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Abstract

A group-sequential clinical trial design is one in which interim analyses of the data
are conducted after groups of patients are recruited. After each interim analysis, the trial
may stop early if the evidence so far shows the new treatment is particularly effective
or ineffective. Such designs are ethical and cost-effective, and so are of great interest in
practice. An optimal group-sequential design is one which controls the type-I error rate
and power at a specified level, but minimizes the expected sample size of the trial when
the true treatment effect is equal to some specified value. Searching for an optimal group-
sequential design is a significant computational challenge because of the high number of
parameters. In this paper the R package OptGS is described. Package OptGS searches
for near-optimal and balanced (i.e., one which balances more than one optimality crite-
rion) group-sequential designs for randomized controlled trials with normally distributed
outcomes. Package OptGS uses a two-parameter family of functions to determine the
stopping boundaries, which improves the speed of the search process whilst still allow-
ing flexibility in the possible shape of stopping boundaries. The resulting package allows
optimal designs to be found in a matter of seconds — much faster than a previous approach.

Keywords: group-sequential designs, optimal design, R.

1. Introduction

Traditionally a clinical trial is conducted by recruiting a pre-specified number of patients and
then conducting a statistical test of some null hypothesis at the end of the trial. An alternative
approach is to use a group-sequential design, in which the hypothesis is tested multiple times
during accrual of patients. The advantage of a group-sequential design is that the trial may
be stopped early if the data at a given interim analysis is sufficiently convincing to reject
the null hypothesis or if the data suggests the experiment is unlikely to end in success (i.e.,
for futility). This possibility of stopping early will mean the expected sample size, that is
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the average sample size used if the trial were repeated many times, is lower. This is at the
expense of a higher maximum sample size of the trial (i.e., the sample size used if the trial
continues to the final analysis) compared to the fixed sample size trial.

Group-sequential designs have been widely researched and used for clinical trials. Their use
is arguably more ethical, since trials will be stopped early if the new treatment is ineffective.
They are also more efficient than fixed sample size trials, as fewer patients are used on average
— this means the average cost of a trial is lower, and more trials can be supported from a limited
number of patients. Group-sequential designs have also been used in other applications, for
example acceptance sampling in quality control. Jennison and Turnbull (2000) provide an
excellent overview of group-sequential methodology.

When multiple analyses are allowed, the number of parameters (i.e., the group size and
stopping boundaries at each stage) is higher than the number of constraints set by the required
type-I error rate and power. The traditional approach of designing a group-sequential trial
is to constrain the stopping boundaries of the trial using some function, and thus reducing
the number of parameters to equal the number of constraints. Commonly used stopping
boundaries are those of Pocock (1977), O’Brien and Flemming (1979), and Whitehead and
Stratton (1983).

An alternative approach to using a stopping boundary function is to choose the boundaries
so that the design minimizes the expected sample size at some treatment effect, i.e., an
optimal design. An optimal design is feasible, i.e., it meets required constraints on the type-1
error rate and power, and also optimizes some specified criterion over all possible feasible
designs. A commonly used example of such a criterion is the expected sample size under
the null hypothesis. A method for finding optimal group-sequential designs using dynamic
programming was proposed by Eales and Jennison (1992). The method cannot be used for all
optimality criteria of interest, for example the maximum expected sample size; an alternative
approach using simulated annealing was proposed to search for more general optimal designs
(Wason, Mander, and Thompson 2012). The disadvantage of simulated annealing is that it is
computationally intensive, and therefore may be difficult without substantial computational
resources. A less computational demanding method of searching for optimal designs which
retains the flexibility of simulated annealing is highly desirable.

The search process for an optimal design is time consuming because of the high number of
parameters. Intermediate between a fixed group-sequential stopping boundary design and an
optimal design is the power family of group-sequential tests (Emerson and Flemming 1989;
Pampallona and Tsiatis 1994), in which the shape of the stopping boundaries is controlled
by a single parameter. This is more complex than a fixed design, as the extra parameter
allows infinitely many shapes. It is also less complex than finding an optimal design as the
number of parameters to search over is reduced. In this paper I propose using a two-parameter
stopping boundary function which provides greater flexibility in possible shapes. Using this
function requires considerably less computation in comparison to finding an optimal design
using simulated annealing and the resulting designs are very similar to optimal designs. The
method is implemented in the R (R Core Team 2015) package OptGS (Wason 2015), which is
available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.
org/package=0ptGS and which can be run on a single processor in a matter of seconds.
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2. Methods

2.1. Notation

Consider a randomized two-arm group-sequential design with up to J analyses. The jth
analysis takes place after n; = jn; patients have been randomized to each arm, and their
treatment response has been measured. Here, ny is called the group size. Outcomes are
assumed to be normally distributed with known variance ¢2. The case of unknown variance
will be addressed later in this paper. The mean difference in response between the treatment
arm and control arm is labeled §, with the hypothesis tested being Hy : 6 < dy. A design is
required such that the probability of rejecting the null is at most « under Hy and at least
1 — 8 when § > 41, where §; is the clinically relevant difference (CRD). These two constraints
are referred to as the type-1 error and power constraints respectively. A design which meets
both constraints is called feasible.

At a given interim analysis j, the z-statistic is calculated:
njgj
7=V, 1)
20
where 5]- is the MLE of § using data observed up to stage j. If Z; > e;, the trial stops for
efficacy; if Z; < f;, the trial stops for futility. If it is between the two thresholds, the trial

continues to stage j + 1. The value of e is set to f; to ensure that a decision is made at the
last interim analysis.

2.2. Power family of group-sequential tests

The power family of group-sequential tests was proposed by Emerson and Flemming (1989)
for symmetric tests (i.e., ones where o = ). Pampallona and Tsiatis (1994) extended the
family to allow non-symmetric tests (o # (). The family is indexed by a parameter A, which
allows the shape of the stopping boundaries to vary. In the notation above, the power family
stopping boundaries are:

¢; = Cel(J,a, B, A)(j/T)370%,

fi = 0VI; = Cp(J. o, B, 8)(§/ J)20%,
where Z; = 2n; /o>
To ensure e; = f, the final information level is set to:

{Cu(J,a, B, A) + Cy(J, v, B, A)}
Ty =2ny)o? = L = - (2)
For a specific value of A, values of Cy¢(J,a,3,A) and C.(J, o, 5,A) are found so that the
design has correct type-I error rate and power. The value of A can be varied, with higher
values generally giving designs with lower expected sample sizes, but higher maximum sample

sizes.

2.3. Extended power family of group-sequential tests

Although the power family provides greater flexibility than fixed group-sequential designs
such as those of Pocock (1977) or O'Brien and Flemming (1979), it does not provide sufficient
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flexibility to include optimal designs. For optimal designs, the shape of the efficacy stopping
boundaries will generally differ from the shape of the futility stopping boundaries.

I propose a straightforward extension to the power family: introducing two shape parameters
Ay and A, so that the shape of the futility and efficacy boundaries may differ, and thus allow
a greater flexibility in shape. The stopping boundaries will be:

ej = Ce(J,a, B, A1, A)(j/ )05,
fi =0T — Cr(J,a, B, Ap, Ac)(j/T)2 705,

Note that Equation 2 still ensures ey = f.

2.4. Finding optimal extended power family designs

Given values of (Af, A, Cf, C,), one can straightforwardly find the probabilities of stopping
at each interim analysis, given a specified value for §, by using the methods given in Chapter
19 of Jennison and Turnbull (2000). This allows one to calculate the type-I error rate, power,
and expected sample size at any treatment effect of interest. One can also find the maximum
expected sample size using an interval search technique, as described in Wason et al. (2012).

As in Pampallona and Tsiatis (1994), for each value of (Af, A.), values of Cy and C, are
required such that the design has correct type-1 error rate and power. These values can be
found by searching for the values of (Cf, C.) that minimize the following function:

(Oé*(J7 Af) Aev Cfa CE) - 05)2 + (ﬁ*(J7 Af7 A€7 Cf7 CE) 5) - /8)27 (3)

where a*(.) and 8*(.) are the type-I and type-II error rate for a specific design. The value of
Equation 3 is 0 if and only if the type-I error rate and power of the design are as required.

In package OptGS, this minimization is performed using the Nelder-Mead algorithm (Nelder
and Mead 1965), calling C++ code written by Burkardt (2008). A drawback of the algorithm
is that it is not guaranteed to reach the global minimum. To overcome this, it can be repeat-
edly run using different starting values until values of Cy and C, are found which give the
correct type-I and type-II error rates.

The Nelder-Mead algorithm is also used to search for the optimal design over values of
(Af,Ac). Almost surely, the optimal value of (A, Ac) will imply a non-integer group size.
Thus, a second optimization is run, with the constraint that the final group size is equal to
the ceiling integer of that implied by the optimal (Af, A.). A third optimization is run using
the floor integer instead of the ceiling. Of the designs found in the second and third runs, the
one that is closer to optimal is picked as the final design.

Since in the second and third optimizations the group size is constrained to be a given value,
C. is determined from Cy by Equation 2. The function to be minimized is:

h(Af75670f7nj7J) + V{(Oé*(J, AfaAmeanj) - OL)Q + (6*(J7 Af,Ae,Cf,TLj,(S) - 5)2} ; (4)

where h is the optimality criterion of interest, and v is a penalty factor to ensure the final
design has the correct type-I and type-II error rates. In effect this step is to tweak the stopping
boundaries slightly so that the error rate constraints are met for integer group size.

Package OptGS allows the user to specify one of three optimal designs to search for: 1) the
null-optimal design, which minimizes E(NN|dp); 2) the CRD-optimal design, which minimizes
E(N|d1); or 3) the J-minimax design, which minimizes max(E(N)).
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2.5. Finding balanced designs

In Section 2.4, a single optimality criterion was of interest. Previous work has shown that if
a design focuses on a single optimality criterion, the resulting design often performs poorly in
terms of other criteria that may also be of interest (Jung, Lee, Kim, and George 2004; Wason
et al. 2012). For example, all designs that are optimal for the expected sample size at some
6 have a high maximum sample size. An alternative approach is to find a balanced design in
which the design is chosen in order to minimize the weighted sum of two or more criteria of
interest.

Package OptGS allows the user to find a design that balances the three optimality criteria
of interest together with the maximum sample size. A vector of weights, (w1,ws,ws,ws),
is specified such that all entries are non-negative. Then the feasible design is found that
minimizes the following function:

le(N’(S = 50) + WQE(N‘(S = (51) + w3 max(E(N)) + wygdng. (5)

This design balances the three optimality criteria together with the maximum sample size.
Note that one of wi, we, and w3 must be strictly positive, because an infinite number of
designs will exist with the lowest maximum sample size.

2.6. Unknown variance

The literature on group-sequential designs for normally distributed endpoints generally as-
sumes known variance, but in practice this is a strong assumption to make. Once boundaries
for known variance statistics are found, one can convert them to boundaries for ¢-test statistics
using a recursive algorithm (Jennison and Turnbull 1991), or a more straightforward quantile
substitution method (Whitehead, Valdes-Marquez, and Lissmats 2009). The latter method
generally controls the type-I error rate at the correct level (Wason et al. 2012). Package
OptGS provides the option of returning stopping boundaries for the unknown variance case
using quantile substitution. A value of the treatment outcome standard deviation must still
be given in order to power the trial. Note that if the true variance differs from the design
value, the power of the design will vary from the required level.

3. Use of package OptGS

Package OptGS contains a single function, optgs. All arguments are fully documented within
the package. The weights argument allows the user to put weights on the different optimality
criteria. It is a four entry vector where the first entry is the weight put on E(N|d = dp); the
second entry is the weight put on E(N|é = d1); the third entry is the weight put on max(E(N));
and the fourth entry is the weight put on the maximum sample size. As an example, here is
the syntax used to find a four-stage d-minimax design with type-I error rate 0.05, power 0.9
with a standardized clinically relevant difference (i.e., @) of 1/3:

R> optgs(J = 4, alpha = 0.05, power = 0.9, delta0 = 0, deltal = 1,
+ sigma = 3, weights = c(0, 0, 1, 0))

Groupsize: 50
Futility boundaries -0.26 0.65 1.29 1.82
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Efficacy boundaries 2.32 2.05 1.91 1.82

ESS at null: 92.9
ESS at CRD: 105
Maximum ESS: 122.1

Max sample-size: 200

The output gives the design and operating characteristics. The sample size required per arm
per stage is 50, the futility boundaries are (—0.2644,0.6469, 1.2940, 1.8189), and the efficacy
boundaries are (2.3188,2.0537,1.9129, 1.8189). If the user preferred a design that puts weight
on the maximum sample size, then they could change the weights argument. For example:

R> optgs(J
+ sigma

4, alpha = 0.05, power = 0.9, delta0 = 0, deltal = 1,
3, weights = c(0, 0, 0.75, 0.25))

Groupsize: 43
Futility boundaries -0.95 0.32 1.1 1.69
Efficacy boundaries 3.22 2.33 1.93 1.69

ESS at null: 98.2
ESS at CRD: 112.7
Maximum ESS: 125.7

Max sample-size: 172

Notice that the expected sample sizes have risen compared to the first design. The group size
has fallen from 50 to 43, which would considerably reduce the maximum sample size of the
design. By varying the weights argument, the user can search for designs which put different
weights on the maximum sample size and relevant expected sample size. It is recommended
that some weight is always put on the maximum sample size, as a small value can reduce the
maximum sample size noticeably without increasing the expected sample size more than a
negligible amount.

Values for all entries in the weights argument can be provided. As an example, firstly the
(1,1,1,1)-balanced design is found, and then a design that puts more weight on the expected
sample size at 6 = dg and less on the expected sample size at § = d7.

R> optgs (J = 4, alpha = 0.05, power = 0.9, delta0 = 0, deltal = 1,
+ sigma = 3, weights = c(1, 1, 1, 1))

Groupsize: 42
Futility boundaries -1.22 0.21 1.05 1.68
Efficacy boundaries 3.53 2.43 1.96 1.68

ESS at null: 100.9
ESS at CRD: 114.6
Maximum ESS: 127.2

Max sample-size: 168

R> optgs(J = 4, alpha = 0.05, power = 0.9, delta0 = 0, deltal = 1,
+ sigma = 3, weights = c(2, 0.5, 1, 1))
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Expected sample size

T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Mean difference
Figure 1: Output from plot (optgs()).
Groupsize: 43

Futility boundaries -0.69 0.37 1.08 1.62
Efficacy boundaries 4.17 2.6 1.97 1.62

ESS at null: 94 .4
ESS at CRD: 119.2
Maximum ESS: 128.1

Max sample-size: 172

Note that the second design has lower expected sample size at 0 = dy and higher expected
sample size at 6 = 1, as one might expect. Although the weight put on the maximum ex-
pected sample size and maximum sample size have not changed, the group size and maximum
expected sample size of the second design are different to the first design. This is to be
expected, as varying one of the operating characteristics will have an effect on the others too.

The plot function can be used on an object containing the output of optgs. For example,
plot(optgs()) will give the plot shown in Figure 1.

The sd.known argument in optgs can be set to FALSE, in order to convert the stopping
boundaries to unknown variance boundaries, as discussed in Section 2.6. For example:

R> optgs(J = 2, deltal = 1, sigma = 1)

Groupsize: 9
Futility boundaries 0.4 1.6
Efficacy boundaries 3.17 1.6

ESS at null: 12.1
ESS at CRD: 16.3
Maximum ESS: 16.5

Max sample-size: 18

R> optgs(J = 2, deltal = 1, sigma = 1, sd.known = FALSE)
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E(N|éo) Time taken
J Average from Minimum from  From Average OptGS
10 SA runs 10 SA runs OptGS SA run
2 108.1 107.5 107.5 2.5s 0.50s
3 95.0 94.7 94.8 19.6s 1.06s
4 89.0 88.8 89.1 35.0s 1.71s
5 85.6 84.9 85.8 64.0s 4.62s

Table 1: Comparison of run-time and expected sample size at § = §p of designs found from
simulated annealing (SA) and package OptGS.

Groupsize: 9
Futility boundaries 0.4 1.65
Efficacy boundaries 3.81 1.65

ESS at null: 12.1
ESS at CRD: 16.3
Maximum ESS: 16.5

Max sample-size: 18

Note that only the stopping boundaries have changed, and not the group size or expected
sample sizes. These unchanged quantities still assume the variance is known — in practice
the required group size may have to be increased in order to ensure the power constraint
is correct. In addition, the expected sample sizes will differ when the standard deviation is
estimated from the data.

4. Results

The closest equivalent to package OptGS is the simulated annealing method as discussed in
Wason et al. (2012). Table 1 shows the time taken to find J-stage null-optimal designs using
simulated annealing and using package OptGS (note that both methods require the final
design to have an integer group size). Both methods were carried out on a single core of a
Intel 3rd generation Core i7 processor. Because simulated annealing is a stochastic process,
results may vary between runs. Therefore for each value of J, I carried out 10 independent
simulated annealing searches. The average and minimum expected sample size under the null
over the ten processes are shown in Table 1.

Interestingly, for most values of J, the optimal design found by package OptGS is close to the
best of 10 runs of simulated annealing. This is despite the shape constraint imposed by use of
the extended power family. Only for J = 5 does simulated annealing show some improvement
over package OptGS. This could indicate that as J increases, the shape constraint has a larger
effect. The process that package OptGS uses is substantially faster than even one simulated
annealing run. All designs found by package OptGS met the type-I error rate and power
constraints required. Clearly, there are substantial advantages to using package OptGS over
simulated annealing.

Table 2 shows the optimal values of Ay, A.,Cy,C, for the three types of optimal design

implemented in package OptGS as well as the (1,1, 1,1)-balanced design, i.e., the balanced
design that puts equal weight on all four operating characteristics. Generally, it is clear that
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Design  J A; A, C;  C. E@@N[%) E@N[3;) max(E(2N)) max(2N)
2 046 —039 157 150 2150 290.8 297.2 340
Nul- 3 051 —046 153 166 1895 272.4 280.0 366
optimal 4 051 —035 1.53 1.73  178.1 257.7 269.4 384
5 053 —046 151 1.83 1717 262.0 271.9 400
9 —015 045 1.8 126 2335 9316 2755 344
CRD- 3 —013 048 1.95 126  229.0 214.8 264.6 372
optimal 4 —021 047 201 1.25  227.0 205.6 260.5 384
5 013 047 204 138 1956 199.8 245.6 420
2 033 03l 173 142 2206 2395 266.6 356
5- 3 036 034 179 150  196.3 219.5 251.9 390
minimax 4 032 032 1.82 151 1857 210.0 244.2 400
5 031 032 184 153 1798 204.2 939.4 410
2 003 004 166 1314 2240 2135 2733 324
3 000 —002 166 1.34 2103 237.6 261.8 330
Balanced (00 _004 168 138 2019 929.2 954.3 336
5 013 —002 168 144 1882 922.8 247.3 350

Table 2: Optimal design parameters (A, A., Cy, C.) for various optimality criteria and num-
ber of stages. “Balanced” corresponds to the (1,1,1,1)-balanced design. Note that the ex-
pected and maximum sample sizes shown are for both treatment arms.

allowing Ay to differ from A, is necessary to allow optimal designs to be found — the null-
optimal and CRD-optimal designs have Ay and A, designs with opposite signs. Interestingly,
a design close to the 6-minimax design would be found using the original power family, as A
and A, are very close in value.

The (1,1,1,1)-balanced design has good operating characteristics — none of the expected
sample sizes are too large compared to those of the optimal designs, but the maximum sample
size is generally substantially lower.

In some scenarios, it may not be desirable to stop a clinical trial early for efficacy. For
example, if it is of interest to estimate the treatment effect with a high precision, or to gather
additional information about side-effects. In these cases, one should not put weight on the
expected sample size at the clinically relevant difference, or the maximum expected sample
size. Instead, one might choose to just put weight on the expected sample size under the null
hypothesis and the maximum sample size. This will lead to larger efficacy boundaries, and
small probabilities of stopping early for efficacy.

A drawback of package OptGS is its reliance on the Nelder-Mead algorithm, for which results
can be sensitive to the starting value of (Ay, A.). For example, when looking for the four-
stage 0-minimax design, starting the Nelder-Mead algorithm at (0.3,0.3) gives a design with
maximum expected sample size 122.11, but starting it at (—0.5,—0.5) gives a design with
a maximum expected sample size of 126.73 — a considerable difference. Using the results
in Table 2, default starting values for the Nelder-Mead algorithm were set to be (0.4, —0.4)
for the null-optimal design, (—0.2,0.4) for the CRD-optimal design, and (0.3,0.3) for the J-
minimax design. For balanced designs, the starting values used are the weighted sum of the
three previous starting values (where the weights are wy,ws and ws from Equation 5), and
(—0.5,—0.5) times the weight put on the maximum sample size. I have found that this tends
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to perform well, but a user may want to change the starting values used before picking a
design. An argument named initial allows the user to override the default starting values.

5. Discussion

Optimal and balanced group-sequential designs for continuous outcomes have been discussed
in several papers (Eales and Jennison 1992; Brittain and Bailey 1993; Eales and Jennison
1995; Chang 1996; Barber and Jennison 2002; Anderson 2007; Wason and Mander 2012;
Wason et al. 2012). Balanced designs have excellent operating characteristics and are a very
flexible class of design. Up to now, they have not been used in practice because freely-available
software to implement them has not yet been available. Package OptGS is a R package that
provides an automated search procedure using an extension to the power family of group-
sequential tests (Pampallona and Tsiatis 1994) to find optimal and balanced group-sequential
designs. The extended power family has two parameters which determine the relative shape
of the futility and efficacy stopping boundaries. Previous methods to find optimal designs
include: a grid search technique, which is infeasible for more than two stages; a dynamic
programming approach which can be used for certain optimality criteria, but not others, and
also not for designs that balance different optimality criteria; and simulated annealing, which
allows searching for all optimality and balancing criteria, but is slow. In comparison, package
OptGS yields designs which are often better than those found from an average simulated
annealing run and in a much faster time.

The R package gsDesign (Anderson 2014) implements a large range of group-sequential de-
signs. One type of design implemented is the Hwang, Shih and DeCani error spending function
(Hwang, Shih, and DeCani 1990), which has been used to find designs that are optimal with
respect to the integral of the expected sample size over a normal distribution (Anderson 2007).
Thus, package gsDesign could be modified to search for near-optimal designs. A current ad-
vantage of package OptGS is that the search procedure is automated, allowing a very flexible
range of optimal and balanced designs to be found. It also allows stopping boundaries to
be modified to take into account unknown variance. However, a disadvantage of the current
version of OptGS is that the sample size at each interim analysis is assumed to be equally
spaced, whereas package gsDesign allows the user to modify designs to take into account un-
equally spaced analyses. In practice, analyses are unlikely to be exactly evenly spaced, even
if designed to be. Some patients may drop out of the trial, or practical considerations may
have determined that the interim analysis must be at a certain time. Stopping boundaries
can be modified to take into account the actual number of observations at a given analysis.
Jennison and Turnbull (2000) describe a method to adapt stopping boundaries from the one-
parameter power family to allow different numbers of patients at each analysis, which could be
straightforwardly generalized to the extended power family. Fixed stopping boundaries from
an optimal or balanced group-sequential design can be interpolated into an error spending
function, as described by Kittelson and Emerson (1999). Both of these approaches control
the overall type-I error, but not necessarily the power.

Package OptGS is currently just implemented for normally distributed outcomes, and cannot
be used directly to find optimal designs for binary or time-to-event outcomes. However, typical
test statistics for both types of outcome (such as the estimate of a binary proportion and the
log-rank test) are both asymptotically normally distributed. Thus, the methods implemented
in package OptGS could be extended to allow group-sequential designs for other endpoint
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types, although the operating characteristics would be valid only asymptotically. In the case
of treatment outcomes that take a long time to observe, group-sequential designs are generally
less useful. Since patients will generally be recruited continuously, by the time the treatment
effect on the first group of patients has been observed, most patients in the trial will have been
recruited. Thus, optimal or balanced designs are more relevant for shorter term endpoints,
although with some modification, they may still be useful for optimizing the time taken by
the trial when the endpoint is a long-term one.

A type of trial that has recently started to garner more attention and study is a multi-arm
multi-stage (MAMS) trial (Sydes, Parmar, James et al. 2009; Magirr, Jaki, and Whitehead
2012). Using multiple new treatment arms in a trial increases efficiency over separately testing
each treatment because just one control group is needed. It also means a direct comparison can
be made which may be problematic when conducting several separate trials. Some work has
been done on optimal multi-arm multi-stage clinical trials for normally distributed outcomes
(Wason and Jaki 2012) which involves using simulated annealing. The methods underlying
package OptGS could be extended to optimal design of group-sequential trials, although it
may be that the extended power family is no longer sufficiently flexible to include optimal
MAMS designs.
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