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Abstract

Implementation of multivariate and 2D extensions of singular spectrum analysis (SSA)
by means of the R package Rssa is considered. The extensions include MSSA for simul-
taneous analysis and forecasting of several time series and 2D-SSA for analysis of digital
images. A new extension of 2D-SSA analysis called shaped 2D-SSA is introduced for
analysis of images of arbitrary shape, not necessary rectangular. It is shown that imple-
mentation of shaped 2D-SSA can serve as a basis for implementation of MSSA and other
generalizations. Efficient implementation of operations with Hankel and Hankel-block-
Hankel matrices through the fast Fourier transform is suggested. Examples with code
fragments in R, which explain the methodology and demonstrate the proper use of Rssa,
are presented.

Keywords: singular spectrum analysis, time series, image processing, analysis, forecasting,
decomposition, R package.

1. Introduction

Singular spectrum analysis as a method of time series analysis has a well-elaborated theory and
solves various problems: e.g., time series decomposition, trend extraction, periodicity detection
and extraction, signal extraction, denoising, filtering, forecasting, missing data imputation,
change point detection, spectral analysis, among others(see examples and references in Vautard
and Ghil 1989; Golyandina, Nekrutkin, and Zhigljavsky 2001; Ghil, Allen, Dettinger, Ide,
Kondrashov, Mann, Robertson, Saunders, Tian, Varadi, and Yiou 2002; Golyandina and
Zhigljavsky 2013). Since the method does not need a model given a priori, it is called
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nonparametric and is well suited for exploratory analysis of time series.

Additionally, SSA allows the construction of a model during or after exploratory analysis. The
underlying parametric model of the signal is the sum of products of polynomial, exponential
and sine-wave functions. This is a linear model in the following sense: such series constitute the
class of solutions of linear differential equations. In the case of discrete time, such time series
satisfy linear recurrent relations (LRRs). There is a class of so called subspace-based methods
(Veen, Deprettere, and Swindlehurst 1993), which are related to estimation of parameters in
the mentioned parametric model, in particular, to estimation of frequencies.

Although some problems like frequency estimation do need the model, some problems like
smoothing do not need a model at all. For forecasting in SSA, the time series may satisfy the
model approximately and locally, since the forecasting methods in SSA are based on estimation
of the signal subspace and not on estimation of the parameters of the model. Depending on
the quality of approximation of the series by the model, long or short horizon forecasts can be
constructed.

SSA software

The aforementioned possibilities are implemented in different software packages based on
different methodologies of SSA, see Golyandina and Korobeynikov (2014) for references.
The sources of the methodology used in this paper are the books Golyandina et al. (2001);
Golyandina and Zhigljavsky (2013) and the software from Gistat Group (2013), where SSA
analysis and forecasting of one-dimensional and multivariate time series are implemented in
an interactive manner. The same methodology is used and developed in the Rssa package
(Korobeynikov, Shlemov, Usevich, and Golyandina 2015) for the R system for statistical
computing (R Core Team 2015); see Golyandina and Korobeynikov (2014), where analysis,
forecasting and parameter estimation by means of Rssa for one-dimensional series are described.

At the present time, package Rssa is extensively developed and includes SSA-processing of
one-dimensional time series (basic SSA, or simply SSA), systems of series (multivariate or
multichannel SSA, shortened to MSSA) and of digital images (2D-SSA). The aim of this paper
is to describe this multidimensional part of the Rssa package as of version 0.10. Note that
the effective implementation of the algorithms of multidimensional SSA extensions is very
important, since the algorithms are much more time-consuming than in the one-dimensional
case. Therefore, we pay attention to both the guidelines for the proper use of the package
and the efficient implementation techniques, which are based on the methods described in
Korobeynikov (2010). In addition, a new method called shaped 2D-SSA (ShSSA for short) is
introduced. This method can be applied to the images of non-rectangular form, e.g., circular
images, images with gaps and so on. Also, it is shown that the implementation of shaped
2D-SSA can serve as a common basis for implementation of many SSA extensions.

General scheme of SSA

Let us introduce a general scheme of SSA-like algorithms, including MSSA and 2D-SSA. The
SSA-like algorithms decompose the given data X into a sum of different components:

X=X3+ - +X,. (1)

A typical SSA decomposition of a time series is the decomposition into slowly-varying trend,
seasonal components and residual or the decomposition into some pattern, regular oscillations
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and noise. The input data can be a time series, a multivariate time series, or a digital image.

The algorithm is divided into four steps. The first step is generation of a multivariate object
on the basis of the initial object (time series or image) by moving a window of some form
and taking the elements from the window. For one-dimensional time series, this window is an
interval that produces subseries of length L of the time series, where L is called window length
(in SSA). For multivariate time series (a system of s one-dimensional series), the window also
produces subseries of length L, but we apply this window to all time series of the system (in
MSSA). For images, the window can be a 2D rectangle (in 2D-SSA) or some other 2D shape
(in ShSSA). Then all the subobjects (subseries or vectorized 2D shapes) obtained by applying
the window are stacked as columns into the trajectory matrix. The trajectory matrix has a
specific structure: Hankel, stacked Hankel, Hankel-block-Hankel or quasi-Hankel.

The second step consists in decomposition of the trajectory matrix into a sum of elementary
matrices of rank 1. The most frequently used decomposition, which has a lot of optimal
approximation properties, is the singular value decomposition (SVD).

The third step is grouping of the decomposition components. At the grouping step, the
elementary rank-one matrices are grouped and summed within groups.

The last and forth step converts the grouped matrix decomposition back to the decomposition
of the initial time series or image decomposition. The elements of each component of the
grouped decomposition are obtained by averaging the entries of the grouped matrices that
correspond to the same element in the initial object.

Thus, the result of the algorithm is the decomposition (1) of the initial object into the sum
of objects. We assume that the initial object is a sum of some identifiable components, for
example, trend and seasonality or signal and noise and that we observe only the sum. Then the
aim of the SSA-like methods is to reconstruct these components. The possibility to reconstruct
the object components is called separability of the components.

Complex SSA is the same as the basic SSA but it is applied to complex-valued one-dimensional
time series with complex-valued SVD and therefore fits well into the described scheme.
Certainly, multivariate complex SSA and 2D complex SSA can be considered in similar
manner, but it is out the scope of this paper. Note that complex SSA can be applied to a
system of two real-valued time series considered as real and imaginary parts of a complex
series.

We mentioned that a model of the series can be constructed during the SSA processing.
The simplified form of the signal model is s, = >} Agul, where py = prpe?™* (possible
polynomial modulation is omitted). The general approach for estimation of the modulations
pr and frequencies wy in this model is to use the so-called signal subspace, which can be
estimated at the third step of the SSA algorithm. One of the subspace-based methods for
parameter estimation is ESPRIT (Roy and Kailath 1989). This approach has a 2D extension
named 2D-ESPRIT for estimation of parameters in the model s;, = >} Ak,uf,cu,’;.

Rssa and related packages

The range of problems solved by SSA and its multidimensional extensions is very wide, as
can be seen from the brief review of SSA capabilities given above. That is why we do not
consider in the scope of the paper the comparison of Rssa with other packages implementing
decomposition, filtering, regression, frequency estimation, etc. We refer the reader to the
CRAN (Comprehensive R Archive Network) task view on “Time Series Analysis” (Hyndman
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2015) for a review of packages for processing of time series and to the CRAN task view on
“Analysis of Spatial Data” (Bivand 2015) for a review of packages for processing of spatial
data. As an implementation of the SSA method, Rssa is the only package currently available
from CRAN, where it is accessible at http://CRAN.R-project.org/package=Rssa.

Let us put attention to several issues related to the difference between SSA and many other
methods and algorithms implemented in various R packages. SSA-like methods can be applied
as model-free approaches that do not need to know parametric models and the periods of
possible periodic components in advance. This distinguishes them from methods like seasonal
decomposition and parametric regression. Also, an important point is that in SSA-like methods
it is not essential for data to have an additive or multiplicative structure. In addition, note
that although the model of series governed by linear recurrence relations may seem similar to
the autoregressive models, they have nothing in common.

The present version of the Rssa package deals with equidistant series and spatial data given on
a rectangular grid. For processing of data given on an irregular grid, two approaches can be
used. Certainly, interpolation to a rectangular grid can be performed (it is not implemented
in the current version of the package). For univariate and multivariate series, one can formally
deal with non-equidistant data as with equidistant measurements, ignoring the irregularity.

For processing of time series or of systems of time series, Rssa can deal with vectors, lists
of vectors, matrices and also with input data of classes ‘ts’, ‘mts’, ‘zooreg’ (Zeileis and
Grothendieck 2005) — also, ‘zoo’ data can be used, but the contents of the index attribute of a
‘zoo’ object is simply ignored. The package tries to preserve attributes of input data, making
operations with the decomposition results convenient: no conversion to the original class is

required.

For processing of multidimensional data like digital images, Rssa takes only matrices as input
data. In theory, 2D-SSA can be used with data of different nature: spatial, spatio-temporal
or arbitrary digital images. However, the R implementation of objects of these types usually
carries with itself a lot of additional information. It seems to be error-prone to try to preserve
such information in a generic way, and it also would introduce many spurious dependencies of
Rssa on other packages. Thus, it is considered as a job of the user to convert the results of
the decomposition back to the appropriate form (see Fragment 23 for an example with objects
from the raster package; Hijmans 2015).

Most of the plotting capabilities of the package are implemented via package lattice (Sarkar
2008). Therefore, the user can either plot lattice objects returned by plot functions directly,
or use the capabilities of lattice to manipulate these plot objects in a convenient way. Also,
since the input time series classes may vary, Rssa, where possible, allows one to fall back to
native plotting functions of such classes.

Finally we dwell on the issues related to the efficient implementation of SSA-related methods
in the Rssa package. The two main points that underlie the implementation are (1) the use
of fast methods for the singular value decomposition and (2) the use of fast multiplication
of Hankel-related matrices and matrix hankelization by means of the fast Fourier transform
(FFT), see Korobeynikov (2010). However, the direct usage of the algorithms possessing good
theoretical complexity will not automatically yield an efficient implementation per se. The
package also implements many practical considerations which make the core SSA steps really
fast. Besides this, many of the functions in the package employ on-demand calculation of the
necessary objects and memoization. These points are very important for large window sizes
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and long time series, and are crucial for 2D-SSA and ShSSA.

Contribution of the paper

On the theoretical /algorithmic side, this paper has several new contributions. First, we describe
a fast algorithm of the vector SSA forecasting and provide its implementation. Second, we
introduce a new extension of 2D-SSA | shaped 2D-SSA, which should extend the application
area of the method in digital image processing. Then, fast FFT-based algorithms are described
and implemented for each considered SSA-like method. Finally, we show that all the considered
extensions of SSA (and several related extensions) are special cases of shaped 2D-SSA.

Structure of the paper

The structure of the paper is as follows. Section 2 contains an overview of the SSA approach,
including the common scheme of the algorithms, general notions, and a summary of imple-
mentation details. The multivariate version of SSA for analysis and forecasting of systems of
series is described in Section 3. 2D-SSA for image processing together with 2D-ESPRIT for
parameter estimation is considered in Section 4. Section 5 is devoted to ShSSA for analysis of
images of non-rectangular form. Section 6 contains details on the fast algorithms, including
FFT-based matrix multiplication, hankelization and the fast algorithm of the vector forecasting.
Theoretical details of MSSA and 2D-SSA are put in Appendix A and B

Each of Sections 3-5 contains the implemented algorithms, description of the Rssa functionality
with typical R code, simulated and real-life examples with the corresponding fragments of R
code accompanied by guidelines for the proper use. In Section 5.3, it is shown that all the
considered SSA extensions are special cases of ShSSA. Thus the fast FFT-based algorithms in
Section 6 are provided only for shaped 2D-SSA.

This paper contains a comprehensive description of multivariate extensions of SSA. Although
it is impossible to consider all applications of multivariate extensions, we provide examples
for the most common ones, with code fragments and references to the literature. We also
demonstrate plotting capabilities of the package which are necessary for the proper use of the
SSA methodology and representation of the results.

2. Common structure of algorithms and general notions

Before introducing the details of the SSA-like algorithms and the corresponding notions, we
present a general scheme of the algorithms in Figure 1.

The algorithms consist of four steps. The input data are the object X and the mapping 7.
The result of the algorithms is a decomposition of X into sum of additive components. The
intermediate outcomes of the steps can be used for solving additional problems like forecasting
and parameter estimation. Table 1 contains a summary of SSA extensions considered in the
paper. Further we discuss the steps of the algorithms of the SSA-like methods in detail.

2.1. Details of the algorithms

Step 1. Embedding. The first step consists in the construction of the so-called trajectory
matriz X = T (X) by means of a map 7.
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Data Trajectory matrix Sum of rank-1 matrices
X — d
time SeI;eS, 1. Embedding X ¢ M(LH% . 2. Decomposition X = ;:1 X;
system of t.s., X =T(X) R T
array (image), ... X = VAUV

SSA decomposition Grouped matrices

X=X;+...+X,, |4, Reconstruction |X=Xn + - +Xr,
~ . Reconstructios 3 _
Xk:TfloH(H)(XIk) X]—J%XJ

Figure 1: Scheme of the SSA-like algorithms.

2D-SSA  rectangular image X = (2ij); ;7
ShSSA shaped image X = (%(i5)) (ij)em Quasi-Hankel

Method Data Notation Trajectory matrix  Section
SSA time series X=(z1,...,zN) Hankel 2.1
MSSA system of time series X®) p=1,... s Stacked Hankel 3
CSSA complex time series XM +ix® Complex Hankel 3
Naoy Hankel-block-Hankel 4
5

Table 1: Kinds of SSA-like multivariate extensions.

In the basic SSA algorithm applied to a one-dimensional time series X = (x1,...,2y) of length
N, 7 maps RV to the space of Hankel matrices L x K with equal values on anti-diagonals:

1 I2 I3 .. TK
o I3 Ty oo TR

'TSSA(X) — r3 T4 x5 oo TK42 , (2)
rr, p+1 42 .. IN

where L is the window length and K = N — L + 1.

Let us describe the scheme of this step in a more formal manner for the general case of SSA-like
methods. Denote M, , the set of p x ¢ real matrices. Let M be the linear space of all possible
X, where X is an ordered set of real values representing initial data (i.e., a time series or

image). Then the embedding T is a one-to-one mapping from M to MS;HI)( C My, i, where

M(LH}){ is the set of matrices with a Hankel-like structure, which is determined together with L
and K by the method parameters.

The mapping 7 puts elements of X in some places of the trajectory matrix X = 7(X). Let
xy, denote the kth element of X. (The index k may be two-dimensional, see e.g., Table 1.)
Then the mapping 7 determines the set of indices Ay, such that (X);; = y, for any (4, j) € Ay.
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Formally, let i € M be the object with the kth element equal to 1 and all the other elements
equal to zero. Then the set A corresponds to the places of “1” in the matrix 7 (E}).

For example, in the basic SSA algorithm applied to a one-dimensional time series X, M = RV,
M(LHI)( is the set of Hankel matrices and the mapping 7 is given in (2). The objects Ej,

k=1,...,N, are the standard unit vectors in RY, and A, consists of the positions of the
elements on the kth anti-diagonal of X.

Step 2. Singular value decomposition. Let S =XX", A\; > ... > A1, > 0 be eigenvalues
of the matrix S, d = max{j : \; > 0}, Uy,...,Uy be the corresponding eigenvectors, and
V; =X"U;/\/A;, 7=1,...,d, be the factor vectors. Denote X; = mUj‘/jT. Then the SVD
of the trajectory matrix X can be written as

The values \/); are exactly the singular values of X. The vectors U; (respectively, V;) are
exactly the left (respectively, right) singular vectors of X. The triple (\/A;,Uj,V;) is called
the jth eigentriple (or ETj for short).

Step 3. Grouping. Once the expansion (3) has been obtained, the grouping procedure
partitions the set of indices {1,...,d} into m disjoint subsets I1,...,I,,. For a subset I =
{i1,...,4p}, the matrix X corresponding to the group I is defined as X; = X;, +... +X;,.
Thus, we have the grouped matriz decomposition

X=X, +...+Xy,,. (4)

For example, grouping can be performed on the basis of the form of the eigenvectors, which
reflect the properties of initial data components. The grouping with I; = {j} is called
elementary.

Step 4. Reconstruction. At this final step, each matrix of the decomposition (4) is
transferred back to the form of the input object X. It is performed optimally in the following
sense: for a matrix Y € My, g we seek for the object Y € M that provides the minimum to

Y — T(Y)|| 7, where |Z]| 7 = />, (Z)?% is the Frobenius norm.

Denote 1) : M LK — M(LH% the orthogonal projection on M(LHI)( in Frobenius norm. Then
Y = Tfl(H(H)Y). By the embedding nature of 7, the projection 114 is the averaging of the
entries along the sets Ay, that is, the elements of Y are equal to §x = >2(; jyea, (Y)ij /| Akl,
where |Ag| is the number of elements in A4;. The same averaging can be rewritten as
Je = (Y. T(Ex)#/|T(E)|%, where (Y,Z)r = 125, (Y)ij(Z);; is the Frobenius inner
product.

In basic SSA, the set Ay = {(4,7): 1 <i< L,1 <j<K,i+j=k+1} corresponds to the kth
anti-diagonal, and the composite mapping 7' o II)) is the averaging along anti-diagonals.
Hence, in the SSA literature the reconstruction step is often called diagonal averaging.
Thus, denote Xk = X, the reconstructed matrices, X, = ))A(k the trajectory matrices
of the reconstructed data and X = 7~ }(X},) the reconstructed data themselves. Then the
resultant decomposition of the initial data has the form

X=X;+...+X,,. (5)
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If the grouping is elementary, then m = d, X, = X}, and the reconstructed objects Xi =
T-Lo I X, are called elementary components.

2.2. General notions

Separability

A very important notion in SSA is separability. Let X = X + X,. (Approximate) separability
means that there exists such a grouping that the reconstructed series X, is (approximately)
equal to Xj. Properties of the SVD yield (approximate) orthogonality of columns and
orthogonality of rows of trajectory matrices X; and Xy of X; and Xg as the separability
condition. There is a well-elaborated theory of separability of one-dimensional time series
(Golyandina et al. 2001, Sections 1.5 and 6.1). It appears that many important decomposition
problems, from noise reduction and smoothing to trend, periodicity or signal extraction, can
be solved by SSA. Certainly, the embedding operator 7 determines separability conditions. It
could be said that the success of SSA in separability is determined by the Hankel structure of
the trajectory matrix and optimality features of the SVD.

Information for grouping

The theory of SSA provides various ways to detect the SVD components related to the
series component in order to perform proper grouping in conditions of separability. One of
the rules is that the eigenvector produced by a data component repeats the properties of
this component. For example, in SSA the eigenvectors produced by slowly-varying series
components are slowly-varying, the eigenvectors produced by a sine wave are sine waves with
the same frequencies, and so on. These properties help to perform the grouping by visual
inspection of eigenvectors and also by some automatic procedures (see Alexandrov 2009 and
Golyandina and Zhigljavsky 2013, Section 2.4.5).

To check separability of the reconstructed components ~§~§1 and~§§2, we should check the
orthogonality of their reconstructed trajectory matrices X; and X5. A convenient measure
of their orthogonality is the Frobenius inner product <)~(1, )~(2> F. The normalized measure of
orthogonality s p(X1, X2) = (X1, Xz) /(X1 |l £z ).

Since the trajectory matrix consists of wy, = |Ax| = |7 (Eg)||% entries corresponding to the

kth element zj of the initial object, we can introduce the weighted inner product in the space
M: (Y, Z)w = > ), wrykzk, which induces the weighted norm ||Y||w = v/(Y,Y)w. Then

(Xla SEQ)W

X1 llwl[Xellw

(6)

is called w correlation by statistical analogy. Note that in this definition means are not
subtracted.

Let §§j be the elementary reconstructed components produced by the elementary grouping

I; = {j}. Then the matrix of pg;v) = pw(Xi, X]) is called w correlation matriz.
The weighted norm |[|-||w serves as a measure of contribution of components to the decomposition
(5): the contribution of X; is defined as [|X;]|2,/IIX]3.
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Trajectory spaces and signal subspace

Let us introduce several notions related to subspaces generated by the data. For the data
X the column (row) subspace of its trajectory matrix X is called column (row) trajectory
space. The term “trajectory space” usually means “column trajectory space”. The column
trajectory space is a subspace of RY, while the row trajectory space is a subspace of RX. In
general, for real data in applications the trajectory spaces coincide with the corresponding
Euclidean spaces, since they are produced by a signal corrupted by noise. However, if the signal
has a rank-deficient trajectory matrix, then the signal trajectory space can be called “signal
subspace”. Column and row signal subspaces can be considered. Note that the dimensions of
row and column subspaces coincide.

Objects of finite rank

The class of objects that suit the SSA method are the so-called objects of finite rank. We say
that the object (time series or image) has rank r if the rank of its trajectory matrix is equal to
r < min(L, K), that is, the trajectory matrix is rank-deficient. If the rank r does not depend
on the choice of L for any sufficiently large object and trajectory matrix sizes, then we say
that the object has finite rank (rank does not tend to infinity as the size of the object tends
to infinity), see Golyandina et al. (2001, Chapter 5) and Golyandina and Usevich (2010) for
rigorous definitions.

Since the trajectory matrices considered in SSA methods are Hankel or consist of Hankel
blocks, the rank-deficient Hankel matrices are closely related to objects satisfying some linear
relations. These linear relations can be taken as a basis for forecasting algorithms. In the
one-dimensional case, rank-deficient Hankel matrices are closely related to linear recurrent
relations x, = >.;_; a;x,—; and therefore to time series which can be expressed as a sum of
products of exponentials, polynomials and sinusoids.

Each specific SSA extension produces a class of specific objects of finite rank. The knowledge
of ranks of objects of finite rank can help to group the corresponding SVD components (whose
number is equal to the rank value). For example, to reconstruct the exponential trend in the
one-dimensional case, we need to group only one SVD component (the exponential has rank
1), while to reconstruct a sine wave we generally need to group two SVD components (the
rank equals 2).

Surely, most of real-life time series or images are not of finite rank. For example, a time series
can be a sum of a signal of rank r and noise. Then, due to approximate separability, we can
use SSA to extract the signal and then apply methods designed for series of finite rank.

2.3. Typical code

The general structure of the Rssa package is described in Golyandina and Korobeynikov (2014)
and holds for the multivariate extensions. Therefore, let us briefly discuss the base Rssa
functions for analysis and forecasting of one-dimensional time series. Implementation of SSA
analysis and forecasting is mostly contained in the functions ssa (decomposition), reconstruct
(reconstruction), predict, rforecast and vforecast (forecasting), plot (plotting), wcor
(weighted correlations for grouping).

For demonstration, we consider the series of sales of fortified wines (shortly FORT) taken from
the dataset “Monthly Australian wine sales: thousands of litres. By wine makers in bottles <
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Reconstructed Series

Original Seasonality ——
Trend —_— Residuals _—

Time

Figure 2: FORT: Decomposition.

1 litre” (Hyndman 2013). The full dataset contain sales from January, 1980, to July, 1995
(187 points). However, the data after June, 1994 have missing values. Therefore, we begin
with the first 174 points.

Fragment 1 contains the standard code for loading the package Rssa and input of the data
included into the package.

Fragment 1 (Australian wines: Input).

R> library("Rssa")
R> data("AustralianWine", package = "Rssa')
R> wine <- window(AustralianWine, end = time(AustralianWine) [174])

Fragment 2 contains a typical code for extraction of the trend and seasonality. The resultant
decomposition is depicted in Figure 2.

Fragment 2 (FORT: Reconstruction).

R> fort <- wine[, "Fortified"]

R> s.fort <- ssa(fort, L = 84, kind = "ld-ssa')

R> r.fort <- reconstruct(s.fort, groups = list(Trend = 1,

+ Seasonality = 2:11))

R> plot(r.fort, add.residuals = TRUE, add.original = TRUE,

+ plot.method = "xyplot", superpose = TRUE, auto.key = list(columns = 2))

Roughly speaking (see details in Golyandina and Korobeynikov 2014), ssa performs steps 1
and 2 of the algorithm described in Section 2.1, while reconstruct performs steps 3 and 4 of
the algorithm. The argument values kind = "1d-ssa" and svd.method = "auto" are default
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and can be omitted. Note that the function plot for the reconstruction object implements
different special kinds of its plotting. In Fragment 2, the last two parameters of plot are the
parameters of the function xyplot from the package lattice.

The grouping for reconstruction was made on the basis of the following information obtained
from the ‘ssa’ object:

1. one-dimensional (1D) figures of eigenvectors U; (Figure 3),
2. two-dimensional (2D) figures of eigenvectors (U;, U;y1) (Figure 4), and,

3. matrix of w correlations pw between elementary reconstructed series (functions wcor
and plot, Figure 5).

The following fragment shows the code that reproduces Figures 3-5.

Fragment 3 (FORT: Identification).

R> plot(s.fort, type = "vectors", idx = 1:8)
R> plot(s.fort, type = "paired", idx = 2:11, plot.contrib = FALSE)
R> parestimate(s.fort, groups = 1list(2:3, 4:5), method = "esprit-1s")

$F1
period rate I Mod Arg | Re Im
12.003 -0.006572 | 0.99345 0.52 | 0.86042 0.49661
-12.003 -0.006572 | 0.99345 -0.52 | 0.86042 -0.49661
$F2
period rate | Mod Arg | Re Im
4.005 0.000037 | 1.00004 1.57 | 0.00189 1.00003
-4.005 0.000037 | 1.00004 -1.57 | 0.00189 -1.00003

R> plot(wcor(s.fort, groups = 1:30), scales = list(at = c(10, 20, 30)))
R> plot(reconstruct(s.fort, add.residuals = FALSE, add.original = FALSE,
+ groups = 1ist(G12 = 2:3, G4 = 4:5, G6 = 6:7, G2.4 = 8:9)))

Let us explain how the figures obtained by means of Fragment 3 can help to perform the
grouping. Figure 3 shows that the first eigenvector is slowly-varying and therefore the
eigentriple (abbreviated as ET) ET1 should be included in the trend group. Figure 4 shows
that the pairs 2-3, 4-5, 6-7, 89, 10-11 are produced by modulated sine-waves, since the
corresponding 2D-scatterplots of eigenvectors are similar to regular polygons. This way of
identification is based on the following properties: a sine wave has rank 2 and produces two
eigentriples, which are sine waves with the same frequency and have a phase shift exactly or
approximately equal to 7/2, due to the orthogonality of eigenvectors.

By counting the numbers of polygon vertices in Figure 4, the periods of the sine-waves can
be determined as 12, 4, 6, 2.4, 3. Alternatively, automatic methods of frequency calculation
can be employed, such as LS-ESPRIT and TLS-ESPRIT methods (Roy and Kailath 1989).
These methods are implemented in Rssa in the function parestimate and are described in
Golyandina et al. (2001, Sections 2.4.2.4. and 3.8.2) and Golyandina and Korobeynikov (2014)
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Eigenvectors
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Figure 3: FORT: 1D graphs of eigenvectors.
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Figure 4: FORT: 2D scatterplots of eigenvectors.

for one-dimensional time series. The periods calculated by the automatic parestimate method
in Fragment 3 agree with the numbers of vertices in Figure 4 for the five pairs listed.

The matrix of absolute values of w correlations in Figure 5 is depicted in gray scale (white
color corresponds to zero values, while black color corresponds to the absolute values equal to
1). Figure 5 confirms that the indicated pairs are separated between themselves and also from
the trend component, since the correlations between the pairs are small, while correlations
between the components from one pair are very large. The block of 12-84 components is
“gray”, therefore we can expect that these components are mixed and are produced by noise.

Figure 6 contains four reconstructed modulated sine waves and shows that several sine waves
have increasing amplitudes, while others are decreasing; the same can be seen in Figure 3. In
Figure 2, we grouped the modulated sine waves and obtained the seasonal component with
varying form.

Finally, Fragment 4 contains an example of forecasting the series components (trend and
signal), and the result is depicted in Figure 7. Two forecasting methods are implemented for
one-dimensional time series: recurrent (function rforecast) and vector forecasting (function
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Figure 6: FORT: Reconstructed sine waves.

viorecast). Both forecasting methods are based on estimating linear recurrent relations that
govern time series, and are described in detail in Section 3.3.

In Fragment 4, the function vforecast is used. Alternatively, one can use the all-in-one
predict wrapper.

Fragment 4 (FORT: Forecast).
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Figure 7: FORT: Forecasts of trend and signal.

R> f.fort <- vforecast(s.fort, groups = list(Trend = 1, Signal = 1:11),
+ len = 60, only.new = TRUE)

R> plot(cbind(fort, f.fort$Signal, f.fort$Trend), plot.type = "single",
+ col = c("black", "red", "blue"), ylab = NULL)

2.4. Comments on Rssa

The detailed description of the Rssa package structure and the principles of implementation is
contained in Golyandina and Korobeynikov (2014). It is related to the use of Rssa for the
SSA processing of one-dimensional time series, but most of the given information is also valid
for other considered types of data. The typical code demonstrates the main logic of the SSA
processing by Rssa and thereby the structure of functions from the package. Below we briefly
comment on the most important issues and main differences with the one-dimensional case.
More details are contained in the corresponding sections as comments to the typical code or
the package.

Formats of input and output data

The inputs of SSA can be quite different depending on the kind of SSA used. For example,
the inputs can be vectors, ‘ts’ objects, matrices, data frames, lists of vector-like objects of
different lengths, images in the form of matrices. For shaped 2D-SSA, the images can contain
missing NA values. For MSSA the missing values can be used to construct the series of different
lengths.

The routines in the packages are designed in a such way that they preserve all the attributes
(shape, time scale, etc.) of the input object. So, the result of the reconstruction step is exactly
of the same type as the input object was. This can be seen in Figure 6, where the plot method
for ‘ts’ objects (corresponding to the default plot.method = "native") was used to draw
the result of the reconstruction step.

All the forecasting routines try to use the attributes of the input object for the resulting object
(in particular, they try to add the time scale to the result). Unfortunately, this cannot be
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done in a class-neutral way, as it is done in the reconstruction case, and needs to be handled
separately for each possible type of the time series classes. The forecasting routines know how
to impute the time indices for some standard time series classes like ‘ts’ or ‘mts’.

Plotting specifics

The package implements most of its own plotting capabilities with the help of the lattice
package (Sarkar 2008); thus, the majority of the plotting specifics comes from lattice. In
particular, the results of plotting functions of Rssa are proper ‘trellis’ objects and can be
modified, combined and otherwise altered using the standard lattice functionality.

A very convenient way of plotting the reconstructed series is via the "xyplot" method of the
plot method for SSA reconstruction objects. There are powerful specializations of xyplot for
‘ts’ and ‘zoo’ objects and Rssa provides a stub implementation of xyplot for bare matrices.

SVD method

Rssa allows one to use several SVD implementations: either full decompositions implemented
via R functions eigen and svd, or truncated Lanczos SVDs from the package svd (Korobeynikov
2014). These implementations differ in terms of speed, memory consumption and numerical
stability, see Golyandina and Korobeynikov (2014) for discussion concerning these properties.
Here we note that the use of fast SVD methods is the key point in the SSA processing of
images.

By default, the ssa routine tries to select the best SVD implementation given the series length,
window length and the desired number of eigentriples. This corresponds to the selection of
"auto" for the svd.method argument. However, one can override this default setting and
select the desired SVD implementation, if necessary. This differs from the behavior of previous
versions of Rssa, when the package tried to “fix” the SVD method settings, when it thought it
would be a bad idea to proceed. The present and next package versions (as of Rssa 0.10 and
later on) will always tolerate explicit user choice.

Efficient implementation

Complementary to the use of efficient SVD methods, a considerable speed-up is achieved
by means of special methods of actions with Hankel-related matrices, see Section 6 for the
algorithms’ description. This is important, since multiplication by a Hankel matrix and
hankelization of matrices, which can be very large, take a substantial part of the time needed
by the SSA algorithms. The efficient implementation of these routines relies on the possibility to
compute the fast Fourier transform of a vector of arbitrary length with the optimal O(N log V)
complexity. In order to achieve this, Rssa uses the FFTW library (Frigo and Johnson 2005).
While we strongly encourage to always complement Rssa installation with FFTW, the package
will fallback to R’s FFT implementation if the package was compiled without FFTW. Pre-built
Windows and Mac packages on CRAN are statically linked with FFTW; for other platforms it
is usually possible to install the library using the standard package manager. (Note that a -dev
version of the FFTW package is usually required.) If FFTW is not installed, only inherently
one-dimensional analysis (1D-SSA, Toeplitz SSA and complex SSA) will be available. The
computational speed will be slower in this case too.

Following Korobeynikov (2010), let us briefly describe the algorithm complexity for the one-
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dimensional case to show the order of speed-up. The direct implementation of the SSA
algorithms has O(N?) computational and space complexity in the worst case L ~ K ~ N/2
(this case is standard for SSA), where N is the series length. Therefore, it is important to
provide efficient implementations which makes non-trivial cases feasible.

e The methods of an efficient Hankel matrix-vector multiplication by the means of the
fast Fourier transform (see Section 6.1) and the usage of fast Lanczos-based truncated
SVD implementations drop the complexity from O(N?) down to O(kN log N + k2N),
where k is the number of calculated eigentriples.

e Second, one can represent the computation of the elementary series, which is rank 1
hankelization, as a special form of convolution. In this way, the efficient implementation
of the hankelization (diagonal averaging) procedure is again possible via the fast Fourier
transform and has similar improvement of complexity.

e Third, it is possible to implement the vector forecast much more efficiently than using
the direct implementation. The details can be found in Section 6.3.

Note that the principle of automatic calculation of necessary objects is used in the implemen-
tation of the package. For example, if 10 eigentriples were calculated while decomposing, then
the user could still perform reconstruction by the first 15 components, since the decomposition
will be automatically continued to calculate 11-15 eigentriples. Also, the routines reuse the
results of the previous calculations as much as possible in order to save time (hence the
argument cache of many routines). For example, the elementary series once calculated are
stored inside the SSA object, so next time the function reconstruct might not need to
calculate the resulting series from scratch.

All these speed-up improvements make it possible to perform in reasonable time the tasks of
analysis of long series, image processing, tracking procedures and batch processing.

3. Multivariate singular spectrum analysis

Let us consider the problem of simultaneous decomposition, reconstruction and forecasting for
a collection of time series from the viewpoint of SSA. The method is called multichannel SSA
or multivariate SSA, shortened to MSSA. The main idea of the algorithm is the same as in
the basic SSA, the difference consists in the way how the trajectory matrix is constructed.

In a sense, MSSA is a straightforward extension of SSA. However, the algorithm of MSSA
was published even earlier than the algorithm of SSA; see Weare and Nasstrom (1982), where
the MSSA algorithm was named extended empirical orthogonal function (EEOF) analysis.
Formally, the algorithm of MSSA in the framework of SSA was formulated in Broomhead and
King (1986b).

Here we consider the algorithm of MSSA for analysis and forecasting of multivariate time series
following the approach described in Golyandina et al. (2001, Chapter 2) for one-dimensional
series and in Golyandina and Stepanov (2005) for multidimensional ones. In this section, we
also describe the complex-valued version of SSA (called CSSA), since it can be considered as
a multidimensional version of SSA for analysis and forecasting of a system of two time series.
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The theory studying the ranks of the multivariate time series and the separability of their
components for MSSA and CSSA is very similar to that of SSA and is briefly described in
Appendix A. Let us start with the algorithm description.

3.1. MSSA and CSSA algorithms

CSSA analysis

Let the system of series consist of two series, that is, s = 2. Then we can consider one-
dimensional complex-valued series X = X(I) 4+ iX® and apply the complex version of SSA to
this one-dimensional series. Since the general algorithm in Section 2 is written down in real-
valued form, there is the difference in the form of the SVD performed in the complex-valued
space, where the transposition should be Hermitian.

Also, there is a difference regarding the uniqueness of the SVD expansion. If the singular
values are different, then the SVD is unique up to multiplication of left and right singular
vectors by ¢, where |c¢| = 1. In the real-valued case, ¢ = +1, while in the complex-valued case
there are a lot of suitable constants c.

MSSA analysis

p))Np p=1,...,s}of s

Consider a multivariate time series, that is, a collection {X(p) = (x§ ey
time series of length N,, p=1,...,s.

Denote X = (X, ..., X)) the initial data for the MSSA algorithm. Since the general scheme
of the algorithm described in Section 2 holds for MSSA, we need to define the embedding
operator Tyssa (X) = X only.

Let L be an integer called window length, 1 < L < min(N,,p = 1,...,s). For each time

series X, the embedding procedure forms K, = N, — L+ 1 L-lagged vectors X ](-p ) =

(xg-p),...,xg-?Lfl)T, 1 < j < Kp. Denote K = 37 K,. The trajectory matriz of the

multidimensional series X is the L x K matrix of the form

TMSSA(X):X:[XF):...:Xf((ll):...:st):...:X}?]:[X(l):...:X(s)], (7)

s

where X(®) = Tgg2 (X)) is the trajectory matrix of the one-dimensional series X(?) defined in
(2). Thus, the trajectory matrix of a system of time series has stacked Hankel structure.

The eigenvectors {U;} in the SVD (3) of X form the common basis of the column trajectory
spaces of all time series from the system. Factor vectors V; (named EEOF in climatology
applications) consist of parts related to each time series separately, that is,

where pr ) € RK» and belong to the row trajectory spaces of the pth series.

The eigenvectors U; reflect the common features of time series, while the factor subvectors
Vi(l) show how these common features appear in each series. It is natural to transform a
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factor vector to a factor system of factor subvectors V;(p ). Then the form of transformed factor
vectors will be similar to the initial system of series.

Analogously to the one-dimensional case, the main result of the application of MSSA is the
decomposition (5) of the multivariate time series X into a sum of m multivariate series.

Remarks

1. Note that the indexing of time points 1,..., N, (p =1,...,s) starting from 1 does not
mean that the series start at the same time and can finish at different times if lengths of
time series are different. The resultant decomposition obtained by the MSSA algorithm
does not depend on the shift between series and therefore this numeration is just formal.
Even more, decompositions of two series measured at the same time and in disjoint time
intervals do not differ.

2. The original time ranges of series X®) can be useful for depicting and interpreting them.
Certainly, the reconstructed series have the same time ranges as the original ones. Factor
subvectors from the factor system can also be synchronized for plotting based on the
ranges of the initial series. Although factor vectors are shorter than the initial series,
their time shifts are the same.

3. For the SSA analysis of one time series, it makes sense to consider window lengths
2 < L <|[(N+1)/2], since the SVD expansions for window lengths L and N — L + 1
coincide. For the MSSA-analysis of more than one time series the expansions for all
possible window lengths 2 < L < min(N, —1,p =1,...s) are generally different.

4. For simultaneous analysis of several time series, it is recommended to transfer them onto
the same scale. Otherwise, the structure of one time series will overweigh the results.
To balance the time series, they can be either standardized (centered and normalized; in
additive models) or only normalized (in multiplicative models). On the other hand, the
scale of series can be used instead of their weights in the common decomposition if, e.g.,
one of the series is more important or has smaller noise level.

5. In a sense, the most detailed decomposition can be obtained if the trajectory matrix X
has maximal rank. In the general case of arbitrary time series, this corresponds to the
case of square matrix. Thus, for a system of s time series of length N the window length
providing the square (or the closest to square) trajectory matrix X is approximately
s(N+1)/(s+1) for MSSA. In the case of two time series, this corresponds to 2(N +1)/3
for MSSA, while CSSA gives (N +1)/2.

6. The MSSA algorithm might be modified in the same ways as the SSA one; for example,
Toeplitz MSSA, MSSA with centering can be considered. However, these options are
not implemented in the described version of Rssa.
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3.2. Comments on the algorithms

Covariance structure

Consider in more detail the case of two time series X = (F,G) and let F and G be the
trajectory matrices of F and G correspondingly. Then MSSA considers the eigendecomposition
of S = XXT = FF" + GG, that is, MSSA analyzes the averaging structure of two time
series.

Since the SVD of a matrix coincides with the SVD of its transpose, we can consider the
decomposition of the time series trajectory matrices on the basis of right singular vectors or,
equivalently, to transpose X and consider eigenvectors of

g F'F F'G
“\G'F G'G

called EEOFs. The last formula demonstrates more clearly that MSSA takes into consideration
cross-covariances of time series (more precisely, cross-covariances are considered if centering is

used).

Since the eigendecomposition of a complex-valued matrix A + iB can be reduced to the
eigendecomposition of the real-valued matrix

A -B
in the case of CSSA we in fact analyze eigenvectors of the matrix

g F'F F'G N G'G -G'F
“\G'F G'G -F'G F'F )’

that is, structures of the time series are mixed in greater degree in comparison with MSSA.

Matching of series

Simultaneous analysis of several time series is usually performed to identify their relation and
extract the common structure. Recall that the structure in SSA means that the trajectory
matrix is rank-deficient. Certainly, for real series in applications, the trajectory matrix is of
full rank, since at least noise has no structure. Therefore, in what follows we say about rank
applies to the signal or its components.

Consider the system of series with rank-deficient trajectory matrix. The structure of the series
is reflected by its trajectory space. Therefore, we can say that two time series have the same
structure if their trajectory spaces coincide. For example, the trajectory spaces of two sine
waves with equal periods coincide irrespective of the amplitudes and phases. This fact is
evident, since the trajectory space is the span of subseries of length L of the initial series. To
the contrary, sine waves with different frequencies have totally different structure and their
combined trajectory space is the direct sum of the trajectory spaces of individual time series.

If two time series are fully matched, then the trajectory space of one time series can be used
for reconstruction or forecasting of the second series. If the series are totally different, then
the first series is useless for the analysis of the second one.

19
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For MSSA, the shift between time series, for example, the difference between phases of two
matched sine waves, is of no consequence. Therefore, we cannot say anything about direction
of causality (if any; see Hassani, Heravi, and Zhigljavsky 2013, where the attempt to detect
causality is performed). Moreover, asymmetry of influence of one time series to another series
can be caused by different levels of noise.

Relation between SSA, MSSA and CSSA ranks

For MSSA and CSSA, the notions of time series of finite rank and of time series satisfying
linear recurrence relations are analogous to these notions in SSA. However ranks of the same
time series can differ depending on the applied method. Therefore, we can think about SSA,
MSSA and CSSA ranks.

If the individual time series have the same structure (and therefore the same SSA ranks), then
the MSSA rank is equal to the SSA rank of each time series. As for CSSA rank, it can be
even less than all the individual SSA ranks for some special cases.

Consider a collection H®) = (h§p));y:1, p=1,...,s, of s signals of length V. Let r, denote

the SSA rank of H® (i.e., dimension of the trajectory spaces generated by one-dimensional
SSA applied to this time series) and 7 denote the MSSA rank of (H(®, ... H()). The relation
between r and r,, p =1,...,s, is considered in Appendix A. In particular, it is shown that
Tmin < 7 < Tmax, Where rmin = max{r,,p =1,...,s} and rmax = ;:1 rp. The case r = rpax
is the least favorable for MSSA and means that different time series do not have matched
components. The case r < rpyax indicates the presence of matched components and can lead
to advantages of simultaneous processing of the time series system.

In terms of matching, if all the series have the same characteristic roots (see Appendix A
for definition), then this means that the time series X®) p=1,...,s, consist of additive
components of the same SSA structure. Such time series are fully matched. For fully matched
time series the MSSA rank is much smaller than the sum of the SSA ranks of the separate
time series from the system. On the contrary, if the sets of characteristic roots do not intersect,
then the time series have no common structure. In this case, the MSSA rank is exactly equal
to the sum of the SSA ranks of the separate time series from the system. For the real-world
time series, we are usually between these extreme cases.

Separability

The notion of separability for multidimensional time series is analogous to that for one-
dimensional series briefly commented on in Section 2.2 and thoroughly described in Golyandina
et al. (2001, Sections 1.5 and 6.1). Appendix A contains several results on separability of
multidimensional series together with definitions of weak and strong separability. Generally,
conditions of separability of multidimensional time series are more restrictive than that for
one-dimensional series. In particular, the sufficient condition for separability of two series
systems is the separability of each series from one collection with each series from the second
one. However, for matched signals, their (weak) separability from the noise can be considerably
improved by their simultaneous MSSA analysis.

Since weak separability is not enough for extraction of time series components, we should pay
attention to strong separability related to eigenvalues produced by time series components.
It appears (see Example 2 in Appendix A) that the time series (F(V) F(?)) can produce
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different eigenvalues in SSA, MSSA and CSSA. Therefore, the application of an appropriate
multidimensional modification of SSA can improve strong separability. Again, matching of
time series diminishes the number of eigenvalues related to the signal and thereby weakens
the chance of mixing of the signal with the residual.

Choice of window length

Recommendations on the choice of window length for one-dimensional SSA analysis can be
found, e.g., in Golyandina et al. (2001, Section 1.6) and Golyandina (2010). However, the
problem of the choice of window length in MSSA is more complicated than that for SSA.
To the best of the authors’ knowledge, there is no appropriate investigation of the choice of
optimal window length for analysis and, to a greater extent, forecasting of multidimensional
time series. Moreover, the choice of the best window length for MSSA forecasting differs for
different types of forecasting methods, see the numerical comparison in Section 3.5, which,
in particular, contains an extension of the numerical investigation done in Golyandina and
Stepanov (2005).

By analogy to the one-dimensional case, we can formulate some principles for the choice of
L. The main principle is the same as for SSA and states that the choice of L should provide
(approximate) separability of series. However, the MSSA case has additional features. For
example, while in SSA analysis it makes no sense to take L > (N + 1)/2, in MSSA analysis
large L with small K, = N, — L + 1 can be taken instead of small L for trend extraction and
smoothing.

Various special techniques can be transferred from SSA to MSSA, such as sequential SSA.
Sequential SSA is based on successive application of SSA with different window lengths, see
Golyandina and Zhigljavsky (2013, Section 2.5.5) for more details. For example, if trends are
of complex or of different structure, a smaller window length can be applied to achieve the
similarity of eigenvectors and to improve separability. Then the residual can be decomposed
with a larger window length. For multidimensional time series, sequential MSSA can be
applied by analogy to sequential SSA.

Two alternatives to sequential SSA are described in Golyandina and Shlemov (2015) and are
implemented for one-dimensional time series in version 0.11 of the Rssa package. However,
these approaches can be extended to multivariate and multidimensional cases.

Since L in SSA does not exceed the half of the time series length, the divisibility of L =
min(L, K') on possible periods of oscillations is recommended in SSA. In MSSA, min(L, K,,) is
not necessary equal to L and therefore one puts attention on values of K.

Numerical investigations show that the choice L = |sN/(s + 1)| is appropriate for the
decomposition of several (a few) time series (see simulation results in Section 3.5), but
evidently cannot be applied for the system of many short series (K, becomes too small for
separability). In general, the choice L = | N/2] is still appropriate even for multivariate SSA.

3.3. Multivariate SSA forecasting

Forecasting in SSA is performed for a time series component which can be separated by SSA
and is described (maybe, approximately) by a linear recurrent relation (LRR). For brevity,
we will refer to this as forecasting of a signal. If the forecasted series component (signal) is
governed by an LRR, then it can be forecasted by this or extended LRR.
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Without loss of generality, we assume that the first component X; of the decomposition
(5) is forecasted. In order to simplify the notation, we denote the reconstructed series by

X = X; = (XO, ..., X6), where X®) = (:Eg»p))N” p = 1,...,s. The methods of SSA

=0
forecasting aim at obtaining the forecasted points 7

J
time series X and the corresponding reconstructed matrix X = X;. The forecasting is called

M -step ahead if the points (.%E\I;ZH, . ,565\72+M), p=1,...,s are being obtained.

for j > Np, based on the reconstructed

There are two main methods of SSA forecasting: recurrent and vector. In recurrent forecasting,
an estimated LRR is applied to the the reconstructed series X in order to obtain a 1-step
ahead forecast. The M-step ahead forecast is obtained by recurrence (by applying M times
the 1-step ahead forecasting with the same LRR), which explains the name of the method.
In wvector forecasting, the reconstructed matrix X is first extended, by continuation of the
reconstructed lagged vectors in a given subspace (row or column space of )A() The forecasted

points are then obtained by diagonal averaging of the extended reconstructed matrix.

Recurrent and vector methods of one-dimensional SSA forecasting (s = 1) are fully described in
Golyandina et al. (2001, Chapter 2). For CSSA, the forecasting algorithms are straightforward
extensions of SSA forecasting algorithms to the complex-valued case; therefore we do not
discuss them here. The methods of MSSA forecasting, however, need special attention.

Asin SSA, methods of MSSA forecasting can be subdivided into recurrent and vector forecasting.
In contrast with SSA, rows and columns of the trajectory matrix in MSSA have different
structure. Therefore, there exist two kinds of MSSA forecasting: row forecasting and column
forecasting, depending on which space is used (row or column space respectively). In total,
there are four variants of MSSA forecasting: recurrent column forecasting, recurrent row
forecasting, vector column forecasting and vector row forecasting.

In the column forecasting methods, each time series in the system is forecasted separately, but
in a given common subspace (i.e., using the common LRR). In the row forecasting methods,
each series is forecasted with the help of its own LRR applied to the whole set of series from
the system. Next, we describe all the variants of MSSA forecasting in detail.

Common notation

First, we introduce some common notation used for description of all the variants of MSSA
forecasting.

For a vector A € R?, we denote by A € R2~! the vector of the last Q — 1 coordinates and by
A € R?7! the vectors of the first Q — 1 coordinates. The line on the top (respectively, on the
bottom) indicates that the the first (respectively, the last) coordinate is removed from the vector
A. Also, denote by 7(A) the last coordinate of the vector. For a matrix A = [A4; :...: A;]
denote A=[A;:...:A]Jand A=[A4,:...: A] and let 7(A) = (7(41),...,7(A4,))" be the
last row of the matrix A.

For a vector B € R, where K = Zzzl K,, we use the following notation:

B o)

B®) B® _
. é = . ) B = : 3 IJ’(B) = . : (9)

B) BO ) =(BE)
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where B?) € RK». For B=[B; :...: B,],let B=[B, :...: B ]and B®» = [B¥ : ... BY)].

For simplicity we assume that the set I = I} corresponding to the forecasted component is
given by the set of the leading components; that is, I = Iy = {1,...,r}. (This is made just
for simplification of formulas.) Thus, let r leading eigentriples (1/A;, Uj, V;) be identified and
chosen as related to the signal of rank r, and denote U =[U;:...:U,], V=[Vi:...: V]

The reconstructed series X, its trajectory matrix X and the reconstructed matrix X are defined
in Section 2.1. Define £ = span(U;,i € I), £™% = span(V;,4 € I). The reconstructed matrix

~

X = [)21(1) DLt )A(%) U )Affs) N X}g] consists of column vectors that are projections of
column vectors of the trajectory matrix (7) on the chosen subspace £°!. For convenience, we
also denote by Y; the ith row of the matrix X, such that XT = [Y; :...: Yz].

Recurrent MISSA forecast

Denote by Ry = (5:5\1,3“, .%S\z,iﬂ, . ,a?SéZH)T the vector of forecasted signal values for each

time series (1-step ahead forecast). Recurrent forecasting is closely related to missing data
imputation for components of vectors from the given subspace and in fact uses the formula
(1) from Golyandina and Osipov (2007). Following Golyandina and Stepanov (2005), we can
write out forecasting formulas for two versions of the recurrent MSSA forecast: row (generated
by {U;}j—1) and column (generated by {V;}7_;). These 1-step ahead forecasting formulas can
be applied for M-term ahead forecast by recurrence.

The column recurrent forecasting performs forecast by an LRR of order L — 1, applied to the
last L — 1 points of the reconstructed signal, that is, one LRR and different initial data. The
row recurrent forecasting constructs s different linear relations, each is applied to the set of
K; — 1 last points of series, that is, LRRs are different, but initial data for them are the same.

Column forecast. Denote by Z the matrix consisting of the last L — 1 values of the

reconstructed signals:
(1) oz

jN —L+2 N
2 ED
z= | P
B e . B
v? =3 m(U;j)% If v? < 1, then the recurrent column forecast is uniquely defined and can be
j=1
calculated by the formula
1 T
~1
Ry =7ZR;,  where Rp=-—7j > w(U;)U; eRML (10)
j=1

Note that (10) implies that the forecasting of all individual series is made using the same LRR
(with coefficients Ry, ), which is generated by the whole system of series.

Row forecast. Introduce the vectors of the last K}, — 1 values of the reconstructed signals

N NN
Z(p):(xggle+2,...,x§€2) , p=1,...,s,
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and define a vector Z € RE~5 and an s x r matrix S as

Z'(S)

If the inverse matrix (I, — SST)~! exists and » < K — s, then the recurrent row forecast exists
and can be calculated by the formula

Ry =RgZ, (11)

where Rc = (I, — SST)"! SV'. Note that (11) implies that the forecasting of the individual
signals is made using the linear relations which are different for different series. The forecasting
value generally depends on the last values of all the time series in the system of series.

Vector MSSA forecasting

Denote £ = span(Uy, . .. ,Uy) and £V = span(V, ...,V ). Let 1! be the orthogonal

projector of RE1 on £%°! and IT"% be the orthogonal projector of REX~5 on LV,

The rows of X are the projections of rows of the trajectory matrix X on £V, while the
columns of X are the projections of columns of the trajectory matrix X on £,

The explicit form of the matrices of the column and row projectors can be found in Golyandina
and Osipov (2007, Formula (4)). However, the calculation based on this formula is time-
consuming. The fast algorithms for vector forecasting are presented in Section 6.3.

Column forecast. We mentioned that for a given subspace (£! in our case) the column
forecast is performed independently for each time series. Define the linear operator fP%}’elC :
RE — £ by the formula

HCOIZ
PRZ = (R{Z) : (12)
Let us formulate the wvector forecasting algorithm for jth series.

1. In the notation above, define the vectors Z; € RE as follows:

v (P) .
Z, :{ XC];)1 for j=1,....K, (13)
PacZj—1 for j=K,+1,... ., K+ M+ L —1.
2. By constructing the matrix Z = [Z; : ... : Zg,ym+1-1] and making its diagonal

averaging we obtain the series 21, ..., 2N, +M+L-1-

3. The values (i'%H, e ,5;%2+M) = (2N, +1,- -+, 2N,+ M) form the M terms of the forecast.
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Row forecast. Define the linear operator Py : RE — £ by the formula
Py Z = A, (14)

such that A = %7 and p(A) = Ry 2.

Let us formulate the wvector forecasting algorithm.

1. In the notation above, define the vectors Z; € RX as follows:

Y; for t=1,...,L
Z‘: b ? ’ I 1
i {T{/Qevg i1 fOrZ:L+1”L+M+K*_1, (5)

where K* = max(Kp,p=1,...,s).
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2. By constructing the matrix Z = [Z; : ... : Zr i pyx+—1]' and making the MSSA
reconstruction step we obtain the series ng)’ ce 2%2+M+K*71, p=1,...,s.
3. The values (535\12-5-1’ e ,ig\[;2+M) = (z](\l;gﬂ, . ,21(52+M) form the M terms of the forecast.

Remark 1. For the M-step ahead vector forecast, M + K* — 1 new lagged vectors for row
forecasting and M + L — 1 ones for column forecasting are constructed. The reason for this
is to make the M-step forecast inheriting the (M — 1)-step forecast with no redrawing. This
characteristic of the vector forecasting provides its stability and accuracy if the accurately
extracted component of finite rank is forecasted, that is, if long-term forecast is appropriate.
Otherwise, long-term vector forecasting can be wrong and even the result of short-term vector
forecasting can be also wrong for large K* or L correspondingly.

3.4. Package

Typical code

Here we demonstrate how the MSSA decomposition of a system of time series can be performed
by means of the Rssa package. Since the analysis and forecasting for one-dimensional time
series by Rssa are thoroughly described in Golyandina and Korobeynikov (2014), we put more
attention on the difference.

In Section 2.3, we decomposed the one-dimensional series FORT (sales of fortified wines).

Here we add one more series, sales of dry wines (shortly DRY), for simultaneous analysis.

For loading the data we use the code from Fragment 1.

Fragment 5 (FORT and DRY: Reconstruction).

R> wineFortDry <- wine[, c("Fortified", "Drywhite")]

R> L <- 84

R> s.wineFortDry <- ssa(wineFortDry, L = L, kind = "mssa")

R> r.wineFortDry <- reconstruct(s.wineFortDry,

+ groups = list(Trend = c(1, 6), Seasonality = c(2:5, 7:12)))

R> plot(r.wineFortDry, add.residuals = FALSE, plot.method = "xyplot",
+ superpose = TRUE, auto.key = list(columns = 3))
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Reconstructed Series

Original Fortified —— Fortified Trend Fortified Seasonality
Original Drywhite Drywhite Trend —— Drywhite Seasonality ———
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Figure 8: FORT and DRY: Reconstructed trend and seasonality.

Fragment 5 contains a typical code for simultaneous extraction of the trend and seasonality
(compare with Fragment 2). An evident difference is in the indicated value of parameter kind
in the ssa function. A more significant difference is related to plotting of the results. For
multivariate series there is in a sense a matrix of series, where one index is the number of the
series in the system, while the second index corresponds to the number of the component in
the decomposition. The plot function for the reconstruction object allows to indicate which
subset (which slice) of this matrix one wants to depict by means of the parameter slice.
The parameter slice consists of the list of numbers of series and numbers of decomposition
components.

The code for component identification in MSSA is very similar to that in SSA, compare
Fragments 6 and 3. The difference consists in the structure of the factor vectors; however, the
factor vectors are not necessary for identification. Figure 9 (compare Figure 3) shows that
the trend is described by ET1 and ET6, which is slightly mixed with seasonality. Figure 10
(compare Figure 4) demonstrates the pairs of ETs that are related to seasonality.

Since the implemented methods of parameter estimation are based on eigenvectors only, they
can be applied to eigenvectors in MSSA in exactly the same way as in the one-dimensional
case.

Fragment 6 (FORT and DRY: Identification).
R> plot(s.wineFortDry, type = "vectors", idx = 1:8)

R> plot(s.wineFortDry, type = "paired", idx = 2:11, plot.contrib = FALSE)
R> parestimate(s.wineFortDry, groups = list(2:3, 4:5), method = "esprit-1s")
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Figure 9: FORT and DRY: 1D graphs of eigenvectors.

Pairs of eigenvectors
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Figure 10: FORT and DRY: 2D scatterplots of eigenvectors.

$F1
period rate | Mod Arg | Re Im
12.128 -0.004789 | 0.99522 0.52 | 0.86463 0.49283
-12.128 -0.004789 | .99522 -0.52 | 0.86463 -0.49283
$F2
period rate | Mod Arg | Re Im
4.007 -0.001226 | .99877 1.57 | 0.00279  0.99877
-4.007 -0.001226 | .99877 -1.57 | 0.00279 -0.99877

o

0
0

R> plot (wcor(s.wineFortDry, groups = 1:30),
+ scales = list(at = c(10, 20, 30)))

The code for forecasting is also very similar to that in SSA, compare Fragments 7 and 4.
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W-correlation matrix

F30 —

F20 —

F10 —

F10 F20 F30

Figure 11: FORT and DRY: Weighted correlations.

Fragment 7 (FORT and DRY: Forecast).

R> f.wineFortDry <- rforecast(s.wineFortDry, groups = list(1, 1:12),

+ len = 60, only.new = TRUE)

R> par(mfrow = c(2, 1))

R> plot(cbind(wineFortDry[, "Fortified"], f.wineFortDry$F2[, "Fortified"]),
+ plot.type = "single", col = c("black", "red"), ylab = "Fort")

R> plot(cbind (wineFortDry[, "Drywhite"], f.wineFortDry$F2[, "Drywhite"]),
+ plot.type = "single", col = c("black", "red"), ylab = "Dry")

The results of MSSA analysis are similar to the results of SSA analysis. However, the separabil-
ity is slightly worse (compare w correlations between signal components in Figures 5 and 11).
Therefore, the methods for improvement of separability can be very useful (Golyandina and
Shlemov 2015). Note that the mixture of the signal components is not important for signal
forecasting.

Comments

Formats of input and output data. While the representation of a one-dimensional time
series in R is pretty obvious, there are multiple possible ways of defining the multivariate time
series. Let us outline some common choices.

¢ A matrix with separate series in the columns. Optionally, additional time structure like
in mts objects, can be embedded.

o A matrix-like (e.g., a data.frame) object with series in the columns. In particular,
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Figure 12: FORT and DRY: Forecast of the signal.

data.frame would be the result of reading the series in from a file via the read.table
function.

o A list of separate time series objects (e.g., a 1ist of ‘ts’ or ‘zoo’ objects).

Also, the time scales of the individual time series can be normalized via head or tail padding
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with NA (for example, as a result of the ts.union call), or specified via time series attributes.

Or, everything can be mixed all together.

The package is designed to allow any of the input cases outlined above and produces the
reconstructed series in the same format. All the attributes, names of the series, NA padding,
etc. are carefully preserved. For forecasted series, the time scale attributes for several known
time series objects (e.g., ‘ts’) are inferred automatically where possible.

The examples in the Fragments 5 and 14 provide an overview of the possible input series
formats.

Plotting specifics. Keep in mind that the default ("native") plotting method for recon-
struction objects may or may not be suitable for multivariate time series plotting. For example,
it provides many useful plotting possibilities for ‘ts’ and ‘mts’ objects, but might totally be
unusable in case of data.frame objects, because it will just call the pairs function on the
resulting data frame in the end.
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Summary for ssa object. The summary for SSA objects (see Fragment 8) in the MSSA
case coincides with the one for SSA up to slight differences.

Fragment 8 (FORT and DRY: Summary).

R> summary (s.wineFortDry)

Call:

ssa(x = wineFortDry, L = L, kind = "mssa")

Series length: 174, 174, Window length: 84, SVD method: eigen
Special triples: O

Computed:

Eigenvalues: 50, Eigenvectors: 50, Factor vectors: O

Precached: 0 elementary series (0 MiB)
Overall memory consumption (estimate): 0.03809 MiB

Here one can see the individual series lengths (excluding the NA padding), the window length,
the selected default SVD decomposition method and the number of computed eigentriples.
No factor vectors are computed, they will be recomputed on the fly when necessary.

Efficient implementation. All ideas from the one-dimensional case can be extended to
the multivariate case. In the one-dimensional case, the complexity is determined by the series
length N and the window length L, and the worst case corresponds to L ~ K ~ N/2 with
overall complexity of O(L? + L2K) = O(N?3).

In the multidimensional case (for the sake of simplicity, assume that all the series have equal
lengths N), the worst case corresponds to L ~ K ~ s(N +1)/(s + 1), that is, the order of
complexity is the same, O(N?3), but the constant can be considerably larger. Therefore, the
achieved speed-up can be much higher than that in the one-dimensional case.

Note that the multichannel SSA can be viewed as a special case of shaped 2D-SSA (see
Section 5.3) and the current implementation in the package uses this under the hood.

3.5. Examples

Factor vectors

Factor vectors in MSSA have length K and consist of stacked vectors of length K,, p =
1,...,s, related to each series. Therefore, it is natural to depict them as a system of s
vectors. Factor vectors are not necessarily contained in the ‘ssa’ object. In particular, the
s.wineFortDry object created in Fragment 5 has 0 factor vectors, which can be checked using
summary (s.wineFortDry). Note that if one uses svd.method = "svd" (and "propack"), then
factor vectors will be calculated automatically. In order to get factor vectors corresponding to
the eigenvectors contained in ‘ssa’, the user can call the calc.v function.

Fragment 9 shows the difference between eigenvectors and factor vectors for small window
length. The result for L = 24 is depicted in Figure 13. The eigenvector in Figure 13 captures
the common behavior (which is almost constant) in the timescale of two years, while the factor
vector is divided into parts reflecting individual features of the series, compared with trends
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in Figure 8 which are repeated in Figure 13. Note that signs of the calculated eigenvectors are
random. For example, the first eigenvector is negative here. Thereby, the factor vectors are
similar to the reconstructed series with opposite sign.

The choice of large window length L = 163 also yields the trajectory matrix of rank 24, since
then K, =176 — 163 + 1 = 12 and therefore K = 2 - 12 = 24; however, the common structure
is captured by two eigentriples. Note that in climatology the SVD of the transposed trajectory
matrix is traditionally considered (Hannachi, Jolliffe, and Stephenson 2007). Therefore, the
eigenvectors U; correspond to normalized extended principal components in Hannachi et al.
(2007), while the factor vectors V; are called EEOFs.

Fragment 9 (FORT and DRY: Use of factor vectors in MSSA).

R> library("lattice")

R> L <- 24

R> s.wineFortDrya <- ssa(wineFortDry, L = L, kind = "mssa")

R> r.wineFortDrya <- reconstruct(s.wineFortDrya, groups = list(Trend = 1))
R> tpl <- plot(r.wineFortDrya, add.residuals = FALSE, add.original = TRUE,
+ plot.method = "xyplot", aspect = 0.3, superpose = TRUE,

+ scales = list(y = list(draw = FALSE)), auto.key = "", xlab = "",
+ col = c("blue", "violet", "blue", "violet"))
R> tp2 <- plot(s.wineFortDrya, type = "vectors", vectors = "factor",

+ idx = 1, aspect = 0.5, superpose = TRUE,

+ scales = list(x = list(draw = TRUE), y = list(draw = FALSE)),
+ auto.key = list(columns = 2))

R> tp3 <- plot(s.wineFortDrya, type = "vectors", vectors = "eigen",
+ idx = 1, aspect = 1,

+ scales = list(x = list(draw = TRUE), y = list (draw = FALSE)))
R> plot(tp3, split = c(1, 1, 1, 3), more = TRUE)
R> plot(tp2, split = c(1, 2, 1, 3), more = TRUE)
R> plot(tpl, split = c(1, 3, 1, 3), more = FALSE)

Preprocessing (normalization)

Let the time series in the system be measured in different scales. In statistics, this problem is
typically resolved by standardizing the data. In SSA, centering may not be an appropriate
preprocessing. Therefore, two types of preprocessing can be applied, conventional standard-
ization and normalization, that is, division by the square root of mean sum of squares. The
normalization can be even more appropriate for positive series, since it changes only the scale
of data.

Let us consider Fortified and Rosé wine sales. Sales of Fortified wines are of the order of
thousands while sales of Rosé wines are of the order of tens and hundreds. Fragment 10 shows
how the scale influences the reconstruction result.

Fragment 10 (FORT and ROSE: Influence of series scales).

R> wineFortRose <- wine[, c("Fortified", "Rose")]
R> summary(wineFortRose)
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Figure 13: FORT and DRY: L = 24, relation between eigen- and factor vectors and recon-
structed series.

Fortified Rose
Min. :1154 Min. : 30.00
1st Qu.:2372 1st Qu.: 66.00
Median :2898 Median : 87.00

Mean :3010 Mean : 93.01
3rd Qu.:3565 3rd Qu.:114.25
Max. :5618 Max. :267.00

R> norm.wineFortRosen <- sqrt(colMeans(wineFortRose~2))



Journal of Statistical Software 33

R> wineFortRosen <- sweep(wineFortRose, 2, norm.wineFortRosen, "/")

R>L <- 84

R> s.wineFortRosen <- ssa(wineFortRosen, L = L, kind = "mssa")

R> r.wineFortRosen <- reconstruct(s.wineFortRosen,

+ groups = list(Trend = c(1, 12, 14), Seasonality = c(2:11, 13)))

R> s.wineFortRose <- ssa(wineFortRose, L = L, kind = "mssa'")

R> r.wineFortRose <- reconstruct(s.wineFortRose,

+ groups = list(Trend = 1, Seasonality = 2:11))

R> wrap.plot <- function(rec, component = 1, series, xlab = "", ylab, ...)

+ plot(rec, add.residuals = FALSE, add.original = TRUE,

+ plot.method = "xyplot", superpose = TRUE,

+ scales = list(y = list(tick.number = 3)),

+ slice = list(component = component, series = series), xlab = xlab,
+ ylab = ylab, auto.key = "", ...)

R> trell <- wrap.plot(r.wineFortRosen, series = 2, ylab = "Rose, norm")
R> trel2 <- wrap.plot(r.wineFortRosen, series = 1, ylab = "Fort, norm")
R> trel3 <- wrap.plot(r.wineFortRose, series = 2, ylab = "Rose")

R> trel4 <- wrap.plot(r.wineFortRose, series = 1, ylab = "Fort")

R> plot(trell, split = c(1, 1, 2, 2), more = TRUE)
R> plot(trel2, split = c(1, 2, 2, 2), more = TRUE)
R> plot(trel3, split c(2, 1, 2, 2), more = TRUE)
R> plot(trel4, split c(2, 2, 2, 2))

Figure 14 demonstrates the result of a trend reconstruction, where the trend was detected in the
same way as before, that is, by means of form of eigenvectors and weighted correlations. The
trend of the ROSE series is more complicated. However, FORT overweighs the decomposition
and the eigentriples that refine the ROSE trend have very small weight and mix with the
common noise. Therefore, the SSA processing with no normalization is worse for analysis of
the series ROSE with smaller scale.

Forecasting of series with different lengths as filling in

Typical code in Section 3.4 was demonstrated for series of equal lengths. However, the same
code can be applied to series of different lengths. The full Australian wine data are incomplete,
there are no data for two months (point 175 and 176) for sales of Rosé wines and there are no
data for the last 11 months of Total sales.

Let us perform the following actions: (A) fill in the missing data in ROSE, (B) calculate the
sum of sales of the present wines and (C) process this sum together with the Total series and
fill in the missing data in the Total series by the simultaneous forecasting.

To use the analysis performed before, let us forecast the ROSE series together with the FORT
series for (A). Fragment 11 implements (A). Certainly, this can be done by a separate analysis
of the ROSE series and the SSA methods of filling in missing data, but Figure 15 shows that
the result of the used method is quite accurate.

Fragment 11 (FORT and ROSE: Forecast of the missing data in ROSE).

R> f.wineFortRosen <- rforecast(s.wineFortRosen, groups = list(1:14),
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Figure 14: FORT and ROSE: Trends with normalization (ET1, 12, 14) and without (ET1).

+ len = 13, only.new = TRUE)[, "Rose"]

R> f.wineFortRosen_long <- c(rep(NA, 174),

+ norm.wineFortRosen["Rose"] * f.wineFortRosen)

R> xyplot (AustralianWine[100:187, "Rose"] + f.wineFortRosen_long[100:187] ~
+ time (AustralianWine) [100:187], type = "1", xlab = "Time",

+ ylab = "Rose", 1ty = c(1, 2))

Fragment 12 implements (B) and (C). Also, we compare the forecast of Total sales separately
(TOTAL) and together with the available sum of sales of main wines (MAINSALES). We con-
sider two simultaneous forecasts together with changing the weight of the series MAINSALES
from 1 to 100. Figure 16 clearly demonstrates that for small contributions of MAINSALES
the simultaneous forecast is close to the separate forecast of TOTAL, while for large weights
of MAINSALES the simultaneous forecast of TOTAL tends to have the form similar to the
form of MAINSALES. An additional investigation is needed to choose the better version.

Fragment 12 (TOTAL: Different ways of forecasting).

R> FilledRoseAustralianWine <- AustralianWine

R> FilledRoseAustralianWine[175:176, "Rose"] <- f.wineFortRosen_long[175:176]
R> mainsales <- ts(rowSums(FilledRoseAustralianWine[, -1]))

R> total <- FilledRoseAustralianWine[, "Total"]

R> L <- 84

R> s.totalmainl <- ssa(list(mainsales[12:187], total[1:176]),
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Figure 15: FORT and ROSE: Forecast of ROSE in comparison with the existing data.

+ L =L, kind = "mssa")

R> f.totalmainl <- rforecast(s.totalmainl, groups = list(1:14),

+ len = 11, only.new = TRUE)

R> s.totalmain2 <- ssa(list(100 * mainsales[12:187], total[1:176]),
+ L =L, kind = "mssa")

R> f.totalmain2 <- rforecast(s.totalmain2, groups = list(1:14),

+ len = 11, only.new = TRUE)

R> s.total <- ssa(total[1:176], L = L, kind = "1d-ssa")

R> f.total <- rforecast(s.total, groups = list(1:14),

+ len = 11, only.new = TRUE)

R> xtime <- time(AustralianWine) [177:187]

R> xtime.labels <- paste(month.abb[round(xtime * 12) %7 12 + 1],

+ floor(xtime), sep = ", ")

R> xyplot(f.total + f.totalmainl[[2]] + f.totalmain2[[2]] +
mainsales[177:187] ~ xtime, type = "1", xlab = "Time", ylab = "Total",
scales = list(x = list(labels = xtime.labels)),

auto.key = list(text = c("Separate forecast of 'Total'",
"Forecast of 'Total' using 'Main'",

"Forecast of 'Total' using 'Main' with weight 100",

"Known “Main' sales"), lines = TRUE, points = FALSE))

+ + + + + +

Simultaneous decomposition of many series

In this example, we consider a system of many time series and show that the decomposition by
MSSA helps to look at similar patterns of the series. We will use the methodology described
in the previous sections.

Let us consider the collection of s = 6 series from the Australian wine dataset, which includes

35
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Figure 16: TOTAL: Forecast of total sales, separate and with the available information.

the series of wine sales considered in the typical code from Section 3.4. A considerable part
of this multivariate series can be described as seasonality. Therefore, MSSA can have an
advantage over conventional SSA.

Since the time series have different scales, namely, the Rosé wines sales have the order of 100
thousand of litres in a month, while the sales of fortified wines are about 30 times larger, the
time series should be transformed onto the same scale. We choose the window length L = 163,
then K;, = 12 and K = 84 and therefore the number of elementary components is equal to
84 = min(163,84). For the choice of L that makes the number of elementary components
larger, there can be elementary components with approximately equal contribution (there can
be a lack of strong separability). It appears that the decomposition with the choice L = 163
is better than, say, a more detailed decomposition with L = 151, K, = 24, since the choice
L = 163 helps to avoid mixture of components.

The identification of the trend (ET1, 2, 5) and the seasonality (ET3, 4, 6-12) is performed on
the basis of eigenvectors and uses the principles described in the typical code from Section 3.4.
Fragment 13 contains the code to get the reconstruction shown in Figures 17 and 18.

Fragment 13 (Wine sales: Simultaneous decomposition by MSSA).

R> L <- 163

R> norm.wine <- sqrt(colMeans(wine[, -1]72))

R> winen <- sweep(wine[, -1], 2, norm.wine, "/")

R> s.winen <- ssa(winen, L = L, kind = "mssa")

R> r.winen <- reconstruct(s.winen,

+ groups = list(Trend = c(1, 2, 5), Seasonality = c(3:4, 6:12)))
R> plot(r.winen, add.residuals = FALSE, plot.method = "xyplot",

+ slice = list(component = 1), screens = list(colnames(winen)),
+ col = c("blue", "green", '"red", "violet", "black", "green4"),
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Figure 17: Wine sales: Extraction of trends.

+ 1ty = rep(c(1, 2), each = 6), scales = list(y = list(draw = FALSE)),
+ layout = c(1, 6))

R> plot(r.winen, plot.method = "xyplot", add.original = FALSE,

+ add.residuals = FALSE, slice = list(component = 2),

+ col = c("blue", "green", "red", "violet", "black", "green4"),

+ scales = list(y = list(draw = FALSE)), layout = c(1, 6))

The reconstructed trends and seasonal components look adequate. In addition, the simultaneous
processing of several time series is very convenient, since we obtain similar time series
components all at once. In particular, it is clearly seen from Figure 18 that the sale volumes
of fortified wines are maximal in June-July (that are winter months in Australia), while the
sale volumes of sparkling wines have a peak in December.

Numerical comparison

In this section, we demonstrate how the accuracy of MSSA is related to the structure of the
multivariate time series. The aim is to compare accuracy for separate analysis and forecasting
of time series with simultaneous processing of the series system. We repeat the results from
Golyandina and Stepanov (2005) and supplement them with new comparisons. In particular,



38 Multivariate and 2D Extensions of SSA with Rssa

Reconstructed Series

1 1 1 1
Drywhite Seasonality

A MM AN AN

Fortified Seasonality

Red Seasonality

AV MMM MM MY

Rose Seasonality

Sparkling Seasonality

ANAAANANNNNNAAN

Sweetwhite Seasonality

AAAANAAAAAAAAN

T T T T
1980 1985 1990 1995

Time

Figure 18: Wine sales: Extraction of seasonality.

the comparison results explain the choice of the default forecasting method.

In the study below, we consider the case s = 2 and hence include CSSA onto the range of SSA
methods we compare. The investigated model examples include the least favorable and the
most favorable cases for MSSA as well as some cases well suited for the application of CSSA.
Let us observe (X1, X)) = (H® H®) + (NW, N®@), where (H® H®) is a two-dimensional
signal consisting of two harmonic time series and N(") and N() are realizations of independent
Gaussian white noises. Then we can use the standard simulation procedure to obtain estimates
of mean square errors (MSE) for reconstruction and forecasting of (H(!), H(®) by the considered
above SSA methods. Note that the resultant MSE is calculated as the mean of MSE™) and
MSE® for H® and H®, respectively.

We take the following parameters for the simulation of the time series: N = 71, the variance
of all noise components is o2 = 25, the number of replications is 10000. We consider the
following three versions of the signal (H"), H®).

Example A (the same periods, the difference between the phases is not equal to 7/2):
h{" = 30cos(2rk/12), h\P =20cos(2rk/12+ x/4), k=1,...,N.

Example B (the same periods and amplitudes; the difference between the phases is equal to
/2):
hY = 30cos(2rk/12), h{P =30cos(2rk/12+7/2), k=1,...,N.
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Example A Example B Example C

MSSA 2 2 4
SSA 2 2 2
CSSA 2 1 4

Table 2: Dimension of the signal trajectory space.

Example A L=12 L=24 L=36 L=48 L =60

MSSA 3.18 1.83 1.59 1.47 2.00
SSA 3.25 2.01 2.00 2.01 3.25
CSSA 3.25 2.02 2.01 2.02 3.25
Example B L=12 L =24 L=36 L=48 L =60
MSSA 3.18 1.82 1.58 1.47 1.97
SSA 3.25 2.01 2.00 2.01 3.25
CSSA 1.57 1.00 0.99 1.00 1.57
Example C L=12 L=24 L=36 L=48 L =60
MSSA 6.91 3.77 3.07 2.88 3.84
SSA 3.23 2.01 2.00 2.01 3.23
CSSA 6.98 4.06 3.82 4.06 6.98

Table 3: MSE of signal reconstruction.

Example C (different periods):
h,(cl) = 30cos(27k/12), h](f) =20cos(2nk/8 +w/4), k=1,...,N.

The choice of these examples is determined by the fact that the dimensions of the signal
trajectory spaces (i.e., ranks) are different for different extensions of SSA methods, see Table 2.
For each example the rank in bold font corresponds to the method with the best accuracy for
this example.

The results of investigating different window lengths L are summarized in Tables 3 and 4.
The 24 term-ahead forecast was performed. For each example, the cells corresponding to the
method with the reconstruction/forecast accuracy, which is closed to the best one, are shown
in bold and the overall minimum is in italics.

Comparison of Tables 3 and 4 with Table 2 clearly demonstrates the relation between the
accuracy of the signal reconstruction/forecast and the dimension of the signal trajectory space.

Note that the reconstruction by SSA and CSSA is the same for window lengths L and
N — L +1 (12 and 60, 24 and 48 for the considered examples). Reconstructions by MSSA
are different for different L. Also note that the SSA-trajectory matrix has rank equal to
min(L, N — L + 1) and the rank is maximal for L ~ (N + 1)/2. The MSSA-trajectory matrix
has rank equal to min(L, (N — L 4 1)s), where s is the number of time series in the system.
This rank is maximal for L ~ s(N +1)/(s + 1). Although the maximality of the rank does
not guarantee the minimality of errors, this consideration means that the window length L
for better separability might be larger than (N + 1)/2. The simulations confirm this: the
minimum of the reconstruction error for MSSA is achieved at L = 48 = 72 x 2/3.

The forecasting errors have much more complicated structure (see Golyandina 2010). In
particular, these errors for forecasting depend on the reconstruction errors for the last time



40

Multivariate and 2D Extensions of SSA with Rssa

Example A L=12 L=24 L=36 L=48 L =60
Recurrent

MSSA-column 5.36 3.67 3.73 3.70 4.43
MSSA-row 6.02 4.25 3.83 3.32 3.98
SSA 7.24 5.59 6.30 6.42 7.93
CSSA 7.30 5.60 6.32 6.41 7.86
Vector

MSSA-column 5.93 3.77 3.62 3.11 3.65
MSSA-row 4.00 3.03 3.39 3.17 4.24
SSA 7.74 5.43 5.85 5.14 6.76
CSSA 7.79 5.44 5.86 5.12 6.87
Example C L=12 L=24 L=36 L=48 L=60
Recurrent

MSSA-column 25.76 7.39 7.55 7.43 9.00
MSSA-row 19.82 8.47 8.00 6.66 8.30
SSA 7.36 5.61 6.28 6.44 8.00
CSSA 38.79 11.21 13.37 13.09 24.89
Vector

MSSA-column 25.34 7.56 7.57 6.20 7.67
MSSA-row 57.59 6.04 7.03 6.30 8.69
SSA 7.84 5.47 5.84 5.18 6.88
CSSA 35.77 10.89 13.44 10.22 69.04
Example B L=12 L=24 L=36 L=48 L =60
CSSA recurrent 3.48 2.76 3.10 3.19 3.99
CSSA vector 3.82 2.70 2.89 2.56 3.18

Table 4: MSE of signal forecast.

series points; therefore, the error may have a dependence on L which is different from that
for the average reconstruction errors. The considered examples show that the vector forecast
is more accurate than the recurrent one and that the row MSSA forecast is slightly more
accurate than the column MSSA forecast.

The considered examples confirm the following assertions:

The accuracy of the SSA-based methods is closely related to the structure of the signal
trajectory spaces generated by these methods. MSSA has an advantage if time series
from the system include matched components.

Optimal window lengths for analysis and forecasting can differ. The accuracy of forecast
is related to the accuracy of reconstruction; however, this relation is not straightforward.

The vector forecast with the best window length is more accurate than the recurrent
forecast. However, it is not always fulfilled when comparing the accuracy of methods for
the same window length. Note that this is probably valid for forecasting of well-separated
signals of finite rank only, see Remark 1 for an explanation.

The recommendations for the choice of window length (larger or smaller than the half of
the time series length) for recurrent forecasting are in a sense opposite to that for the
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vector forecasting.

o For row and column forecasting (SSA and CSSA forecasting methods are particular
cases of column forecasting) the recommendations are also opposite. It is not surprising,
since L and K are swapped.

Fragment 14 demonstrates how the Rssa package allows for estimation of the reconstruction
and forecast accuracy on the example of MSSA and CSSA analysis and vector forecasting
applied to Example A for R = 10. The full code used to obtain the numbers in Tables 3 and 4
can be found in the replication materials. Note that R = 10000 was used there and therefore
the running time is quite large.

Fragment 14 (Simulation for reconstruction and forecasting accuracy estimation).

R> N <-171

R> sigma <- b5

R> Ls <- c(12, 24, 36, 48, 60)

R> len <- 24

R> signall <- 30 * cos(2 * pi * (1:(N
R> signal2 <- 30 * cos(2 * pi * (1:(N
R> signal <- cbind(signall, signal2)
R> R <- 10

+

len)) / 12)
len)) / 12 + pi / 4)

+

R> mssa.errors <- function(Ls) {

+ f1 <- signall[1:N] + rnorm(N, sd = sigma)

+ f2 <- signal2[1:N] + rnorm(N, sd = sigma)

+ f <- cbind(f1, £2)

+ err.rec <- numeric(length(Ls)); names(err.rec) <- Ls
+ err.for <- numeric(length(Ls)); names(err.for) <- Ls
+ for (1 in seq_along(Ls)) {

+ L <- Ls[1]

+ s <- ssa(f, L = L, kind = "mssa")

+ rec <- reconstruct(s, groups = list(1:2))[[1]]

+ err.rec[1] <- mean((rec - signall[1:N, ])~2)

+ pred <- vforecast(s, groups = list(1:2), direction = "row",
+ len = len, drop = TRUE)

+ err.for[1] <- mean((pred - signal[-(1:N), 1)72)

+ }

+ list (Reconstruction = err.rec, Forecast = err.for)

+ }

R> mres <- replicate(R, mssa.errors(Ls))

R> err.rec <- rowMeans(simplify2array(mres["Reconstruction"”, ]))
R> err.for <- rowMeans(simplify2array(mres["Forecast", ]))

R> err.rec

12 24 36 48 60
2.869683 1.587789 1.248881 1.153730 1.855115

R> err.for
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12 24 36 48 60
2.671251 2.578059 1.501565 2.595378 4.564218

R> signal <- signall + 1i*signal2
R> cssa.errors <- function(Ls) {

+ f1 <- signall[1:N] + rnorm(N, sd = sigma)
+ f2 <- signal2[1:N] + rnorm(N, sd = sigma)
+ f <- f1 + 1i*f2
+ err.rec <- numeric(length(Ls)); names(err.rec) <- Ls
+ err.for <- numeric(length(Ls)); names(err.for) <- Ls
+
+ for (1 in seq_along(Ls)) {
+ L <- Ls[1]
+ s <- ssa(f, L = L, kind = "cssa", svd.method = "svd")
+ rec <- reconstruct(s, groups = list(1:2))[[1]]
+ err.rec[1] <- mean(abs(rec - signal[1:N])~2)
+ pred <- vforecast(s, groups = list(1:2), len = len,
+ drop = TRUE)
+ err.for[1] <- mean(abs(pred - signal[-(1:N)])~2)
+ }
+ list (Reconstruction = err.rec, Forecast = err.for)
+ }
R> cres <- replicate(R, cssa.errors(Ls))
R> err.rec <- rowMeans(simplify2array(cres["Reconstruction", 1))
R> err.for <- rowMeans(simplify2array(cres["Forecast", ]))
R> err.rec
12 24 36 48 60

7.349316 4.298144 4.101666 4.298144 7.349316
R> err.for

12 24 36 48 60
24.67425 13.60116 14.54819 11.72135 15.86380

4. 2D-singular spectrum analysis

In this section, we consider the extension of the SSA algorithm for decomposition of two-
dimensional data. This extension has the name 2D singular spectrum analysis (or 2D-SSA for

short). For 2D-SSA, the data object X is a two-dimensional data array of size N, x Ny (or
N, N,

simply an N, x Ny real-valued matrix), represented as X = Xy, n, = (a:ij)l-7j:1 . A typical

example of a 2D-array is a digital 2D monochrome image.

2D-SSA was proposed as an extension of SSA in Danilov and Zhigljavsky (1997), and was
further developed in Golyandina and Usevich (2010) and Rodriguez-Aragén and Zhigljavsky
(2010). However, its first usage can be traced back to the work of Ade (1983) on texture
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Figure 19: Moving 2D windows.

analysis (this work was also continued recently, see Monadjemi 2004). Related decompositions
can be found in methods for processing of seismological data (Trickett 2008). Finally, as with
SSA-like methods for time series, the 2D-SSA decomposition is the basis of subspace-based
parameter estimation methods for sums of two-dimensional complex exponentials (see, e.g.,
Rouquette and Najim 2001).

A major drawback of the methods based on 2D-SSA decomposition was its computational com-
plexity. The Rssa package contains an efficient implementation of the 2D-SSA decomposition
and reconstruction, which overcomes this deficiency.

4.1. 2D-SSA algorithm

For a matrix A € RM*N (or CM*N) we denote by vec(A) € RMY (or CMY) its column-major
vectorization. For a vector A € RMYN (or CMN) we define its M devectorization as the matrix
Vec]T/I1 (A) = B € RMXN (or CM*N) that satisfies vec(B) = A. We mostly use the notation in
Golyandina and Usevich (2010).

The embedding operator

Since the general scheme of the 2D-SSA algorithm is described in Section 2, we need to define
only the embedding operator 7ap-sga (X) = X.

The parameters of the method are the two-dimensional window sizes (L, Ly), which are
bounded as 1 < L, < N,,1 <L, < Ny, and 1< L,L, < N;N,. For convenience, we also
denote K; = N, — L, +1, K, = N, — L, + 1. As in the general scheme of the algorithms, we
define L = L, L, (the number of rows of X) and K = K, K, (the number of columns of X).
Consider all possible L, x L, submatrices of X (2D sliding windows). For k =1,..., K, and
l=1,...,K,, we define by X,E:ﬁz’Ly) = (mivj)filif;ll’LyH*l the L, x L, submatrix shown in
Figure 19. Note that the x-axis is oriented to the bottom, and the y-axis is oriented to the
right; the origin is the upper left corner. We use this orientation because it is consistent with
the standard mathematical indexing of matrices (Golyandina and Usevich 2010).

Then the trajectory matrix is defined as

BD_SSA(X) =X= [Xl L. :XKg;Ky]7 (16)
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where the columns are vectorizations of L, x L, submatrices:

Ly, L
Xk+(l—1)Km = VeC(XIE;J y))

Hankel-block-Hankel structure

The trajectory matrix (16) has the following structure (Golyandina and Usevich 2010):

H, H, Hy ... Hyg,
H, Hs H, L. HKerl

X =Twpssa(X)=| Hs Hy - ; (17)
H, H,., .. .. Hy

where each H; is an L, x K, Hankel matrix constructed from X ; (the jth column of the 2D
array X). More precisely, H; = Tsga (X ;), where Tgga is defined in (2). The matrix (16) is
called Hankel-block-Hankel (shortened to HbH), since it is block-Hankel with Hankel blocks.

Trajectory space

From (16) we have that the trajectory space is the linear space spanned by the L, x L,
submatrices of X. Therefore, the eigenvectors U; also can be viewed as vectorized L, x L,
arrays. Their devectorizations are denoted by W; = vech(U,-). Similarly, the rows of X are
vectorizations of the (K, K;) submatrices

X=[xX':...: XLILy}T, xkHI=1)Le _ Vec(xl(fl(me))’ (18)

where X7 is the jth row of the matrix X. Therefore, the factor vectors V; also can be viewed
as K, x K, arrays. Their devectorizations are denoted by ®; = vec;{i (U;).

Comments

1. The algorithm of 2D-SSA coincides with the algorithm of MSSA for time series of the
same length when L, =1 or L, =1 (Golyandina and Usevich 2010). This idea will be
extended later on in Section 5.

2. The arrays of finite rank in 2D-SSA (i.e., the arrays such that Top-gsa has finite rank)
are sums of products of polynomials, exponentials and cosines, similarly to the one-
dimensional case. More details can be found in Appendix B.

4.2. Package

Typical code

Here we demonstrate a typical decomposition of 2D images with the package Rssa. We follow
the example in Section 2.3, but stress on the differences that appear in the 2D case.
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As an example, we use the image of Mars from Buil (2010b) (Source: Pierre Thierry), a
tutorial to the free IRIS software (see the data description in the package; Buil 2010a). The
image is of size 258 x 275, 8-bit gray scale, values from 0 to 255. The input code for this image
can be found in Fragment 15 (the image is included in the package Rssa).

Fragment 15 (Mars: Input).

R> library("Rssa")
R> data("Mars", package = "Rssa')

We would like to decompose this image with a 25 x 25 window (see the example in Golyandina
and Usevich 2010). Easy calculations show that even these small window sizes would give
rise to a 625 x 58734 trajectory matrix. In Fragment 16 with svd.method = "svd", we
intentionally commented out the call to the SSA function, because we do not recommend to
use it, unless the trajectory matrix is very small.

Fragment 16 (Mars: Decomposition with svd.method = "svd").

R> # ssa(Mars, kind = "2d-ssa", L = c(25, 25), svd.method = "svd")

A remedy for this could be the calculation of just the matrix XX, and computing its
eigendecomposition (this approach was taken in Golyandina and Usevich 2010 and other
papers). In the package Rssa, this is implemented in svd.method = "eigen", see Fragment 17.

Fragment 17 (Mars: Decomposition with svd.method = "eigen").

R> system.time(ssa(Mars, kind = "2d-ssa", L = c(25, 25),
+ svd.method = "eigen"))

user system elapsed
5.118 0.051 5.134

However, for larger window sizes this approach quickly becomes impractical, because the
complexity of the full eigendecomposition grows at least as O(L?). Therefore, in the Rssa
package the method "nutrlan" is used by default. This gives a considerable speed-up even
for moderate window sizes (25 x 25), as demonstrated by Fragment 18. Note that for the
2D-SSA decomposition, kind = "2d-ssa" should be used.

Fragment 18 (Mars: Decomposition).

R> system.time(s.Mars.25 <- ssa(Mars, kind = "2d-ssa", L = c(25, 25)))

user system elapsed
0.701 0.006 0.708

Fragment 19 shows a typical reconstruction code for 2D-SSA.
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Residuals

Figure 20: Mars: Separated periodic noise, (L, Ly) = (25,25).

Eigenvectors

Figure 21: Mars: Eigenarrays, (L,, L,) = (25, 25).

Fragment 19 (Mars: Reconstruction).

R> r.Mars.25 <- reconstruct(s.Mars.25,
+ groups = list(Noise = c(12, 13, 15, 16)))
R> plot(r.Mars.25, cuts = 255, layout = c(3, 1))

The reconstruction results are shown in Figure 20.

The grouping for this decomposition was made, as in Golyandina and Usevich (2010), based
on the following information:

o ecigenarrays ¥; (see Figure 21), and,

o the matrix of w correlations (see Figure 22).

Fragment 20 shows the corresponding code.

Fragment 20 (Mars: Identification).

R> plot(s.Mars.25, type "vectors", idx = 1:20,
+ cuts = 255, layout c(10, 2), plot.contrib = FALSE)
R> plot(wcor(s.Mars.25, groups = 1:30), scales = list(at = c(10, 20, 30)))

Next, we try more challenging window sizes (L., L,) = (160, 80), where the trajectory matrix
is of size 12800 x 19404. In this case, svd.method = "eigen" would take a very long time.
However, with the default method svd.method = "nutrlan" the computation of the 50 first
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W-correlation matrix

Figure 22: Mars: w correlations, (L, Ly) = (25, 25).

Reconstructions

QOriginal [0, 260

Residuals [-5.7, 260

Figure 23: Mars: Reconstruction, (L, L,) = (160, 80).

eigenvectors can be done in about a second, see Fragment 21. The results of the reconstruction
are shown in Figure 23.

Fragment 21 (Mars: Reconstruction).

R> system.time(s.Mars.160.80 <-
+ ssa(Mars, kind = "2d-ssa", L = c(160, 80)))

user system elapsed
0.694 0.012 0.671

R> r.Mars.160.80.groups <- list(Noise = c(36, 37, 42, 43))
R> r.Mars.160.80 <- reconstruct(s.Mars.160.80, groups = r.Mars.160.80.groups)
R> plot(r.Mars.160.80, cuts = 255, layout = c(3, 1))

From Figure 23 we see that in the case of large window sizes, the extracted periodic noise is not
modulated (compare to Figure 20). This can be interpreted as follows. We choose the window
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sizes as (160, 80) (approximately (0.6N;,0.3N,)) for which the separability of signal and noise
in the parametric model should be better than for small window sizes (see Golyandina 2010).
On the other hand, if we choose smaller window sizes (for example, 25 x 25), then the 2D-SSA
decomposition acts more like smoothing.

Comments

Formats of input and output data. The input for 2D-SSA is assumed to be a matrix
(or an object which can be coerced to a matrix).

Plotting specifics. All the plotting routines by default use the raster representation (via
the useRaster = TRUE argument provided to the lattice plotting functions). In most cases it
does not make sense to turn the raster mode off, since the input is a raster image in any case.
However, not all the graphical devices support this mode.

Efficient implementation. Most of the ideas from the one-dimensional case can be either
transferred directly or generalized to the 2D case. The overall computational complexity of
the direct implementation of 2D-SSA is O(L? + K L?) and thus 2D-SSA can be prohibitively
time consuming even for moderate image and window sizes. (Recall that L = L,L, and
K = K, K,.) The ideas presented in Section 6.2 coupled with Lanczos-based truncated SVD
implementations (Larsen 1998; Yamazaki, Bai, Simon, Wang, and Wu 2008; Korobeynikov
2010) allow to dramatically reduce the computational complexity down to O(kN log N + k?N),
where N = N, N, and k denotes the number of desired eigentriples. Therefore, the achieved
speed-up can be much higher than that for the SSA and MSSA cases.

Note that the Lanczos-based methods have significant overhead for small trajectory matrices, so
that in this case other SVD methods should be used. For svd.method = "eigen", the matrix
XX is computed in O(LN log N) flops using the fast matrix-vector multiplication from
Section 6.2. Therefore, the total complexity of the decomposition method is O(LN log N + L3),
which makes the method applicable for small L and moderate V.

4.3. Examples

Adaptive smoothing

2D-SSA can also be used for adaptive smoothing of two-dimensional data. It was in Golyandina,
Florinsky, and Usevich (2007) for smoothing digital terrain models (DTM) and in Holloway,
Lopes, Costa, Travengolo, Golyandina, Usevich, and Spirov (2011) and Golyandina, Holloway,
Lopes, Spirov, Spirova, and Usevich (2012) for smoothing spatial gene expression data.

Similarly to the example in Golyandina et al. (2007), we consider an image extracted from
the SRTM database. The test DTM of a region in South Wales, UK, is extracted by the
function getData of the package raster (Hijmans 2015). The DTM is 80 x 100, and it
includes the Brecon Beacons national park. The point (N, 1) lies in a neighborhood of Port
Talbot, (N, Ny) lies in a neighborhood of Newport, and (1, N,) is near Whitney-on-Wye. In
Fragment 22, we decompose the image with a small window, and plot the eigenvectors and
the matrix of w correlations in Figure 24.
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Figure 24: Brecon Beacons: 8 x 8 windows, eigenarrays and w correlations.

Fragment 22 (Brecon Beacons: Decomposition).

R>
R>
R>
R>

library("raster")

library("Rssa")

UK <- getData("alt", country = "GB", mask = TRUE)
brecon <- crop (UK, extent (UK, 1040, 1119, 590, 689))

R>
R>
+

R>

m.brecon <- as.matrix(brecon)

s.brecon <- ssa(m.brecon, kind =

svd.method = "eigen")

"2d-ssa",

plot(s.brecon, type = "vectors", idx =

L

1:32,

c(8, 8),

FALSE)
list(at =

+ cuts = 255, layout = c(8, 4), plot.contrib

R> plot (wcor(s.brecon, groups = 1:32), scales = c(10, 20, 30)))

Next, we reconstruct the image with components with Iy = {1,...,3}, I = {4,...,8}, and
Is = {9,...,17}. The grouping was chosen based on eigenarrays to gather frequencies of
similar scale in the same components.

We take cumulative sums of reconstructed components 3?1 = Xl, §(1 = §~§1 + Xg, and ?1 =
Xl + Xg + 323 (this is a convenient way to compute reconstructed components for sets J; = I,
Jy =11 U Iy, and J3 = I} U I3 U I3). We plot the reconstructed components in Figure 25. The
cumulative components S?k are shown in Figure 26 using the type "cumsum" of the plotting
function of Rssa.

Fragment 23 (Brecon Beacons: Reconstruction).

R> r.brecon <- reconstruct(s.brecon, groups = 1list(1:3, 4:8, 9:17))

R> plot(r.brecon, cuts = 255, layout = c(5, 1),

+ par.strip.text = list(cex = 0.75))

R> plot(r.brecon, cuts = 255, layout = c(5, 1),

+ par.strip.text = list(cex = 0.75), type = "cumsum", at = "free")
R> brecon.F1 <- raster(r.brecon$F1, template = brecon)

R> brecon.F2 <- raster(r.brecon$F2, template = brecon)
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Reconstructions

Figure 25: Brecon Beacons: 8 x 8 window, reconstructions (Xj).

Reconstructions

Figure 26: Brecon Beacons: 8 x 8 window, cumulative reconstructions (§{k)

From Figures 25 and 26 it can be seen that the reconstructed components capture morphological
features of different scale (Golyandina et al. 2007). Cumulative reconstructions represent
smoothing of the original DTM of different resolution.

To illustrate the behavior of smoothing, we plot the absolute values of the centered discrete
Fourier transforms (DFT) of X — Y (residuals for cumulative reconstructions, see Figure 27).
The corresponding code can be found in Fragment 25. We also introduce some code for
plotting the arrays and computing their centered DFTs in Fragment 24.

Fragment 24 (2D-SSA: Plotting functions).

R> plot2d <- function(x) {

+ regions <- list(col = colorRampPalette(grey(c(0, 1))));
+ levelplot (t (x[seq(nrow(x), 1, -1), 1), aspect = "iso",
+ par.settings = list(regions = regions), colorkey = FALSE,
+ scales = list(draw = FALSE, relation = '"same'"),
+ xlab = "", ylab = "")
+ F
R> centered.mod.fft <- function(x) {
N <- dim(x)

shift.exp <- exp(2i * pi * floor(N/2) / N)

shiftl <- shift.exp[1]~(0:(N[1] - 1))

shift2 <- shift.exp[2]~(0:(N[2] - 1))

Mod (t (mvfft (t (mvfft (outer (shiftl, shift2) * x)))))
}

+ + + + + +

Fragment 25 (Brecon Beacons: DFT of cumulative reconstructions).
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Figure 27: Brecon Beacons: 8 x 8 window, absolute values of the DFT of X — Y, k=1,..., 3.

R> library("lattice")

R> plot2d(centered.mod.fft(m.brecon - r.brecon$F1))

R> plot2d(centered.mod.fft(m.brecon - r.brecon$F1 - r.brecon$F2))

R> plot2d(centered.mod.fft(m.brecon - r.brecon$F1 - r.brecon$F2-r.brecon$F3))

In Figure 27, it is clearly seen that 2D-SSA reconstruction by leading components acts as
filter that preserves dominating frequencies (in this case, a low-pass filter).

Parameter estimation

2D-SSA decomposition is also used in subspace-based methods of parameter estimation. Let
X =S+ R, where S is an array of finite rank and R is the residual. If the signal and noise are
(approximately) separable, then the matrix U € RL=Ly*T of the basis eigenvectors approximates
the original signal subspace of S.

Some of the methods of 2D-ESPRIT type are implemented in Rssa. The methods are based
on computing a pair of shift matrices for x and y directions and their joint diagonalization
(Rouquette and Najim 2001). Currently, two methods of joint diagonalization are implemented
in Rssa 2D-ESPRIT (from Rouquette and Najim 2001) and 2D-MEMP with improved pairing
step (see Rouquette and Najim 2001; Wang, Chan, and Liu 2005).

We continue the Mars example from Fragment 21. This example demonstrates advantages
of Rssa because of the possibility to choose large window sizes, which was always considered
to be problematic ESPRIT-type methods. Fragment 26 shows the corresponding code that
outputs the estimated exponentials. In Figure 28, the estimated pairs of complex exponentials
(Ak, pi), are shown on separate complex plane plots and the points for Ay and py have the
same color (for the same k).

Fragment 26 (Mars: Parameter estimation with 2D-ESPRIT).

R> pe.Mars.160.80 <- parestimate(s.Mars.160.80,
+ groups = r.Mars.160.80.groups)
R> pe.Mars.160.80

X: period rate y: period rate
-5.000 -0.000169 10.003 -0.000111

9.995 0.000175 4.999 -0.000093

I
I
5.000 -0.000169 | -10.003 -0.000111
I
-9.995  0.000175 | -4.999 -0.000093
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Figure 28: Mars: Parameter estimation with 2D-ESPRIT, (L., L,) = (160, 80).

R> pe.Mars.160.80[[1]]

period rate | Mod Arg | Re Im
-5.000 -0.000169 | 0.99983 -1.26 | 0.30906 -0.95087
5.000 -0.000169 | 0.99983 1.26 | 0.30906 0.95087
9.995 0.000175 | 1.00017 0.63 | 0.80897 0.58814
-9.995 0.000175 | 1.00017 -0.63 | 0.80897 -0.58814
R> pe.Mars.160.80[[2]]

period rate | Mod Arg | Re Im
10.003 -0.000111 | 0.99989 0.63 | 0.80905 0.58755

-10.003 -0.000111 | 0.99989 -0.63 | 0.80905 -0.58755
4.999 -0.000093 | 0.99991 1.26 | 0.30879 0.95103
-4.999 -0.000093 | 0.99991 -1.26 | 0.30879 -0.95103

R> plot(pe.Mars.160.80, col c(11, 12, 13, 14))
R> plot(s.Mars.160.80, type = "vectors", idx = r.Mars.160.80.groups$Noise,
+ cuts = 255, layout = c(4, 1), plot.contrib = FALSE)

In Fragment 26 and Figure 28, it can be seen that each pair (A, %) has its conjugate counter-
part (Ag/, uxr) = conj((Ag, pg)) (where conj(-) denotes the complex conjugation). Indeed, it is
the case for k = 1,k' = 2, and for k = 3,k = 4. Therefore, the periodic noise is a sum of two
planar sines, as explained in Appendix B. This is also confirmed by the plots of eigenarrays in
Figure 29.

5. Shaped 2D-singular spectrum analysis

Shaped 2D-SSA (or ShSSA for short) is a generalization of 2D-SSA, which allows an arbitrary
shape of the input array and window. This feature considerably extends the range of real-
life applications, since it makes it possible to decompose parts of the image with different
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structures separately, to exclude the areas with corrupted data, to analyze images with gaps, to
decompose non-rectangular images, etc. In ShSSA, not all the values of the rectangular image
need to be specified, and the sliding window is not necessarily rectangular (see Figure 30).

Formally speaking, a shape B is a bounded subset of N? (a set of two-dimensional natural
indices). A B-shaped array is a partially indexed array X = X = (2(; ;)) (i j)es-
For two-dimensional indices ¢ = (¢, ¢,) and k = (ky, ky) we define a shifted sum
4+ k= U+ Ky — 1,0y +ry—1).
We also define a shifted Minkowski sum of two shapes 2 and B as

A+ B ={a+ flacA, pec B}

5.1. Construction of the trajectory matrix

The input data for the algorithm is an M-shaped array X = Xy = (2q)aen, where 9N C
{1,..., Ny} x{1,..., Ny}. The parameter of the algorithm is a window shape £ C {1,...,L;} X
{1,..., Ly}, given as £ = {{1,...,01}, where ¢; € N? are ordered in lexicographical order
(i.e., the order in which the elements z, would appear in the vectorized rectangular array

VeC(X{l,...,Nx}x{l,...,Ny}))'

The embedding operator

For x € N? we define a shifted £-shaped subarray as Xefn} = (Ta)aest-{x) (see Figure 30).
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The index k is a position of the origin for the window. Consider the set of all K possible
origin positions for £-shaped windows:

RA={keN?| &+ {k} CN}. (19)

We assume that & = {k1,...,xx} C N2, where k;j are ordered in lexicographical order. Then
the trajectory matrix is constructed as follows:

Tsnssa(X) =X =[X1: ... Xk, (20)

where the columns
l
Xj = (xei+-ﬁj)i:1

are vectorizations of the shaped submatrices Xgy ¢, 3.

Quasi-Hankel matrix

The trajectory matrix is exactly the quasi-Hankel matrix (Mourrain and Pan 2000) constructed
from the sets £, & C N2

To+rk1 Thi+re -+ Th+rg
Tlotr1  Tlotry -+ LThotrg

X = Tsnssa(X) = . . . . (21)
Llp+r1 Vhp+re - Thp+rg

Note that Mourrain and Pan (2000) use the conventional sum of indices instead of the shifted
sum -+, because their definition of natural numbers N includes 0.

Comments

EN={1,..., Ny} x{1,....,Nyyand £={1,..., Ly} x{1,..., Ly} (hence, R = {1,..., K} x
{1,...,K,}), then the matrix Tshssa (X) coincides with Top-gsa (X). Therefore, the ShSSA
decomposition with the rectangular window and input array coincides with the 2D-SSA
decomposition.

In Figure 31, we demonstrate the case of general shapes. The set R corresponds to all possible
positions of the left upper corner of the bounding box around the shaped window (depicted
by green dots in Figure 31). It also corresponds to the maximal set & such that £+ & C .
We describe an algorithm for computation of the set & in Section 6.
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It may happen that some of the elements of the original shaped array Xo do not enter in the
trajectory matrix (for example, the elements (3,8) and (4, 8), shown in gray in Figure 31). In
this case, the ShSSA analysis applies only to the 9-shaped subarray Xgy, where 9V is the set
of all indices that enter in the trajectory matrix. (In fact, W = 8+ £ .)

Column and row spaces

From the construction of the trajectory matrix, the trajectory space is the linear space spanned
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by all £-shaped subarrays and the eigenvectors U; also can be viewed as £-shaped subarrays.

These arrays, as in 2D-SSA, are called eigenarrays.

Analogously, each row X' of X is a vectorized (in lexicographical order) f-shaped array
Xp,4x—1. This is a K-shaped subarray of X starting from the element ¢;. Therefore, the factor
vectors V; also can be viewed as R-shaped subarrays. These arrays are called factor arrays.

5.2. Package

Typical code

We repeat the experiment from Section 4.2 (noise removal from the image of Mars), but using

the shaped 2D-SSA. Therefore, the code for loading the image is the same as in Fragment 15.

The array shape can be specified in two different ways:

» by passing the NA values in the input array (these elements are excluded), or,

o by specifying the parameter mask — a logical N, x N, array (the indicator of 91).

If both shape specifications are present, their intersection is considered. The shape of the
window is typically passed as an L, x L, logical array (wmask). The shapes can be also
specified by a command circle, as shown in Fragment 27.

Fragment 27 (Mars: Mask specification and decomposition).

R> mask.Mars.0 <- (Mars != 0)

R> mask.Mars.1 <- (Mars != 255)

R> is.na(Mars[!mask.Mars.0]) <- TRUE

R> system.time(s.Mars.shaped <-

+ ssa(Mars, kind = "2d-ssa", mask = mask.Mars.1, wmask = circle(15)))

user system elapsed
0.776 0.010 0.784

R> mask.Mars.res <- (s.Mars.shaped$weights > 0)
R> plot2d(mask.Mars.O0)

R> plot2d(mask.Mars.1)

R> plot2d(mask.Mars.res)

In Figure 32 one can see both types of masks and the combined mask. Fragment 28 shows a
typical reconstruction code for ShSSA.
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Figure 32: Mars masks specification. Left: specified by NA, center: the parameter mask, right:
resulting mask. White squares — TRUE, black squares — FALSE.

Reconstructions

Figure 33: Mars: Reconstruction, ShSSA.

Fragment 28 (Mars: Reconstruction).

R> r.Mars.shaped <- reconstruct(s.Mars.shaped,
+ groups = list(Noise = c(7, 8, 9, 10)))
R> plot(r.Mars.shaped, cuts = 255, layout = c(3, 1), fill.color = "green")

The reconstruction results are shown in Figure 33. In Figure 33 we can see that the elements
are reconstructed only inside the resulting mask, however the original array is drawn for all
available elements (except the NA values). The grouping for this decomposition was made
based on the following information:

o eigenarrays (see Figure 34), and,

o the matrix of matrix of w correlations (see Figure 35).

Fragment 29 shows the code that reproduces Figures 34 and 35.

Fragment 29 (Mars: Identification).

R> plot(s.Mars.shaped, type = "vectors", idx = 1:20, fill.color = '"green",
+ cuts = 255, layout = c(10, 2), plot.contrib = FALSE)

R> plot (wcor(s.Mars.shaped, groups = 1:30),

+ scales = list(at = c(10, 20, 30)))
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Figure 34: Mars: Eigenarrays, ShSSA.
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Figure 35: Mars: w correlations, ShSSA.

The quality of the texture extraction and therefore of the image recovery by shaped SSA (Fig-
ure 33) is considerably better than that performed by 2D-SSA (Figure 20). The improvement
of reconstruction accuracy is explained by an edge effect that is caused by a sharp drop of
intensity near the boundary of Mars. In Figure 36, we compare magnified reconstructed images
for 2D-SSA and ShSSA. In the left subfigure, a green shadow is shown for the background area
in order to indicate the Mars boundary. In the right subfigure, light green color corresponds
to NA. The code that reproduces Figure 36 is shown in Fragment 30.

Fragment 30 (Mars: Magnified reconstructions by 2D-SSA and ShSSA).

R> Mars.sh <- r.Mars.shaped$Noise

R> Mars.rect.sh <- Mars.rect <- r.Mars.25$Noise

R> is.na(Mars.rect.sh[is.na(Mars.sh)]) <- TRUE

R> library("latticeExtra")

R> p.part.rect <- plot2d(Mars.rect[60:110, 200:250]) +

+ layer (panel.fill(col = "green", alpha = 0.2), under = FALSE) +
+ plot2d(Mars.rect.sh[60:110, 200:250])

o7
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Rectangular Shaped

Figure 36: Mars: Comparison of texture reconstructions by 2D-SSA and ShSSA.

R> p.part.shaped <- plot2d(r.Mars.shaped[[1]][60:110, 200:250]) +
+ layer (panel.fill(col = "green"), under = TRUE)
R> plot(c(Rectangular = p.part.rect, Shaped = p.part.shaped))

Comments

Efficient implementation. In Rssa, the shaped 2D-SSA decomposition shares kind =
"2d-ssa" with the 2D-SSA decomposition. However, the use of input arrays with non-trivial
shapes would incur additional projection operation during the computations (see Section 6.2).

Ordinary 2D-SSA can be considered as a special case of shaped 2D-SSA with rectangular
window; in this case, the mask covers the whole image. The package optimizes for this common
case and no projections are performed when it is known that they are trivial and thus we
have ordinary 2D-SSA. Therefore, the computational complexity of the method is the same
regardless how the full mask was specified: providing NULL to wmask and mask arguments or
making the masks trivial. This is a convenient behavior which simplifies, e.g., batch processing
of the images with shapes automatically induced by the input images.

Special window shapes. The package provides a convenient interface for setting several
special forms of the window. This is implemented via special expressions which can be passed
to the wmask argument:

e wmask = circle(R) specifies a circular mask of radius R.

e wmask = triangle(side) specifies the mask in the form of isosceles right-angled triangle
with cathetus side. The right angle lays on the top left corner of the bounding box of
the mask.
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Figure 37: MSSA: 2D packing.

5.3. Special cases of shaped 2D-SSA

In this section, we show that all the considered variants of SSA are in fact special cases of
ShSSA, for carefully chosen array and mask.

First of all, SSA can be easily embedded in ShSSA. Consider an N x 1 array and L x 1 window
(or, alternatively 1 x N array and 1 x L window). Next, as discussed in the previous section,
2D-SSA is a special case of ShSSA. Finally, in Golyandina and Usevich (2010) it was mentioned
that MSSA with equal time series lengths is a special case of 2D-SSA. In what follows, we
extend this construction to time series with different lengths.

MSSA: 2D packing

Consider a multivariate time series, that is, a collection {X®) = (:ng))jvzpl, p=1,...,s}of s

time series of length Np,, p=1,...,s. We construct the shaped array Xy such that

‘ﬁz{l,...,Nl}><{I}U{lj...,Ns}x{s}C{L...,mngp}x{1,...,8}.

The window is taken to be £ = {1,..., L} x {1}. The construction of this array is shown in
Figure 37, also with the window £ and the shape K. It is easy to verify that X = Tgngsa (X)
coincides with Tyssa (X) defined in (7). Therefore, the rows of X are vectorizations of the
RK-shaped subarrays (see Figure 37).

MSSA: 1D packing

Now we consider an alternative packing of MSSA. From the same set of series we construct
S
a N’ x1 (or 1 x N')array X, where N' = N + (s — 1) (recall that N = Y N,). The array
p=1
consists of the time series plus “separators” between them that are not included in the array

shape. The window is taken to be L x 1 (or 1 x L), depending on the arrangement chosen. In
Figure 38 we show the horizontal variant of packing.

Mosaic Hankel matrices

A mosaic Hankel matrix (Heinig 1995) is a block matrix with Hankel blocks. It can be considered
the most general one-dimensional (i.e., with one-dimensional displacement) generalization of
Hankel matrices.
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Figure 38: MSSA: 1D packing.
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Figure 39: Shaped construction for mosaic Hankel matrices.

Let Ly,...,Ls and K7,. .., K; be integer vectors, and X(#/) ¢ RLi+Ki=1 be time series. Then
the mosaic Hankel matrix is constructed as follows:

HL17K1(X(1’1)) HLl,Kt(X(Lt))

HLS,Kl(X(S’l)) HLS,Kt(X(p’t))

Note that the sizes of the blocks may be different. The only requirement is that they should
match as a “mosaic”. The case of mosaic Hankel matrices corresponds to several collections of
multidimensional time series (Markovsky and Usevich 2014).

It is easy to construct mosaic Hankel matrices, based on 2D embedding of MSSA. A jth block
column is a transposed matrix Tygsa for the collection of time series (X(17), ... X(54)) and
window length L = K;. Therefore, the mosaic Hankel matrix can be constructed by stacking
shapes (with separators) from Figure 37 and replacing £ with K due to transposition. The
resulting construction of the shaped array is shown in Figure 39.

M-2D-SSA

Suppose that we have s arrays XU, ... X() € RN+*Ny and we would like to consider a variant
of 2D-SSA where the trajectory matrix is stacked from s trajectory matrices (as in MSSA):

Ta-2p-ssa (XL, .. X)) = [ED—SSA(X(I)) NN ED—SSA(X(S))} . (22)

In this case, the 2D-SSA-like decomposition will have the common basis of eigenvectors, as in
MSSA. The trajectory matrices of the form (22) are used in 2D-SSA-based for comparison
of images (Rodriguez-Aragén and Zhigljavsky 2010). These matrices are also used in recent
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Figure 40: Shaped construction for M-2D-SSA.

methods of parallel magnetic resonance imaging (Uecker, Lai, Murphy, Virtue, Elad, Pauly,
Vasanawala, and Lustig 2013).

The packing for the M-2D-SSA can be constructed in a similar way to the case of mosaic
Hankel matrices. An array X' of size N, x (sN, + s — 1) is constructed from the arrays with
one-element separators. The resulting array is shown in Figure 40. In general, a similar
construction can handle arrays of different sizes, shapes, and shaped windows. Also note
that in the extended array the original arrays (both for Figures 39 and 40) may be arranged
arbitrarily (for example in a table-like planar arrangement). The only requirement is that
they should be separated.

6. Implementation

This section contains details of the core algorithms implemented in the Rssa package. The
algorithms discussed in this section are either absent or scarcely described in the literature.
Although the implementation does not influence the interface of the package, this section is
important for understanding why the package works correctly and effectively.

6.1. Fast computations with Hankel matrices

We start with a summary of the algorithms for multiplication of Hankel matrices by vectors
and rank-one hankelization. Although algorithms for these operations were already proposed
in Korobeynikov (2010), we provide here an alternative description that uses another type of
circulants. The alternative description simplifies the algorithms compared to Korobeynikov
(2010) and also lays a foundation for Section 6.2 on computations with quasi-Hankel matrices.

Preliminaries

In what follows, A ® B denotes the elementwise product of two vectors A, B € CV, rev(A)
denotes the reversion of the vector A, and conj(A) denotes the elementwise conjugation. We

also denote by W)

; the standard jth unit vector in RV,

For a complex vector X € CV we define its discrete Fourier transform as

In(X)=FnX, (23)
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— e 2mik-D)I-1/N (gee

where Fy € CN*V is the Fourier matrix with elements (F )y,
Korobeynikov 2010). The inverse Fourier transform is given by

1
TN (X) = SFN,

where F; is the Hermitian transpose of Fy.

The Toeplitz circulant constructed from the vector X = (xk)szl is, by definition,

X1 N ITN-1 - T3 X2
2 x TN R 17/ R ]
Cr(X) =
TN-1 IN-2 IN-3 -+ T1 XN
IN TN-1 IN-2 -*° T2 I1

The Hankel circulant constructed from the vector X is, by definition,

r1 r2 -+ ITN-2 IN-1 TN
€2 xr3 -+ IN-1 TN €1
Cu(X) =
IN-1 IN - XIN—-4 XIN-3 TITN-2
TN ry -+ ITN-3 ITN-2 IN-1

We will need the following relation between Hankel and Toeplitz circulants.

Lemma 1. For any j =1,...,N and A € CV we have that

ATcy (B = (EM)Tep(A).

J J

()

Proof. The vector ATCH(EJ(.N)) = (Cu(&; )A)T is the jth forward circular shift of the vector

rev(A)T. Therefore, it coincides with the jth row of C(A), which is equal to (EJ(.N))TCT(A).
0

Matriz-vector multiplication

It is well known (Korobeynikov 2010) that multiplication of the Toeplitz circulant Ct(X) by
a vector A € CV can be computed using discrete Fourier transform as

Cr(X)A = T3 (Tn(X) © Tn(A)). (24)
A similar property holds for the Cy(X). Since it is less common, we provide a short proof.
Lemma 2. For X € CV and A € RN we have that

Cu(X)A =T (Fn(X) © conj(Fn(A))). (25)



Journal of Statistical Software 63

Proof. The circulant Cy = Cp((xn,z1,...,2Nn-1)) can be obtained from Cg(X) by reversion
of all rows. Therefore, the product of Cy(X) by A is equal to

Cu(X)A = Cyrev (A) = Iy ((wn, 21, on-1)T ) © Fv(rev(A))
= (FyX) O (™NFyrev(A)) = (FyX) ® conj(FyA).
O

For X € RN and K,L : N = K + L — 1, the Hankel matrix Tssa(X) is an L x K submatrix of
Cu(X). Therefore, multiplication by 7sga (X) can be performed using the following algorithm.

Algorithm 1. Input: V € RE, X € RN, Output: U = Tgsa(X)V € RE.

Vv
1. V'« ;

2. VI Fn(V');

3. X « Fn(X);

4. U« X ® conj(V"));
5 U« (uy,...,up)".

In Korobeynikov (2010), two different algorithms were used for multiplication by 7gsa (X) and
its transpose. But Algorithm 1 also suits for multiplication by TSE A(X), because sizes of the
matrix are used only in the first step (padding of V' by zeros) and the last step (truncating the
result). Also, the DFT FyX (step 3) can be precomputed. But, in contrast to the approach
of Korobeynikov (2010), the precomputed object does not depend on L.

Rank-one hankelization

Next, we describe the algorithm for hankelization, which coincides with that from Korobeynikov
(2010). But we describe the algorithm in a different way, that lays a foundation for quasi-
hankelization in Section 6.2.

The hankelization operation computes for a given X € REXK the vector X € RY that minimizes
the distance [|7Tssa(X) — X||%. It is well-known that the hankelization of X is the vector
X= (:Ej)é-\le of diagonal averages

> (X)ky N
e (X Tesa(BY)) £ (26)
i~ . = N -
w; 17ssa (BSY)|%
The denominators w; = || Tssa (E j(-N)) |2 are exactly the weights in w correlations. For rank-one

matrices X = UV " € RI*K | the numerator in (26) can be expressed more compactly:

UV, Tesa (B 7 = UT Tesa (B)V = (U Ter(BYV)W = (BY))TCp(U)V,

where U’ = ( v ), V= < v ), and the last equality follows from Lemma 1.
Ox-1 Or—1

Then, the hankelization can be computed using the following algorithm.
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Algorithm 2. Input: U € RE, V € RE. Output: hankelization X e RV,
1. L* + min(L, K);
2. W+ (1,2,...,L%,....L*,...,2,1)T € RN (weights for w correlations);

U Vv
3. U + LV ;
<0K—1> <0L—1>

4. U « FnU), VI« Fy(V');
5 X« F MU o V);
0. fk — 52/10;6
Note that in Algorithm 2, we calculate the weights explicitly, as in Korobeynikov (2010).

However, writing the weights in the expanded form (the denominator in (26)) helps to
understand how the weights are computed for quasi-hankelization in Section 6.2.

6.2. Fast computations with quasi-Hankel matrices

Preliminaries
For two matrices A,B € CN+*Nv we define by A ® B their elementwise product and by
conj(A) the elementwise complex conjugation. For k =1,..., N, and l = 1,..., N, we define
elementary arrays as Ej; = E,S/,N“')(El(Ny))T € RN=*Ny wwhere E;N) € RY is the jth unit vector.
For two matrices A and C their Kronecker product is denoted as A @ C.

. NNy ., . 1. . .
For a complex matrix X = (x,), ;" its discrete Fourier transform is defined as

where Fy is the matrix of the discrete Fourier transform (23). By the properties of the
vectorization operator, we have that

VeC(?NI,Ny (X)) = (FNy ® FNI) VeC(X).
The TbT (Toeplitz-block-Toeplitz) circulant constructed from the matrix X is, by definition,

Cr1 Crn, Crn,-1 -+ Crz Crp
Cro Cr1 Crn, -+ Cra Crjs
Cra=| i -
Crn,-1 Crn,—2 Crn,—3 -+ Cr1 Crp,
Crn, Crn,-1 Crn,—2 -+ Cra Cri

where Ct ; = Cr(X.;), and X. ; denotes the jth column of X. The HbH circulant constructed
from the matrix X is, by definition,

Cu1 Cu2 -+ Cgn,—2 Cun,1  Cupy,
Ch,2 Cus -+ Cun,-1 Cupn, Ch,1
Chpu(X) = : : : : : )
Cun,~1 Cun, - Cun,—4 Cun,—3 Cun,—2

Cun, ©Cui -+ Cun,—3 Cun,—2 Cun,-1
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where Cyj = Cy(X. ;). Note that for a rank-one array X = X, X,| we have that
CHbH(X) = CH(Xy) & CH(XQ;) and CTbT(X) = CT(Xy) ® CT(Xx) (27)

We will also need the following relation between HbH and TbT circulants.
Lemma 3. Fork=1,...,N;, l=1,...,N, and A € RN=xNy

VeC(X)TCHbH (EkJ) = VGC(E}CJ)TCT]DT(X).

Proof. Due to linearity of the equation, we need to prove it only for rank-one matrices
X = X;,;XJ. Then, by (27) we have that

vee(X) Crn(Exp) = (X, © X,)" (Cu(E™) @ Cu(E[™))
= (X ouE™)) @ (X ou(B™)) = (™) Cr(X,)) @ (B Cr(Xa))
= (5™ @ E,ENI))T Cr(X,) ® Cr(X,) = vee(Egy) " Cryr(X).

O]

Multiplication by a quasi-Hankel matrix
Analogously to (24) and (25), the following equalities hold true.

Lemma 4. For X, A € RV=*Nv e have that

Crir(X) vee (A) = vee (F3! y, (Fivan, (X) © Fn, v, (A))),
Cupu(X) vec (A) = vec (?&i,Ny (?Nx,Ny (X) © conj(In,,N, (A)))) .

Proof. Due to linearity of the Fourier transform and circulant matrices we can prove the
statements only for matrices X = XmXJ and A = AmA;/r. In this case, by (27) we have that

vee (T3 v, (Fnan, (X) © Tw, v, (A)) )
= vee (53, ((Fr, X2)(F, X,) T © (Fa,A)(Fy,4,) ")
= vee (F3! (Fx, X.) © (Fx, 4,)) (Fy, X,) © (F, 4y) " (F3)7)
= vec((Cr(X2)A2)(Cr(X,y)Ay) ") = Crpr(X) vec A.

The proof of the second statement is analogous. O

Now we consider multiplication by a quasi-Hankel matrix. Let £ &9 C {1,...,N;} X
{1,..., Ny} be such that £ + & =M. Then the quasi-Hankel matrix 7gpgsa (X) (defined in
(21)) is a submatrix of the HbH circulant Cyppr(X). Now let us write this formally and provide
an algorithm for the calculation of the matrix-vector product.

For a set of indices A = {(k1,01),...,(kn,In)}, which is ordered lexicographically, we define
the projection matrix
Py = [vec(Eg, 1,) o ... s vec(Egy 14)]-

65
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Then we have that
Tsnssa(X) = Pd Crp(X) Py

Hence, the matrix-vector multiplication algorithm can be written as follows.
Algorithm 3. Input: V € REK X € RN=XNv_ Qutput: U = Tgnssa (X)V € RE.
1. X« T, v, (X);
2. U+ vecy! (PRU);
3. U Ty, w, (U);
4V = TRt (X @ conj(T));

5.V « P{ vec(V).

Rank-one quasi-hankelization

Let £, 8N C{1,...,N,} x {1,..., Ny} be such that £+ 8 = N. The quasi-hankelization
operator, by definition, computes for a given X € RL*K the shaped array X = (Th1) (k1) em
that minimizes the distance ||7(Xq) — X||%.

As shown in Section 2.1, quasi-hankelization can be expressed as averaging. More precisely,

. (X, T(Ery))r
= ———25>  for (k1) €N
= gz 0 kD

The numerator represents summation over the set of positions in X that correspond to the
(k,1)th element of the array. The denominator is equal to the number of such elements.

In this section, we assume that X is a rank-one matrix, i.e., X = UV ". Then

%kl — <UVT7T(E]€,Z)>]'— _ (UVT)T(Ek,l»]:
’ 1T (Er)|% (1, T(Exp)) 7’

where 1g = (1,...,1)T € RY. If we define by

Nz,Ny
)

diagsums(U, V') = (zy1);j2,", where zj) = UV T(E))F,

then quasi-hankelization is given by the following algorithm.

Algorithm 4.
Input: U € RE, V € RK, shapes £, . Output: shape N = £ +. R, quasi-hankelization Xor.

1. W« diagsums(1z, 1) (array of weights for w correlations);
2. N {(k,l) | Wi 1 75 0},’
3. X' + diagsums(U, V);

4. Compute Ty = %,l/wk,l-
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We note that the weights W can be precomputed, as well as the shape 9.

The only missing part in Algorithm 4 is computation of diagsums(U, V) for given U € RY and
V € RE. For this we note that

UV, Tonssa (Exy)) 7 = trace(VU ' Pd Tsnssa (Ex1) Pg)
= VeC(U/)TCHbH(EkJ) vec(V') = vec(EM)TCTbT(U’) vec(V'),

where U’ = VeCZi (Pel), V' = vec;(i (PgV), and the last equality holds by Lemma 3. Thus,
diagsums(U, V') can be computed by Algorithm 5.

Algorithm 5.
Input: U € RE, V € RE. Qutput: X = diagsums(U, V') € RNe>*Ny,

1. U« vec, ! (PeU);
2.V + Vecl_(i (PgV);
3. U« Fn, v, (U);
4o V! Faon, (V1);

5. X Il N (ToV).

Calculation of shapes

Assume that we have £ C {1,..., Ly} x {1,..., Ly} and M C {1,..., N} x {1,...,Ny}. We
would like to find the maximal £ such that £ + £ C 9.

Let I € RN=xNy he the indicator array of 9N, i.e.,

i(m) _ 1, (kJ) e N,
kil 0, (k1)¢9MN.

Then the shape R is equal to the maximal 2 such that all the elements of the £ x 2 submatrix
of Tapssa (I (m)) are equal to 1. Algorithm 6 finds such a maximal shape from the product of
Tobssa (1Y) and 17. The elements of & correspond to the elements of the resulting vector
that have the value L.

Algorithm 6.

Input: £ C{1,..., Ly} x{1,..., Ly}, MC{1,..., Ny} x{1,...,Ny}. Output: mazimal K
such that £ +- 8 C M.

1.V + Tohgsa (1)1
2. V'« Vecl}i(V);

3. 8 {(k,1)| v}, = L}.
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6.3. Fast vector forecasting algorithm

It is mentioned in Golyandina and Zhigljavsky (2013, p. 76) that the vector forecasting is
time-consuming, while recurrent forecasting is fast. However, this is only so if one implements
the algorithm from Section 3.3 directly. It appears that it is possible to considerably accelerate
the vector forecasting. Moreover, in the current implementation in Rssa the vector forecasting
is slightly faster than the recurrent one.

In this section, we will use the notation from Section 3.3. We also denote by T the pseudo-
inversion of a matrix.

Column MSSA forecast

As shown in Section 3.3, column vector MSSA forecasting is reduced to performing s 1D
vector forecasts in the same subspace £, Next, we describe the algorithm for fast vector
forecasting of 1D time series in a given subspace £ (vector forecast in basic SSA).

Consider the forecasting in the subspace £%! given by a basis {Py, ..., P,}. Denote P = [P :

: P.]. Each reconstructed vector X 1 of the 1D time series belongs to £°; hence, there exist
coefficients W}, € R such that Xz = PWj. Denote W = (W1 :...: Wg]. In fact, the input
for the algorithm is the minimal decomposition of X into the sum of elementary matrices of
rank 1 in the form X = PQT and W=Q".

Note that if we have a singular value decomposition of X = [X; : ... : Xg], then the left
singular vectors provide the basis of the subspace, while the W}, are determined by the right
singular vectors and singular values: P =[U; :...:U,] and Q = [\f/\lvl DL \f)\TVT}.

In vector forecasting, we extend the reconstructed matrix as Z = [)A( PZK41 et ZK M L—1]
where the vectors Zi, k > K + 1, are obtained as Z, = fP{?elCZk_l (and Z = Xy for
k=1,...,K). Since all Z; belong to £, there exist W}, € R", k > K + 1 such that

Z = P[Wl Ceeat WK+M+L_1}.

Thus, there exists a matrix D such that W, = DW},_; for £k > K + 1. This observation leads
to the following algorithm for vector forecasting.

Algorithm 7. Input: P, W. Output: the forecasted values zn11,..., 2N+M-
1. Compute the matriz D = PP using the QR-decomposition (Golub and Loan 1996).
2. Fork=K+1,.... K+ M+ L —1 compute Wy, = DW}_;.

3. Perform the fast rank-one hankelization algorithm (Section 6.1) for the matriz Z =

PW : Wiy :...: Wrym—r-1], which is explicitly expressed as a sum of rank-one
matrices, and obtain the series z1, ..., ZN+M+L—1-
4. The numbers z1,...,zn+0m form updated reconstructed and forecasted series.

In order to prove the correctness of the algorithm, it remains to show that the formula
D = PP is correct, which will be discussed at the end of this section. Finally, there is also a
further improvement on the computation of D possible.

Remark 2. The following two things can be noted:
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1. Item 1 in Algorithm 7 is exactly the shift matrixz from the LS-ESPRIT method for
frequency estimation (Roy and Kailath 1989).

2. If{P;} is an orthonormal system, then D can be computed without the QR-decomposition
as:

1 T TP
D:(Ir—l_ﬂ_Tﬂ_ﬂ'W >P P,

where w = w(P), I, is the r X r identity matrizx.

Row MSSA forecast

Row vector forecast is slightly different from the column one, but the idea is the same. We
deal with forecasting in the row subspace L% = span(Q1,...,Q,) and continue the sequence
of the row vectors Y; of X. If the row vectors are equal to Y = QWy, k= 1,..., L, then
XT = QW, where W = (W1 :...: Wg]. In the following algorithm, as in column forecasting,
the vectors W}, are continued instead of the vectors Y.

Algorithm 8. Input: Q, W. OQutput: the forecasted values z](\l;gﬂ, e ,z]({,’ZJrM, p=1,...,s.

1. Compute the matric D = 9*6 using the QR-decomposition.
2. Fork=L+1,...,L+ M+ max,—1,. s K, —1 compute W), = DW},_;.

3. Perform the fast rank-one hankelization algorithm (Section 6.1) for each of the s matrices
Z®) = Q) W @ Wiy @ WL+M+K,,—1] for p = 1,...,s and obtain s series
(p) (p)
21 s AN M L1

(p) (p)
1

4. The numbers z;/, . .. s ZNp+ M form updated reconstructed and forecasted series.

Remark 3. If {Q;} is an orthonormal system, then D from Algorithm 8 can be expressed as
D= (I, -8"(I,-$87)7's)Q"Q,

where S = [w(Q1) : ... : w(Qr)], I, and I are the r x r and s x s identity matrices.

Proof of the algorithms’ correctness

For simplicity, we will consider the one-dimensional case, that is, SSA vector forecast, which
coincides with the column MSSA forecast for one-dimensional series. The proof for row
forecasting is analogous.

We need to prove that Zi,1 = PWyy1, where Wi 1 = DWg, D = PiP. It is sufficient to
prove Zy,1 = PW}4, since the last coordinate of the vector is uniquely defined. In the
standard formulation of vector forecasting algorithm in Golyandina et al. (2001, Section 2.3)
and in Section 3.3, Z, is the projection on the column space of P, that is, Z;,, = ETZ,g.
Since PW}, is exactly Z, by definition of Wy, we have that Z; ., = P(PPYW, = PW;,1,
and the equivalence of the standard and fast vector forecasting algorithms is proved.

Remark 4. The speed-up of the algorithms’ implementation is explained by two reasons:
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1. multiplication by matrices of small size v X r at each step instead of multiplication by
matrices of much larger size, and,

2. the form of the matriz to be hankelized is suitable for application of the fast rank-one
hankelization algorithm.

7. Conclusion

The paper contains an extended guide to the use of the Rssa package for analysis of multivariate
and multidimensional objects by singular spectrum analysis (SSA). The following extensions
of SSA are considered: MSSA for multidimensional time series, 2D-SSA for two-dimensional
arrays (images), and a new method shaped 2D-SSA (ShSSA) for arrays of arbitrary shape.

Numerous examples for each SSA extension are included in the paper. The examples cover
typical tasks that occur in SSA analysis and show how these tasks can be performed with
the Rssa package. The examples also demonstrate the plotting capabilities of Rssa. Together
with practical and implementation issues, the paper contains a summary of theoretical and
methodological aspects of SSA that assists in the proper use of the package.

In the paper, we stress on a common form of theory, algorithms, package interface and
implementation. The algorithms for SSA extensions are presented as particular cases of
the general SSA scheme, which is specialized in each case with the help of an appropriate
embedding operator. The examples with typical code demonstrate the common structure
of the algorithms, which is reflected in the common structure of Rssa interface for all SSA
extensions. In the implementation of Rssa, a unified approach is proposed, based on the
shaped 2D-SSA algorithm.

We hope that our general approach to the variety of SSA versions will help users to apply
Rssa properly and effectively.
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A. Elements of MSSA theory

We put into this section several propositions related to the MSSA theory taken from Golyandina,
Nekrutkin, and Stepanov (2003), Stepanov and Golyandina (2005, in Russian).

A.1. Separability

Separability is the key notion in the SSA theory, since separability of series means the ability
of the method to extract them from the given sum-total series. Notion of separability for
multidimensional time series is analogous to that for one-dimensional series, which is briefly
commented in Section 2.2 and is thoroughly described in Golyandina et al. (2001, Sections 1.5
and 6.1). There is weak separability, which means orthogonality of the trajectory spaces, and
strong separability, that means empty intersection of the sets of singular values produced by
the separated series.

Generally, conditions of separability of multidimensional time series are more restrictive than
that for one-dimensional series. The following sufficient condition of weak separability is valid.
Proposition 1. If time series FO and F®, GO and G@, FO and GP, and also GV and
F®) are weakly L-separable by SSA, then the two-dimensional time series (F(l),]F(Q)) and

(G(l), G(2)) are weakly L-separable by MSSA and the complex-valued time series F) + iF(®2)
and G +iGP are weakly L-separable by CSSA.

Proposition 1 can be extended to an analogous result for asymptotic separability (INV; — o)
and therefore for approximate separability for fixed IV;.

Example 1. Consider the ezample of four harmonic real-valued time series FV, F@ G1)
and G of length N

f,gl) = Aj cos(2nwik + ¢1), f,ﬁ” = By cos(2mwik + p9),

gl(gl) = Ag cos(2mkwak + ¢1), g,(f) = By cos(2mkwak + ¢2),

wy # wo, k=0,...,.N —1, A1,As,B1,Bs # 0. If Lw; and Kw;, i = 1,2, are integer,
then (FN, F@) and (G, GP) are L-separable by MSSA and the complez-valued time series
FO +iF® and GV +iG@ are weakly L-separable by CSSA.

Weak separability is not enough for extraction of time series components. Therefore, let us
look at strong separability related to eigenvalues produced by time series components. It
appears that each time series (F @), G(i)) can produce different eigenvalues in SSA, MSSA and
CSSA. Therefore, the application of an appropriate multidimensional modification of SSA can
improve the strong separability.

Note that if Lw; or Kw; is not integer, then the series become approximately separable.
Example 2. Let
f,gl) = Acos(2rwk + ¢1), f’gz) = Bcos(2mkwk + ¢2).

If Lw and Kw are integer, then (F(l),F(2)) produces two equal eigenvalues in MSSA: A =
Ay = (A% + B2 LK /4, while FY +iF1Y produces two nonequal eigenvalues in CSSA:

M = (A%2+ B2+ 2ABsing)LK/4,
Ao = (A%+ B?—2ABsinp)LK/4,
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where ¢ = p1 — @o and |@| # m/2mod w (otherwise, the series produces non-zero eigenvalues
equal to (A? + B%)LK/2). Note that the series F() itself produces two eigenvalues equal to
A2LK/4.

A.2. Multi-dimensional time series and LRRs

Consider a system of infinite time series XM, X@ . X6 choose the window length L and
denote XM, ..., X the column trajectory spaces of the series (subspaces spanned by the
L-lagged vectors of the series). Let X = span(X(), ..., X)) be the column trajectory space
of the collection of time series (X(1), X3 ... X)), As well as for one-dimensional time series,
we call the dimension of the trajectory space (equal to the rank of the trajectory matrix of
the series collection) the rank of the series collection, see Section 2.2 for short description of
general notions.

Denote the ranks of X® by r; = dim XO <L, 1=1,...,s. For each time series X!) we can
write out the minimal LRR governing the time series:

29 = kX—: algrl)mg'l-ﬁ)-n—k’ where a,(ni) #0, I=1,...,s. (28)

The corresponding characteristic polynomials of the LRR (28) are
T
PPy =pri— % alprk, 1=1,.. s (29)
k=1

The roots of the characteristic polynomial of the minimal LRR governing the series are called
characteristic roots.

Let

p)  be the number of different roots of the polynomial Pr(ll )(A),

,ui,l@) be the mth root of the polynomial Pr(ll)()\),

7(7? be the multiplicity of the root ,u%).

Then, from standard theory of time series of finite rank (Golyandina et al. 2001), we have that

Bk = =1,

The characteristic roots determine the series behavior. For example, if k,(fl) =1, then the time

series has the form
Ty
0 _ 0 (, O\
zV) = EICj (uj ) .
j:

Also let

M1, .., Mp be the pooled set of roots of all the polynomials Pr(ll), e ,Pr(f),
ki,...,k, be the multiplicities of the roots 1, ..., tp,

where multiplicity of a root in the pooled set is equal to the maximal multiplicity of the
corresponding root across all the polynomials.

Since the roots are determined by the structure of the trajectory space, the following proposition
can be proved.
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Proposition 2. Rank of the infinite multi-dimensional time series (X(l),X@), e ,X(S)) 18
equal tor =30 | k;, for L >r.

Consider a simple example.

Example 3. Let F = (f1,...,fn) and G = (g1,...,9n) with
f,gl) = Acos(2rwik + 1), f,gQ) = Bcos(2mwak + p2), (30)

where 0 < w < 1/2, 0 < 1, p2 < 27w and A, B # 0. Let us fix the window length L and find the
SSA rank of the time series F, the MSSA rank of (FV),F®?) and the CSSA rank of F) +iF(?)

1. For wy = wy the SSA and the MSSA ranks of the sinusoid (30) is equal to 2. The CSSA
rank is equal to 1 if A= B and |1 — p2| = 7/2mod 7w and is equal to 2 otherwise.

2. For wy # wy the SSA, MSSA and CSSA ranks equal 4.

B. Elements of 2D-SSA theory

B.1. Arrays of finite rank

The theory of arrays of finite rank is mainly contained in Golyandina and Usevich (2009). We
present here a short summary.

In this section we consider a class of infinite arrays X = (Zm,n),, n—o given in a parametric
form:

r
ITmn = Z CkAZnMZ» (31)
k=1

where (g, px) € C? are distinct pairs of complex numbers. It can be shown that for large
enough N, Ny, L,, Ly, the rank of the trajectory matrix X is equal to r (or equivalently, the
arrays of the form (31) are arrays of finite rank). Note that the exponentials can be also
represented in the form

Mo = Pa i €Xp(2Tiwg & + Gz k), Mk = Py,k €XP(2Tiwy | + Py )

We should note that the class of arrays of finite rank also contains bivariate polynomials and
their products with the functions from (31). An algebraic characterization of the arrays of
finite rank can be found in Golyandina and Usevich (2009).

B.2. Real arrays

Now let us summarize what happens in the case of real arrays X. If (31) is real then for any
pair (A, u) € C? its complex conjugate (), i) also should be present in (31). We order the roots
such that (A, ux) are real for 1 < k < d, and other 2s roots are at least partially complex
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(there are complex conjugate pairs), and are arranged as (Ag, i) = (conj(Ag—s), conj(tx—s))
ford+s+ 1<k <d+ 2s. Then the roots have a representation

(p:c,ka py,k) = (py,k exp(QWiwz,k)vpy,k exp(QWiwy,k)) y 1 < k < d,
(Mes k) = (Pa ke €XD(2Twy k), Py.k €XP(2Tiwy 1)) 5 d+1<k<d+s,
(P k—s €xXP(—2Tiwy f—s), Py €XP(—2Tiwy k—s)) , d+s+1<k<nr,

where (pg i, Py ks Wa ks Wy k) € R? x [0;1/2)? are distinct 4-tuples of real numbers, such that
Wk =wyr=0for 1 <k <d.

Then the representation (31) becomes a sum of d + s planar modulated sinewaves:

d+s
T = >, Diplanpy s €08 (27 (W km + wy n) + Pr)
k=1

where by, and ¢y € [0;27) are unique real coefficients obtained from c¢.

Example 4. The product of sines can be uniquely represented as a sum of two planar sines:

2 cos(2mwym + ¢1) cos(2mwyn + ¢2)
= cos(2m(wem + wyn) + ¢1 + ¢2) + cos(2m(wamn — wyn) + ¢1 — P2)
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