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Abstract

This paper introduces the R package SAVE which implements statistical methodology
for the analysis of computer models. Namely, the package includes routines that perform
emulation, calibration and validation of this type of models. The methodology is Bayesian
and is essentially that of Bayarri, Berger, Paulo, Sacks, Cafeo, Cavendish, Lin, and Tu
(2007). The package is available through the Comprehensive R Archive Network. We
illustrate its use with a real data example and in the context of a simulated example.
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1. The analysis of complex computer models

Complex computer models are implementations of sophisticated mathematical models that
aim at reproducing a particular real process. The R (R Core Team 2014) package SAVE (sta-
tistical analysis and validation engine; Palomo, Garćıa-Donato, and Paulo 2015) implements
statistical methodology developed for the analysis of this type of models, which is based
on Craig, Goldstein, Seheult, and Smith (1996), Kennedy and O’Hagan (2001), Kennedy,
O’Hagan, and Higgins (2002), Higdon, Kennedy, Cavendish, Cafeo, and Ryne (2004), and
most directly on Bayarri et al. (2007). The package is available through the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=SAVE.

The following aspects of the statistical analysis of a computer model are addressed in SAVE:

� Emulation. A crucial characteristic of these models is that they are often computa-
tionally very demanding and a single run may take several minutes to complete. It is
then important to produce fast approximations to the output of these models, and these
approximations are referred to as emulators.

http://www.jstatsoft.org/
http://CRAN.R-project.org/package=SAVE
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� Calibration. Computer models usually depend on a vector of unknown inputs that
needs to be specified before the model can be run. Calibration refers to the process of
determining estimates of these calibration parameters based on field observations of the
real process.

� Validation. Ultimately, we want to assess the degree to which the computer model
is an effective surrogate for the real process. We do so by producing predictions of
reality and associated tolerance bounds, which measure the degree of the accuracy of
said predictions.

Related R packages include BACCO (Hankin 2005) and the suite of Dice packages: DiceKrig-
ing and DiceOptim (Roustant, Ginsbourger, and Deville 2012), DiceEval (Dupuy and Helbert
2014) and DiceDesign (Franco, Dupuy, Roustant, Damblin, and Iooss 2014). DiceKriging
computes estimates of Gaussian process parameters, and our package takes advantage of its
functionalities, while DiceOptim is dedicated to optimization of complex computer models
based on kriging models. DiceDesign facilitates the construction of various space-filling de-
signs for computer experiments. DiceEval tackles the problem of validation but follows an
approach that is quite different from ours; in particular, it is not Bayesian.

BACCO is a package that is similar to ours in its goals. However, it implements the metho-
dology in Kennedy and O’Hagan (2001) which, although Bayesian, is distinct from that of
Bayarri et al. (2007), the one we implement (BACCO also implements the methods in Kennedy
and O’Hagan 2000, which is a topic we do not cover). The most important distinction
between BACCO and SAVE is that we explore the posterior distribution of the parameters of
the statistical model using simulation-based techniques, namely Markov chain Monte Carlo,
whereas BACCO relies either on analytical or on numerical integration. As a consequence,
with SAVE one can for instance explore the posterior distribution of calibration parameters,
which often have a physical meaning, and take advantage of all the benefits that come with
simulation-based inference. This will be illustrated in Section 4.

We should note that the SAVE package relies on C code to perform computer intensive
calculations. Additionally, in order to maintain numerical stability as much as possible, we
make from our own C code extensive calls to numerical routines written in Fortran, notably
those available from BLAS and LAPACK.

The rest of this paper is organized as follows. In the next section, we describe the statistical
methodology. In Section 3, we describe the structure of the package, and in Section 4 we
illustrate its use in the context of a real example. In Section 5, we use it in a situation where
the truth is known. Technical details are, whenever possible, relegated to the appendices.

2. Introducing the statistical framework

This section is subdivided into three subsections, each corresponding to a different stage of
our modeling/fitting process.

2.1. Stage I: Emulation

Denote the output of the computer model by yM (x,v), where x is a vector of controllable
inputs and v is a vector of unknown calibration and/or tuning parameters in the model. We
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have access to the data obtained by evaluating the computer model at a design set consisting of
N points DM = {(x1,v1), . . . , (xN ,vN )}. We denote by yM = (yM (x1,v1), . . . , y

M (xN ,vN ))
the vector of model evaluations, and we refer to these data as computer model data, or simply
as model data.

A preliminary but central question in the analysis is the construction of an emulator of the
computer model, that is, a method to produce estimates of the output at untested configu-
rations along with an associated measure of uncertainty. This is stage I of the analysis of a
computer model. For this task, we follow the popular strategy (cf. Sacks, Welch, Mitchell, and
Wynn 1989; Kennedy and O’Hagan 2000; Bayarri et al. 2007) of using a Gaussian process-
based response-surface approximation to the model output. This approach results in that,
conditional on yM and on a set of parameters specifying the Gaussian process, yM (·) follows
a Gaussian process with mean and covariance functions which are available in closed form.
The approach that SAVE currently implements for emulating yM (·) estimates the unknown
parameters by maximum likelihood using the R package DiceKriging (Roustant et al. 2012).

Analytic expressions for the mean and covariance functions can be found in Appendix A,
along with a description of the parameters θM,L and θM,C which specify, respectively, the
linear trend and the covariance kernel of the Gaussian process prior. In practical terms, the
output of the computer model at a set of untested configurations (given yM and the parameter
estimates) follows a multivariate normal distribution with known mean vector and covariance
matrix.

2.2. Stage II: Calibration

Field data consists of noisy observations of the real process, possibly with replicates. To be
more precise, we have a design set DF = {x?1, . . . ,x?n} and we observe

yFk (x?j ) = yR(x?j ) + εkj , j = 1, . . . , n; k = 1, . . . , nj (1)

where yR(·) represents the real process and εkj are independent and identically distributed
N(0, 1/λF ) random variables. Notice that the field data may contain replicates, that is,
independent measurements of the experiment using the same configuration of the controllable
inputs. We denote the complete set of field observations by yF .

Calibrating a model stands for finding estimates of the vector of calibration parameters based
on field observations of the real phenomenon. This is achieved by postulating a statistical
model relating the output of the model and the real phenomenon which introduces the notion
of model discrepancy (cf. Craig, Goldstein, Seheult, and Smith 1997; Kennedy and O’Hagan
2001; Goldstein 2010), namely,

yR(x) = yM (x,u) + b(x), (2)

where b(x) stands for the bias or discrepancy function, and u is the unknown value of the
calibration vector v which we are ultimately interested in estimating. In Figure 1 we have
included a diagram which schematically characterizes the framework we have just described.

The approach that this package implements is (partially) Bayesian and therefore requires the
specification of a prior for all the unknown quantities that appear in the statistical model,
namely, b(·), u, and λF . In line with Bayarri et al. (2007), we specify these priors in a fashion
that requires very little input from the user. An exception is the prior on u which should reflect
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Figure 1: Schematic representation of the framework.

expert opinion about the calibration parameter. Details of the prior specification are available
in Appendix B. Let (u, λb,βb, λF ) ≡ (u,θF ) denote the vector of unknown parameters at this
stage of the analysis, which we refer to as stage II. (The bias function b(·) gets a Gaussian
process prior; λb denotes the precision and the vector βb controls the correlation structure of
this process.)

The posterior distribution π(u,θF | yM ,yF ) is obtained using Markov chain Monte Carlo
(MCMC) methods and is ultimately represented by a sample of correlated draws, which we
denote by {(ui,θFi ), i = 1, . . . ,M}. Details on the sampling method used are described in
Appendix C.

2.3. Stage III: Validation

Once the posterior distribution of all the unknowns in the statistical model is obtained,
we can proceed to the validation step. For that, we need to select a set of configurations
for the controllable inputs, DV – e.g., DV = {x†1, . . . ,x

†
r} – at which we are interested in

assessing the accuracy of the computer model. For a particular value u of the calibration
parameter, let DV

u = {(x†1,u), . . . , (x†r,u)} be the design that results from augmenting each
of the configurations in DV with the vector u for the calibration parameters. In general, we
denote by h(D) the vector that results from evaluating the function h at the elements of D.
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We must obtain draws from the distribution

f(yM (DV· ), b(DV ) | yM ,yF ) =

=

∫
f(yM (DV

u ), b(DV ) | yM ,yF ,u,θF ) π(u,θF | yM ,yF ) du dθF , (3)

where the notation DV· reflects that the u’s are integrated out (with respect to the posterior).
These are obtained by drawing the vectors yMi , bi from f(yM (DV

ui
), b(DV ) | yM ,yF ,ui,θFi )

for every (ui,θ
F
i ) in the previously constructed MCMC sample drawn from the posterior

distribution. (The distribution of yM (DV
u ), b(DV ) | yM ,yF ,u,θF is multivariate normal, cf.

Bayarri et al. 2007, for further details.)

Having obtained the samples {(yMi , bi), i = 1, . . . ,M}, we can compute several quantities
which will aid us in the validation task:

� The bias-corrected prediction of the real process (i.e., reality ) at DV

ŷR =
1

M

M∑
i=1

(yMi + bi).

� The tolerance bars measuring the accuracy of ŷR as a predictor of yR(DV ) are computed
as follows: pick γ ∈ (0, 1); then, compute τ = (τ(x) : x ∈ DV ) such that (1−γ)×100%
of the samples satisfy

|ŷR − (yMi + bi)| ≤ τ ,

with the inequality interpreted in a component-wise fashion. We can then state that,
for each x ∈ DV , P(|yR(x)− ŷR(x)| < τ(x) | yF ,yM ) = 1− γ.

� The pure-model prediction of reality at DV is obtained by selecting an estimate of u,
û, say, which can be, for instance, its posterior mean or median. Then, output of the
model at DV

û is computed by either actually running the model or by exercising the
emulator. The mean vector of the emulator (Equation 6, in Appendix A, with unknown
parameters replaced by estimates), can then be used as an estimate of the output of the
model. Denote the pure-model prediction of reality by ŷM .

� The tolerance bars measuring the accuracy of ŷM as a predictor of yR(DV ) are computed
in a similar fashion: pick γ ∈ (0, 1); then, compute τ = (τ(x) : x ∈ DV ) such that
(1− γ)× 100% of the samples satisfy

|ŷM − (yMi + bi)| ≤ τ ,

with the inequality interpreted in a component-wise fashion. We can then state that,
for each x ∈ DV , P(|yR(x)− ŷM (x)| < τ(x) | yF ,yM ) = 1− γ.

� It is also possible to estimate the bias associated with the pure-model prediction, bû =
yR(DV ) − ŷM : samples from its posterior predictive distribution can be obtained by
computing {yMi + bi − ŷM} so that a point estimate is b̂û = ŷR − ŷM and 1 − γ
pointwise credible intervals can be determined by computing the associated γ/2×100%
and (1− γ/2)× 100% sample quantiles.
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3. An overview of SAVE

There are three high-level functions in SAVE which allow the user to perform all the tasks
described in the previous section: SAVE, bayesfit and validate. In general,

� SAVE creates an object of the class ‘SAVE’ and essentially sets up the problem by filling
out a number of slots of this object. The data structures are set up (more on this
below). Maximum likelihood calculations are performed using DiceKriging (Roustant
et al. 2012). These calculations serve two purposes: fit the emulator of the computer
model, and aid in the specification of the prior of θF (cf. Appendix B).

� bayesfit produces a sample from the posterior distribution of the parameters λF , λb

and u (βb is fixed at an estimate throughout the analysis, cf. Appendix B). It takes as
an argument an object of the class ‘SAVE’ that has been created using SAVE, and returns
a copy of this object but with several additional slots filled out. These slots pertain to
the MCMC sample obtained.

� validate ultimately produces the bias-corrected prediction, the pure-model prediction,
associated tolerance bounds and estimated bias function for any set of configurations
for the controllable inputs and a posterior estimate of the vector of calibration inputs.
It performs this task based on the information contained in an object of the class ‘SAVE’
which has been produced by a call of the function bayesfit.

Two additional functions are available in SAVE, but these can be considered low-level routines.
The function predictcode produces i.i.d. draws from the emulator evaluated at a set of design
points, along with its mean vector and covariance matrix. It expects as an argument an object
of the class ‘SAVE’. The function predictreality expects as an argument an object of the
class ‘SAVE’ which has been produced by the function bayesfit, i.e., containing an MCMC
sample. It outputs draws from the distribution in (3) for a design set of configurations for the
controllable inputs of the problem. These functions are internally called by validate, but
can be utilized to further explore the problem.

The output of each of these functions can be appropriately summarized by calls to print,
summary, plot and show, where suitable methods are provided for the objects returned.

The data is handled in the following way. SAVE assumes that there are two R data frames
loaded: one containing all the field data, and another containing all the model data. The
response and the input variables in the designs are identified by the names associated with
each of these data frames, so they must be consistent. For illustrative purposes, consider
the synthetic example in Table 1. The data frame at the top of the figure contains the
field data and the one at the bottom contains the model data. If we decide to analyze
the problem where the response is the variable expand; controllable inputs are temp, press
and weight; and calibration inputs are delta1 and shift, then we must call the func-
tion SAVE with arguments, field.data = field, model.data = model, response.name =

"expand", controllable.names = c("temp", "press", "weight"), calibration.names

= c("delta1", "shift"). Notice that not all the columns present in the data frames are
incorporated in this analysis.

If in order to obtain the field data the controllable inputs (if any are present) have not been
varied but have instead been fixed at a single value, you have to specify controllable.names

= NULL.
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Data frame called field containing the field data

temp press weight expand height

1 35.1 2.65 600 84.1 5.1
2 35.1 2.75 600 90.6 9.2
3 35.1 2.65 600 80.4 6.1
...

...
...

...
...

...
n 30.3 2.65 700 83.4 7.1

Data frame called model containing the model data

temp press weight delta1 shift expand delta2

1 23.2 2.12 629.1 0.22 −1.1 99.1 0.22
2 43.7 2.11 711.0 0.84 −0.9 70.1 0.83
...

...
...

...
...

...
...

...
N 34.4 2.12 700.1 0.49 −0.8 67.6 0.33

Table 1: Synthetic example: The data frame at the top of the figure is called field and
contains the field data; the data frame at the bottom of the figure is called model and contains
the model data.

Figure 2: Schematic representation of the structure of the package.

We have included in Figure 2 a diagram which schematically describes the structure of the
package, its different parts and interconnections.

When putting together the package, we have taken into account the fact that many of the
calculations implemented by the functions described above can be computationally demanding
and numerically unstable. For example, it is a well-known fact that covariance matrices
arising in Gaussian process likelihoods can be close to singular even for relatively small sample
sizes. As such, when evaluating the likelihood we never invert matrices and instead perform
the Cholesky decomposition (which is also useful to compute the determinant) and solve
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triangular systems. In some situations, e.g., when performing predictions, we resort to the
pivotal Cholesky decomposition because the regular Cholesky decomposition tends to break
down. All the linear algebra calculations are performed with the help of the BLAS and
LAPACK numerical libraries, which are known to be quite stable and accurate. The size of
the field and model datasets determines the size of the matrices that need to be manipulated,
and hence represent the biggest bottleneck when it comes to the speed of the calculations. As
we have already stressed, in order to make the package as fast as possible we have implemented
all the computationally intensive computations in C. Nevertheless, large sample sizes could
certainly be an issue. So far, the package has only been tested in problems where the sample
sizes can be considered small, say below 50.

The area of statistical analysis of computer models is quite active, both on the methodological
and on the computational side. For instance, the problem of ill-conditioned covariance matri-
ces we referred to above has been recently addressed in Ranjan, Haynes, and Karsten (2011).
These authors propose an iterative regularization approach to construct the emulators that
considerably improves on standard methods (see also the corresponding implementation in
the GPfit package, MacDonald, Ranjan, and Chipman 2015). Given the modular structure
of SAVE, it is conceptually easy to incorporate this and other advances into the package, and
we plan on doing that in future versions.

One other aspect of SAVE that could be improved pertains to the kernel used when modeling
the correlation structure of the Gaussian processes involved in the analysis. Appendices A
and B make it clear that at the emulation stage SAVE is currently using a separable power
exponential kernel, and that for the bias function the package uses a separable Gaussian
correlation kernel. It is our goal to, in the future, allow the user to choose from a variety of
kernels, as it is the case, for instance, in DiceKriging. The greater difficulty with that is at
the MCMC level. We have to make sure that the strategy we follow with the Gaussian kernel
still works with other kernels. Most likely it will not, and what we really need is to develop
a more general strategy. In the meanwhile, the Gaussian/power exponential kernels are still
among the most commonly used in computer modeling, although it is well-known that they
possess several shortcomings (both methodological and computational).

4. A real data example

In this section we illustrate the use of the package with an analysis of a real example. It
is the so-called spotweld example originally analyzed in Bayarri et al. (2007). We refer the
interested reader to that paper for complete details on the application.

In Figure 3 you can find a schematic representation of the spot welding process. Two sheets of
metal of a particular thickness (thickness) are compressed by two electrodes under a certain
applied load (load). Electric current of certain magnitude (current) is passed through said
electrodes and the heat produced by the current flow causes the surfaces under pressure to
melt. After cooling, a weld nugget is formed and as a result the two metal sheets are welded
together. The scientists are interested in the diameter of this nugget (diameter).

Included in the package are two data sets, spotweldfield and spotweldmodel that pertain,
respectively, to field experiments and computer model experiments associated with this prob-
lem. After loading the package (library("SAVE")), the data frames can be loaded using the
commands
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data.frame Response (y) Controllable (x) Calibration (v)

Model names spotweldmodel $diameter $current, $load, $tuning

$thickness

Field names spotweldfield $diameter $current, $load, –
$thickness

Table 2: Correspondence between the notation in Section 2 and the variable names in the
spotweld example.

R> data("spotweldfield", package = "SAVE")

and

R> data("spotweldmodel", package = "SAVE")

Notice that the columns of the data frames are appropriately named, and that the computer
model features an additional input, named tuning, which is a calibration input related to
contact resistance.

We start this analysis by setting up the problem. This is accomplished by creating sw – an
object of the class ‘SAVE’ – using the function SAVE:

R> sw <- SAVE(response.name = "diameter",

+ controllable.names = c("current", "load", "thickness"),

+ calibration.names = "tuning", field.data = spotweldfield,

+ model.data = spotweldmodel, mean.formula = ~ 1),

+ bestguess = list(tuning = 4.0))

Here we are specifying which columns correspond to the response and which correspond to
the controllable and the calibration inputs. Additionally, we are also

� setting the mean function of the Gaussian process approximation to the output of the
computer model as a constant (with the option mean.formula = ~ 1) and

� providing an estimate of the vector of calibration inputs as a list (bestguess), which
will be used in specifying the prior for θF – see Appendix B for further details.

The object sw has now been created and several of its slots have been filled. The easiest way
of accessing that information is by means of the command summary(sw).

Since at this point the emulator has been fitted, we could now use the function predictcode

to predict the output of the computer model at a set of input configurations – more on this
later. Instead, we will proceed to fit the Bayesian model (2) relating reality to computer
model. To do so, we use the function bayesfit:

R> set.seed(0)

R> swbayes <- bayesfit(object = sw, prior = c(uniform("tuning", upper = 8,

+ lower = 0.8)), n.iter = 20000, n.burnin = 100, n.thin = 2)
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Figure 3: Schematic representation of the spotwelding process.

We have now created a new object – swbayes – but instead we could have updated the object
we had already created, sw. Notice that we need to specify a prior for the calibration parameter
tuning, and also options pertaining to the MCMC algorithm. We have set a uniform prior
for the calibration parameter, 20000 iterations for the MCMC sampling with a burn-in period
of 100 iterations, and a thinning of 2. Other options were left at the corresponding defaults
– cf. Appendix C for additional details.

The object swbayes now contains not only the estimates previously computed using SAVE but
also a sample from the posterior distribution of the calibration parameter tuning and of the
field and bias precisions, λF and λb, respectively. To display this information we can again
resort to the command summary(swbayes). We can however also plot the samples obtained:

� plot(swbayes, option = "trace") will give us the traceplots;

� plot(swbayes, option = "calibration") will produce an histogram of the posterior
samples of the calibration parameters and corresponding priors (see Figure 4) and,

� plot(swbayes, option = "precision") will plot histograms of the posterior samples
of the field and bias precisions. These histograms also include a plot of the prior and of
the estimates that are used in constructing the prior (see Figure 5).

We can of course access the raw data. By running the command slotNames(swbayes) we
get a description of the names of all the slots of the object swbayes, and it is then clear how
to obtain the MCMC samples: swbayes@mcmcsamples.

After fitting the Bayesian model, we can finally produce predictions of reality and also assess
the quality of pure-model and bias-corrected predictions of reality. The package SAVE pro-
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Figure 4: Posterior distribution of the calibration parameter tuning (spotweld example). The
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Figure 6: Default validation plot for the spotweld example. The plot at the top contains the
pure-model predictions (circles) at each of the input configurations in xnew and associated
90% tolerance bounds. The middle plot depicts an estimate of the bias of these pure-model
estimates. The bottom plot contains the bias-corrected prediction (circles) and associated
90% tolerance bounds.

vides a very convenient function that performs all these calculations. To illustrate its use in
the present example, please consider the following R code:

R> load <- c(4.0, 5.3)

R> curr <- seq(from = 20, to = 30, length = 20)

R> g <- c(1, 2)

R> xnew <- expand.grid(current = curr, load = load, thickness = g)

R> set.seed(0)

R> valsw <- validate(object = swbayes, newdesign = xnew,

+ calibration.value = "mean", n.burnin = 100)

Above, we first construct the design of controllable inputs at which we want to predict re-
ality. For four combinations of load and thickness of the metal plates, we want to predict
the weld diameter as a function of current. As a remark, note that in the situation where
controllable.names = NULL, the input newdesign must be left unspecified. This comment
also applies when using the function predictreality in the same context.
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Pure−model predictions

Figure 7: Customized validation plot for the spotweld example. Here we can see the pure-
model predictions for 4 different combinations of load and thickness as a function of current.
The dotted lines indicate the 90% tolerance bounds and the circles represent the observed
field data corresponding to that particular combination of controllable inputs.

Regarding the pure-model prediction, we are setting the calibration parameters at the corre-
sponding posterior mean. Note that we could set the calibration parameters at a particular
value if we chose to. We would do it by specifying the input calibration.value to be a
named data.frame containing those values.

The resulting object valsw contains a slot named validate where a matrix is stored. This
matrix contains as columns the pure-model prediction of reality (pure.model) and associ-
ated tolerance bound (tau.pm); the estimate of the bias associated with the pure-model
prediction and pointwise credible interval for that unknown (bias.Lower and bias.Upper);
the bias-corrected prediction of reality (bias.corrected) and associated tolerance bounds
(tau.bc). This information can be accessed using summary(valsw) but can also be plotted
(plot(valsw)) – you can find the plot in Figure 6. Depending on the problem, this default
plot will not always be the most appropriate way of displaying the estimates. Nevertheless,
since we have access to the estimates, we can certainly construct customized plots for any
problem at hand. As an example, in Figure 7 we can find a plot of the pure-model prediction
and associated tolerance bounds as a function of current for the 4 different combinations of
load and thickness. The circles correspond to the appropriate field observations.
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It is also easy to incorporate a linear trend in the mean function for the emulator. This would
be accomplished simply by starting the analysis with the command

R> sw2 <- SAVE(response.name = "diameter",

+ controllable.names = c("current", "load", "thickness"),

+ calibration.names = "tuning", field.data = spotweldfield,

+ model.data = spotweldmodel,

+ mean.formula = ~ current + load + thickness),

+ bestguess = list(tuning = 4.0))

which produces an new ‘SAVE’ object, sw2, and then we can proceed as before.

As stated above, validate is a function which calls two low-level functions, predictcode and
predictreality. There may be situations where one must directly call these functions. We
illustrate this in what follows.

Imagine that one is interested in understanding how the nugget diameter varies with current.
One might assess this variation by looking at the derivative of diameter with respect to
current. Let us do that for thickness = 1 and load = 4. We start by predicting reality at
an equally-spaced grid of current values between 20 and 30:

R> load <- 4

R> g <- 1

R> curr <- seq(from = 20, to = 30, length = 80)

R> xnew <- expand.grid(current = curr, load = load, thickness = g)

R> set.seed(0)

R> prsw <- predictreality(object = swbayes, newdesign = xnew)

The object prsw has slots named "modelpred" and "biaspred" where the draws from (3),
which we have denoted in Section 2.3 by (yMi , bi), are stored. We now obtain the correspond-
ing derivatives with respect to current of each of these draws, to finally obtain draws from
the corresponding derivative of reality:

R> delta <- diff(curr)[1]

R> model <- prsw@modelpred

R> dmodel <- diff(t(model)) / delta

R> bias <- prsw@biaspred

R> dbias <- diff(t(bias)) / delta

R> dreal <- dmodel + dbias

These draws can be summarized by computing the corresponding mean and tolerance bounds
as explained in Section 2.3. This is plotted in Figure 8.

Additionally, we can use predictcode to obtain draws from the emulator evaluated at a
posterior estimate of the calibration input, tuning, say, tuning = 3.2. This allows us to
produce the pure-model estimate of the derivative:

R> u <- 3.2; load <- 4; g <- 1; curr <- seq(from = 20, to = 30, length = 80)

R> xnewpure <- expand.grid(current = curr, load = load, thickness = g,

+ tuning = u)
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Figure 8: Bias-corrected prediction of the derivative of diameter with respect to current –
the estimate is the solid line; the dashed lines are the 90% tolerance bounds. The pure-model
prediction is the dash-dotted line.

R> set.seed(0)

R> pmsw <- predictcode(object = swbayes, newdesign = xnewpure,

+ n.iter = 20000)

R> puremodel <- pmsw@samples

R> dpuremodel <- diff(t(puremodel)) / delta

The mean of the samples in dpuremodel is the pure-model prediction of the derivative. This
is plotted in Figure 8. Notice how the two estimates, pure-model and bias-corrected, are in
this case even qualitatively different.

5. A simulated example

In this section, we are going to illustrate the use of the package in a simulated data example:
model and reality are known, and so is the true value of the calibration parameter and of
the field data precision. Essentially the same setup has already been utilized in Bayarri et al.
(2007) and in Bayarri (2010) to illustrate similar points.

In this example, we have a calibration parameter v whose true value is fixed at u = 1.7. The
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controllable input is x; reality is given by

yR(x) = 3.5 exp(−u · x) + 1.5. (4)

The computer model is given by

yM (x, v) = 5 exp(−v · x), (5)

but we are going to treat it as we would have a computationally expensive model: to obtain
the model data, we evaluate it at a 6× 6 equally-spaced grid on the (x, v)-space, which is set
at [0, 3] × [0.5, 2]. We use these data, available with the package as synthmodel, to produce
the emulator; to load the data frame, use the command

R> data("synthmodel", package = "SAVE")

The field data consists of 3 replicates at each point in an equally-spaced grid of 10 points for x
spanning the interval [0.11, 3.01]. The measurement error is N(0, 0.32), that is λF = 1/0.32 ≈
11.11. These data are also available with the package; use the following command to load the
corresponding data frame:

R> data("synthfield", package = "SAVE")

The R code to produce the ‘SAVE’ object associated with this analysis is

R> synth <- SAVE(response.name = "y", controllable.names = "x",

+ calibration.names = "v", field.data = synthfield, ,

+ model.data = synthmodel, mean.formula = ~ 1 + x,

+ bestguess = list(v = 1.5))

and the MCMC samples are obtained with

R> set.seed(0)

R> synth <- bayesfit(object = synth,

+ prior = uniform(var.name = "v", lower = 0, upper = 3), n.iter = 20000)

The plot of the posterior distribution on the calibration parameter can be found in Figure 9,
and the posterior on the precisions is in Figure 10. Note how the posteriors include the true
values of v and λF .

We next produce the bias-corrected prediction of reality at an equally-spaced grid of 25 points
for x in the interval [0.05, 3.05]. For that, we have used the code

R> xnew <- data.frame(x = seq(from = 0.05, to = 3.05, length = 25))

R> valsynth <- validate(object = synth, newdesign = xnew, n.burnin = 100)

The bias-corrected prediction of reality is the solid black line in Figure 11. The dashed lines
correspond to the tolerance bars, and the red solid line is the actual curve we are trying to
estimate; the stars represent the simulated field data.

Using the fact that we know yM , it is easy to find the least squares estimate of u, i.e., the
value of v that minimizes the sum of the squared distance between the field observations
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Figure 11: Bias-corrected prediction for the simulated example. The solid black line corre-
sponds to the bias-corrected prediction, the dashed lines represent the tolerance bars, and
the stars are the simulated field observations. The red line corresponds to the actual reality
curve, which is known in this case. The blue and green curves correspond, respectively, to
the computer model evaluated at the posterior mean and at the least squares estimate of the
calibration parameter.

and the model output. That estimate here turns out to be ũ = 0.63. This is a common
strategy in calibration: not including a bias term. It has been argued extensively, starting
with Kennedy and O’Hagan (2001) and Craig et al. (1997), that this approach often leads to
over-fitting and to unreasonable estimates for the calibration parameter. In this example, we
again see evidence of that. In Figure 11, the green curve corresponds the true model output
evaluated at ũ. The blue curve represents the true model output evaluated at the posterior
mean, which turns out to be û = 1.58. The inclusion of the bias prevents over-fitting and
allows for a more reasonable estimate of the calibration parameter. Additionally, it is clear
that the bias-corrected prediction is a much better estimate of the true reality curve than
the pure-model prediction (computer model evaluated at the posterior mean) and than the
computer model evaluated at the least squares estimate.
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A. Details on the emulator

We assume that a priori yM (·) follows a stationary Gaussian process with mean and covariance
functions governed by unknown parameters θM,L and θM,C = (λM ,αM ,βM ), respectively.
The mean function of the Gaussian process is assumed to be of the form Ψ>(·)θM,L where
Ψ(z) is a specified k × 1 vector function of the input z = (x,v) and θM,L is a k × 1 vector
of unknown regression parameters. This mean function is specified through the argument
mean.formula of the SAVE function. Note that one of the restrictions of SAVE is that Ψ can
only be a function of x, the vector of controllable inputs.

The parameter λM is the precision (the inverse of the variance) of the Gaussian process
and the other parameters (αM ,βM ) control the correlation function of the Gaussian process,
which we assume to be of the form

cM (z, z?) = exp

− d∑
j=1

βMj |zj − zj?|
αM
j

 .

Here, d is the number of coordinates in z = (x,v), the αMj are numbers between 0 and 2, and

the βMj are positive parameters.

After observing yM , the conditional posterior distribution of yM given the hyperparameters,
f(yM (·) | yM ,θM,L,θM,C), is a Gaussian process with updated mean and covariance functions
given respectively by

E[yM (z) | yM ,θM,L,θM,C ] = Ψ>(z)θM,L + r>z (ΓM )−1(yM −XθM,C) (6)

COV[ yM (z), yM (z?) | yM ,θM,L,θM,C ] =
1

λM
cM (z, z?)− r>z (ΓM )−1rz? , (7)

where r>z = 1
λM

(cM (z, z1), . . . , c
M (z, zN )), X is the matrix with rows Ψ>(z1), . . . ,Ψ

>(zN ),

and ΓM is a matrix with (i, j) entry given by cM (zi, zj)/λ
M

To obtain an emulator for yM , we replace in the formulae above the unknown parameter
values by the corresponding maximum likelihood estimates.

B. Details on the stage II prior

The stage II unknowns are b(·), the bias function, u, the vector of calibration parameters,
and λF , the precision of the field measurement error. The prior for u is specified using expert
knowledge. Currently, the distributional choices are limited to uniform and normal, this last
one truncated to an interval. This enters the function bayesfit through argument prior.

The prior for the bias is a stationary zero-mean Gaussian process with covariance λb and
correlation function given by

cb(x,x?) = exp

− p∑
j=1

βbj |xj − xj?|2
 .

Here, p is the number of coordinates in x, and the βbj are positive parameters. Let βb =

(βb1, . . . , β
b
p). We need to specify a prior for θF = (λb, βb, λF ), and we do so in a nearly
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automatic fashion as follows: we start by selecting a best guess for the vector of calibration
parameters, denoted by ũ, which is the argument bestguess in function SAVE. Then, using the
emulator, we predict the output of the computer model at DF

ũ, denoted yM (DF
ũ). Next, treat

yF − yM (DF
ũ) as a realization of a Gaussian process with a nugget, namely as a realization

of a multivariate normal with mean zero and covariance matrix cb(DF )/λb + I/λF , to get

maximum likelihood estimates λ̂b, β̂
b
, λ̂F . Then,

� βb is fixed throughout the analysis at β̂
b
;

� λb and λF are independent exponentially distributed quantities centered at a multiple
of the corresponding estimates, λ̂b and λ̂F . This multiple is set through the parameter
mcmcMultmle in bayesfit and its purpose is to allow the user to specify a prior which
is relatively flat in the region where the posterior distribution accumulates.

The function SAVE computes these maximum likelihood estimates (with the help of the package
DiceKriging; Roustant et al. 2012) and stores these in the slot "mle" of the corresponding
object of class ‘SAVE’.

C. Details on the MCMC sampling

Full details on the sampling mechanism can be found in Bayarri et al. (2007). The algorithm
implemented in SAVE requires very little input apart from the necessary length of the sim-
ulation, burn-in and thinning numbers. This is because all unknowns are sampled directly
from their full conditionals with the exception of the vector of calibration parameters. This
vector is sampled using a Metropolis-Hastings step, for which the user needs to decide on
three aspects:

� The proposal distribution is a mixture between the prior and a local move. The user
needs to specify the probability of sampling from the prior, which is argument prob.prop
of the bayesfit function.

� The algorithm performs a fixed number of Metropolis-Hastings steps before deciding
on a move; the user must set this number, and this is argument nMH of the bayesfit

function.

� The package implements two alternative methods: method = 2 specifies that computer
model and bias are analytically integrated out before sampling u; this is the default and
preferred method. If method = 1, these vectors are not integrated out.
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