circle and Great Circle and Great Circle
metrics: and Minkowski
Functions Yes with Yes with No Yes with
for weights gw.dist gwr .bisquare, makew
matrix gwr.tricube
computation? and gwr.gauss
Table 3: Weighting matrix specifications.
GWmodel Spgwr gwrr McSpatial
Basic? Yes with gwss Yes with gw.cov No No
Statistics: Mean, std. deviation, vari- Mean, std. deviation, std.
ance, skew, coeff. of varia- error of mean, std. difference
tion, covariance, Pearsons’s of global mean, std. differ-
correlation ence of local mean, covari-
ance, Pearson’s correlation
Robust? Yes with gwss No No No
statistics: Median, inter-quartile
range, quantile imbalance,
Spearman’s rank correlation
Monte-Carlo  Yes with No No No

tests?

montecarlo.gwss

Table 4: GW summary statistics functions.
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This comparison is given as a series of tables. Weighting matrix specifications are summarized
in Table 3. Functions for GW summary statistics are summarized in Table 4. Functions for
basic GW regression are summarized in Table 5. Functions for generalized GW regression are

summarized in Table 6. Functions for other GW regressions are given in Table 7. Functions
for addressing collinearity issues in GW regressions are given in Table 8. Lastly, functions
for other GW models (including a GW PCA and a GW discriminant analysis) are given in
Table 9. Clearly, GWmodel provides a more extensive set of GW models and associated tools
than any existing package.
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GWmodel Spgwr gwWIT McSpatial
Basic Yes with Yes with Yes with Yes with
GW regression? gwr.basic gwr gwr.est cparlwr
Cv Yes with Yes with Yes with Yes with
bandwidth? bw. gwr gwr.sel gwr.bw.est cparlwrgrid
Generalized CV No No No Yes with
bandwidth? cparlwrgrid
AlCc Yes with Yes with No No
bandwidth? bw.gur gwr.sel
Investigation of Yes with gwr.cv No No No
CV bandwidth? and gwr.cv.contrib
Model selection Yes with No No No
tools? model.selection.gur,
model.sort.gwr
and model.view.guwr
Local vs. global Yes with Yes with No No
regression tests? gwr.basic LMZ.F3GWR.test
Monte-Carlo test? Yes with No No No
montecarlo.gur
Multiple Yes with No No No
hypothesis tests? gwr.t.adjust
Moran’s I test? No Yes with No No
gwr.morantest
Prediction variances Yes with Yes with No No
(or std. errors)? gur.predict gur
Parallel computing No Yes with No No
options? gur
Table 5: Basic GW regression functions.
GWmodel Spgwr gwrr McSpatial
Generalized Yes with Yes with ggwr No Yes with cparlogit,
GW regression? gwr.generalised cparmlogit
and cparprobit
Family /link: Binomial, As for glm No Logit, multinomial,
Poisson probit
CV bandwidth? Yes with bw.ggur Yes with ggur.sel No Yes with
cparlwrgrid
Generalized CV No No No Yes with
bandwidth? cparlwrgrid
AICc bandwidth? Yes with bw.ggwr No No No
Investigative tools  Yes with ggwr.cv No No No

Table 6: Generalized GW regression functions.
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GWmodel spgwr gwrr McSpatial
Robust GW regression? Yes with gwr.robust No No No
Heteroskedastic GW regression? Yes with gwr.hetero No No No
Mixed (semipara.) GW regression? Yes with gwr.mixed  No No Yes with semip
Quantile GW regression? No No No Yes with qregcpar

Table 7: Other GW regression functions.

GWmodel spgwr gwrr McSpatial
Local Yes with gwss or Yes with gw.cov  No No
correlations? gwr.collin.diagno
Local VIFs? Yes with No No No
gwr.collin.diagno
Local VDPs? Yes with No Yes with gwr.vdp  No
gwr.collin.diagno
Local condition  Yes with gwr.lcr No Yes with gwr.vdp  No
numbers? or gwr.collin.diagno
GW regression Yes with gwr.lcr, No Yes with gurr.est No
with a global bw.gwr.lcr
ridge term gwr.lcr.cv
(user-specified)? gwr.lcr.cv.contrib
GW regression No No Yes with gurr.est No
with a global
ridge term
(estimated)?
GW regression Yes with guwr.lcr, No No No
with local bw.gwr.lcr
ridge terms? gwr.lcr.cv
gwr.lcr.cv.contrib
GW lasso? No No Yes with gwl.est  No

Table 8: Functions for addressing collinearity issues in GW regression.

GWmodel spgwr gwrr McSpatial
GW discriminant analysis? Yes with bw.gwda and gwda No No No
GW PCA? Yes with bw.gwpca, gwpca, gwpca.cv, No No No
gwpca.cv.contrib, glyph.plot,
check.components, plot.mcsims,
montecarlo.gwpca.l,
montecarlo.gwpca.?2
GW parallel coordinate plot? Yes with gw.pcplot No No No

Table 9: Other GW model functions.
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10. Discussion

In this presentation of the GWmodel R package, we have demonstrated the use of various GW
models to investigate and model different aspects of spatial heterogeneity. We have focused
our presentation on basic and robust forms of GW summary statistics, GW PCA and GW
regression. We have also provided important extensions to GW regression with respect to
local collinearity issues and with respect to spatial prediction. However, we have not fully
described all that is available in GWmodel. Key omissions include:

1. Functions to investigate bandwidth selection, where a cross-validation score can be found
for a given bandwidth (ggwr.cv, gur.cv, gwr.lcr.cv, gwpca.cv); and associated func-
tions to find which observations contribute the most (and are potentially outlying) to
this cross-validation score (ggwr.cv.contrib, gwr.cv.contrib, gwr.lcr.cv.contrib,
gwpca.cv.contrib).

2. Functions implementing Monte Carlo tests for GW summary statistics
(montecarlo.gwss), GW  regression (montecarlo.gwr) and GW PCA
(montecarlo.gwpca.1l, montecarlo.gwpca.2). These functions test whether aspects
of the GW model are significantly different to those that could be found under the
global model, as artefacts of random variation in the data.

3. Functions for fitting generalized GW regression models (gwr.generalised, ggwr.cv,
ggwr.cv.contrib, bw.ggwr).

4. Further functions for visualising GW PCA outputs (glyph.plot, check.components)
and for locally visualising the original multivariate data (gw.pcplot).

5. A function for multiple hypothesis tests with GW regression (gwr.t.adjust).

6. Functions for fitting mixed (gwr.mixed) and heteroskedastic (gwr.hetero) GW regres-
sion.

7. Functions for conducting a GW discriminant analysis (gwda, bw.gwda).

The use of these functions will be presented elsewhere. Future iterations of GWmodel will
include many more functions, such as those needed to implement GW boxplots and GW
variograms. The GW modelling paradigm itself continues to evolve, with not only new GW
models, such as the robust GW regressions of Zhang and Mei (2011) or the GW quantile
regression of Chen, Deng, Yang, and Matthews (2012); but also, novel usages of existing GW
models, such as using GW PCA to detect multivariate spatial outliers (Harris, Brunsdon,
Charlton, Juggins, and Clarke 2014a) or using GW PCA to direct sample re-design (Harris,
Clarke, Juggins, Brunsdon, and Charlton 2014b).
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