[Return to Master Index]

 
-------- spatial error model estimation functions -------- 
 
compare_models    : An example of using sar_g() sem_g() Gibbs sampling
compare_models2   : An example of using sar_g() sem_g() Gibbs sampling
compare_weights   : An example of using sem_c() function
compare_weights2  : An example of using sem_c() function
f2_sem            : evaluates SEM log-likelihood -- given ML parameters using sparse matrix algorithms
f_sem             : evaluates SEM concentrated log-likelihood using sparse matrix algorithms
prt_bmae          : print results from sar_gcbma, sem_gcbma functions
prt_sem           : Prints output using spatial error model results structures
sem               : computes spatial error model estimates
sem_c             : Bayesian log-marginal posterior for the spatial error model
sem_d             : An example of using sem 
sem_d2            : An example of using sem() on a large data set   
sem_d3            : An example of using sem() on a large data set   
sem_g             : Bayesian estimates of the spatial error model
sem_gcbma         : MC^3 x-matrix specification for homoscedastic SEM model
sem_gcbmad        : compute posterior probabilities of
sem_gd            : An example of using sem_g() 
sem_gd2           : An example of using sem_g()
sem_testd         : A timing comparison of heteroscedastic versus homoscedastic on small and large datasets                    
semp_g            : Bayesian estimates of the spatial probit error model
semp_gd           : An example of using sempp_g() Gibbs sampling spatial autoregressive probit model
semp_gd2          : An example of using semp_g()
test_bayes        : A comparison of Bayesian and ML estimates
test_bayes2       : A comparison of Bayesian and ML estimates
test_bayes3       : A comparison of Bayesian and ML estimates
test_bayes4       : A comparison of Bayesian and ML estimates
test_bayes5       : A comparison of Bayesian and ML estimates
test_maxlik       : A test of the accuracy of max-like estimates