
JSS Journal of Statistical Software
August 2015, Volume 66, Issue 9. http://www.jstatsoft.org/

SSMMATLAB: A Set of MATLAB Programs for the

Statistical Analysis of State Space Models

Vı́ctor Gómez
Ministry of Finance and Public Administrations, Spain

Abstract

This article discusses and describes SSMMATLAB, a set of programs written by the
author in MATLAB for the statistical analysis of state space models. The state space
model considered is very general. It may have univariate or multivariate observations,
time-varying system matrices, exogenous inputs, regression effects, incompletely specified
initial conditions, such as those that arise with cointegrated VARMA models, and missing
values. There are functions to put frequently used models, such as multiplicative VARMA
models, VARMAX models in echelon form, cointegrated VARMA models, and univariate
structural or ARIMA model-based unobserved components models, into state space form.
There are also functions to implement the Hillmer-Tiao canonical decomposition and the
smooth trend and cycle estimation proposed by Gómez (2001). Once the model is in
state space form, other functions can be used for likelihood evaluation, model estimation,
forecasting and smoothing. A set of examples is presented in the SSMMATLAB manual
to illustrate the use of these functions.

Keywords: state space models, VARMAX models, cointegrated VARMA models, Kalman
filter, unobserved components, MATLAB.

1. Introduction

This article describes SSMMATLAB (Gómez 2014), a set of programs written by the author
in MATLAB (The MathWorks Inc. 2014) for the statistical analysis of time series that are
assumed to follow state space models. The series can be univariate or multivariate and the
state space model can be very general. It may have time-varying system matrices, exogenous
inputs, regression effects, incompletely specified initial conditions, such as those that arise with
cointegrated VARMA (vector autoregressive moving average) models, and missing values.

The motivation for SSMMATLAB is to provide the time series analyst with a set of programs

http://www.jstatsoft.org/

2 SSMMATLAB: State Space Models in MATLAB

written in MATLAB that will allow him to work with general state space models. Since many
time series models can be put into state space form, special functions have been written for
the most usual ones, such as multiplicative VARMA models, VARMAX models in echelon
form, cointegrated VARMA models, univariate structural models, like those considered by
Harvey (1989, Chapter 4) or Kitagawa and Gersch (1996), and ARIMA model-based (AMB)
unobserved components models (Gómez and Maravall 2001b, Chapter 8). But if the user
intends to work with more sophisticated state space models that are not available in standard
commercial packages for time series analysis or econometrics, he can program his own model
in SSMMATLAB and carry out model estimation, interpolation, forecasting and smoothing.

State space methods have been implemented in some statistical software packages, such as
STAMP (Koopman, Harvey, Doornik, and Shephard 2009; Mendelssohn 2011), REGCMPNT
(Bell 2011), R (Petris and Petrone 2011), State Space Models (SSM) toolbox for MATLAB
(Peng and Aston 2011), SAS (Selukar 2011), EViews (Van den Bossche 2011), GAUSS (Aptech
Systems, Inc. 2006), Stata (Drukker and Gates 2011), gretl (Lucchetti 2011), RATS (Doan
2011) and SsfPack (Pelagatti 2011). See the Special Volume 41 (Commandeur, Koopman,
and Ooms 2011) of the Journal of Statistical Software for a discussion of these packages.

SSMMATLAB provides functions similar to the ones contained in previous packages for linear
state space models. In addition, it provides functions for identification, estimation, forecasting
and smoothing of VARMAX models, possibly in state space echelon form, and of cointegrated
VARMA models. It provides also functions to design digital filters and to estimate smooth
trends and cycles in an AMB approach. Moreover, the general functions in SSMMATLAB
allow, with careful programming, to do at least all the things that the previous packages can
do with linear state space models.

In Section 2, the state space model will be described. In Section 3, the functions to put
into state space form multiplicative VARMA models, VARMAX models in echelon form,
univariate structural models and AMB unobserved components models will be documented.
In Section 4, the identification of VARMAX(p, q, r) models and VARMAX models in echelon
form will be considered. Also in Section 4, the estimation of VARX models, the Hannan and
Rissanen (1982) method to estimate VARMAX models, as well as the conditional and the
exact methods to estimate VARMAX models will be described. The functions for likelihood
evaluation, computation of recursive residuals, model estimation, forecasting and smoothing
will be described in Section 5. Finally, in Section 6, reference will be made to some examples
and case studies using SSMMATLAB.

2. The state space model

The state space model considered in SSMMATLAB is

αt+1 = Wtβ + Ttαt +Htεt, (1)

Yt = Xtβ + Ztαt +Gtεt, t = 1, . . . , n, (2)

where {Yt} is a multivariate process with Yt ∈ Rp, Wt, Tt, Ht, Xt, Zt and Gt are time-varying
deterministic matrices, β ∈ Rq is a constant bias vector, αt ∈ Rr is the state vector, and
{εt} is a sequence of uncorrelated stochastic vectors, εt ∈ Rs, with zero mean and common
covariance matrix σ2I. The initial state vector α1 is specified as

α1 = c+W0β + a+Aδ, (3)

Journal of Statistical Software 3

where c has zero mean and covariance matrix σ2Ω, a is a constant vector, A is a constant
matrix, and δ has zero mean and covariance matrix kI with k → ∞ (diffuse). It is assumed
that the vectors c and δ are mutually orthogonal and that α1 is orthogonal to the {εt}
sequence. The vector δ in (3) models uncertainty with respect to the initial conditions. For
example, a multivariate random walk model, Yt = Yt−1 + At, where {At} is a zero mean
normally distributed sequence with common covariance matrix Σ, can be put into state space
form as

αt+1 = αt + Lεt,

Yt = αt,

where Σ = LL> is the Cholesky decomposition of Σ, Lεt = At+1, σ
2 = 1, and α1 = δ.

The state space model (1) and (2) is very general. For example, it can be used in macro-
economics for analyzing time-varying parameter VARs as in Primiceri (2005) as well as for
forecasting using mixed frequency data as in Aruoba, Diebold, and Scotti (2009).

It is not restrictive that the same term, εt, appears in both equations. To see this, suppose
the state space model

αt+1 = Wtβ + Ttαt + Jtut, (4)

Yt = Xtβ + Ztαt + vt, t = 1, . . . , n, (5)

where Wt, Tt, Jt, Xt and Zt are time-varying deterministic matrices,

E

{[
ut
vt

] [
u>s , v

>
s

]}
= σ2

[
Qt St
S>t Rt

]
δts,

δts denotes the Kronecker delta, ut ∈ Rs, vt ∈ Rp, E(ut) = 0, E(vt) = 0 and α1 is as before. To
pass from the state space representation (4) and (5) to (1) and (2), let Vt be the symmetric
covariance matrix

Vt = COV

[
Jtut
vt

]
=

[
JtQtJ

>
t JtSt

S>t J
>
t Rt

]
.

Every symmetric matrix, M , satisfies the decomposition M = M1/2
(
M1/2

)>
, where M1/2 is

a square nonunique matrix. For example, let O be an orthogonal matrix such that O>MO =
D, where D is a diagonal matrix. Then, we can take M1/2= OD1/2, where D1/2 is the matrix
obtained from D by replacing its nonzero elements with their square roots. This choice of
M1/2 has the advantage of being valid and numerically stable even if M is singular. It follows

from this that we can take (G>t , H
>
t)> = V

1/2
t .

It could be useful to compare the state space model used in SSMMATLAB with the ones used
in some other statistical software packages. For example, the state space model considered in
MATLAB corresponds to a VARMAX model. It is of the form

αt+1 = Tαt +Gut +Kat,

Yt = Zαt +Hut + at,

where {At} is an innovations sequence (uncorrelated, zero mean and with common covariance
matrix) and {ut} is a sequence of exogenous variables. Since Gut = vec(Gut) = (u>t ⊗I)vec(G)

4 SSMMATLAB: State Space Models in MATLAB

and Hut = vec(Hut) = (u>t ⊗I)vec(H), if we define βh = vec(H), βg = vec(G), β = (β>h , β
>
g)>,

Wt = (0, u>t ⊗ I) and Vt = (u>t ⊗ I, 0), we see that the previous state space model is as (4)
and (5) but with some restrictions on it. This state space model does not encompass the
structural model of Harvey (1989, Chapter 4) for example. Neither includes it state space
models with time-varying coefficient matrices or multiplicative VARMA models, described in
Section 3.1.

The state space model considered in the State Space Models (SSM) toolbox for MATLAB is
of the form (4) and (5), but there is no Wtβ term and the errors ut and vt are uncorrelated.
The state space models in STAMP and REGCMPNT are also as in the State Space Models
(SSM) toolbox for MATLAB. In the state space model considered in Stata the system matrices
are time invariant and the errors are uncorrelated.

To the best of this author’s knowledge none of the software packages mentioned in Section 1
handles either VARMAX models in echelon form and Kronecker indices or the use of high
pass and band pass filters in a model-based approach.

3. Putting some common models into state space form

Given that the state space model considered by SSMMATLAB is very general, it is advisable
to have some functions that allow to put some of the most commonly used models in practice
into state space form. In this section, we will document some functions that can be used for
this purpose. The user can of course modify these functions or write his own functions in
order to suit his needs, but in many cases these functions will be sufficient.

3.1. Multiplicative VARMA models

Theoretical introduction

Suppose a vector ARMA (VARMA) model given by

Yt + Φ1Yt−1 + · · ·+ ΦpYt−p = At + Θ1At−1 + · · ·+ ΘqAt−q, (6)

that can be written more compactly as

Φ(B)Yt = Θ(B)At,

where Φ(B) = I + Φ1B + · · ·+ ΦpB
p, Θ(B) = I + Θ1B + · · ·+ ΘqB

q and B is the backshift
operator, BYt = Yt−1.

The model (6) is stationary if the roots of det[Φ(z)] are all outside the unit circle and the
model is invertible when the roots of det[Θ(z)] are all outside the unit circle.

One possible state space representation is

T =


−Φ1 I 0 · · · 0
−Φ2 0 I · · · 0
...

...
...

. . .
...

−Φr−1 0 0 · · · I
−Φr 0 0 · · · 0

 , H =


Θ1 − Φ1

Θ2 − Φ2
...
Θr−1 − Φr−1
Θr − Φr

Σ1/2, (7)

Journal of Statistical Software 5

where r = max(p, q), Φi = 0 if i > p, Θi = 0 if i > q, G = Σ1/2, Z = [I, 0, . . . , 0] and

VAR(At) = Σ1/2
(
Σ1/2

)>
is the Cholesky decomposition of VAR(At). This is the state space

representation used in SSMMATLAB.

To obtain initial conditions for the Kalman filter, the mean and the covariance matrix of the
initial state vector are needed. If the series is stationary, the mean is obviously zero. As for
the covariance matrix, letting VAR(α1) = V , the matrix V satisfies the Lyapunov equation

V = TV T> +HH>,

where T and H are given by (7). In SSMMATLAB, this equation is solved in a numerically
stable manner.

The VARMA models considered in SSMMATLAB can be multiplicative, i.e., they can be of
the form

(I + φ1B + · · ·+ φpB
p)(I + Φ1B

s + · · ·+ ΦPB
Ps)Yt =

(I + θ1B + · · ·+ θqB
q)(I + Θ1B

s + · · ·+ ΘQB
Qs)At, (8)

where s is the number of observations per year.

There also exists the possibility to incorporate regression variables into the model. More
specifically, models of the form

Yt = Xtβ + Ut,

where Ut follows a VARMA model (8) and β is a vector of regression coefficients, can be
handled in SSMMATLAB.

SSMMATLAB implementation

In SSMMATLAB, the matrix polynomials in (8) are given as three dimensional arrays in
MATLAB. For example, the matrix polynomial

Φ(z) =

[
1 0
0 1

]
+

[
−.5 .2
0 −.7

]
z

would be defined in MATLAB as

phi(:, :, 1) = eye(2); phi(:, :, 2) = [-.5 .2; 0. -.7];

Once the model (8) has been defined in MATLAB, we can use the following function to put
this model into state space form.

function [str, ferror] = suvarmapqPQ(phi, th, Phi, Th, Sigma, freq)

Fixing of parameters If the user wants to fix some parameters in a VARMA model, he
should proceed as follows. Assuming that the model has been defined and, therefore, the
structure str exists, the appropriate parameters in the AR and MA matrix polynomials
should be first set to their fixed values. Then, function suvarmapqPQ should be run. Finally,
the corresponding parameters in the matrix polynomials str.phin, str.thn, str.Phin or
str.Thn should be set to zero and function fixvarmapqPQ should be called. For example, the
following sequence of commands can be used to fix the parameters phi(1, 2, 2) and th(2,

1, 2) to zero in a bivariate VARMA model.

6 SSMMATLAB: State Space Models in MATLAB

phi(1, 2, 2) = 0.; th(2, 1, 2) = 0.;

[str, ferror] = suvarmapqPQ(phi, th, Phi, Th, Sigma, freq);

str.phin(1, 2, 2) = 0; str.thn(2, 1, 2) = 0;

[str, ferror] = fixvarmapqPQ(str);

Model estimation Once the model has been defined and, therefore, the structure str

exists, it can be estimated. Before estimation, the user has to decide whether there are
fixed parameters in the model or not. How to fix some parameters has been explained in
the previous section. The parameters to estimate are in the array str.xv, and the fixed
parameters are in str.xf. It is assumed that the values entered by the user for the parameters
to be estimated are reasonable initial values. In any case, the estimation function checks at
the beginning whether the model is stationary and invertible and issues a warning message if
the model is nonstationary or noninvertible.

One method that usually provides good initial estimates for VARMA models is the Han-
nan and Rissanen (1982) method for univariate series or its generalization to multivariable
series (Hannan and Kavalieris 1984, 1986). This method has been recently implemented in
SSMMATLAB and will be described later.

It should be emphasized that in SSMMATLAB, the (1, 1) parameter in the covariance matrix
of the innovations is always concentrated out of the likelihood.

During the estimation process, each time the log-likelihood is evaluated SSMMATLAB checks
whether the model is stationary and invertible. In case any of these conditions is not satisfied,
the variable in the corresponding matrix polynomial is multiplied by a small number so that
all its roots are outside the unit circle. This guarantees that the solution will always be
stationary and invertible.

The following function can be used for parameter estimation.

function result = varmapqPQestim(y, str, Y)

After model estimation, the function pr2varmapqPQ can be used to set up the estimated model
in VARMA form. For example, the following commands achieve this.

xvf = result.xvf; xf = result.xf;

[phif, thf, Phif, Thf, Lf, ferror] = pr2varmapqPQ(xvf, xf, str)

Recursive residuals As explained in Section 5.2, recursive residuals can be computed using
function scakff. For example, the following commands can be used to compute recursive
residuals after estimation of a VARMA model, assuming that phif, thf, Phif and Thf are
the estimated matrix polynomials in the model, Sigmaf is the estimated covariance matrix of
the innovations and freq is the number of observations per year.

Sigmaf = Lf * Lf';

[strf, ferror] = suvarmapqPQ(phif, thf, Phif, Thf, Sigmaf, freq);

[nalpha, mf] = size(strf.T);

i = [nalpha 0 0 0];

[ins, ferror] = mlyapunov(strf.T, strf.H * strf.H', .99);

X = Y; W = [];

Journal of Statistical Software 7

T = strf.T; Z = strf.Z; G = strf.G; H = strf.H;

[Xt, Pt, g, M, initf, recrs] = scakff(y, X, Z, G, W, T, H, ins, i);

Forecasting As described in Section 5.4, forecasts can be obtained using function ssmpred.
For example, the following commands can be used to obtain twelve forecasts after estimation
of a bivariate regression model with VARMA errors. It is assumed that phif, thf, Phif and
Thf are the estimated matrix polynomials in the model and freq is the number of observations
per year. The variables hb, Mb, A and P are needed and they are in structure result. hb is
the vector of regression estimates and Mb is the matrix of standard errors. A is the possibly
augmented estimated state vector, xt|t−1, obtained with the Kalman filter at the end of the
sample and P is the matrix of standard errors.

[strf, ferror] = suvarmapqPQ(phif, thf, Phif, Thf, Sigmaf, freq);

T = strf.T; Z = strf.Z; G = strf.G; H = strf.H;

Xp = Y; Wp = [];

hb = result.h; Mb = result.H; A = result.A; P = result.P;

npr = 12;

m = 2;

[pry, mypr, alpr, malpr] = ssmpred(npr, m, A, P, Xp, Z, G, Wp, T, H, hb, ...

Mb);

3.2. VARMA and VARMAX models in echelon form

Theoretical introduction

Suppose the s-dimensional VARMA model

Φ(B)Yt = Θ(B)At, (9)

where Φ(z) = Φ0 + Φ1z+ · · ·+ Φlz
l, Θ(z) = Θ0 + Θ1z+ · · ·+ Θlz

l, Θ0 = Φ0, and Φ0 is lower
triangular with ones in the main diagonal. We say that the VARMA model (9) is in echelon

form if we can express the matrix polynomials Φ(z) and Θ(z) as follows

φii(z) = 1 +

ni∑
j=1

φii,jz
j , i = 1, . . . , s, (10)

φip(z) =

ni∑
j=ni−nip+1

φip,jz
j , i 6= p, (11)

θip(z) =

ni∑
j=0

θip,jz
j , i, p = 1, . . . , s, (12)

where Θ0 = Φ0 and

nip =

{
min{ni + 1, np} for i > p
min{ni, np} for i < p

i, p = 1, . . . , s.

8 SSMMATLAB: State Space Models in MATLAB

Note that nip specifies the number of free coefficients in the polynomial φip(z) for i 6= p. The
numbers {ni : i = 1, . . . , s} are called Kronecker indices and l = max{ni : i = 1, . . . , s}.
The state space echelon form corresponding to the previous VARMA echelon form is

xt+1 = Fxt +KAt, (13)

Yt = Hxt +At. (14)

It is described in more detail in the SSMMATLAB manual. Note that the At in the state
space form (13) and (14) are the model innovations.

In a similar way, VARMAX models in echelon form can be handled in SSMMATLAB, as
described in the manual.

SSMMATLAB implementation

As in the case of VARMA models, in SSMMATLAB the matrix polynomials of a VARMA or
VARMAX model in echelon form are given as three dimensional arrays in MATLAB.

Once the Kronecker indices for model (9) or for a VARMAX model have been specified, we
can use the following function to put this model into state space form, using NaN to represent
the parameters that have to be estimated.

function [str, ferror] = matechelon(kro, s, m)

Fixing of parameters to zero The user can fix some parameters to zero in a VARMAX
model after the structure str has been created using function matechelon or any other
method. To this end, he can set the corresponding parameters of the appropriate matrix
polynomials to zero and subtract the number of fixed parameters from str.nparm. For
example, in the following lines of MATLAB code first some parameters are fixed to zero after
the model has been estimated using the Hannan-Rissanen method. Then, in the next step,
the model is re-estimated.

strv.gamma(:, :, 1) = 0.; strv.phi(:, :, 2:3) = zeros(1, 2);

strv.theta(:, :, 3) = 0.;

strv.nparm = strv.nparm - 4;

strv = mhanris(yd, xd, seas, strv, 0, 1);

3.3. Cointegrated VARMA models

Theoretical introduction

Cointegrated VARMA models can be handled in SSMMATLAB. The VARMA models can
be ordinary, multiplicative, or in echelon form. The following discussion is valid for all these
types of models. Let the k-dimensional VARMA model be given by

Φ(B)Yt = Θ(B)At, (15)

where B is the backshift operator, BYt = Yt−1, Φ(z) = Φ0 + Φ1z + · · · + Φlz
l, Θ(z) =

Θ0 + Θ1z + · · ·+ Θlz
l, Θ0 = Φ0, Φ0 is lower triangular with ones in the main diagonal, and

Journal of Statistical Software 9

det[Φ(z)] = 0 implies |z| > 1 or z = 1. We assume that the matrix Π, defined by

Π = −Φ(1),

has rank r such that 0 < r < k and that there are exactly k − r roots in the model equal to
one. Then, Π can be expressed (non uniquely) as

Π = αβ>,

where α and β are k × r of rank r. Let β⊥ be a k × (k − r) matrix of rank k − r such that

β>β⊥ = 0r×(k−r)

and define the matrix P as
P = [P1, P2] = [β⊥, β].

Then, it is not difficult to verify that Q = P−1 is given by

Q =

[
Q1

Q2

]
=

[
(β>⊥β⊥)−1β>⊥
(β>β)−1β>

]
and that if we further define U1 = P1Q1 and U2 = P2Q2, the following relations hold

U1 + U2 = Ik, U1U2 = U2U1 = 0. (16)

Thus, we can write

Ik − zIk = (Ik − U1z)(Ik − U2z) = (Ik − U2z)(Ik − U1z). (17)

The error correction form corresponding to model (15) is

Γ(B)∇Yt = ΠYt−1 + Θ(B)At, (18)

where ∇ = Ik−BIk, Γ(z) = Γ0 +
∑l−1

i=1 Γiz
i, and the Γi matrices are defined by Γ0 = Φ0 and

Γi = −
l∑

j=i+1

Φj , i = 1, . . . , l − 1.

It follows from (18) that β>Yt−1 is stationary because all the terms in this equation different
from ΠYt−1 = αβ>Yt−1 are stationary. Therefore, there are r cointegrated relations in the
model given by β>Yt.

Considering (16) and (17), the following relation between the autoregressive polynomials in
(15) and (18) holds

Φ(z) = Γ(z)(Ik − zIk)−Πz

= [Γ(z)(Ik − U2z)−Πz] (Ik − U1z)

because ΠU1 = 0. Thus, defining Φ∗(z) = Γ(z)(Ik −U2z)−Πz and D(z) = Ik −U1z, we can
write Φ(z) as

Φ(z) = Φ∗(z)D(z) (19)

10 SSMMATLAB: State Space Models in MATLAB

and the model (15) as
Φ∗(B)D(B)Yt = Θ(B)At. (20)

Since both U1 = β⊥(β>⊥β⊥)−1β>⊥ and U2 = β(β>β)−1β> are idempotent and symmetric
matrices of rank k − r and r, respectively, the eigenvalues of these two matrices are all equal
to one or zero. In particular,

det(Ik − U1z) = (1− z)k−r

and therefore, the matrix polynomial D(z) = Ik − U1z in (19) is a “differencing” matrix
polynomial because it contains all the unit roots in the model. This implies in turn that the
matrix polynomial Φ∗(z) in (19) has all its roots outside the unit circle and the series D(B)Yt
in (20) is stationary. Thus, the matrix polynomial Φ∗(z) can be inverted so that the following
relation holds

D(B)Yt = [Φ∗(B)]−1 Θ(B)At.

Premultiplying the previous expression by β>⊥ , we can see that there are k − r linear combi-
nations of Yt that are I(1) given by β>⊥Yt. In a similar way, premultiplying by β>, it follows
as before that there are r linear combinations of Yt that are I(0) given by β>Yt.

The series D(B)Yt can be considered as the“differenced series”, and the notable feature of (20)
is that the model followed by D(B)Yt is stationary. Therefore, we can specify and estimate a
stationary VARMA model if we know the series D(B)Yt.

It is shown in the SSMMATLAB manual how the matrix U1 can be parameterized.

SSMMATLAB implementation

In SSMMATLAB there are two ways to handle cointegrated VARMA models. The first one
parameterizes model (18) in terms of the matrix polynomials Γ(z) and Θ(z) and the matrices
α and β⊥. The second one parameterizes model (20) in terms of the matrix polynomials
Φ∗(z) and Θ(z) and the matrix β⊥. The advantage of the latter parametrization is that we
can specify a stationary VARMA model in echelon form for the “differenced” series by directly
specifying Φ∗(z) and Θ(z). There is no need for a reverse echelon form considered by some
authors (Lütkepohl 2007).

Once the cointegration rank has been identified, the matrix β⊥ and the differencing matrix
polynomial D(z) can be estimated in SSMMATLAB using the following function, that also
gives the “differenced” series.

function [D, DA, yd, ferror] = mdfestim1r(y, x, prt, nr)

If a model such as (20) has been identified for the “differenced” series, D(B)Yt, the following
function can be used in SSMMATLAB to obtain the matrix polynomial Γ(z) and the matrices
α and β⊥ corresponding to the error correction model

function [Pi, Lambda, alpha, betap, ferror] = mid2mecf(phi, D, DAf)

If a model in error correction form (18) has been identified, the following function can be used
in SSMMATLAB to obtain the matrix polynomial Φ∗(z), the matrix β⊥ and the differencing
matrix polynomial, D(z), corresponding to the model for the “differenced” series.

function [phi, D, DA, ferror] = mecf2mid(Lambda, alpha, betap)

Journal of Statistical Software 11

Estimating the number of unit roots in the model The number of unit roots in the
model can be obtained in SSMMATLAB using a generalization to multivariate series of the
criterion based on different rates of convergence proposed by Gómez (2013) for univariate
series. The following function can be used in SSMMATLAB for that purpose.

function [D, nr, yd, DA, ferror] = mcrcregr(y, x)

Model estimation Before estimating a model parameterized in terms of the matrix poly-
nomials Γ(z) and Θ(z) and the matrices α and β⊥ corresponding to the error correction model
(18), we have to put the model into state space form. This can be done in SSMMATLAB
using the following function.

function [str, ferror] = suvarmapqPQe(Lambda, alpha, betap, th, Th, ...

Sigma, freq)

Once we have model (18) in state space form, we can estimate it in SSMMATLAB using the
following function.

function [result, ferror] = varmapqPQestime(y, str, Y, constant)

If the model is parameterized in terms of the matrix polynomials Φ∗(z) and Θ(z) and the
matrix β⊥ corresponding to the model for the “differenced” series (20), we can put the model
into state space form in SSMMATLAB using first the functions suvarmapqPQ, described
earlier, and then the following function.

function [str, ferror] = aurirvarmapqPQ(str, nr, DA)

After having set model (20) in state space form, we can estimate it in SSMMATLAB using
the following function.

function [result, ferror] = varmapqPQestimd(y, str, Y, constant)

In the SSMMATLAB manual, it is described how to set up the estimated model and how to
forecast with it if desired.

3.4. Univariate structural models

Theoretical introduction

Univariate structural models are models in which the observed univariate process, {yt}, is
assumed to be the sum of several unobserved components. In its general form, the model is

yt = pt + st + ut + vt + et,

where pt is the trend, st is the seasonal, ut is the cyclical, vt is the autoregressive, and et is the
irregular component. Each of these components follows an ARIMA model. All the models
described later in this section can be handled in SSMMATLAB.

12 SSMMATLAB: State Space Models in MATLAB

The trend component is usually specified as

pt+1 = pt + bt + ct,

bt+1 = bt + dt,

where {ct} and {dt} are two mutually and serially uncorrelated sequences of random variables
with zero mean and variances σ2c and σ2d. The idea behind the previous model is to make the
slope and the intercept stochastic in a linear equation, pt = p+ b(t− 1), and to let them vary
according to a random walk. In fact, if σ2c = 0 and σ2d = 0 we get the deterministic linear
trend pt = p1 + b1(t− 1).

There are basically two specifications for the seasonal component. The first one is called
“stochastic dummy seasonality” and, according to it, st follows the model

S(B)st = rt,

where S(B) = 1 +B + · · ·+Bf−1, B is the backshift operator, Byt = yt−1, f is the number
of observations per year and {rt} is an uncorrelated sequence of random variables with zero
mean and variance σ2r . The idea behind this model is that the seasonal component is periodic
and its sum should be approximately zero in one year. The other representation is called
“trigonometric seasonality” and in this case st follows the model

st =

[f/2]∑
i=1

si,t,

where [x] denotes the greatest integer less than or equal x, f is, as before, the number of
observations per year, sit follows the model[

si,t+1

s∗i,t+1

]
=

[
cosωi sinωi

− sinωi cosωi

] [
si,t
s∗i,t

]
+

[
ji,t
j∗i,t

]
, (21)

ωi = 2πi/f , and {ji,t} and {j∗i,t} are two mutually and serially uncorrelated sequences of

random variables with zero mean and common variance σ2i . If f is even, ωf/2 = 2π[f/2]/f
= π and the model followed by the component sf/2,t in (21), corresponding to the frequency
ωf/2, collapses to sf/2,t+1 = −sf/2,t + jf/2,t. In SSMMATLAB, it is assumed that all seasonal
components have a common variance, σ2i = σ2s , i = 1, 2, . . . , [f/2]. This representation of the
seasonal component has its origin in the observation that, from the theory of difference equa-
tions, we know that the solution of the equation S(B)st = 0 is the sum of [f/2] deterministic
harmonics, each one corresponding to a seasonal frequency ωi.

If the cyclical component, ut, is present, it can be modeled in two different ways. The first
one corresponds to that proposed by Harvey (1993), namely[

ut+1

u∗t+1

]
= ρ

[
cos θ sin θ
− sin θ cos θ

] [
ut
u∗t

]
+

[
kt
k∗t

]
, (22)

where 0 < ρ < 1, θ ∈ [0, π] is the cyclical frequency, and {kt} and {k∗t } are two mutually and
serially uncorrelated sequences of random variables with zero mean and common variance σ2k.
The ρ factor ensures that the cycle is stationary.

Journal of Statistical Software 13

It can be shown that the initial conditions for the cycle (22) satisfy[
u1
u∗1

]
∼
[(

0
0

)
, σ2uI2

]
,

where I2 is the unit matrix of order two and (1− ρ2)σ2u = σ2k. Here, the notation ∼ refers to
the first two moments of the distribution of u1 and u∗1, meaning that these two variables have
zero mean, are uncorrelated and have common variance σ2u.

The second way to model the cycle has its origin in the model-based interpretation of a band-
pass filter derived from a Butterworth filter based on the sine function. See Gómez (2001) for
details. The model for the cycle is in this case

(1− 2ρ cos θB + ρB2)ut = (1− ρ cos θB)kt, (23)

where ρ and θ are as described earlier and {kt} is an uncorrelated sequence of random variables
with zero mean and variance σ2k. The previous model can be put into state space form as[

ut+1

ut+1|t

]
=

[
0 1
−ρ 2ρ cos θ

] [
ut

ut|t−1

]
+

[
1

ρ cos θ

]
kt. (24)

To obtain the initial conditions in this case, we can consider that, clearly, u1 and u1|0 have
zero mean and their covariance matrix, V , satisfies the Lyapunov equation

V = AV A> + bb>σ2k,

where

A =

[
0 1
−ρ 2ρ cos θ

]
, b =

[
1

ρ cos θ

]
.

The matrix V is obtained in SSMMATLAB by solving the previous Lyapunov equation in a
numerically safe manner.

It is to be noticed that the variables s∗i,t, u
∗
i,t and ut|t−1 in (21), (22) and (23) are auxiliary

variables used to define the state space forms for the components of interest. In addition, it
can be shown that the cycle specified as in (23) can be obtained from (22) if we let {k∗t } be
deterministic and equal to zero while maintaining {kt} stochastic and without change.

The autoregressive component, vt, is assumed to follow an autoregressive model, i.e.,

(1 + φ1B + · · ·+ φpB
p)vt = wt,

where the polynomial φ(B) = 1 + φ1B + · · · + φpB
p has all its roots outside the unit circle

and {wt} is an uncorrelated sequence of random variables with zero mean and variance σ2w.

In SSMMATLAB only one cycle at a time can be specified in the structural model. The reason
for this is that cycles are usually difficult to specify and to estimate. Thus, if one believes
that there are several cycles in the model, one can specify one cycle and let the autoregressive
component take account of the other cycles by specifying a sufficiently high autoregressive
order.

There exists the possibility to incorporate regression variables into structural models. More
specifically, models of the form

yt = Ytβ + wt,

14 SSMMATLAB: State Space Models in MATLAB

where wt follows a structural model and β is a vector of regression coefficients, can be handled
in SSMMATLAB. It is also possible to incorporate interventions that affect some component.
For example, an impulse to accommodate a sudden change in the slope of the series that takes
place at one observation only. This type of intervention can be modeled by defining a proper
Wt matrix in Equation 1. This procedure will be illustrated in Case Study 3.

SSMMATLAB implementation

The following function can be used in SSMMATLAB to put a univariate structural model
into state space form.

function [str, ferror] = suusm(comp, y, Y, npr)

Fixing of parameters If the user wants to fix some parameters in a structural model, he
should set the corresponding elements in the arrays comp.level, comp.slope, comp.seas,
comp.cycle, comp.cyclep, comp.arp or comp.irreg to zero instead of NaN.

Model estimation Once the model has been defined and, therefore, the structure str

exists, it can be estimated. Before estimation, the user has to decide whether to fix some
parameters in the model or not. How to fix some parameters has been explained in the
previous paragraph. The parameters to be estimated are in the array str.xv, and the fixed
parameters are in str.xf. It is assumed that the values entered by the user for the parameters
to be estimated are reasonable initial values.

Initial values that can be used for the standard deviations are all equal to .1, except the slope
standard deviation that is usually smaller and can be set to 0.005. Initial values that can be
used for the autoregressive parameters are all equal to .1. Initial values for the cycle ρ and
frequency parameters can be .9 and a frequency that can be considered reasonable by the
user.

If the user has not selected a variance to be concentrated out using the field comp.conout,
the program will select the biggest variance to that effect. After calling function suusm, the
index for the parameter to be concentrated out is in the field str.conc.

The following function can be used for parameter estimation.

function [result, str] = usmestim(y, str)

It is to be noticed that, even if the user has selected a variance to be concentrated out using
the field comp.conout, the program will always check whether the selected variance is the
biggest one. To this end, a preliminary estimation is performed in usmestim. After it, if
the biggest estimated variance does not correspond to the initially selected parameter to
be concentrated out, the program will change this parameter and will make the necessary
adjustments in structure str. Therefore, structure str can change after calling usmestim.
The actual estimation is performed after the previous check.

After model estimation, function pr2usm can be used to set up the estimated structural model.
For example, the following commands achieve this.

xvf = result.xvf; xf = result.xf;

[X, Z, G, W, T, H, ins, ii, ferror] = pr2usm(xvf, xf, str);

Journal of Statistical Software 15

Recursive residuals As explained in Section 5.2, recursive residuals can be computed using
functions scakff or scakfff. For example, the following command can be used to compute
recursive residuals after estimation of a structural model, assuming that X, Z, G, W, T and H

are the estimated matrices and ins and ii contain the initial conditions.

[Xt, Pt, g, M, initf, recrs] = scakff(y, X, Z, G, W, T, H, ins, ii);

Forecasting As described in Section 5.4, forecasts can be obtained using function ssmpred.
For example, the following commands can be used to obtain ten forecasts after estimating a
structural model, assuming that X, Z, G, W, T, H, ins and ii are as in the previous paragraph.
Note that the regression matrices, X and W, if they are time-varying, should have been extended
to account for the forecast horizon. The variables hb, Mb, A and P are needed and they are in
structure result. hb is the vector of regression estimates and Mb is the matrix of standard
errors. A is the possibly augmented estimated state vector, xt|t−1, obtained with the Kalman
filter at the end of the sample and P is the matrix of standard errors.

hb = result.h; Mb = result.M; A = result.A; P = result.P;

npr = 10;

if ~isempty(X)

Xp = X(end - npr + 1:end, :);

end

if ~isempty(W)

Wp = W(end - npr + 1:end, :);

end

m = 1;

[pry, mypr, alpr, malpr] = ssmpred(npr, m, A, P, Xp, Z, G, Wp, T, H, hb, Mb);

Smoothing As described in Section 5.5, smoothing can be performed using function scakfs.
For example, assuming that ten forecasts have been previously obtained after estimating a
structural model and that the series forecasts are in array pry and the state vector forecasts
are in array alpr, the following commands can be used to estimate the trend using smoothing,
extend it with the forecasts, and display both the extended original and trend series. It is
further assumed that X, Z, G, W, T and H are the estimated matrices and ins and ii contain
the initial conditions.

npr = 10;

X = str.X; W = str.W;

if ~isempty(X)

X = X(1:end - npr, :);

end

if ~isempty(W)

W = W(1:end - npr, :);

end

[Xt, Pt, g, M] = scakfs(y, X, Z, G, W, T, H, ins, ii);

% example with constant slope

trend = Xt(:, 1) + X * g(end);

16 SSMMATLAB: State Space Models in MATLAB

% forecast of trend.

% Xp is the regression matrix corresponding to the forecast horizon

trendp = alpr(1, :)' + Xp * g(end);

t = 1:ny + npr; plot(t, [y; pry'], t, [trend; trendp])

pause

closefig

The following function can be used after smoothing to select a desired smoothed component.
This function works with structural as well as with AMB unobserved components models.
These last models will be introduced in Section 3.5.

function Cc = dispcomp(KKP, str, comp, varargin)

For example, the following lines can be used to select the smoothed cycle and to plot it after
the smoothed components have been obtained using function scakfs.

[KKP, PT, a, b] = scakfs(y, X, Z, G, W, T, H, ins, ii);

Cc = dispcomp(KKP, str, 'cycle', datei, 'PR Smoothed Cycle');

cyc = Cc(:, 1);

3.5. AMB unobserved components models

Theoretical introduction

The ARIMA model-based (AMB) method to decompose a given time series that follows
an ARIMA model into several unobserved components that also follow ARIMA models is
described in, for example, Gómez and Maravall (2001b, Chapter 8).

This approach was originally proposed by Hillmer and Tiao (1982). The idea is based on a
partial fraction expansion of the pseudospectrum of an ARIMA model specified for the series
at hand, {yt}. According to this decomposition, terms with denominators originating peaks
at the low frequencies should be assigned to the trend component, terms with denominators
originating peaks at the seasonal frequencies should be assigned to the seasonal component,
and the other terms should be grouped into a so-called “stationary component”. This last
component can in turn be decomposed into an irregular (white noise) plus some other, usually
moving average, component. For example, consider the model

∇∇4yt = at,

where ∇ = 1−B, B is the backshift operator, Byt = yt−1, and {at} is a white noise sequence
with zero mean and VAR(at) = σ2. Given that (1 − z)(1 − z4) = (1 − z)2(1 + z + z2 + z3),
the pseudoespectrum is

f(x) =
σ2

2π

1

|1− e−ix|4|1 + e−ix + e−2ix + e−3ix|2

=
A(x)

|1− e−ix|4
+

B(x)

|1 + e−ix + e−2ix + e−3ix|2
,

Journal of Statistical Software 17

where A(x) and B(x) are polynomial functions of cos(x) to be determined. To see this,
consider that, setting y = e−ix + eix as the new variable, any pseudospectrum can be written
as a quotient of polynomials in y = 2 cos(x).

In the previous decomposition of f(x), the first term on the right hand side becomes infinite
at the zero frequency and should be assigned to the trend, whereas the second term becomes
infinite at the seasonal frequencies, π and π/2, and should, therefore, be assigned to the
seasonal component. However, both the seasonal and the trend components are not identified
because it is possible that one may subtract some positive quantity from each of the terms on
the right hand side and at the same time add it as a new term in the decomposition of f(x),
so that we would obtain

f(x) =
Ã(x)

|1− e−ix|4
+

B̃(x)

|1 + e−ix + e−2ix + e−3ix|2
+ k,

where Ã(x) and B̃(x) are new polynomial functions in cos(x) and k is a positive constant.
This positive constant gives rise to a new white noise component.

To identify the components, the so-called canonical decomposition is performed. Accord-
ing to this decomposition, a positive constant, as big as possible, is subtracted from each
term on the right hand side. In this way, the components are made as smooth as possible
and become identified. The resulting components are called canonical components. The
canonical decomposition does not always exist and this constitutes a flaw in the procedure.
However, there are simple solutions to this problem.

It can be shown that the trend and seasonal components, pt and st, corresponding to the
previous example are of the form

∇2pt = (1 + αB)(1 +B)bt,

and
(1 +B +B2 +B3)st = (1 + β1B + β2B

2 + β3B
3)ct,

where {bt} and {ct} are two uncorrelated white noises and the polynomial 1+β1z+β2z
2+β3z

3

has at least one root in the unit circle. In addition, the equality yt = pt + ct + it holds, where
{it} is white noise.

If logs of the series, yt, are taken, then the procedure is applied to the transformed series. Thus,
in order to obtain the multiplicative components one has to exponentiate the components
obtained from the decomposition of log(yt). This may cause problems with the estimated
trend because usually the annual trend sums are lower than the annual sums of the original
series, a phenomenon due to geometric means being smaller than arithmetic means. For this
reason, some kind of “bias” correction is usually applied to the estimated trend. This problem
is also present in structural models.

SSMMATLAB implementation

Before performing the canonical decomposition, it is necessary to select the roots in the
autoregressive polynomial that should be assigned to the trend and the seasonal components.
The following function can be used in SSMMATLAB for that purpose.

function [phir, phis, thr, ths, phirst] = arima2rspol(phi, Phi, th, Th, ...

freq, dr, ds)

18 SSMMATLAB: State Space Models in MATLAB

Once the model has been decomposed into its canonical components, one can put the unob-
served components model into state space form and perform forecasting and smoothing in the
same way as that previously described for structural models.

To put the model into state space form, the following SSMMATLAB function can be used.

function [X, Z, G, W, T, H, ins, ii, strc, ferror] = sucdm(comp, y, Y, ...

stra, npr)

The following lines of MATLAB code illustrate how to first decompose an ARIMA model into
its canonical components and then how to smooth these components. Finally, the original
series as well as the trend-cycle are displayed. The model is given by the polynomials phi,
Phi, th and Th. The regular and seasonal differences are one and one, respectively. The
standard deviation of the residuals is sconp. The number of observations per year is freq.

s = freq; dr = 1; ds = 1; sconp = .5;

Sigma = sconp^2;

[str, ferror] = suvarmapqPQ(phi, th, Phi, Th, Sigma, s);

[phir, phis, thr, ths, phirst] = arima2rspol(phi, Phi, th, Th, s, dr, ds);

[compcd, ierrcandec] = candec(phir, phis, thr, ths, phirst, s, dr, ds, ...

sconp);

npr = 0; Y = [];

[X, Z, G, W, T, H, ins, ii, strc, ferror] = sucdm(compcd, y, Y, str, npr);

[KKP, PT, a, b] = scakfs(y, X, Z, G, W, T, H, ins, ii);

Cc = dispcomp(KKP, strc, 'trendcycle');

trend = Cc(:, 1);

vnames = strvcat('PR', 'PR trend');

figure

tsplot([y trend], datei, vnames);

pause

Estimation of smooth trends and cycles

In the AMB approach, it is not usually possible to directly estimate cycles. This is due to
the fact that the majority of the ARIMA models fitted in practice do not have autoregressive
components with complex roots that may give rise to cyclical components. Trend compo-
nents given by the AMB approach are for this reason also called “trend-cycle” components.
For similar reasons, it is also usually not possible to estimate smooth trends using only the
unobserved components given by the canonical decomposition.

To estimate smooth trends and cycles within the AMB approach, one possibility is to incor-
porate fixed filters into the approach in the manner proposed by Gómez (2001).

The filters considered in SSMMATLAB for smoothing trends are two-sided versions of But-
terworth filters. Butterworth filters are low-pass filters and they are of two types. The first

Journal of Statistical Software 19

one is based on the sine function (BFS), whereas the second one is based on the tangent
function (BFT). See, for example, Otnes and Enochson (1978).

The squared gain of a BFS is given by

|G(x)|2 =
1

1 +
(

sin(x/2)
sin(xc/2)

)2d , (25)

where x denotes angular frequency and xc is such that |G(xc)|2 = 1/2. These filters depend
on two parameters, d and xc. If xc is fixed, the effect of increasing d is to make the fall
of the squared gain sharper. BFSs are autoregressive filters of the form H(B) = 1/θ(B),
where B is the backshift operator, Byt = yt−1, θ(B) = θ0 + θ1B + · · · + θdB

d and |G(x)|2
= H(e−ix)H(eix). Thus, if {yt} is the input series, the output series, {zt}, is given by the
recursion

θ0zt + θ1zt−1 + · · ·+ θdzt−d = yt.

To start the recursion at t = 1 say, some initial values, z1−d, . . . , z0, are needed.

The BFSs used in SSMMATLAB are of the form Hs(B,F) = H(B)H(F) = 1/[θ(B)θ(F)],
where F is the forward operator, Fyt = yt+1 and H(B) = 1/θ(B) is a BFS.

It can be shown that Hs(B,F) can be given a model-based interpretation. It is the Wiener-
Kolmogorov filter to estimate the signal in the signal plus noise model

yt = st + nt, (26)

under the assumption that the signal st follows the model ∇dst = bt, where {bt} is a white
noise sequence with zero mean and unit variance and {bt} is independent of the white noise
sequence {nt}. The estimator of st is given by

ŝt = Hs(B,F)zt = ν0yt +

∞∑
k=1

νk(Bk + F k)yt. (27)

The weights νk in (27) can be obtained from the signal extraction formula

Hs(B,F) = 1/[1 + λ(1−B)d(1− F)d], (28)

where λ = VAR(nt). The frequency response function, Ĥs(x), of the filter Hs(B,F) is obtained
from (28) by replacing B and F with e−ix and eix, respectively. After some manipulation, it
is obtained that

Ĥs(x) =
1

1 +
(

sin(x/2)
sin(xc/2)

)2d , (29)

where λ = [2 sin(xc/2)]−2d. Thus, the gain, |Ĥs(x)|, of Hs(B,F) coincides with the squared
gain of a BFS. See Gómez (2001) for details.

For BFT, the squared gain function is given by (25), but replacing the sine function by the
tangent function. The filter is of the form H(B) = (1 +B)d/θ(B), where θ(B) = θ0 + θ1B +
· · ·+ θdB

d and |G(x)|2 = H(e−ix)H(eix).

To design a BFS in SSMMATLAB, the following function can be used.

function [compf, ferror] = dsinbut(D, Thetap, Thetas, Di, Thetac, Lambda)

20 SSMMATLAB: State Space Models in MATLAB

The following function can be applied in SSMMATLAB to design a BFT.

function [compf, ferror] = dtanbut(D, Thetap, Thetas, Di, Thetac, Lambda)

To plot the gain function of a BFS or BFT, the following function can be used in SSMMAT-
LAB.

function ggsintanbut(D, Thetap, Thetas, d, thc)

The following lines of MATLAB code can be used to first specify a BFS that coincides with the
Hodrick-Prescott filter and then to plot the gain function of the filter. The filter is specified
giving the parameters Lambda and Di.

Lambda = 1600; Di = 2;

[compbst, ferror] = dsinbut([], [], [], Di, [], Lambda);

figure

ggsintanbut([], [], [], compbst.Di, compbst.Thetac)

pause

To estimate cycles in SSMMATLAB, one can use band-pass filters derived from BFT. These
are two-sided filters that can be obtained by estimating signals which follow the model (1 −
2 cosxB + B2)dst = (1 − B2)dbt in the signal plus noise model (26). Details regarding the
design of these band-pass filters and their model-based interpretation can be found in Gómez
(2001).

To design a band-pass filter in SSMMATLAB, the following function can be used.

function [compf, ferror] = dbptanbut(D, Omegap1, Omegap2, Omegas2, ...

Di, Thetac, Lambda)

To plot the gain function of a band-pass filter in SSMMATLAB, the following function can
be used.

function ggbptanbut(D, omp1, omp2, oms2, d, alph, lambda)

The following MATLAB code lines illustrate how to first design a band-pass filter to be applied
to quarterly data to estimate a cycle with frequencies in the business cycle frequency band
(periods between a year and a half and eight years). Then, it is shown how the gain of the
designed filter can be plotted. Frequencies are expressed divided by π.

D(1) = .1; D(2) = .1; xp1 = .0625; xp2 = .3; xs = .4;

[compbp, ferror] = dbptanbut(D, xp1, xp2, xs);

figure

ggbptanbut(D, xp1, xp2, xs, compbp.Di, compbp.Alph, compbp.Lambda)

pause

closefig

All of the previously described filters are fixed filters. However, they can be incorporated into
the AMB approach as described in Gómez (2001). See the SSMMATLAB manual in Gómez
(2014) for more details.

Journal of Statistical Software 21

The following function can be used in SSMMATLAB to set up a state space model for an
unobserved components model, where the components are obtained in the manner previously
described given information from both the canonical decomposition of an ARIMA model and
a designed BFS or BFT.

function [X, Z, G, W, T, H, ins, ii, strc, ferror] = sucdmpbst(comp, ...

compf, y, Y, stra, npr)

If instead of a low-pass filter (BFS or BFT), as in the previous function, a band-pass filter
based on BFT is applied, the following function can be used to set up the appropriate state
space model.

function [X, Z, G, W, T, H, ins, ii, strc, ferror] = sucdmpbp(comp, ...

compf, y, Y, stra, npr)

Once we have a state space model in which the trend-cycle given by the AMB approach has
been further decomposed into a smooth trend and a cycle by means of a fixed filter of the
type BFS, BFT or band-pass filter based on BFT, we can use the Kalman filter to smooth the
components. This can be done in SSMMATLAB by using the function scakfs. For example,
the following lines of MATLAB code can be used to first design a low-pass filter of the BFS
type, the Hodrick-Prescott filter, and then to estimate the unobserved components. Finally,
the smooth trend and the cycle, estimated as the difference between the trend-cycle and the
smooth trend, are plotted.

Lambda = 1600; Di = 2;

[compbst, ferror] = dsinbut([], [], [], Di, [], Lambda);

[X, Z, G, W, T, H, ins, ii, strc, ferror] = sucdmpbst(compcd, compbst, ...

y, Y, str, npr);

[KKP, PT, a, b] = scakfs(y, X, Z, G, W, T, H, ins, ii);

Cc = dispcomp(KKP, strc, {'trend', 'cycle'}, datei, 2, 'PR bpcycle');

bptrend = Cc(:, 1);

bpcycle = Cc(:, 2);

4. Identification and estimation of VAR(MA)X models

In this section, we will describe a number of tools available in SSMMATLAB for the identi-
fication and estimation of VARX and VARMAX models.

4.1. VARX identification and estimation

The VARX models considered in SSMMATLAB are of the form

Yt =

p∑
j=1

ΠjYt−j +

p∑
j=0

ΓjZt−j +At. (30)

22 SSMMATLAB: State Space Models in MATLAB

These models are important because every VARMAX model can be approximated to any
degree of accuracy by a VARX model with a sufficiently high order.

Although a VARX model can be put into state space form, VARX models are estimated in
SSMMATLAB using OLS. The reason why these models are included in SSMMATLAB is
that they usually constitute a good starting point when analyzing multivariate models, like
VARMAX models. To estimate a VARX model in SSMMATLAB, the following function can
be used.

function res = varx_est(y, nlag, x, test, xx)

When estimating a VARX model, sometimes only the residuals are desired. In this case, the
following function can be used in SSMMATLAB.

function resid = varx_res(y, nlag, x)

To identify the order of a possibly nonstationary VARX model, the likelihood ratio criterion
can be used. The following function can be applied in SSMMATLAB for this purpose.

function [lagsopt, initres] = lratiocrx(y, maxlag, minlag, prt, x)

When there are no exogenous variables, that is, when the model is a VAR model, the following
function can be used in SSMMATLAB for model estimation.

function res = var_est(y, nlag, test, x)

If only the residuals are desired when estimating a VAR model, the following function can be
used in SSMMATLAB.

function resid = var_res(y, nlag, x)

To determine the optimal lag length of a possibly nonstationary VAR model using the likeli-
hood ratio criterion, the following function can be used in SSMMATLAB.

function [lagsopt, initres] = lratiocr(y, maxlag, minlag, prt, x)

In the case of a possibly nonstationary VAR model, the following function can be used in
SSMMATLAB to determine the optimal lag length using the AIC or BIC criterion.

function lagsopt = infcr(y, maxlag, minlag, crt, prt, x)

4.2. Multivariate residual diagnostics

To estimate the covariances and the autocorrelations, as well as the portmanteau statistics of
a multivariate time series, the following function can be used in SSMMATLAB.

function str = mautcov(y, lag, ic, nr)

Journal of Statistical Software 23

4.3. Identification of VARMAX(p, q, r) models

The following function can be used in SSMMATLAB to identify VARMAX(p, q, r) models.
It applies a sequence of likelihood ratio tests to obtain the orders.

function [lagsopt, ferror] = lratiopqr(y, x, seas, maxlag, minlag, prt)

4.4. Identification of VARMAX models in echelon form

The following two functions can be used in SSMMATLAB to identify the Kronecker indices
for VARMAX models in echelon form. The first one identifies and estimates in a preliminary
step a VARMAX(p, q, r) model, whereas the second one starts by identifying and estimating
a VARMAX(p, p, p) model. Both functions use a sequence of likelihood ratio tests on each
equation to determine the Kronecker indices.

function [order, kro, scm] = varmaxscmidn(y, x, seas, maxorder, hr3, prt)

function [order, kro] = varmaxkroidn(y, x, seas, maxorder, hr3, ct, prt)

4.5. The Hannan-Rissanen method to estimate VARMAX models

Although state space models can be directly estimated using regression techniques, like sub-
space methods, these methods involve the estimation of a large number of parameters as
soon as the dimension of the state vector increases. For this reason, the approach adopted
in SSMMATLAB is to use the Hannan-Rissanen method, that applies regression techniques
only and is based on the VARMAX specification of the model. Even though it does not use
state space models, it usually gives very good starting values when estimating a VARMAX
model in state space echelon form by maximum likelihood.

Theoretical introduction

Suppose that the process {Yt} follows the VARMAX model in echelon form

Φ0Yt + · · ·+ ΦrYt−r = Ω0Zt + · · ·+ ΩrZt−r + Θ0At + · · ·+ ΘrAt−r, (31)

where Φ0 = Θ0 is a lower triangular matrix with ones in the main diagonal. Equation 31 can
be rewritten as

Yt = (Ik − Φ0)Vt −
r∑

j=1

ΦjYt−j +

r∑
j=0

ΩjZt−j +

r∑
j=1

ΘjAt−j +At, (32)

where Vt = Yt −At and At in (32) is uncorrelated with Zs, s ≤ t, Yu, Au, u ≤ t− 1, and

Vt = Φ−10

− r∑
j=1

ΦjYt−j +
r∑

j=0

ΩjZt−j +
r∑

j=1

ΘjAt−j

 .

24 SSMMATLAB: State Space Models in MATLAB

Applying the vec operator to (32), it is obtained that

Yt = −
r∑

j=1

(Y >t−j ⊗ Ik)vec(Φj) +
r∑

j=0

(Z>t−j ⊗ Ik)vec(Ωj)− (V >t ⊗ Ik)vec(Θ0 − Ik)

+
r∑

j=1

(A>t−j ⊗ Ik)vec(Θj) +At

= [W1,t,W2,t,W3,t]

 α1

α2

α3

+At

= Wtα+At, (33)

where W1,t = [−Y >t−1 ⊗ Ik, . . . ,−Y >t−r ⊗ Ik], W2,t = [Z>t ⊗ Ik, . . . , Z>t−r ⊗ Ik], W3,t = [−V >t ⊗
Ik, A

>
t−1⊗Ik, . . . , A>t−r⊗Ik], α1 = [vec>(Φ1), . . . , vec>(Φr)]

>, α2 = [vec>(Ω0), . . . , vec>(Ωr)]
>,

α3 = [vec>(Θ0−Ik), vec>(Θ1), . . . , vec>(Θr)]
>, Wt = [W1,t,W2,t,W3,t] and α = [α>1 , α

>
2 , α

>
3]>.

The parameter restrictions given by the echelon form (31) can be incorporated into Equa-
tion 33 by defining a selection matrix, R, containing zeros and ones such that

α = Rβ, (34)

where β is the vector of parameters that are not restricted in the matrices Φi, Ωi or Θi,
i = 0, 1, . . . , r. Using (34), Equation 33 can be rewritten as

Yt = WtRβ +At

= Xtβ +At, (35)

where Xt = WtR. Notice that, as mentioned earlier, Xt is uncorrelated with At in (35) and
that if we knew Xt, we could estimate β by OLS. The idea behind the Hannan-Rissanen
method is to estimate β in (35) after we have replaced the unknown innovations in Xt with
those estimated using a VARX model.

The Hannan-Rissanen method is described in more detail in the SSMMATLAB manual.

SSMMATLAB implementation

As mentioned earlier, the Hannan-Rissanen method usually gives very good starting values
when estimating a VARMAX model in state space echelon form by maximum likelihood. The
following function can be used in SSMMATLAB to estimate a VARMAX model using this
method.

function [str, ferror] = estvarmaxkro(y, x, seas, kro, hr3, finv2, ...

mstainv, nsig, tsig)

For example, the following lines of MATLAB code can be used to estimate a transfer function
model with one input series. Both, the input and the output series, are differenced prior to
estimation. All polynomials have degree two.

yd = diferm(y, 1); xd = diferm(x, 1);

kro = 2; hr3 = 0; finv2 = 1;

strv = estvarmaxkro(yd, xd, seas, kro, hr3, finv2);

Journal of Statistical Software 25

As described earlier, if there are parameters that are not significant after estimation, it is
possible to fix them to zero and estimate the model again. The following lines can be used
in the previous example to fix some parameters to zero and re-estimate the model. The
estimation is performed using function mhanris, that will be described later in this section.

strv.gamma(:, :, 1) = 0.; strv.phi(:, :, 2:3) = zeros(1, 2);

strv.theta(:, :, 3) = 0.;

strv.nparm = strv.nparm - 4;

strv = mhanris(yd, xd, seas, strv, 0, 1);

Note how the number of parameters to estimate, contained in the field nparm of the structure
strv, is decreased according to the number of parameters fixed.

To re-estimate a VARMAX model in SSMMATLAB after having fixed some parameters to
zero, the following function can be used.

function str = mhanris(y, x, seas, str, hr3, finv2, mstainv, nsig, tsig)

Sometimes a VARMAX model is given as a multiplicative VARMA model with exogenous
inputs. In this case, the following function can be used in SSMMATLAB to estimate the
models in this form.

function [str, ferror] = estvarmaxpqrPQR(y, x, seas, ordersr, orderss, ...

hr3, finv2, mstainv, nsig, tsig)

4.6. The conditional method to estimate VARMAX models

When a VARMAX model has been estimated using the Hannan-Rissanen method, sometimes
it is convenient to iterate in the third stage to obtain better parameter estimates. This
constitutes the so-called conditional method. See, for example, Reinsel (1997) or Lütkepohl
(2007).

The following function can be used in SSMMATLAB to estimate a VARMAX model using
the conditional method.

function [xvf, str, ferror] = mconestim(y, x, str)

Conditional residuals After estimating a VARMAX model using the conditional method,
the conditional residuals are in the field residcon of the structure str given as output by
function mconestim. For example, the following lines of MATLAB code can be used to plot
the conditional residuals of a bivariate model and their simple and partial correlograms after
estimation.

[xvf, strc, ferror] = mconestim(yd, xd, strv);

s = 2;

freq = 1;

lag = 16; cw = 1.96;

rlist = {'resid1', 'resid2'};

26 SSMMATLAB: State Space Models in MATLAB

dr = 0; ds = 0;

for i = 1:s

c0 = sacspacdif(strc.residcon(:, i), rlist{i}, dr, ds, freq, lag, cw);

pause

end

closefig

Forecasting The procedure to obtain some forecasts after estimating a VARMAX model
using the conditional or the exact method will be described at the end of the next section.

4.7. The exact ML method to estimate VARMAX models

After a VARMAX model has been estimated using the Hannan-Rissanen or the conditional
method, the user may be interested in estimating the model using the exact maximum likeli-
hood (ML) method.

The following function can be used in SSMMATLAB to estimate a VARMAX model using
the exact ML method.

function [xvf, str, ferror] = mexactestimc(y, x, str, Y)

Recursive residuals After estimating a VARMAX model using the exact ML method, the
following function can be used to obtain the recursive residuals.

function [ff, beta, e, f, str, stx, recrs] = exactmedfvc(beta, y, x, ...

str, Y, chb)

For example, the following lines of MATLAB code illustrate the estimation of a bivariate
VARMAX model using the exact ML method. Then, some diagnostic statistics based on the
recursive residuals are computed. Finally, the recursive residuals and their simple and partial
correlograms are plotted.

s = 2;

Y = eye(s);

[xvfx, strx, ferror] = mexactestimc(yd, xd, strc, Y);

chb = 2;

[ff, beta, e, f, str, stx, recrs] = exactmedfvc(xvfx, yd, xd, strx, Y, chb);

lag = 12; ic = 1; nr = strv.nparm-s;

str = mautcov(recrs, lag, ic, nr);

disp('sample autocorrelations signs:')

disp(str.sgnt)

pause

disp('p-values of Q statistics:')

disp(str.pval)

pause

Journal of Statistical Software 27

lag = 16; cw = 1.96;

rlist = {'resid1', 'resid2'};

dr = 0; ds = 0;

for i = 1:s

c0 = sacspacdif(recrs(:, i), rlist{i}, dr, ds, freq, lag, cw);

pause

end

closefig

Forecasting To obtain some forecasts after estimating a VARMAX model using the condi-
tional or the exact method, the observed series, yt, that is assumed to follow the state space
model in echelon form

αt+1 = Fαt +Bxt +Kat

yt = Ytβ +Hαt +Dxt + at,

is first expressed as

yt = Ytβ + Vt + Ut,

where Vt is the exogenous part, that depends on the inputs xt and their initial condition
only, and Ut is the endogenous part, that depends on the innovations at and their initial
condition only. Then, the forecasts can be obtained separately by forecasting Vt and Ut, that
are uncorrelated. To this end, one can use functions ssmpredexg and ssmpred, respectively.
The latter is described in Section 5.4.2, whereas the former is as follows.

function [ypr, mypr, alpr, malpr] = ssmpredexg(n, x, stx, sts)

It is to be noted that if the inputs are stochastic, a model for them must be provided by the
user. This model will be used in function ssmpredexg to obtain the input forecasts. If the
inputs are not stochastic, the user must provide the forecasts.

For example, the following lines of MATLAB code can be used to first estimate a regression
model with errors following a bivariate VARMAX model in echelon form and then to obtain
eight forecasts.

s = 2;

Y = eye(s);

[xvfx, strx, ferror] = mexactestimc(yd, xd, strc, Y);

conp = strx.sigma2c;

npr = 8;

if (npr > 0)

chb = 1;

[ff, beta, e, f, str, stx, recrs] = exactmedfvc(xvfx, yd, xd, strx, ...

Y, chb);

A = stx.A; P = stx.P; Z = stx.Z; G = stx.G; T = stx.T; H = stx.H;

hb = stx.hb; Mb = stx.Mb;

Xp = Y;

28 SSMMATLAB: State Space Models in MATLAB

Wp = [];

cw = 1.96;

s = 2;

[pry, mypr, alpr, malpr] = ssmpred(npr, s, A, P, Xp, Z, G, Wp, T, H, ...

hb, Mb);

spry = zeros(s, npr);

xdx = xd;

hr3 = 0; finv2 = 1;

[strv, ferror] = estvarmaxpqrPQR(xd, [], freq, [1 1 0], [0 1 0], hr3, ...

finv2);

sts.T = strv.Fs; sts.Z = strv.Hs; H = strv.Ks; Sg = strv.sigmar2;

[R, p] = chol(Sg); L = R'; sts.H = H*L; sts.G = L;

[prx, mxpr, glpr, mglpr] = ssmpredexg(npr, xdx, stx, sts);

pry = pry + prx; mypr = mypr*conp + mxpr;

for i = 1:npr

spry(:, i) = sqrt(diag(mypr(:, :, i)));

end

opry = pry; ospry = spry;

tname = 'var1';

out.pry = pry(1, :); out.spry = spry(1, :);

out.opry = opry(1, :); out.ospry = ospry(1, :); out.y = yd(:, 1);

out.yor = yd(:, 1); out.ny = length(yd(:, 1)); out.npr = npr;

out.cw = cw; out.tname = tname;

lam = 1;

out.lam = lam; out.s = freq;

pfctsusm(out);

tname = 'var2';

out.pry = pry(2, :); out.spry = spry(2, :);

out.opry = opry(2, :); out.ospry = ospry(2, :); out.y = yd(:, 2);

out.yor = yd(:, 2); out.ny = length(yd(:, 2)); out.npr = npr; out.cw = cw;

out.tname = tname;

lam = 1;

out.lam = lam; out.s = freq;

pfctsusm(out);

end

5. Further functions

5.1. The Kalman filter and likelihood evaluation

Theoretical introduction

As described in the SSMMATLAB manual, the Kalman filter can be used for likelihood
evaluation. Assuming β = 0 in (1) and (2) and δ = 0, a = 0 in (3), the Kalman filter is given

Journal of Statistical Software 29

for t = 1, . . . , n by the recursions

Et = Yt − Ztα̂t|t−1, Σt = ZtPtZ
>
t +GtG

>
t ,

Kt = (TtPtZ
>
t +HtG

>
t)Σ−1t , α̂t+1|t = Ttα̂t|t−1 +KtEt, (36)

Pt+1 = (Tt −KtZt)PtT
>
t + (Ht −KtGt)H

>
t ,

initialized with α̂1|0 = a and P1 = Ω. More details are given in the SSMMATLAB manual.

SSMMATLAB implementation

The MATLAB function used in SSMMATLAB for likelihood evaluation is

function [e, f, hb, Mb, A, P, qyy, R] = scakfle2(y, X, Z, G, W, T, H, ...

ins, i, chb)

For parameter estimation, we first use function scakfle2 to obtain the residual vector e and
the constant f . Then, we multiply e by f to get F = ef , the vector of nonlinear functions that

has to be minimized. Using the notation of the Kalman filter equations (36), et = Σ
−1/2
t Et,

e = (e>1 , . . . , e
>
n)> and f =

∏n
t=1 |Σt|1/(2np). More details are given in the SSMMATLAB

manual.

Missing values

If the series has missing values, these should be replaced with the symbol NaN in MATLAB.
The algorithms in SSMMATLAB are designed to take account of the missing values. For
example, for a univariate series that follows an ARIMA model, each time the Kalman filter
encounters a missing value, it skips this observation, sets Kt = 0 and continues filtering.

5.2. Recursive residuals

Theoretical introduction

Recursive residuals can be of two types, depending on whether one considers the estimated
regression parameters fixed, together with the other parameters of the model, or not. More
details are given in the SSMMATLAB manual.

SSMMATLAB implementation

When the estimated regression parameters are not considered fixed, in SSMMATLAB a square
root information filter is applied to obtain the recursive residuals. The following function can
be used for that purpose.

function [KKP, PT, hd, Md, initf, recrs, recr, srecr] = scakff(y, X, Z, ...

G, W, T, H, ins, i)

It is to be noted that this function also provides the filtered state estimates, that is, the
estimate of the state αt based on the observations Y1, . . . , Yt, as well as their MSE. When
the estimated regression parameters are considered fixed, together with the other parameters
of the model, the following function can be used in SSMMATLAB to obtain the recursive
residuals.

30 SSMMATLAB: State Space Models in MATLAB

function [KKP, PT, recrs, recr, srecr, t1, A1, P1, KG] = scakfff(y, X, ...

Z, G, W, T, H, ins, i, g)

5.3. Maximum likelihood parameter estimation

Theoretical introduction

Once the state space model has been defined and assuming that reasonable initial parameter
values are available, the model can be estimated. It is to be emphasized that in SSMMATLAB
we always concentrate one parameter out of the likelihood in the covariance matrix of the
errors of the state space model. As shown in Section 5.1, this allows for the transformation
of the log-likelihood maximization problem into a minimization of a nonlinear sum of squares
function. In SSMMATLAB, the optimization method used is that of Levenberg-Marquardt
(Levenberg 1944; Marquardt 1963). This method has been proved in practice to be a reliable
method for minimizing a nonlinear sum of squares function.

SSMMATLAB implementation

The following function can be used in SSMMATLAB for parameter estimation.

function [x, fjac, ff, g, iter, conf] = marqdt(info, x, varargin)

5.4. Forecasting

Theoretical introduction

Let the forecast or, equivalently, the orthogonal projection of αn+h onto the sample Y =
(Y >1 , . . . , Y

>
n)> be α̂n+h|n, where h ≥ 1. Then, the h-period-ahead forecasts and their mean

squared error, P̂n+h, can be recursively obtained by

α̂n+h|n = vn+h + Un+hγ̂n+1

P̂n+h =
(
Pn+h + Un+hΠn+1U

>
n+h

)
σ̂2,

where γ̂n+1 and Πn+1 are the GLS estimator of γ based on Y and its MSE and for h > 1

(−Un+h, vn+h) = (0,−Wn+h−1, 0) + Tn+h−1(−Un+h−1, vn+h−1)

Pn+h = Tn+h−1Pn+h−1T
>
n+h−1 +Hn+h−1H

>
n+h−1,

vn+1 = xn+1|n.

SSMMATLAB implementation

In SSMMATLAB, the following function can be used for forecasting.

function [ypr, mypr, alpr, malpr] = ssmpred(n, p, A, P, X, Z, G, W, T, ...

H, g, M)

Journal of Statistical Software 31

5.5. Smoothing

Theoretical introduction

For smoothing, the Bryson-Frazier recursions are used, as described in the SSMMATLAB
manual.

SSMMATLAB implementation

The following function can be used in SSMMATLAB for smoothing of the state vector.

function [KKP, PT, hd, Md] = scakfs(y, X, Z, G, W, T, H, ins, i)

If it is of interest to smooth a general vector of the form Yt = Utβ+Ctαt +Dtεt, the following
function can be used.

function [KKP, PT, hd, Md] = smoothgen(y, X, Z, G, W, T, H, ins, i, ...

mucd, U, C, D)

6. Examples and case studies

In the SSMMATLAB manual in Gómez (2014) some examples are given on how to use SSM-
MATLAB in practice. These include estimation, computation of recursive residuals, forecast-
ing and smoothing using univariate ARMA and ARMAX models, VARMA and VARMAX

50 100 150 200

0.5

1

1.5

2

btozone

50 100 150 200

−0.5

0

0.5

Differenced series: (0,1)

0 10 20 30 40
−0.5

0

0.5
Sample autocorrelations

0 10 20 30 40
−0.5

0

0.5
Sample partial autocorrelations

Figure 1: Ozone series: original, seasonally differenced, sample autocorrelations and sample
partial autocorrelations.

32 SSMMATLAB: State Space Models in MATLAB

−10 −8 −6 −4 −2 0 2 4 6 8 10 12

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Original plus 12 forecasts
Trend plus 12 forecasts

Figure 2: Ozone series: original and trend plus twelve forecasts.

models, AMB unobserved components models and univariate structural models. In addi-
tion, five case studies illustrate the use of SSMMATLAB to analyze sophisticated state space
models that cannot be dealt with standard commercial packages.

As an illustration, we will present in this section one example and one case study. The
example is Example 5 in the SSMMATLAB manual. In this example, the series of ozone levels
used by Box and Tiao (1975) to introduce Intervention Analysis is considered. Unlike these
authors, a structural model instead of an ARIMA model is specified. The model considered
has a deterministic level, a seasonal component that is modeled as trigonometric seasonality
and an autoregressive component of order one. In addition, there are three intervention
variables corresponding to the interventions in Box and Tiao (1975). The MATLAB script file
usm2_d.m contains the instructions for putting the model into state space form, and for model
estimation, computation of recursive residuals, forecasting and smoothing of the trend. In
Figure 1, one can see the original series together with the seasonally differenced series and its
sample autocorrelations and partial autocorrelations. In Figure 2, the original and the trend
series are displayed together with twelve forecasts of both series.

The case study is Case Study 4 in the SSMMATLAB manual. The purpose of the analysis is to
first estimate the business cycle of the US Industrial Production Index for the periods 1946.Q1
through 2011.Q3. Then, to obtain bootstrap samples of the estimated cycle. The estimated
cycle can be used as business cycle indicator while studying the cyclical comovements of
different series. The cycle is estimated using two different methods. The first one consists of
fitting a structural model that includes a cycle. The second one applies the AMB methodology
described in Section 6.4 of the SSMMATLAB manual.

Two script files are used. In the first one, USIPIstscl_d.m, a structural model that includes
a cycle is first fitted to the data and the cycle is estimated. Then, bootstrap samples of this

Journal of Statistical Software 33

Q1−65 Q1−70 Q1−75 Q1−80 Q1−85 Q1−90 Q1−95 Q1−00 Q1−05 Q1−10

−0.1

−0.05

0

0.05

0.1

PR Smoothed Cycle

Figure 3: US Industrial Production cycle estimated using a structural model.

Q1−65 Q1−70 Q1−75 Q1−80 Q1−85 Q1−90 Q1−95 Q1−00 Q1−05 Q1−10
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

PR bstcycle

Figure 4: US Industrial Production cycle estimated using a band-pass filter within the AMB
approach.

estimated cycle are obtained using the algorithm proposed by Stoffer and Wall (2004).

In the second file, USIPIcdstcl_d.m, the procedure proposed by Gómez (2001) is applied.
Prior to the analysis, an ARIMA model was identified using the program TRAMO of Gómez

34 SSMMATLAB: State Space Models in MATLAB

Q1−65 Q1−70 Q1−75 Q1−80 Q1−85 Q1−90 Q1−95 Q1−00 Q1−05 Q1−10

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

PR btcycle

PR bpcycle

Figure 5: US Industrial Production cycles estimated using a band-pass and a low-pass filter
(Hodrick-Prescott with λ = 1600) within the AMB approach.

and Maravall (2001a). In the script file, first the identified model is estimated by exact
maximum likelihood and the models for the unobserved components, trend-cycle, seasonal
and irregular, are obtained by means of the canonical decomposition. Then, based on the
trend-cycle model and the model corresponding to the band-pass filter, models for the two
subcomponents of the trend-cycle, the cycle and the smooth trend, are obtained as explained
in Gómez (2001). After putting the new model into state space form, the Kalman filter and
smoother are applied to estimate the smooth trend, the cycle, the seasonal and the irregular.
Finally, bootstrap samples of the estimated cycle are obtained using the same method as in
the case of the structural model.

The cycle estimated with the structural model is displayed in Figure 3. In Figure 4, the cycle
estimated with a band-pass filter within the AMB approach is shown. It is seen that this
cycle is smoother than the cycle estimated with the structural model. Finally, in Figure 5,
two cycles are displayed. They correspond to two filters applied within the AMB approach.
The first filter is the band-pass filter mentioned previously and the second one is a low-pass
filter well known to economists, the Hodrick-Prescott filter corresponding to the parameter
λ = 1600. Again, the cycle obtained with the band-pass filter is smoother than the one
obtained with the low-pass filter. This is due to the fact that the band-pass filter extracts the
components corresponding to the business cycle frequencies better than the low-pass filter.

References

Aptech Systems, Inc (2006). GAUSS Mathematical and Statistical System 8.0. Aptech Sys-
tems, Inc., Black Diamond, Washington. URL http://www.Aptech.com/.

http://www.Aptech.com/

Journal of Statistical Software 35

Aruoba SB, Diebold FX, Scotti C (2009). “Real-Time Measurement of Business Conditions.”
Journal of Business & Economic Statistics, 27(4), 417–427.

Bell WR (2011). “REGCMPNT – A Fortran Program for Regression Models with ARIMA
Component Errors.” Journal of Statistical Software, 41(7), 1–23. URL http://www.

jstatsoft.org/v41/i07/.

Box GEP, Tiao GC (1975). “Intervention Analysis with Applications to Economic and Envi-
ronmental Problems.” Journal of the American Statistical Association, 70(349), 70–79.

Commandeur JJF, Koopman SJ, Ooms M (2011). “Statistical Software for State Space Meth-
ods.” Journal of Statistical Software, 41(1), 1–18. URL http://www.jstatsoft.org/v41/

i01/.

Doan T (2011). “State Space Methods in RATS.” Journal of Statistical Software, 41(9), 1–16.
URL http://www.jstatsoft.org/v41/i09/.

Drukker DM, Gates RB (2011). “State Space Methods in Stata.” Journal of Statistical
Software, 41(10), 1–25. URL http://www.jstatsoft.org/v41/i10/.

Gómez V (2001). “The Use of Butterworth Filters for Trend and Cycle Estimation in Economic
Time Series.” Journal of Business & Economic Statistics, 19(3), 365–373.

Gómez V (2013). “A Strongly Consistent Criterion to Decide between I(1) and I(0) Processes
Based on Different Convergence Rates.” Communications in Statistics – Simulation and
Computation, 42(8), 1848–1864.

Gómez V (2014). “SSMMATLAB.” URL http://www.sepg.pap.minhap.gob.es/sitios/

sepg/en-GB/Presupuestos/Documentacion/Paginas/SSMMATLAB.aspx.

Gómez V, Maravall A (2001a). “Programs TRAMO and SEATS, Instructions for the User
(Beta Version: June 1997).” Working Paper 97001, Dirección General De Presupuestos,
Ministry of Finance, Madrid, Spain.

Gómez V, Maravall A (2001b). “Seasonal Adjustment and Signal Extraction in Economic
Time Series.” In GC Tiao, D Peña, RS Tsay (eds.), A Course in Time Series Analysis,
chapter 8. John Wiley & Sons, New York.

Hannan EJ, Kavalieris L (1984). “Multivariate Linear Time Series Models.” Advances in
Applied Probability, 16(3), 492–561.

Hannan EJ, Kavalieris L (1986). “Regression, Autoregression Models.” Journal of Time Series
Analysis, 7(1), 27–49.

Hannan EJ, Rissanen J (1982). “Recursive Estimation of Mixed Autoregressive-Moving Av-
erage Order.” Biometrika, 69(1), 81–94.

Harvey AC (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press, Cambridge.

Harvey AC (1993). Time Series Models. 2nd edition. Harvester Wheatsheaf, Hemel Hemp-
stead.

http://www.jstatsoft.org/v41/i07/
http://www.jstatsoft.org/v41/i07/
http://www.jstatsoft.org/v41/i01/
http://www.jstatsoft.org/v41/i01/
http://www.jstatsoft.org/v41/i09/
http://www.jstatsoft.org/v41/i10/
http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/Documentacion/Paginas/SSMMATLAB.aspx
http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/Documentacion/Paginas/SSMMATLAB.aspx

36 SSMMATLAB: State Space Models in MATLAB

Hillmer S, Tiao G (1982). “An ARIMA-Model-Based Approach to Seasonal Adjustment.”
Journal of the American Statistical Association, 77(377), 63–70.

Kitagawa G, Gersch W (1996). Smoothness Priors Analysis of Time Series. Springer-Verlag,
New York.

Koopman SJ, Harvey AC, Doornik JA, Shephard N (2009). STAMP 8.2: Structural Time
Series Analyser, Modeler, and Predictor. Timberlake Consultants, London.

Levenberg K (1944). “A Method for the Solution of Certain Non-Linear Problems in Least
Squares.” The Quarterly of Applied Mathematics, 2, 164–168.

Lucchetti R (2011). “State Space Methods in gretl.” Journal of Statistical Software, 41(11),
1–22. URL http://www.jstatsoft.org/v41/i11/.

Lütkepohl H (2007). New Introduction to Multiple Time Series Analysis. Springer-Verlag,
Berlin.

Marquardt D (1963). “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.”
SIAM Journal on Applied Mathematics, 11(2), 431–441.

Mendelssohn R (2011). “The STAMP Software for State Space Models.” Journal of Statistical
Software, 41(2), 1–18. URL http://www.jstatsoft.org/v41/i02/.

Otnes RK, Enochson L (1978). Applied Time Series Analysis, volume 1. John Wiley & Sons,
New York.

Pelagatti MM (2011). “State Space Methods in Ox/SsfPack.” Journal of Statistical Software,
41(3), 1–25. URL http://www.jstatsoft.org/v41/i03/.

Peng JY, Aston JAD (2011). “The State Space Models Toolbox for MATLAB.” Journal of
Statistical Software, 41(6), 1–26. URL http://www.jstatsoft.org/v41/i06/.

Petris G, Petrone S (2011). “State Space Models in R.” Journal of Statistical Software, 41(4),
1–25. URL http://www.jstatsoft.org/v41/i04/.

Primiceri GE (2005). “Time Varying Structural Vector Autoregressions and Monetary Policy.”
The Review of Economic Studies, 72(3), 821–852.

Reinsel GC (1997). Elements of Multivariate Time Series Analysis. Springer-Verlag, New
York.

Selukar R (2011). “State Space Modeling Using SAS.” Journal of Statistical Software, 41(12),
1–13. URL http://www.jstatsoft.org/v41/i12/.

Stoffer DS, Wall KD (2004). “Resampling in State Space Models.” In AC Harvey, SJ Koopman,
N Shephard (eds.), State Space and Unobserved Components: Theory and Applications.
Cambridge University Press, Cambridge.

The MathWorks Inc (2014). MATLAB – The Language of Technical Computing, Version
R2014b. Natick, Massachusetts. URL http://www.mathworks.com/products/matlab/.

http://www.jstatsoft.org/v41/i11/
http://www.jstatsoft.org/v41/i02/
http://www.jstatsoft.org/v41/i03/
http://www.jstatsoft.org/v41/i06/
http://www.jstatsoft.org/v41/i04/
http://www.jstatsoft.org/v41/i12/
http://www.mathworks.com/products/matlab/

Journal of Statistical Software 37

Van den Bossche FAM (2011). “Fitting State Space Models with EViews.”Journal of Statistical
Software, 41(8), 1–16. URL http://www.jstatsoft.org/v41/i08/.

Affiliation:

Vı́ctor Gómez
Ministerio de Hacienda y Administraciones Públicas
Subdirección Gral. de Análisis y P.E.
Alberto Alcocer 2, 1-P, D-34
28046, Madrid, Spain
E-mail: VGomez@sepg.minhap.es
URL: http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/

Documentacion/Paginas/SSMMATLAB.aspx

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 66, Issue 9 Submitted: 2013-07-09
August 2015 Accepted: 2014-10-31

http://www.jstatsoft.org/v41/i08/
mailto:VGomez@sepg.minhap.es
http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/Documentacion/Paginas/SSMMATLAB.aspx
http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/Documentacion/Paginas/SSMMATLAB.aspx
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	The state space model
	Putting some common models into state space form
	Multiplicative VARMA models
	Theoretical introduction
	SSMMATLAB implementation

	VARMA and VARMAX models in echelon form
	Theoretical introduction
	SSMMATLAB implementation

	Cointegrated VARMA models
	Theoretical introduction
	SSMMATLAB implementation

	Univariate structural models
	Theoretical introduction
	SSMMATLAB implementation

	AMB unobserved components models
	Theoretical introduction
	SSMMATLAB implementation
	Estimation of smooth trends and cycles

	Identification and estimation of VAR(MA)X models
	VARX identification and estimation
	Multivariate residual diagnostics
	Identification of VARMAX(p,q,r) models
	Identification of VARMAX models in echelon form
	The Hannan-Rissanen method to estimate VARMAX models
	Theoretical introduction
	SSMMATLAB implementation

	The conditional method to estimate VARMAX models
	The exact ML method to estimate VARMAX models

	Further functions
	The Kalman filter and likelihood evaluation
	Theoretical introduction
	SSMMATLAB implementation
	Missing values

	Recursive residuals
	Theoretical introduction
	SSMMATLAB implementation

	Maximum likelihood parameter estimation
	Theoretical introduction
	SSMMATLAB implementation

	Forecasting
	Theoretical introduction
	SSMMATLAB implementation

	Smoothing
	Theoretical introduction
	SSMMATLAB implementation

	Examples and case studies

