[Return to Master Index]
-------- spatial Durbin model estimation functions --------
compare_models : An example of using sdm_g() sem_g() Gibbs sampling
f2_sdm : evaluates llike for the spatial durbin model
f_sdm : evaluates concentrated log-likelihood for the
model_compare2 : An example of using sdm_g() Gibbs sampling
model_probs : computes and prints posterior model probabilities using log-marginals
plt_sdm : Plots output using SDM model results structures
prt_sdm : Prints output using sdm results structures
sdm : computes spatial durbin model estimates
sdm_d : An example of using sdm() max likelihood
sdm_d2 : An example of using sdm() on a large data set
sdm_g : Bayesian estimates of the heteroscedastic spatial durbin model
sdm_gd : An example of using sdm_g() Gibbs sampling
sdm_gd2 : An example of using sdm_g() on a large data set
sdmp_g : Bayesian estimates of the heteroscedastic spatial durbin probit model
sdmp_gd : An example of using sdmp_g() Gibbs sampling
sdmp_gd2 : An example of using sdmp_g() on a large data set
sdmt_g : Bayesian estimates of the heteroscedastic spatial durbin tobit model
sdmt_gd : An example of using sdmt_g() Gibbs sampling
sdmt_gd2 : An example of using sdmt_g() on a large data set