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Abstract

The measurement and reporting of model error is of basic importance when construct-
ing models. Here, a general method and an R package, A3, are presented to support the
assessment and communication of the quality of a model fit along with metrics of variable
importance. The presented method is accurate, robust, and adaptable to a wide range
of predictive modeling algorithms. The method is described along with case studies and
a usage guide. It is shown how the method can be used to obtain more accurate models
for prediction and how this may simultaneously lead to altered inferences and conclusions
about the impact of potential drivers within a system.
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1. Introduction

A range of metrics have been developed to assess model results for prediction or other in-
ferences. These metrics include the classic coefficient of determination and p values, risk
functions such as MSE, and newer approaches such as information theoretic techniques like
AIC or BIC. Although many methods can be used to assess such error metrics, it can be
argued that three basic categories of criteria should be employed to discuss the suitability of
these metrics in practice:

Accuracy: Does the method accurately report error or goodness of fit?

Accessibility: Is the manner in which the results are reported understandable to end-users?

Adaptability: Can the method be applied to a variety of different modeling approaches?

The importance of accuracy is self-evident. If the method of reporting model quality contains
significant biases itself, it may be of little value. The widely reported metric R2 is perhaps
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the best example of a commonly used, yet potentially highly inaccurate measure of quality.
The key issue with the coefficient of determination is, of course, that it will always increase as
more variables are added to the model. The commonly used adjusted R2 measure attempts
to account for this issue, but even that may be slightly biased when the model is overfit.

Accessibility is of equal importance as accuracy. A metric may objectively be highly accurate,
but if practitioners“on the ground”are unable to apply it properly in practice, then it is flawed.
An example of a widely discussed measure (Nickerson 2000; Cohen 1994; Loftus 1993; Falk and
Greenbaum 1995 and others) that has repeatedly been shown to be inaccessible is the p value.
Although the subject of basic statistics courses, p values have been demonstrated to not only
be misunderstood by laypeople, but also to be misunderstood by those who absolutely should
have a mastery of the topic. In one study of 30 university statistics instructors, 80% made
at least one error when answering six basic true/false questions about the interpretation of
p values. An example of one such question is, “[Given a p value] you know, if you decide to
reject the null hypothesis, the probability that you are making the wrong decision.” (Haller
and Krauss 2002).

Adaptability is of almost as much importance as accuracy and accessibility. This criterion
indicates how flexible the error metric is in regards to being applied to different forms of model
construction algorithms. Some metrics – such as AIC or BIC, for instance – require statistical
models that generate likelihoods. Many types of models naturally generate likelihoods, but
other types of model construction algorithms (such as CART, classification and regression
trees; Breiman, Friedman, Olshen, and Stone 1984) may not lend themselves to generating
likelihoods. By utilizing a metric that is limited to a certain subspace of model construction
algorithms, we limit ourselves in our ability to compare results to other modeling techniques.

The A3 method (pronounced A3) and the A3 package (Fortmann-Roe 2015) implementation
of it for R (R Core Team 2015) targets these three criteria. The method is designed to
be accessible, accurate and adaptable (it is from that acronym that the method is named)
and the package is available from the Comprehensive R Archive Network (CRAN) at http:

//CRAN.R-project.org/package=A3.

In terms of accessibility, the method is designed to use familiar concepts. It is based around
the R2 metric and p values. Because these metrics are familiar, most practitioners will not
have to learn new concepts to understand the A3 output. The A3 method utilizes a derivative
of R2 – the added R2 – in order to assess variable importance and the contribution of each
feature to the success of the overall model. Unlike likelihood-based approaches – such as
AIC-based approaches – or more application specific approaches – such as Gini importance
for tree-base methods – this technique is quite general and so can be applied wherever A3
itself may be utilized.

The added R2 metric, analogous to semi partial correlation in linear regression, indicates how
much a model improves when a given variable is added to the model. This change indicates
the practical importance of the added variables which in practice may be more meaningful
than statistical significance. The A3 method also provides a slope metric, analogous to the
slope in linear regression, to indicate the effect of a variable on the outcome. In summary,
the method calculates the following three items for each feature in a data set:

Slope: How a change in the feature affects the dependent variable. A distribution of values
is calculated for each feature in addition to a single, summarizing average.

http://CRAN.R-project.org/package=A3
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Added R2: Predictive utility of the feature that is unique from all other features in the
model.

p value: The chance of seeing the observed level of predictive utility for a feature assuming
the null hypothesis that the feature in fact has no predictive utility.

Muñoz and van der Laan (2012) introduced a parameter and derived asymptotically linear,
semi-parametric estimators of that parameter to quantify the effect of displaced covariates
on an outcome. If this parameter were to be normalized by the displacement amount, it
would be similar to the slope calculated by the A3 package. In the A3 package, the slope
parameter for a feature is estimated by approximating the slope at each data point using
simple displacement and then averaging these results.

In terms of accuracy, the A3 method uses robust, resampling-based methods for the calculation
of p values and R2 metrics. R2 is calculated using cross-validation which correctly accounts
for overfitting and does well in matching the true R2 value. The term “R2” is defined here
simply as the fraction of the squared error explained by a model compared to the null model.
This is the definition used in the A3 method’s calculation of R2 and the definition used in
the rest of this paper. p values are calculated using a randomization test. Full details about
the methods are available in Appendix A. These methods may be computationally intensive
for complex models, but they require no parametric assumptions other than independence
between observations (a constraint which itself may be violated, see Section 5). The use of
these methods make the results reported by the A3 method more robust to user misuse and
abuse than do many standard parametric model results (where the parametric assumptions
may frequently not be tested for in practice).

Last, the A3 method is highly adaptable to different modeling techniques. Technically, the A3
method is defined as a wrapper function that encapsulates an arbitrary predictive modeling
algorithm. Thus the method can theoretically be applied to any modeling technique that
generates predictions. The same principle is used in the A3 package where the primary
package functions can take an arbitrary predictive modeling function. Different modeling
methods can be utilized by passing different functions (e.g., lm for linear regression models,
glm for logistic regression models, rpart for CART models) to the package’s a3 function.
The A3 method can seamlessly encapsulate different techniques and generate a consistent
output for them that facilitates the direct comparison of these different methods using the
same criteria.

It should be noted that the A3 method is focused on inferential statistics and offers little in
regards to descriptive statistics or visualizations. There are a wide range of sources addressing
and advancing these topics including classics such as Cleveland’s Visualizing Data (Cleveland
1993) and Tukey’s Exploratory Data Analysis (Tukey 1976). R offers a variety of powerful
packages to support descriptive analyses. Several R packages such as Hmisc and pastecs pro-
vide functions for quickly calculating descriptive statistics (Grosjean and Ibanez 2014; Harrell
2015). Other packages such as data.table or dplyr, in addition to the built-in data.frame,
make it straightforward to subset and aggregate data by category (Dowle, Short, Lianoglou,
and Srinivasan 2014; Wickham and François 2015). Lastly a number of packages such as
the phenomenal ggplot2 make it possible to rapidly create high-quality data visualizations
(Wickham 2009). Rather than attempting to improve on these current capabilities in R, the
A3 package instead focuses on inferential statistics and prediction.



4 The A3 Method for Reporting of Results from Diverse Modeling Techniques

When the true data-generating process or model is unknown, the A3 method may be used for
inference about the significance of features in the data set and for model selection to improve
the predictive accuracy of a regression. If the true model were known (or there was strong
evidence to justify the adoption of a parametric model), it would of course outperform the
semi-parametric models A3 is generally applied to. The following sections of this work will first
describe the A3 package in general. Next, two applications of the method are developed for
predictive and inferential tasks. Finally, a discussion of using the package to analyze correlated
data will be presented followed by general conclusions. One important note should be made
at this point. In general, I would make the claim that mathematical models are constructed
for three purposes: prediction, inferences other than prediction, and conceptual/narrative
applications (e.g., “telling a story about a system”). The A3 package can be applied both to
predictive and inferential usage cases. It is based on a predictive framework, but it can also
assess the statistical significance of variables within this framework. The key for doing this
is to make a small shift in our thinking about inference in order to reframe it in a predictive
manner. As an example, take the question “Is there a relationship between X and Y ?” We
can rephrase the same question in a predictive framework as “Does knowledge of X help us
to predict Y ?” The second question is answered by the A3 package allowing inferences based
solely on the predictive accuracy of models.

2. Usage overview

The primary function provided by the A3 package is a3 which takes three principle arguments:

formula: A regression formula object.

data: A data frame containing the data for the regressions.

model.fn: A function that generates a regression model that has a corresponding predict

method.

As example of the usage of the a3 function, we may use R’s built-in lm function with the
a3 function to generate the A3 results for a linear regression model of R’s built-in attitude

data set. The output is an S3 object with a print method that displays an A3 results table.
This table contains four columns: the features in the model, the median slope for each feature
(analogous to the coefficient in a linear regression, and directly equivalent to it when used for
a linear regression model), the cross-validated R2 for the whole model and the added R2 for
each feature (a measure of the practical significance of that feature), and the p values for the
model itself and for each feature.

R> a3(formula = rating ~ ., data = attitude, model.fn = lm)

Average slope CV R^2 p value

-Full model- 47.8 % < 0.01

(Intercept) 10.78707639 - 8.5 % 0.97

complaints 0.61318761 + 10.5 % < 0.01

privileges -0.07305014 - 5.7 % 0.87

learning 0.32033212 + 7.8 % 0.05
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raises 0.08173213 - 6.1 % 0.82

critical 0.03838145 - 8.3 % 0.98

advance -0.21705668 - 3.6 % 0.59

Please note the p value estimates in this table and the rest of this paper are reported to
only two decimals places. This is because the p values were estimated using 100 randomiza-
tions. More precise p value estimates can be obtained by increasing the number of random
simulations in the calculations of the distribution of R2 values assuming the null hypothe-
sis. For instance, 1,000 randomizations would give an estimate precision of 0.001 but would
come at the cost of approximately ten times the computational effort. Refer to Section 4 and
Appendix A for more details on the calculation of p values.

R comes with numerous predictive modeling algorithms in its core distribution and base
packages. An even larger set of modeling techniques are available in the wider ecosystem
of user contributed and maintained packages. The a3 method can support most of these
techniques (see Appendix B for details). For instance, the e1071 package (Meyer, Dimitriadou,
Hornik, Weingessel, and Leisch 2014) provides support vector machine regressions (Cortes and
Vapnik 1995) using the function svm. We can use the svm function in place of lm to obtain
the A3 results for support vector machines. Please note the use of “+0” in the formula object.
This removes the constant term generated in the model matrix which is unnecessary for the
svm function.

R> library("e1071")

R> a3(rating ~ . + 0, attitude, svm)

Average slope CV R^2 p value

-Full model- 42.3 % < 0.01

complaints 0.37018519 + 25.3 % < 0.01

privileges 0.079660425 - 3.5 % 0.44

learning 0.120305835 + 0.9 % 0.14

raises 0.07477541 + 4.0 % 0.11

critical -0.138117725 - 11.5 % 0.92

advance -0.1573689 + 5.4 % 0.06

As another example, we can use the randomForest package (Liaw and Wiener 2002) to gen-
erate random forest regressions (Breiman 2001). In order to speed calculation we can set the
desired accuracy for the calculation of p values (p.acc) to a coarser value than the default
0.01. Setting p.acc to NULL would disable the calculation of p values completely.

R> library("randomForest")

R> out.rf <- a3(rating ~ . + 0, attitude, randomForest, p.acc = 0.05)

R> out.rf

Average slope CV R^2 p value

-Full model- 43.5 % < 0.05

complaints 0.033075 + 26.9 % < 0.05

privileges 0 + 2.2 % 1.00

learning 0.0199 + 13.1 % 0.05
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Average slope CV R2 Pr(> R2)

-Full model- 43.5% < 0.05
complaints 0.033075 +26.9% < 0.05
privileges 0 +2.2% 1.00
learning 0.0199 +13.1% 0.05
raises 0.036966665 +9.7% 0.25
critical −0.012158335 −0.5% 1.00
advance −0.008216665 +6.7% 0.65

Table 1: LATEX formatted A3 output.

raises 0.036966665 + 9.7 % 0.25

critical -0.012158335 - 0.5 % 1.00

advance -0.008216665 + 6.7 % 0.65

Arguments passed to the a3 function are not passed on to the function specified in argument
model.fn (in this case randomForest). To pass additional arguments to the function specified
in model.fn, you can pass a list of arguments to the argument model.args. For instance,
the following code sets the ntree argument of randomForest to 1000.

R> a3(rating ~ . + 0, attitude, randomForest,

+ model.args = list(ntree = 1000), p.acc = 0.05)

Average slope CV R^2 p value

-Full model- 49.1 % < 0.05

complaints 0.042470835 + 30.1 % < 0.05

privileges 0 + 4.9 % 0.95

learning 0.039183335 + 17.7 % < 0.05

raises 0.039104165 + 9.9 % 0.55

critical -0.00775 + 1.0 % 1.00

advance -0.02085 + 6.7 % 0.60

In addition to the general a3 function, we can also use the specialized a3.lm function specif-
ically for linear models which removes the need for the argument model.fn (it is set auto-
matically to glm). Both a3 and a3.lm return an S3 ‘A3’ object. The print method for ‘A3’
objects prints an ASCII results table. You can also use the xtable package (Dahl 2014) to
create a nicely formatted output table from this object (see Table 1).

R> xtable(out.rf, caption = "\\LaTeX \\, formatted A3 output.",

+ label = "xtableFormat")

Several plotting functions are included in the A3 package to display results. plotPredictions
is important in assessing the overall predictive accuracy of the model. For each observation in
the data set, it plots the predicted and original values along with an optional line marking ideal
results. In Figure 1 we can see that our random forest model for the attitude data appears
to tend to overestimate ratings for low values and underestimate them for high ratings.

R> plotPredictions(out.rf)
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Figure 1: A plot of predicted versus observed values for the random forest model of the
attitude data.
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Figure 2: Slope distributions for the random forest model of the attitude data.

In the results table, the median of the slopes at each observation are reported. These slopes
indicate how the prediction for an observation will change as an observation is displaced (or,
put another way, whether a given feature has a positive or negative effect on the outcome
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and how strong this effect is). A slope is calculated for each feature at each data point. The
slope is approximated by calculating the value of the outcome at a pair of customizable, fixed
displacements from each point. For linear regressions, this procedure will result in the same
value as the regression coefficients. A fixed displacement is used rather than attempting to
estimate the derivative directly at each point as methods such as random forests will often
place a step function at data points leading to undefined derivatives at the points themselves.
For some models, such as linear regressions, this slope will be constant between observations.
However, for other models, such as random forests, the slope may change at each point as the
model’s behavior may differ between regions of the feature space. The plotSlopes function
may be used to plot the distribution of slopes for each feature (see Figure 2).

R> plotSlopes(out.rf)

The plot method for ‘A3’ objects may be used to plot both the predictions and slopes at
once.

3. Worked applications

The most effective way to illustrate the use of the A3 package and its utility is through applied
case studies. Two example applications will be used to illustrate the method. The first comes
from an attempt to predict housing prices, the second is focused on drawing inferences in an
ecological application.

3.1. Housing application

This application is based on a data set that includes information on the prices of houses
from the Boston area. It originally was developed by Harrison and Rubinfeld (1978) and the
digital copy used in this analysis was provided by Frank and Asuncion (2010). The data set
is included in the A3 package as housing. The following are some of the key features in the
data set (based on the summary of Frank and Asuncion 2010).

NOX: Nitrogen oxides pollutant concentration (parts per 10 million).

ROOMS: Average number of rooms per dwelling.

AGE: Proportion of owner-occupied units built prior to 1940.

HIGHWAY: Index of accessibility to radial highways.

PUPIL.TEACHER: Pupil-teacher ratio by town.

MED.VALUE: Median value of owner-occupied homes in $1,000’s.

A typical approach to analyzing this data set, either to build a predictive model or for infer-
ences about the significances of the features, might be to apply a linear regression to the data
set (it is important to note that the authors of the cited paper carry out a different form of
analysis and this section is simply illustrative of a commonly applied approach). The results
of a linear regression are shown in Table 2. Although these specific results are generated by
R, the selection of displayed data is very similar to that of other packages. These results allow
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Estimate Std. error t value Pr(> |t|)
(Intercept) 7.7674 4.9888 1.56 0.1201
AGE −0.0151 0.0138 −1.10 0.2738
ROOMS 7.0056 0.4117 17.02 0.0000
NOX −13.3142 3.9026 −3.41 0.0007
PUPIL.TEACHER −1.1165 0.1480 −7.54 0.0000
HIGHWAY −0.0249 0.0426 −0.58 0.5593

Table 2: Housing data linear regression model results (R2 = 0.6037, Adjusted R2 = 0.5997).

us to clearly see that ROOMS, NOX, and PUPIL.TEACHER are statistically significant variables at
the 5% level. However, they do not provide information on the practical importance of these
variables in regards to prediction accuracy.

R> data("housing", package = "A3")

R> reg <- lm(MED.VALUE ~ AGE + ROOMS + NOX + PUPIL.TEACHER + HIGHWAY,

+ housing)

R> print.reg(reg, label = "HousingLinear",

+ caption = "Housing data linear regression model results")

In order to attempt to gain an understanding of the practical significance of the different
variables, we can use the A3 results. Table 3 contains the A3 results for a linear regression
of the housing data. The primary changes in the physical construction of this table is the
removal of the standard error and t value columns and the addition of the cross-validated
R2 column. This column first reports the R2 for the whole model, and then the added R2’s
for each feature. The cross-validated R2 is slightly lower, as will generally be the case for
overfitting models, than the adjusted R2.

From the added R2 measures reported in the cross-validated R2 column, it can be seen that
the ROOMS variable explains 23% more of the squared error when it is added to the model
while the NOX variable explains less than 1% of the squared error when it is added to the
model. Although both these variables are highly statistically significant (p < 0.01), the A3
output makes it very clear that ROOMS is a much more important predictor of housing prices
than NOX. In applications, this information may have great practical importance.

R> housing.lm <- a3.lm(MED.VALUE ~ AGE + ROOMS + NOX + PUPIL.TEACHER +

+ HIGHWAY, housing, p.acc = 0.01, n.folds = 50)

Furthermore, the A3 package allows the straightforward comparison of results between differ-
ent forms of predictive models. The A3 method is a wrapper that can theoretically be used
on any predictive model (see Appendix B for more details). Tables 4 and 5 show the results
of the A3 method applied to, respectively, a support vector machine model construction algo-
rithm and a random forest model construction algorithm for the housing data set. There are
two primary things to note from these results. The first is both of these algorithms were able
to generate much better predictive models (10% to 15% higher R2 values for the full models)
than the linear regression.

R> housing.svm <- a3(MED.VALUE ~ AGE + ROOMS + NOX + PUPIL.TEACHER +

+ HIGHWAY + 0, housing, svm, p.acc = 0.01, n.folds = 50)
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Average slope CV R2 Pr(> R2)

-Full model- 59.3% < 0.01
(Intercept) 7.7674 −0.1% 0.26
AGE −0.0151 −0.1% 0.25
ROOMS 7.0056 +23.2% < 0.01
NOX −13.3142 +0.8% < 0.01
PUPIL.TEACHER −1.1165 +4.5% < 0.01
HIGHWAY −0.0249 −0.2% 0.96

Table 3: Housing data A3 results for a linear regression model.

Average slope CV R2 Pr(> R2)

-Full model- 70.9% < 0.01
AGE −0.069444 +0.9% 0.01
ROOMS 5.188636 +34.7% < 0.01
NOX −0.000581 +2.2% < 0.01
PUPIL.TEACHER −0.247277 +1.6% < 0.01
HIGHWAY 0.042276 −0.3% 0.16

Table 4: Housing data A3 results for the support vector machine model.

Average slope CV R2 Pr(> R2)

-Full model- 74.1% < 0.01
AGE −0.0346 −1.1% < 0.01
ROOMS 4.5326 +20.3% < 0.01
NOX −1.4777 +6.1% < 0.01
PUPIL.TEACHER -0.7140 −1.1% < 0.01
HIGHWAY 0.0000 −2.2% 0.02

Table 5: Housing data A3 results for the random forest model.

R> housing.rf <- a3(MED.VALUE ~ AGE + ROOMS + NOX + PUPIL.TEACHER +

+ HIGHWAY + 0, housing, randomForest, p.acc = 0.01, n.folds = 50)

The second item of note, and which is of even greater importance, is that the inferences drawn
from the data have changed in these latter models. In the linear regression model, the AGE

variable is not at all statistically significant. However in both the support vector machine
and random forest models, it is significant (p = 0.01). Thus we can see that the data does in
fact support a relationship between the age of a house and its price. It is not a trivial linear
relationship, but it does exist. If we constrained ourselves to only explore linear models, as is
often done in practice, we would have failed to identify this relationship and the significance
of the AGE variable. It should still be noted however, that if we were building a predictive
model, it would still be best to exclude AGE from the model despite this statistical significance
due to its low added R2.

Lastly, it is beneficial to gain a fuller understanding of the meaning of the Average slope
column in these results. Unlike the case for the linear regression model, the slopes in the
support vector machine and random forest models may change between different regions of
the data space. As such it can be useful to plot the distribution of slopes rather than simply
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Figure 3: A plot of the slopes for the random forest model of the housing data.

relying on the median value as shown in the table. The results of this distribution are shown
in Figure 3.

R> plotSlopes(housing.rf)

From this figure it can be seen that the variable NOX always has a negative effect while a
variable such as AGE has differing effects – sometimes negative and sometimes positive –
depending on where a specific observation fits.

3.2. Ecology application

This case study relates a dryland ecosystem’s multifunctionality (roughly speaking, the mag-
nitude of different services performed by an ecosystem) to a range of environmental variables.
It was collected by a large team of researchers and published in the journal Science along
with a statistical analysis (Maestre et al. 2012).

A copy of the data set is provided by the A3 package in the data variable multifunctionality.
The following features are in the data set:

ELE: Elevation of the site.

LAT and LONG: Location of the site.

SLO: Site slope.
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Estimate Std. error t value Pr(> |t|)
(Intercept) 1.0081 0.1747 5.77 0.0000

SR 0.0099 0.0042 2.35 0.0197
SLO 0.0176 0.0056 3.14 0.0019
SAC −0.0174 0.0020 −8.52 0.0000

PCA_C1 −0.0209 0.0389 −0.54 0.5918
PCA_C2 −0.0677 0.0527 −1.28 0.2004
PCA_C3 0.0348 0.0355 0.98 0.3285
PCA_C4 −0.2663 0.0380 −7.00 0.0000

LAT 0.0024 0.0013 1.80 0.0737
LONG −0.0019 0.0005 −3.47 0.0006
ELE −0.0002 0.0001 −3.89 0.0001

Table 6: Multifunctionality data linear regression model results (R2 = 0.5645, Adjusted R2

= 0.5441).

SAC: Soil sand content.

PCA_C1, PCA_C2, PCA_C3, PCA_C4: Principal components of a set of 21 climatic features.

SR: Species richness.

MUL: Multifunctionality.

The original data were analyzed using a multi-model inference approach after Burnham and
Anderson (2002). Although the authors also looked at a simultaneous autoregression model,
only linear regressions were considered in this multi-model inference and so will be the focus
of this reanalysis. The full linear regression explored in the original work is shown in Table 6
with all other linear regressions explored in their work being subsets of this one. From the
table, we can see that SR, SLO, SAC, PCA_C4, LONG, and ELE are all statistically significant at
the 5% level.

R> data("multifunctionality", package = "A3")

R> reg <- lm(MUL ~ SR + SLO + SAC + PCA_C1 + PCA_C2 + PCA_C3 + PCA_C4 +

+ LAT + LONG + ELE, multifunctionality)

R> print.reg(reg, label = "MFLinear", caption =

+ "Multifunctionality data linear regression model results")

However, as with the housing application, we are again missing information on the impor-
tance of each of these variables in regards to the actual predictive accuracy of the model.
This information is simply not available in the standard linear regression output table. The
A3 method, however, makes it very clear. As shown in Table 7, SAC explains the greatest
additional squared error when added to the model, followed by PCA_C4. This basic conclusion
agrees with the conclusions of the original researchers as they note, “By this criterion [the
sum of Akaike weights across models], the two most important predictors of multifunctional-
ity were annual mean temperature (reflected in ... [PCA_C4]) and the sand content in the soil
[SAC].”
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Average slope CV R2 Pr(> R2)

-Full model- 52.6% < 0.01
(Intercept) 1.00810 +7.2% < 0.01
SR 0.00989 +0.9% < 0.01
SLO 0.01761 +1.8% < 0.01
SAC −0.01742 +16.5% < 0.01
PCA_C1 −0.02087 −0.5% 0.92
PCA_C2 −0.06771 +0.1% 0.12
PCA_C3 0.03479 −0.2% 0.25
PCA_C4 -0.26630 +10.6% < 0.01
LAT 0.00235 +0.2% 0.06
LONG −0.00187 +2.3% < 0.01
ELE −0.00025 +2.8% < 0.01

Table 7: Multifunctionality data A3 Results for a linear regression model.

Average slope CV R2 Pr(> R2)

-Full model- 67.9% < 0.01
SR 0.001592 +1.2% < 0.01
SLO 0.002248 −1.4% 0.87
SAC −0.004656 +3.4% < 0.01
PCA_C1 0.072615 +1.5% < 0.01
PCA_C2 0.027495 +0.3% 0.01
PCA_C3 0.015621 −0.1% 0.24
PCA_C4 -0.090020 +0.7% < 0.01
LAT 0.012747 +0.9% < 0.01
LONG 0.000476 +0.4% 0.04
ELE 0.000000 +0.4% < 0.01

Table 8: Multifunctionality data A3 results for the random forest model.

R> mult.lm <- a3.lm(MUL ~ SR + SLO + SAC + PCA_C1 + PCA_C2 + PCA_C3 +

+ PCA_C4 + LAT + LONG + ELE, multifunctionality, p.acc = 0.01,

+ n.folds = 50)

However, if we only use a linear regression model we run the risk of missing important nonlin-
ear relationships. Using the A3 package, we can quickly explore different modeling techniques
and compare them to the linear results. Table 8 shows the A3 results for applying a random
forest model to the multifunctionality data.

R> mult.rf <- a3(MUL ~ SR + SLO + SAC + PCA_C1 + PCA_C2 + PCA_C3 +

+ PCA_C4 + LAT + LONG + ELE + 0, multifunctionality, randomForest,

+ p.acc = 0.01, n.folds = 50)

As with the housing data, there are two things to note. First, the random forest model
has much higher predictive accuracy compared to the linear regression model (R2 of 0.679
compared to 0.526). Second, our inferences about the significances of the features change. For
instance, PCA_C1 was not significant when using a linear regression. When using the random



14 The A3 Method for Reporting of Results from Diverse Modeling Techniques

forest model, however, it became highly significant. As with the housing data, we can see that
variables which do not appear statistically significant when using classical linear regression,
may actually be highly significant; a fact that can sometimes be revealed when using more
data adaptive modeling methods such as random forests.

We can also use the added R2’s to go beyond simple statistical significance to determine
the importance of the different features. From these, we can see that SAC and PCA_C1 are
the two most important features in the random forest model which is different from the SAC

and PCA_C4 features identified as the most important in the linear regression model. Such
changing inferences may fundamentally alter the scientific results and conclusions that are
drawn from a study. It should also be noted that in the random forest results, the added
R2’s are by and large much lower than those seen for the linear regression results. This is
most likely due to correlation between the features. The random forest model, in this case, is
better at exploiting the duplicated information leading to lower added R2’s.

4. Controlling A3 accuracy and computation time

For large data sets or complex model construction algorithms, the A3 package may require
significant computation effort. There are several parameters that can be used to fine-tune the
behavior of the package and to either speed up computation or obtain increased precision in
results.

n.folds: is the number of folds to use in the k-fold cross-validation. Increased number of
folds leads to increased computation time. Generally speaking, a small number of folds
will lead to an over-estimation of model error and the higher the number of folds, the
more accurate the results will be. Since small numbers of folds lead to over-estimation
of error, you may generally safely reduce the number of folds if computation is taking
too long and you will obtain a conservative estimate of model accuracy. The maximum
number of folds is the number of observations (leave-one-out cross-validation) and a
value of 0 for n.folds is a shorthand to use this.

p.acc: controls the desired precision for the calculation of p values. A value of 0.01, for
instance means p values will be calculated to the second decimal place. A value of
0.001, indicates that they will be calculated to the third decimal place. p.acc has
a very important effect on performance. Roughly speaking, a3 computation time is
proportional to 1/p.acc. A value of NULL for p.acc specifies that p values should not
be calculated at all.

features: controls the calculation of results for each feature. By default, p values and added
R2’s are calculated for each of the features in the model. You can turn off the calcu-
lation of these by setting the features argument to FALSE. When features is TRUE,
computation time is proportional to the number of features.

Generally speaking, given a model construction algorithm that takes time t to complete for a
given data set, the A3 package will, if features is TRUE, require T time as approximated in
Equation 1.

T ≈ (n.features + 1)× n.folds× t

p.acc
(1)
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If features is FALSE, T may be approximated with Equation 2.

T ≈ n.folds× t

p.acc
(2)

Fortunately, the A3 method falls under the category of “embarrassingly parallelizable” algo-
rithms that may theoretically be split between multiple machines in a trivial manner. Al-
though the package does not yet contain built-in parallelization code, this is planned for a
future version of the package. Given enough resources for parallel computing, it would be
conceivable to achieve close to T ≈ t in practice (assuming the model construction algorithm
itself cannot take advantage of the parallel resources).

5. Dealing with correlation between observations

The basic A3 method makes no assumptions about the generation of the data except for one:
that observations are independent and identically distributed. However, many prediction and
inference tasks may in fact violate this assumption. For instance, some form of correlation
between observations will often be the norm when dealing with temporal or geographic data.
In fact, both of the illustrative case studies presented in Section 3, arguably exhibit a spatial
correlation structure that was not addressed in the initial analyses.

When correlations between observations exist, p values will be biased. Fortunately, the A3
method contains a built-in way to directly correct for these biases. The method of calculating
p values in the A3 method is based on generating random data with the same properties as
the original data. As a consequence, this makes it generally straightforward to adjust for
well-defined correlation structures or other issues: simply replicate that correlation structure
in the randomly generated data.

As an illustrative example we can generate two first order auto-correlated data series: x and y.
These series are independent of each other. The auto-correlated nature of the series, however,
when not corrected for, creates artificially significant p values when attempting to use one to
predict the other (Table 9).

R> set.seed(1)

R> createAutoCorrelatedSeries <- function(n, r) {

+ dat <- rnorm(n, 0, 1)

+ for(i in 2:n) dat[i] <- dat[i - 1] * r + dat[i] * (1 - r)

+ dat

+ }

R> sample <- data.frame(x = createAutoCorrelatedSeries(100, 0.95),

+ y = createAutoCorrelatedSeries(100, 0.95))

R> reg <- lm(y ~ x, sample)

R> print.reg(reg, label = "genAutoCor",

+ caption = "Biased $p$~values as a result of auto-correlation")

The method of calculating p values used by the A3 method can adjust for this by generating
stochastic noise with the same correlation structure as the observed data. If this is not done,
however, the method will also generate biased p values (Table 10).
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Estimate Std. error t value Pr(> |t|)
(Intercept) −0.1398 0.0168 −8.32 0.0000

x 0.5513 0.0867 6.36 0.0000

Table 9: Biased p values as a result of auto-correlation (R2 = 0.2922, Adjusted R2 = 0.285).

Average slope CV R2 Pr(> R2)

-Full model- 27.0% < 0.01
(Intercept) −0.13983683 +48.7% < 0.01
x 0.55127716 +27.0% < 0.01

Table 10: Biased p values in the A3 method as a result of auto-correlation.

Average slope CV R2 Pr(> R2)

-Full model- 26.9% 0.45
(Intercept) −0.13983683 +46.9% < 0.01
x 0.55127716 +26.9% 0.57

Table 11: A3 corrected p values accounting for auto-correlation.

R> out <- a3.lm(y ~ x, sample)

R> xtable(out, label = "A3AutoCor", caption =

+ "Biased $p$~values in the A3 method as a result of auto-correlation.")

The a3 and a3.lm functions contain an argument data.generating.fn which can be used to
specify the method for generating random noise. This argument takes a list of functions one for
each of the independent columns in the model matrix. By default, the data.generating.fn is
primarily a resampling based method. However, this is not valid for auto-correlated data. Our
simulated data can be correctly analyzed by setting the data.generating.fn argument to
the a3.gen.autocor function which generates first-order auto-correlated data with the same
properties as the original data. The results with corrected p values are shown in Table 11.
Please note that in this table, the intercept has a higher added R2 than the R2 for the overall
model. This simply indicates that without the intercept term, the model is actually worse
than the null model. In fact, if we remove the independent variable from the model, we can
see that the R2 value will be 0, as we are left with just the intercept which is the definition
of the null model.

R> out <- a3.lm(y ~ x, sample,

+ data.generating.fn = list(a3.gen.default, a3.gen.autocor))

R> xtable(out, label = "A3AutoCorCorrect", caption =

+ "A3 corrected $p$~values accounting for auto-correlation.")

6. Conclusions

As a thought experiment, we can use the metaphor of a mountain range to describe the space
of all models. Each latitude and longitude in the range represents a different model and the
height of the range at that point corresponds to the accuracy of that model given a prediction
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task. Each peak in the range might consist of a single type of model. For instance, one
peak might correspond to linear regressions, another peak to support vector machines, yet
another peak to a set of mechanistic models, and so on. What is often done in practice when
building models for prediction or other inferences is to explore only one peak in this range
of mountains. Whether it be just linear regressions or some other technique, researchers and
practitioners often only explore a single model family and then make broad conclusions based
on the results of this limited analysis.

Conclusions drawn from such a narrow exploration of the model space cannot but be viewed
with skepticism. In practice, it is almost impossible to say a priori for an unknown data
generating process that, for instance, a linear regression model will do the best job of available
algorithms in approximating it. It is imperative that practitioners attempt to further explore
the model space beyond a single peak – beyond a single model family. The A3 package
facilitates this exploration by defining an adaptable algorithm and reporting format that
allows the direct comparison of results between different predictive model families.

When predictions and statistical measures of significance drawn from models affect policy
and scientific decisions, it is of great importance that the best suited modeling techniques
available be used. The two worked applications in this paper have demonstrated the use
of the A3 package to facilitate the exploration of the model space. In both cases, it was a
straightforward process to obtain significantly more predictive models (10%–15% additional
explanation of the squared error) compared to the linear regression models simply by exploring
one or two additional model families. More importantly, the more predictive models revealed
altered conclusions about the significance of the drivers of the systems. Variables that were
not statistically significant in the linear regression model became statistically significant in
the more predictive random forest models, and vice versa. The ease at which our scientific
conclusions can change when we apply more accurate models should be strong motivation to
explore a greater part of this infinitely large range of models. The A3 method is just one tool
to facilitate this exploration.

Computational details

The analyses in this article were conducted using the following software versions R 2.15.2,
A3 0.9.2, e1071 1.6-1, pbapply 1.0-5, randomForest 4.6-7, and xtable 1.7-1 When using more
recent versions of R and these packages, small differences in results as compared to the
replication script may be observed due to the stochastic nature of the A3 method. Despite
these small differences, the results remain qualitatively equivalent.
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A. Algorithm details

This appendix describes the primary algorithms used by the A3 package. It provides brief
narrative descriptions along with algorithmic outlines. For further details, the commented
source code in the package itself should be referred to.

A.1. Slopes

The A3 package calculates a measure of slope for each feature that is is approximately analo-
gous to the regression coefficient in linear regressions (and in fact it reduces to the regression
coefficient when applied to linear regression models). One common way coefficients are de-
scribed when discussing linear regressions is that they represent how much the dependent
variable changes for one unit of change in the independent variable. The slope as reported by
the A3 package is calculated in directly this way and is done so for each point in the data set.

The reason that this apparently crude measure approximation of slope is used, rather than at-
tempting to actually estimate the derivative right at each point, is that many models generate
non-smooth functions (CART, random forests, etc). For instance, in a random forest model,
the exact slope at a point will either be 0 (if there is not a branch at that point), or infinite
(if there is a branch). Thus the straightforward ±n metric (where n is a user-adjustable value
which may vary by feature) is used instead of attempting to precisely estimate the derivative
at a point.

function Slopes(Features, Results, n)
Data: The data includes Features, a matrix where each column is a feature and each

row an observation, and Results, a vector where each element corresponds to a
row in the Features matrix. A model construction algorithm FitModel is also
assumed with the resulting model having a PredictResult function.

Result: A vector of slopes for each feature at each observation.
Slopes = [];
Model = FitModel(Features);
for Feature ∈ Columns(Features) do

Slopes[Feature] = [];
for Observation ∈ Rows(Features) do

Lower = Clone(Features);
Lower[Observation, Feature] = Lower[Observation, Feature]− n;
LowerV alue = Model.PredictResult(Lower);
Upper = Clone(Features);
Upper[Observation, Feature] = Upper[Observation, Feature] + n;
UpperV alue = Model.PredictResult(Upper);
Slopes[Feature][Observation] = (UpperV alue− LowerV alue)/2;

end

end
return Slopes

end

Algorithm 1: The calculation of slope distributions.
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function CrossValidatedR2(Features, Results)
Data: The data includes Features, a matrix where each column is a feature and each

row an observation, and Results, a vector where each element corresponds to a
row in the Features matrix. A model construction algorithm FitModel is also
assumed with the resulting model having a PredictResult function.

Result: The cross-validated R2 for the model construction algorithm and data set.
This version of the algorithm uses leave-one-out cross-validation.

SumSquaredErrorNull = 0;
SumSquaredErrorModel = 0;
for Observation ∈ Rows(Features) do

SumSquaredErrorNull =
SumSquaredErrorNull + (Mean(Results[−Observation])−Results[Observation])2;
Model = FitModel(Features[−Observation,AllColumns]);
SumSquaredErrorModel = SumSquaredErrorModel +
(Model.PredictResult(Features[Observation,AllColumns])−
Results[Observation])2;

end
R2

CrossV alidated = 1− SumSquaredErrorModel/SumSquaredErrorNull;
return R2

CrossV alidated;

end

Algorithm 2: Calculation of cross-validated R2.

A.2. Cross-validated R2

The calculation of cross-validated R2 is straightforward. Cross-validation is a widely used
technique in which a data set is divided into smaller subsets and where the error for each
subset is determined using a model developed without that subset (Stone 1974). The A3
package supports k-fold cross-validation. Algorithm 2 details the calculation of the cross-
validated R2 using leave-one-out cross-validation (when the k in k-fold cross-validation is the
number of observations).

Algorithm 3 details the calculation of the added R2’s in the model. These indicate how much
the predictive accuracy of the model is increased when a given feature is added to the model.
This is analogous to semi-partial correlation in linear regression.

A.3. p values

The calculation of p values is done using a randomization test where the accuracy of the
added cross-validated R2 for a portion of the data is compared to that for randomly generated
data. Assuming the properties of the randomized data are the same as for the real data, the
distribution of R2 values obtained using the randomized data represents the distribution of
R2 values were the null hypothesis is true. A p value is than estimated by finding the position
of the observed R2 values within this distribution. A suitable method for generating the
stochastic data must be chosen such that the simulated data has the same properties as the
actual data. For independent and identically distributed data, a resampling method is used
by default in the A3. For correlated data, more complex techniques must be used. The
A3 package comes with a function a3.gen.autocor to help generating stochastic data for
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function AddedR2(Features, Results)
Data: The data includes Features, a matrix where each column is a feature and each

row an observation, and Results, a vector where each element corresponds to a
row in the Features matrix.

Result: A vector of added R2’s corresponding to each of the features in the model.
R2

FullModel = CrossV alidatedR2(Features,Results);
R2

Added = [];
for Feature ∈ Columns(Features) do

R2
Submodel = CrossV alidatedR2(Features[AllRows,−Feature], Results);

R2
Added[Feature] = R2

FullModel −R2
Submodel;

end
return R2

Added;

end

Algorithm 3: Calculation of added R2’s.

function pValue(Features, Results, Accuracy)
Data: The data includes Features, a matrix where each column is a feature and each

row an observation, Results, a vector where each element corresponds to a row
in the Features matrix, and Accuracy, the desired accuracy for p values. The
existence is also assumed of a function GenerateRandomFeatures that creates
stochastic noise with the same properties as the Features matrix.

Result: The p value for the significance of the entire model.
Iterations = Ceiling(1/Accuracy);
R2

Original = CrossV alidatedR2(Features,Results);

R2
Stochastic = [];

for i ∈ [1..Iterations] do
DataV ector = GenerateRandomFeatures(Features);
R2

Stochastic[i] = CrossV alidatedR2(DataV ector,Results);

end
p = 1−Quantile(R2

Original, Sort(R
2
Stochastic));

return p
end

Algorithm 4: Calculation of p values.

first-order auto-correlated data such as may sometimes be applicable to temporal data.

The basic algorithm is detailed in Algorithm 4. The same technique can also be applied to
calculated the significance of individual features.

B. Integration

The a3 function, in effect, “wraps” an existing algorithm and generates its statistics based on
the output of the method it is wrapping. As such, there is necessarily a level of abstraction
when using the A3 method that may make it difficult to fully utilize the unique features of a
given modeling technique that could be used if the modeling technique were applied directly.
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The technique it uses to carry out this wrapping works for many existing R model construc-
tion functions. However, in some cases the implementation of the target model construction
algorithm may make it fail. In these instances, custom code may be required to bridge the
A3 package and the target model construction algorithm.

The a3 method assumes the following properties of a model function denoted f :

� f accepts a formula argument that specifies a regression relationship.

� f accepts a data argument that contains a data frame for the specified formula.

� f returns a model object for which a predict method has been defined. This predict
method’s first argument should be the regression model and the second argument should
be new data from which to generate predictions.

Many, built-in R functions conform to these three criteria as do many user contributed pack-
ages and functions. However, in cases where a function does not conform to this specification,
custom code may be written to allow to use the function with the a3 function. As an example,
the following general framework could be used. In it, we create a wrapper for a model with
an associated predict function. We then call a3 using the wrapper function.

R> customFunction.wrapper <- function(formula, data){

+ x <- createModelWithCustomFunction(...)

+ class(x) <- "a3CustomFunction"

+ x

+ }

R> predict.a3CustomFunction <- function(regression, new.data){

+ predictWithCustomFunction(...)

+ }

R> a3(y ~ ., data, customFunction.wrapper)
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