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Abstract

This paper presents the MATLAB package DeCo (density combination) which is based
on the paper by Billio, Casarin, Ravazzolo, and van Dijk (2013) where a constructive
Bayesian approach is presented for combining predictive densities originating from differ-
ent models or other sources of information. The combination weights are time-varying
and may depend on past predictive forecasting performances and other learning mecha-
nisms. The core algorithm is the function DeCo which applies banks of parallel sequential
Monte Carlo algorithms to filter the time-varying combination weights. The DeCo proce-
dure has been implemented both for standard CPU computing and for graphical process
unit (GPU) parallel computing. For the GPU implementation we use the MATLAB par-
allel computing toolbox and show how to use general purpose GPU computing almost
effortlessly. This GPU implementation provides a speed-up of the execution time of up
to seventy times on a standard CPU MATLAB implementation on a multicore CPU. We
show the use of the package and the computational gain of the GPU version through some
simulation experiments and empirical applications.

Keywords: density forecast combination, sequential Monte Carlo, parallel computing, GPU,
MATLAB.

1. Introduction

Combining forecasts from different statistical models or other sources of information is a
crucial issue in many different fields of science. Several papers have been proposed to handle
this issue with Bates and Granger (1969) being one of the first attempts in this field. Initially
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the focus was on defining and estimating combination weights for point forecasting. For
instance, Granger and Ramanathan (1984) propose to combine forecasts with unrestricted
least squares regression coefficients as weights. Terui and van Dijk (2002) generalize least
squares weights by specifying the weights in the dynamic forecast combination as a state space
model with time-varying weights that are assumed to follow a random walk process. Recently,
research interest has shifted to the construction of combinations of predictive densities (and
not point forecasts) as well as allowing for model set incompleteness (the true model may
not be included in the set of models for prediction) and learning. Further, different model
evaluation criteria are used. Hall and Mitchell (2007) and Geweke and Amisano (2010)
propose using combination schemes based on the Kullback-Leibler score; Gneiting and Raftery
(2007) recommend strictly proper scoring rules, such as the cumulative rank probability score,
in particular, if the focus is on some particular area, such as extreme tails, of the distribution.
Billio et al. (2013) (hereby BCRVD 2013) provide a general Bayesian distributional state
space representation of predictive densities and specify combination schemes that allow for
an incomplete set of models and different learning mechanisms and scoring rules.
The design of algorithms for a numerically efficient combination remains a challenging issue
(e.g., see Gneiting and Raftery 2007). BCRVD (2013) propose a combination algorithm based
on sequential Monte Carlo filtering. The proposed algorithm makes use of a random grid from
the set of predictive densities and runs a particle filter at each point of the grid. The procedure
is computationally intensive when the number of models to combine increases. A contribution
of this paper is to present a MATLAB (see The MathWorks Inc. 2011) package DeCo (density
combination) for the combination of predictive densities and a simple graphical user interface
(GUI) for the use of this package.
This paper provides, through the DeCo package, an efficient implementation of the BCRVD
(2013) algorithm based on central processing unit (CPU) and graphics processing unit (GPU)
parallel computing. We make use of recent increases in computing power and recent advances
in parallel programming techniques. The focus of the microprocessor industry, mainly driven
by Intel and AMD, has shifted from maximizing the performance of a single core to integrating
multiple cores in one chip, see Sutter (2005) and Sutter (2011). Contemporaneously, the
needs of the video game industry, requiring increasing computational performance, boosted
the development of the GPU, which enabled massively parallel computation.
In the present paper, we follow the recent trend of using GPUs for general, non-graphics, ap-
plications (prominently featuring those in scientific computing), the so-called general-purpose
computing on graphics processing unit (GPGPU) approach. The GPGPU approach has been
applied successfully in different fields such as astrophysics, biology, engineering, and finance,
where quantitative analysts started using this technology well ahead of academic economists,
see Morozov and Mathur (2012) for a literature review.
To date, the adoption of GPU computing technology in economics and econometrics has been
relatively slow compared with other fields. There are a few papers that deal with this inter-
esting topic, see Suchard, Holmes, and West (2010), Morozov and Mathur (2012), Aldrich,
Fernández-Villaverde, Gallant, and Ramırez (2011), Durham and Geweke (2014), Dziubinski
and Grassi (2014) and Creel, Mandal, and Zubair (2012). This is odd given the fact that
parallel computing in economics has a long history. An early attempt to use parallel compu-
tation for Monte Carlo simulation is Chong and Hendry (1986), while Swann (2002) develops
a parallel implementation of maximum likelihood estimation. Creel and Goffe (2008) discuss a
number of economic and econometric problems where parallel computing can be applied. The
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Advantages Disadvantages
CUDA Free Vendor lock-in
OpenCL Free Difficult to program

Heterogeneous
Thrust Free Vendor lock-in

Easy to program
C++ AMP Open Standard Currently only Windows implementations exist

Heterogeneous
Free (Express Edition)
Easy to program

Table 1: Comparison of different currently available GPGPU approaches.

low diffusion of this technology in economics and econometrics, according to Creel (2005), is
mainly due to two issues, which are the high cost of the hardware, e.g., a computing cluster,
and the steep learning curve of dedicated programming languages such as CUDA (compute
unified device architecture, see NVIDIA Corporation 2010), OpenCL (Khronos OpenCLWork-
ing Group 2009), Thrust (Hoberock and Bell 2011) and C++ AMP (C++ accelerated massive
parallelism, see Gregory and Miller 2012). Table 1 compares different currently available
GPGPU approaches. The recent increase in attention to parallel computing is motivated
by the fact that the hardware costs issue has been solved by the introduction of modern
GPUs with relatively low cost. Nevertheless, the second issue remains open. For example,
Lee, Christopher, Giles, Doucet, and Holmes (2010) report that a programmer proficient in C
(Press, Teukolsky, Vetterling, and Flannery 1992) or C++ (Stroustrup 2000), a programming
skill that can take some time to be acquired, should be able to code effectively in CUDA
within a few weeks.

We aim to contribute to this stream of literature by showing that GPU computing can be
carried out almost without any extra effort using the parallel toolbox of MATLAB (available
in version 2012b and following releases, see The MathWorks Inc. 2011) and a suitable ap-
proach to MATLAB coding of the algorithms. The MATLAB environment allows easy use of
GPU programming without learning CUDA. We emphasize that this paper is not intended to
compare CPU and GPU computing. In fact, we propose the combination algorithm for both
standard parallel CPU and for parallel GPU computation. Our simulation and empirical ex-
periments show that the DeCo GPU version is faster 3 to 10 times than the parallel multi-core
CPU version, similar to recommendations in Brodtkorb, Hagen, and Saetra (2013), and up
to 70 times faster than the standard sequential CPU version.

The structure of the paper is as follows. Section 2 introduces the principles of density fore-
cast combinations with time-varying weights and parallel sequential Monte Carlo algorithms.
Section 3 presents a parallel sequential Monte Carlo algorithm for density combinations. It
also provides background material on GPU computing in MATLAB. Section 4 carries out
a comparison, using a Monte Carlo simulation, between CPU and GPU calculation. Sec-
tion 5 reports the results for the macroeconomic empirical application. Section 6 concludes.
Appendix A describes the structure of the algorithm, Appendix B shows the package GUI
and Appendix C illustrates the corresponding MATLAB functions with the input and output
description.
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2. Time-varying combinations of predictive densities

2.1. A combination scheme

BCRVD (2013) introduced a general scheme for combining predictive densities, which allows
for time-varying weights for the different densities; model set incompleteness (meaning the
true model might not be in the model set); combination weight uncertainty and learning, in
order to achieve more accurate forecasts. The authors present a distributional state space
representation of the combination scheme, provide an effective algorithm for the sequential
estimation of the combination weights and discuss some alternative specifications of the com-
bination and of weight dynamics.
In order to make the present paper self-contained, we summarize the essential idea of the
approach here, where we note that, for simplicity, we apply the Gaussian combination scheme
with logistic weights. For more details and alternatives we refer to BCRVD (2013).
Denote with v1:t = (v1, . . . ,vt) a collection of vectors vs with s = 1, . . . , t. Let yt ∈ Y ⊂ RL
be the L-vector of observable variables at time t and ỹt = (ỹ>1,t, . . . , ỹ>K,t)> ∈ YK ⊂ RKL,
with element ỹk,t = (ỹ1

k,t, . . . , ỹ
L
k,t)> ∈ Y ⊂ RL the typical one-step-ahead predictor for yt

for the kth model, k = 1, . . . ,K, in the pool, with predictive density p(ỹk,t|y1:t−1, Ik), where
y1:t−1 refers to the past information on the relevant variable and Ik refers to the structural
information set for the kth model, k = 1, . . . ,K.
Basically, the combined density is the marginal density of the joint density of observed
variables, latent weights and predicted variables of K models integrated, otherwise stated
marginalized, with respect to the latent weights and the predicted variables from the K mod-
els. More specifically, the combined density of the observed yt given the past data values and
the structural specifications of all models is given as

p(yt|y1:t−1, IK) =
∫
YKt

∫
W
p(yt,Wt, ỹ1:t|y1:t−1, IK)dWtdỹ1:t, (1)

where Wt = (w1
t , . . . ,wL

t )> ∈ W ⊂ RL×KL is a weight matrix, with wl
t = (wl1,t, . . . , wlKL,t)>

as the lth row vector containing the combination weights for the KL elements of ỹt.
The joint density, given in (1), can be rewritten as the product of three conditional densities

p(yt,Wt, ỹ1:t|y1:t−1, IK) = p(yt|Wt, ỹ1:t,y1:t−1, IK)p(Wt|ỹ1:t,y1:t−1, IK)p(ỹ1:t|y1:t−1, IK),

where the conditional density p(yt|Wt, ỹ1:t,y1:t−1, IK) specifies the particular combination
that is used, p(Wt|ỹ1:t,y1:t−1, IK) is the conditional density of the K latent weights and
p(ỹ1:t|y1:t−1, IK) is the conditional predictive density for the predicted variables ỹ1:t given
the past data information and the structural information, IK =

∨K
k=1 Ik, on the K models.

In this paper, the joint density of the predictor is defined as

p(ỹt+1|y1:t, IK) =
K∏
k=1

p(ỹk,t+1|y1:t, Ik). (2)

Note that if each of these densities was a member of the family of normal densities, the
multiple integral in (1) can be evaluated analytically.
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In our case the density of the particular combination is given as a Gaussian density that
allows for model incompleteness

p(yt|Wt, ỹt, IK) ∝ |Σ|−
1
2 exp

{
−1

2 (yt −Wtỹt)>Σ−1 (yt −Wtỹt)
}

(3)

t = 1, . . . , T . We assume for the present paper that the covariance matrix, i.e., Σ =
diag{σ2

1, . . . , σ
2
L} is diagonal. We emphasize that the disturbances in the combination density

and their variances give important signals on model incompleteness. That is, the combination
model can be re-written as

yt = Wtỹt + ζt (4)

with ζt
i.i.d.∼ N (0,Σ).

With respect to the specification of the latent weights wlh,t we assume these to be nonlinear
transformations of latent variables xlh,t given as

wlh,t =
exp{xlh,t}∑KL
j=1 exp{xlj,t}

, withh = 1, . . . ,KL (5)

This change of variables allows us to define a new latent matrix Xt = (x1
t , . . . ,xLt )> with

density p(Xt|ỹ1:t,y1:t−1, IK). We further assume a transition density that allows the weights
and the latent variable Xt to have a first-order Markovian structure and to let them possibly
depend on past values of the observed and predicted values of yt. That is,

p(xt|xt−1, IK) ∝ |Λ|−
1
2 exp

{
−1

2 (xt − xt−1)> Λ−1 (xt − xt−1)
}

(6)

with xt = vec(Xt) ∈ X ⊂ RKL2 . We assume the covariance matrix of the so-called state noise
is diagonal, i.e., Λ = diag{λ1, . . . , λKL2}. A learning mechanism can also be added to the
weight dynamics, resulting in

p(xt|xt−1,yt−τ :t−1, ỹt−τ :t−1, IK) ∝ |Λ|−
1
2 exp

{
−1

2 (xt − µt)
> Λ−1 (xt − µt)

}
, (7)

where µt = xt−1 −∆et, ∆et = (et − et−1) and elements of et

elK(l−1)+k,t = (1− λ)
τ∑
i=1

λi−1f
(
ylt−i, ỹ

l
k,t−i

)
,

k = 1, . . . ,K, l = 1, . . . , L, with λ ∈ [0, 1] a discount factor and τ the number of previous
observations used in the learning. We assume the function f() defines a learning strategy.
Note that the DeCo package relies on a general algorithm which can account for different
scoring rules, such as the Kullback-Leibler score (Hall and Mitchell 2007 and Geweke and
Amisano 2010) and the cumulative rank probability score (Gneiting and Raftery 2007).1

For the predictive density p(ỹ1:t|y1:t−1, IK) one can make use of different approaches to esti-
mate these equations and generate predicted values (e.g., see Casarin, Chang, Jimenez-Martin,

1The user interested in different scoring rules should change the command lines with the learning in the file
PFCoreGPU.m for the GPU version and PFCore.m for the CPU version.
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McAleer, and Amaral 2013 and Aastveit, Ravazzolo, and van Dijk 2014). In the present paper
we assume that these predicted values have been generated by a Bayesian procedure.

2.2. State space representation of the combination scheme

The combination scheme, given in Section 2.1, can be restated in a nonlinear state space
representation where an efficient algorithm can be applied to solve for the integration problem.
The proposed state space representation is, as usual, composed of an observation equation,
given in (3) and a transition equation of the latent weights equations, given in (5), (6) or (7).
These provide a forecast density for the observable variables conditional on the predictors.
The representation is quite general, allowing for nonlinear and non-Gaussian combination
models. In Section 2.3, we specify a sequential Monte Carlo algorithm, also known as a
particle filter, to estimate sequentially over time the optimal combination weights and the
combination density.
Note that, due to the change of variable in (5), the integral with respect to Wt in (1)
can be written as an integral in xt and the state space representation can be sketched
as follows. Let θ ∈ Θ ⊂ Rnθ be the parameter vector of the combination model, with
θ = (log σ2

1, . . . , log σ2
L, log λ1, . . . , log λKL2). Define the augmented state space Z = X × Θ

and the augmented state vector zt = (xt,θt) ∈ Z, where θt = θ, ∀t. The distributional state
space form of the forecast model is

yt ∼ p(yt|zt, ỹt, IK) (measurement density) (8)
zt ∼ p(zt|zt−1,y1:t−1, ỹ1:t−1, IK) (transition density) (9)
z0 ∼ p(z0|IK) (initial density) (10)

The state predictive and filtering densities conditional on the predictive variables ỹ1:t and the
structural information IK are

p(zt+1|y1:t, ỹ1:t, IK) =
∫
Z
p(zt+1|zt,y1:t, ỹ1:t, IK)p(zt|y1:t, ỹ1:t, IK)dzt, (11)

p(zt+1|y1:t+1, ỹ1:t+1, IK) = p(yt+1|zt+1, ỹt+1)p(zt+1|y1:t, ỹ1:t, IK)
p(yt+1|y1:t, ỹ1:t, IK) , (12)

respectively, which represent the optimal nonlinear filter (see Doucet, Freitas, and Gordon
2001). The marginal predictive density of the observable variables is then

p(yt+1|y1:t, IK) =
∫
Y
p(yt+1|y1:t, ỹt+1, IK)p(ỹt+1|y1:t, IK)dỹt+1, (13)

where p(yt+1|y1:t, ỹt+1, IK) is defined as∫
Z×YKt

p(yt+1|zt+1, ỹt+1, IK)p(zt+1|y1:t, ỹ1:t, IK)p(ỹ1:t|y1:t−1, IK)dzt+1dỹ1:t (14)

and represents the conditional predictive density of the observable given the past values of
the observable and of the predictors. We refer to Aastveit et al. (2014) for an application of
this approach to the case of nowcasting using dynamic factor models and to Casarin et al.
(2013) for an application to financial risk measurement using GARCH models.
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2.3. A filtering algorithm for the combination state space model

The analytical solution of the optimal filter for nonlinear state space models is generally not
known. An approximate solution is needed. We apply a numerical approximation method,
which converges to the optimal filter in Hilbert metric, in the total variation norm and in a
weaker distance suitable for random probability distributions (e.g., see Legland and Oudjane
2004). More specifically, we consider a sequential Monte Carlo (SMC) approach to filtering.
See Doucet et al. (2001) for an introduction to SMC and Creal (2009) for a recent survey on
SMC in economics. We propose using banks of SMC filters, where each filter is conditioned
on a sequence of realizations of the predictor vector ỹt, see BCRVD(2013). The resulting
algorithm for the sequential combination of densities is defined through the following steps,
see Appendix A for a graphical representation.

Step 0 (Initialization, Equation 10):
Initialize independent particle sets Ξj0 = {zi,j0 , ωi,j0 }Ni=1, j = 1, . . . ,M . Each particle set Ξj0
contains N i.i.d. random variables zi,j0 with random weights ωi,j0 .2 Initialize a random grid
over the set of predictors, by generating i.i.d. samples ỹj1, j = 1, . . . ,M , from p(ỹ1|y0, IK).
We use the sample of observations y0 to initialize the individual predictors.

Step 1 (Predictor generation, Equation 2):
At the iteration t+ 1 of the combination algorithm, we approximate the predictive density
p(ỹt+1|y1:t, IK) with the discrete probability

pM (ỹt+1|y1:t, IK) = 1
M

M∑
j=1

δỹjt+1
(ỹt+1),

where ỹjt+1, j = 1, . . . ,M , are i.i.d. samples from the predictive densities and δx(y) denotes
the Dirac mass centered at x. This approximation is also motivated by the forecasting
practice (see Jore, Mitchell, and Vahey 2010). The predictions usually come, from different
models or sources, in the form of discrete densities. In some cases, this is the result of a
collection of point forecasts from many subjects, such as survey forecasts. In other cases
the discrete predictive function is a result of a Monte Carlo approximation of the predictive
density (e.g., importance sampling or Markov chain Monte Carlo approximation of the
model predictive density).

Step 2 (Filtering and prediction):
We assume an independent sequence of particle sets Ξjt = {zi,j1:t, ω

i,j
t }Ni=1, j = 1, . . . ,M , is

available at time t+ 1 and that each particle set provides the approximation

pN,j(zt|y1:t, ỹj1:t, IK) =
N∑
i=1

ωi,jt δzi,jt
(zt) (15)

of the filtering density, p(zt|y1:t, ỹj1:t, IK), conditional on the jth predictor realization, ỹj1:t.
Then M independent SMC algorithms are used to find a new sequence of M particle sets,
2The parameter θi,j0 in zi,j0 can be fixed or estimated. When estimated, the parameter must be initialized

by drawing from the prior. The prior requires the specification of the mean and the standard deviation of the
random noise of the log normal random walk process that θ is assumed to follow. DeCo toolbox includes all
these options, see Appendix B.



8 DeCo: Density Combination in MATLAB

which include the information available from the new observation and the new predictors.
Each SMC algorithm iterates, for j = 1, . . . ,M , the following steps.

Step 2.a (State prediction, Equation 11):
The basic SMC algorithm uses the particle set to approximate the predictive density
with an empirical density. We use a regularized version of the SMC procedure (e.g.,
seealt Liu and West 2001, Musso, Oudjane, and Legland 2001 and Casarin and Marin
2009). More specifically, the predictive density of combination weights and parameters,
zt+1, conditional on ỹj1:t and y1:t is approximated as follows

pN,j(zt+1|y1:t, ỹj1:t, IK) =
N∑
i=1

p(xt+1|xt,θt+1,y1:t, ỹj1:t, IK)ωi,jt δxi,jt
(xt)Kh(θt+1 − θi,jt ), (16)

where Kh(y) = h−nθK(y/h) is the regularization kernel, K being a positive function
defined on Rnθ and h a positive smoothing factor (bandwidth).

Step 2.b (State filtering, Equation 12):
We update the state predictive density by using the information coming from ỹjt+1 and
yt+1, that is

pN,j(zt+1|y1:t+1, ỹj1:t+1, IK) =
N∑
i=1

γi,jt+1δzi,jt+1
(zt+1), (17)

where γi,jt+1 ∝ ωi,jt p(yt+1|zi,jt+1, ỹ
j
t+1, IK) is a set of normalized weights and zi,jt+1 =

(xi,jt+1,θ
i,j
t+1) with θi,jt+1 ∼ Kh(θt+1 − θi,jt ) and xi,jt+1 ∼ p(xt+1|xt,θi,jt+1,y1:t, ỹj1:t, IK),

i = 1, . . . , N .
Step 2.c (Observation prediction, Equation 14):

The hidden state predictive density can be used to approximate the observable predic-
tive density as follows

pN,j(yt+1|y1:t, ỹj1:t+1, IK) =
N∑
i=1

γi,jt+1δyi,jt+1
(yt+1) (18)

where yi,jt+1 has been simulated from the combination model p(yt+1|zi,jt+1, ỹjt+1, IK)
independently for i = 1, . . . , N .

Step 2.d (Observation predictive distribution, Equation 14):
The resampling (multinomial resampling) of the particles introduces extra Monte Carlo
variations, see Liu and Chen (1998). This can be reduced by doing resampling only
when the effective sample size (ESS) is below a given threshold. The ESS is defined as

ESSjt = N

1 +N
N∑
i=1

(
γi,jt+1 −N

−1
N∑
i=1

γi,jt+1

)2/(
N∑
i=1

γi,jt+1

)2

and measures the overall efficiency of an importance sampling algorithm. At the t+1th
iteration if ESSjt+1 < κ, simulate Ξjt+1 = {zki,jt+1, ω

i,j
t+1}Ni=1 from {zi,jt+1, γ

i,j
t+1}Ni=1 (e.g.,

multinomial resampling) and set ωi,jt+1 = 1/N . We denote with ki the index of the ith
re-sampled particle in the original set Ξjt+1. If ESS

j
t+1 ≥ κ set Ξjt+1 = {zi,jt+1, ω

i,j
t+1}Ni=1.
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Step 3 (Observation marginal predictive, Equation 13):
At the last step, obtain the following empirical predictive density

pM,N (yt+1|y1:t, IK) = 1
M

M∑
j=1

N∑
i=1

ωi,jt+1δyi,jt+1
(yt+1). (19)

The precision of our numerical approximation method depends on the choice of M and N .
As regards the precision of the combination weight estimates, it can be increased by setting a
largerN . The approximation of the forecasting densities can be increased choosing a largerM .
Notice that the choice of M does not affect the convergence of the particle filter algorithms,
which depends only on the choice of N . The assumptions required for convergence of the
SMC algorithms are discussed in, e.g., Moral and Guionnet (2001) and Gland and Oudjane
(2004) for regularized particle filters. Central limit theorems for particle filters can be found
in Chan and Lai (2013) and Chopin (2004).

3. Parallel SMC for density combination: DeCo
MATLAB is a popular software in the economics and econometrics community (e.g., see LeSage
1998), which has recently introduced support for GPU computing in its parallel computing
toolbox. This allows the use of raw CUDA code within a MATLAB program as well as al-
ready built-in functions that are directly executed on the GPU. Using the built-in functions
we show that the GPGPU approach can be almost effortlessly implemented with the only
required knowledge being decent MATLAB programming skills. With a little effort we pro-
vide a GPU implementation of the methodology recently proposed by BCRVD (2013). This
implementation provides a speed-up of the execution time of up to a hundred times on a
multicore CPU with a standard MATLAB code.

3.1. GPU computing in MATLAB
There is little difference between the CPU and GPU MATLAB code: Listings 1 and 2 report
the same program which generates and inverts a matrix on CPU and GPU respectively.
The GPU code, Listing 2, uses the command gpuArray.randn to generate a matrix of normal
random numbers. The built-in function gpuArray.randn is handled by the NVIDIA plug-in

1 iRows = 1000; iColumns = 1000; % Number of rows and columns
2 C_on_CPU = randn(iRows , iColumns ); % Generate random number on the CPU
3 InvC_on_CPU = inv( C_on_CPU ); % Invert the matrix

Listing 1: MATLAB CPU code that generates and inverts a matrix.

1 iRows = 1000; iColumns = 1000; % Number of rows and columns
2 C_on_GPU = gpuArray .randn(iRows , iColumns ); % Generate random number on the

GPU
3 InvC_on_GPU = inv( C_on_GPU ); % Invert the matrix
4 InvC_on_CPU = gather ( InvC_on_GPU ); % Transfer the data from the GPU to CPU

Listing 2: MATLAB GPU code that generates and inverts a matrix.
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that generates the random number with an underlying raw CUDA code. Once the variable
C_on_GPU is created, standard functions such as inv recognize that the variable is on GPU
memory and execute the corresponding GPU function, e.g., inv is executed directly on the
GPU. This is completely transparent to the user. If further calculations are needed on the
CPU, then the command gather transfers the data from GPU to the CPU, see Line 3 of
Listing 2. A lot of supported functions already exist and this number is continuously increasing
with new MATLAB releases.

3.2. Parallel sequential Monte Carlo

The structure of the GPU program, which is similar to the CPU one, is reported in Ap-
pendix A. In a graphical context the majority of the computations are executed in single
precision floating point, so GPUs were initially optimized to perform these types of computa-
tions. Lately, GPUs have been extended to double precision calculation, see Section 4. Since
a GPU performs a relatively small set of operations on a specific set of data points (each
vertex on the screen), GPU makers (e.g., NVIDIA and ATI) focus mainly on creating hard-
ware that specializes in these tasks instead of a wide array of operations such as the CPU.
Therefore, the set of problems in which the GPU can be used is restricted, but GPU performs
the specialized tasks more efficiently than the CPU. For example, matrix multiplication and,
in general, matrix linear algebra are highly parallelizable problems and these operations are
very suitable for GPGPU computing because they can be easily divided into the large number
of cores available on the GPU, see Gregory and Miller (2012) for an introduction.
At first sight our problem does not seem to be easily parallelizable. But a closer look shows
that the only sequential part of the algorithm is the time iteration, indeed the results of
time t + 1 are dependent on the results of time t. Our key idea is to rewrite in matrix
form that part of the algorithm that iterates over particles and predictive draws in order to
exploit the GPGPU computational efficiency. Following the notation in Section 2, we let M
be the number of draws from the predictive densities, K the number of predictive models,
L the number of variables to predict, T the time horizon, and N the number of particles.
Consider L = 1 for the sake of simplicity, then the code carries out a matrix of dimension
(MN×K). The dimension could be large, e.g., in our simulation and empirical experiments it
is (5, 000 ·1, 000×3) and (1, 000 ·1, 000×12) respectively. All the operations, such as addition
and multiplication, become just matrix operations that the GPU is explicitly designed for.
As an example of such a coding strategy, we describe the parallel version of the initialization
step of the SMC algorithm (see first step of the diagram in Appendix A and in Step 0 in
Section 2). We apply a linear regression and then generate a set of normal random numbers
to set the initial values of the states. Using a multivariate approach to the regression problem,
we can perform it in just one single, big matrix multiplication and inversion for all draws. An
example of initialization, similar to the one used in the package, is given in Listing 3.3

Listing 3 shows that the predictive densities and the observable variables are stacked in
block-diagonal matrices (Lines 1–8) of dimensions (TM ×MK) and (TM × M) by using
the command blkdiag, and then transferred to the GPU by the gpuArray command (Lines
10–11). Line 13 carries out the multivariate regression, the function gpuArray.randn is then
used to generate normal random numbers on the GPU and thus to initialize the value of the

3In the package, we use the following labeling: Setting.iDimOmega for K, Setting.iDraws for M and
Setting.cN for N .
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1 %% Initialization of the matrix %%
2 mX = []; mY = [];
3 for j=1:M
4 %% Build the block - diagonal matrix over the draws %%
5 mX = blkdiag (mX , mXAll (: , : , j));
6 %% Repeat the vY matrix for multivariate regression %%
7 mY = blkdiag (mY , vY);
8 end
9 %% Load data on the GPU memory %%

10 mXGPU = gpuArray (mX);
11 mYGPU = gpuArray (mY);
12 %% Initialize particles on the GPU %%
13 mOmega = ( mXGPU\mYGPU); %% Multivariate regression %%
14 mMatrix = KronBsxfun ( gpuArray .ones(M , 1) , gpuArray .eye(K));
15 mOmega = mOmega ’ * mMatrix ;
16 mOmega = KronBsxfun ( gpuArray .ones(N , 1) , mOmega ) + 5 * gpuArray .randn(N * M

, K);

Listing 3: Block regression on the GPU.

1 mOmega = mOmega ’ + KronBsxfun ( gpuArray .ones (1, M * N) , sqrt(Sigma)).*
gpuArray .randn(K, M * N);

Listing 4: Draws for the latent states.

particles (Lines 14–17).
This strategy is carried out all over the program and also applied to the simulation of the set
of particles. For example, Listing 4 reports a sample of the code for the SMC prediction step
(see Step 2.a in Section 2) for the latent states.
The Kronecker product (function KronBsxfun) creates a suitable matrix of standard devia-
tions. We notice that the matrix implementation of the filter requires availability of physical
memory on the graphics card. If there is not enough memory to run all the draws in parallel,
then it is possible to split theM draws in k = M

m blocks of size m and to run the combination
algorithm sequentially over the blocks and in parallel within the blocks.4

The only step of the algorithm which uses the CPU is resampling (see diagram in Appendix A
and Step 2.d in Section 2). The generated particles are copied to the CPU memory and, after
the necessary calculations, they are passed back to the GPU. Some comments are in order.
We use the resampling on CPU because it is not easily parallelizable. Although propagation
and weighing steps are easy to parallelize (we work on different particles separately), the
resampling step requires collective operations across particle weights and those operations
are not easily to parallelize. Parallelizing the resampling step with a new and more efficient
algorithm is an active field of research, see among others Murray, Lee, and Jacob (2014) and
the reference therein, but this is beyond the scope of this paper. Moreover, this copying back
and forth introduces a relatively high computational cost in small problems, but becomes
much less important as the number of particles and series increases.

4We run the blocks sequentially because MATLAB does not yet have a parallel for loop command for running
in parallel the k = M

m
blocks of GPU computations. The DeCo parallel CPU version sets m = 1 and parallelizes

over the k = M blocks.
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4. Differences between CPU and GPU
GPUs can execute calculations in single and double precision as defined by the IEEE 754
standard (IEEE Computer Science 2008). Single precision numbers are half the size of double
precision numbers and they are more limited in the range of values represented. If an appli-
cation requires a high degree of precision, double precision numbers are the only possibility.
We work with double precision numbers because our applications focus on density forecasting
and precise estimates of statistical quantities, such as extreme events that are in the tails of
the predictive distribution, may be very important for economic and financial decisions.
The GPU cards are very fast in single precision calculation, but loose power in double preci-
sion. Therefore, some parameters should be set carefully to have a fair comparison between
CPU and GPU. First, both programs have to be implemented in double precision. Second,
the CPU program has to be in parallel in order to use all available CPU cores. Third, the
choice of the hardware is crucial, see Aldrich (2013) for a discussion. In all our experiments,
we use a recent CPU processor, Intel Core i7-3820QM, launched in 2012Q2. This CPU has
four physical cores that doubled thanks to Hyper-Threading Technology. Not all users of
package DeCo might have access to such up-to-date hardware given its costs. So we also run
the CPU code using a less expensive machine, the Intel Xeon X3430, launched in 2009Q3.
To run the CPU code in parallel, MATLAB requires the parallel computing toolbox. We also
investigate performance when this option is switched off and the CPU code is run sequentially.
The GPU used in this study is a NVIDIA Quadro K2000M. The card is available at a low cost,
but it also has low performance because it is designed for a mobile machine (as indicated by the
suffix M). A user with a desktop computer might have access to a more powerful video card,
such as, e.g., NVIDIA Tesla. We refer to MATLAB for GPU comparisons and, in particular,
to the function GPUBench freely available at http://www.mathworks.co.uk/matlabcentral/
fileexchange/34080-gpubench.
Finally we emphasize that the results of the CPU and GPU versions of our combination
scheme are not necessarily identical. The parallelization is implemented differently in the
two versions to fully exploit the GPU advantage in working with a large matrix, selected in
the toolbox by the number of blocks of draws. The CPU is parallelized for each simulation.
To investigate the numerical differences between CPU and GPU, we provide a numerical
integration experiment based on standard Monte Carlo integration where we can compare
numerical solutions when the random generator is fixed and when it is not. We also repeat
some of the simulation exercises in BCRVD (2013).

4.1. Monte Carlo integration

We consider six simple integration problems and compare their analytical solutions to their
crude Monte Carlo (see Robert and Casella 2004) numerical solutions. Let us consider the
two integrals of the function f over the unit interval

µ(f) =
∫ 1

0
f(x)dx, σ2(f) =

∫ 1

0
(f(x)− µ(f))2dx.

The Monte Carlo approximations of the integrals are

µ̂N (f) = 1
N

N∑
i=1

f(Xi), σ̂2
N (f) = 1

N

N∑
i=1

(f(Xi)− µ̂N (f))2 ,

http://www.mathworks.co.uk/matlabcentral/
fileexchange/34080-gpubench
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Figure 1: CDFs of the CPU and GPU mean square errors in the MC estimators of µN (f),
N = 1500, when setting the same random generator number (left column) and when not
(right column), for different choices of f (first rows: f(x) = x; second row: f(x) = x2; third
row:f(x) = cos(πx)), using G = 1000 replications.
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Figure 2: CDFs of the CPU and GPU mean square errors in the MC estimators of σ̂2
N (f)

when setting the same random generator number (left column) and when not (right column),
for different choices of f (different rows), using G = 1000 replications.

where X1, . . . , XN is a sequence of N i.i.d. samples from a standard uniform distribution.
The numerical integration problems considered in the experiments correspond to the following
choices of the integrand function:

1. f(x) = x;

2. f(x) = x2;

3. f(x) = cos(πx).

We repeat G = 1000 times each Monte Carlo integration experiment with sample sizes N =
1500. Figures 1 and 2 show the CPU and GPU cumulative distribution functions (CDFs) of
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the mean square errors when the random generator number is fixed to be equal for the two
methods and when it is not. The two CDFs are basically identical when the random generator
is fixed, with a difference at the 17th decimal. The differences are larger when the seed is
not fixed, but still very small. Moreover, positive and negative values are equally distributed
indicating that there is no evidence of higher precision of one of the two methods. We also
test the statistical relevance of the differences between CPU and GPU and run a two-sample
Kolmogorov-Smirnov test on the CDF of the CPU and GPU squared errors. The results of the
tests show that the null hypothesis that CPU and GPU squared errors come from the same
distribution cannot be rejected. Thus, we conclude that CPU and GPU also give equivalent
results from a statistical point of view even when the random generator number is not set at
the same value in the CPU and GPU algorithm. This leads us to move on to the simulation
exercises in BCRVD (2013).

4.2. Simulation exercises

Following BCRVD (2013) we compare the cases of unbiased and biased predictors and of
complete and incomplete model sets using the DeCo code. We assume the true model is
M1 : y1,t = 0.1 + 0.6y1,t−1 + ε1,t with ε1,t

i.i.d.∼ N (0, σ2), t = 1, . . . , T , y1,0 = 0.25, σ = 0.05
and consider four experiments. We apply the DeCo package and use the GUI described in
Appendix B to provide the inputs to the combination procedure. We follow BCRVD (2013)
and assume that θ is given.5

Complete and incomplete model set experiments

Complete model set experiments: We assume the true model M1 belongs to the set
of models in the combination. In the first experiment the model set also includes two
biased predictors: M2 : y2,t = 0.3+0.2y2,t−2 +ε2,t andM3 : y3,t = 0.5+0.1y3,t−1 +ε3,t,
with εit

i.i.d.∼ N (0, σ2), t = 1, . . . , T , i = 2, 3. In the second experiment the complete
model set also includes two unbiased predictors: M2 : y2,t = 0.125+0.5y2,t−2 +ε2,t and
M3 : y3,t = 0.2 + 0.2y3,t−1 + ε3,t, with εi,t

i.i.d.∼ N (0, σ2), t = 1, . . . , T , i = 2, 3.

Incomplete model set experiments: We assume the true model is not in the model set.
In the third experiment the model set includes two biased predictors: M2 : y2,t = 0.3+
0.2y2,t−2 +ε2,t andM3 : y3,t = 0.5+0.1y3,t−1 +ε3,t, with εi,t

i.i.d.∼ N (0, σ2), t = 1, . . . , T ,
i = 2, 3. In the fourth experiment the model set includes unbiased predictors: M2 :
y2,t = 0.125 + 0.5y2,t−2 + ε2,t,M3 : y3,t = 0.2 + 0.2y3,t−1 + ε3,t, with εi,t

i.i.d.∼ N (0, σ2),
t = 1, . . . , T , i = 2, 3.

We develop the comparison experiments with both 1000 and 5000 particles. Table 2 reports
the time comparison (in seconds) to produce forecast combinations for the different exper-
iments and different implementations. Parallel implementation on GPU NVIDIA Quadro
K2000M is the most efficient, in terms of computing time, for all experiments. Time differ-
ences between the CPU and GPU executions are very large (see Table 2, Panel (a)), and
result in a saving of up to several hours when using 5000 particles (see Table 2, Panel (b)).

5We use the exact same values for the various parameters as in BCRVD (2013) which are not necessarily
the same as the default values in the toolbox. See BCRVD (2013) and the replication files for further details.



Journal of Statistical Software 15

(a) 1000 particles
p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon

Complete Model Set
Biased predictors 699 2780 5119 11749

(3.97) (7.32) (16.80)
Unbiased predictors 660 2047 5113 11767

(3.10) (7.75) (17.83)
Incomplete Model Set

Biased predictors 671 2801 5112 11635
(4.17) (7.62) (17.34)

Unbiased predictors 687 2035 5098 11636
(2.96) (7.42) (16.94)

(b) 5000 particles
p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon

Complete Model Set
Biased predictors 4815 15154 26833 64223

(3.15) (5.57) (13.34)
Unbiased predictors 5302 15154 26680 63602

(2.86) (5.03) (12.00)
Incomplete Model Set

Biased predictors 4339 13338 26778 64322
(3.07) (6.17) (14.82)

Unbiased predictors 4581 13203 26762 63602
(2.88) (5.84) (13.88)

Table 2: Density combination computing time in seconds. Rows: different simulation ex-
periments. Columns: parallel GPU (p-GPU) and parallel CPU (p-CPU-i7) implementations
on GPU NVIDIA Quadro K2000M with CPU Intel Core i7-3820QM, 3.7GHz; parallel CPU
(p-CPU-Xeon) and sequential CPU (CPU-Xeon) implementations on Intel Xeon X3430 4core,
2.40GHz. In parentheses: efficiency gain in terms of CPU/GPU times ratio.

More specifically, the computational gain of the GPU implementation over parallel CPU im-
plementation varies from 3 to 4 times for the Intel Core i7 and from 5 to 7 times for the Intel
Xeon X3430. The overperformance of the parallel GPU implementation on sequential CPU
implementation varies from 15 to 20 times when considering an Intel Xeon X3430 machine as
a benchmark.
Figure 3 compares the weights for experiments 1 and 2. The weights follow a very similar pat-
tern, but there are some minor discrepancies between them for some observations. Differences
are larger for the median value than for the smaller and larger quantiles. The differences are,
however, smaller and almost vanish when one focuses on the predictive densities in Figure 4,
which is the most important output of the density combination algorithm. We interpret the
results as evidence of no interpretational and statistical significance of the differences between
CPU and GPU draws.
The results are similar when focusing on the incomplete model set in Figures 5–6. The
evidence does not change when we use 5000 particles.
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Figure 3: GPU and CPU 1000 particles filtered model probability weights for the complete
model set. Median and 95% credibility region for model weights 1, 2 and 3 (different rows).
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Figure 4: GPU and CPU 1000 particles filtered density forecasts for the complete model set.
Mean and 95% credibility region of the combined predictive density.

Learning mechanism experiments

BCRVD (2013) document that a learning mechanism in the weights is crucial to identify the
true model (in the case of complete model set) or the best model (in the case of incomplete
model set) when the predictions are unbiased, see also left panels in Figures 3–5. We repeat
the two unbiased predictor experiments and introduce learning in the combination weights as
discussed in Section 2. We set the learning parameters λ = 0.95 and τ = 9. Table 3 reports the
time comparison (in seconds) when using 1000 and 5000 particles filtered model probability
weights. The computation time for DeCo increases when learning mechanisms are applied,
in particular for the CPU. The GPU is 10% to 50% slower than without learning, but CPU
is 2.5 to almost 4 times slower than previously. The GPU/CPU ratio, therefore, increases
in favor of GPU with GPU computation 5 to 70 times faster depending on the alternative
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Figure 5: GPU and CPU 1000 particles filtered model probability weights for the incomplete
model set. Median and 95% credibility region for model weights 1, 2 and 3 (different rows).
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Figure 6: GPU and CPU 1000 particles filtered density forecasts for the incomplete model
set. Mean and 95% credibility region of the combined predictive densities.

CPU machine considered. The DeCo codes with learning have some if commands related
to the minimum numbers of observations necessary to initiate the learning, which increases
computational time substantially. The parallelization in GPU is more efficient because it is
carried out on blocks of draws and these if commands play a minor role. We expect that the
gain might increase to several hundreds of times when using parallelization on GPU clusters.

5. Empirical application
As a further check of the performance of the DeCo code, we compare the CPU and GPU
versions for the macroeconomic application developed in BCRVD (2013). We consider K = 6
time series models to predict US GDP growth and PCE inflation: a univariate autoregressive
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(a) 1000 particles
p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon

Complete Model Set 755 7036 14779 52647
(9.32) (19.57) (69.73)

Incomplete Model Set 719 6992 14741 52575
(9.72) (20.49) (73.08)

(b) 5000 particles
p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon

Complete Model Set 7403 35472 73402 274220
(4.79) (9.92) (37.04)

Incomplete Model Set 7260 35292 73256 274301
(4.86) (10.09) (37.78)

Table 3: Density combination computing time in seconds. Rows: different simulation experi-
ments with unbiased predictors and a learning mechanism in the weights. Columns: parallel
GPU (p-GPU) and parallel CPU (p-CPU-i7) implementations on GPU NVIDIA Quadro
K2000M with CPU Intel Core i7-3820QM, 3.7GHz; parallel CPU (p-CPU-Xeon) and sequen-
tial CPU (CPU-Xeon) implementations on Intel Xeon X3430 4core, 2.40GHz. In parentheses:
efficiency gain in terms of CPU/GPU times ratio.

model of order one (AR); a bivariate vector autoregressive model for GDP and PCE of or-
der one (VAR); a two-state Markov-switching autoregressive model of order one (ARMS); a
two-state Markov-switching vector autoregressive model of order one for GDP and inflation
(VARMS); a time-varying autoregressive model with stochastic volatility (TVPARSV); and a
time-varying vector autoregressive model with stochastic volatility (TVPVARSV). Therefore,
the model set includes constant parameter univariate and multivariate specifications; uni-
variate and multivariate models with discrete breaks (Markov-Switching specifications); and
univariate and multivariate models with continuous breaks. These are typical models applied
in macroeconomic forecasting; see, for example, Clark and Ravazzolo (2015), Korobilis (2013)
and D’Agostino, Gambetti, and Giannone (2013).

We evaluate the two combination methods by applying the following evaluation metrics:
root mean square prediction errors (RMSPE), Kullback Leibler information criterion (KLIC)
based measure, the expected difference in the logarithmic scores (LS) and the continuous rank
probability score (CRPS). Accuracy statistics and related tests (see BCRVD 2013) are used
to compare the forecast accuracy.

Table 4 reports results for the multivariate combination approach. For the sake of brevity,
we just present results using parallel GPU and the best parallel CPU Intel Core i7-3820QM
machine. We also do not consider a learning mechanism in the weights. GPU is substantially
faster, almost 5.5 times faster than CPU, reducing the computational time by more than 5000
seconds. GPU therefore performs relatively better in this experiment than in the previous
simulation experiments (without learning mechanisms). This can be explained by the larger
set of models and the multivariate application. The number of simulations has increased sub-
stantially and CPU starts to hit physical limits, slowing down the computation and increasing
time. GPU has no binding limits and just doubles the time of simulation experiments with



Journal of Statistical Software 19

GDP Inflation
GPU CPU GPU CPU

Time 1249 6923 – –
RMSPE 0.634 0.637 0.255 0.256

CW 0.000 0.000 0.000 0.000
LS −1.126 −1.130 0.251 0.257

p value 0.006 0.005 0.021 0.022
CRPS 0.312 0.313 0.112 0.112
p value 0.000 0.000 0.000 0.000

Table 4: Computing time and forecast accuracy for the macro-economic application for the
GPU (column GPU) and CPU (column CPU) implementations. Rows: Time: time to run
the experiment in seconds; RMSPE: root mean square prediction error; CW: p value of the
Clark and West (2007) test; LS: average logarithmic score over the evaluation period; CRPS:
cumulative rank probability score; LS p value and CRPS p value: Harvey et al. (1997) type
of test for LS and CRPS differentials respectively.

a univariate series and the same number of draws and particles.6 This suggests that GPU
might be an efficient methodology to investigate when averaging large sets of models.
Accuracy results for CPU and GPU combinations are very similar and just differ after the third
decimal, confirming previous intuitions that the two methods are not necessarily numerically
identical, but provide identical economical and statistical conclusions.7 The combination
approach is statistically superior to the AR benchmark for all the three accuracy measures
we implement.

6. Conclusion
This paper introduces the MATLAB package DeCo (density combination) based on parallel
sequential Monte Carlo simulations to combine density forecasts with time-varying weights
and different choices of scoring rule.
The package is easy to use for a standard MATLAB user and to facilitate promulgation we
have implemented a GUI, which just requires a few input parameters. The package takes full
advantage of recent computer hardware progresses and uses banks of parallel SMC algorithms
for the density combination using both multi-core CPU and GPU implementation.
The DeCo GPU version is up to 70 times faster than the CPU version and even more for larger
sets of models. More specifically, our simulation and empirical experiments were conducted
using a commercial notebook with CPU Intel Core i7-3820QM and GPU NVIDIA Quadro
K2000M, and MATLAB 2013b version, and show that the DeCo GPU version is faster than the
parallel CPU version, up to 10 times when the weights include a learning mechanism and up
to 5.5 times without it, when using an i7 CPU machine and the parallel computing toolbox.
These findings are similar to results in Brodtkorb et al. (2013) when using a raw CUDA

6Unreported results show that GPU is more than 36 times faster than sequential CPU implementation on
Intel Xeon X3430 4core.

7Numbers for the CPU combination differ marginally (and often just in the third decimal) from those in
Table 4 in BCRVD (2013) due to the use of a different MATLAB version, different generator numbers and
parallel tooling functions.
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environment. In the comparison between GPU and non-parallel CPU implementations, the
differences between GPU and CPU time increase up to almost 70 times when using a standard
CPU processor, such as quad-core Xeon. Our results can be further improved with the use of
more powerful graphics cards, such as GTX cards. All comparisons have been implemented
using double precision for both the CPU and GPU versions. However, if an application allows
for a lower degree of precision, then single precision calculation can be used and massive gains
(up to 500) can be attained, as documented in Lee et al. (2010) and Durham and Geweke
(2014).
We also document that the CPU and GPU versions do not necessarily provide the exact same
numerical solutions to our problems, but differences are not economically and statistically
significant. Therefore, users of DeCo might choose between the CPU and GPU versions
depending on the available and preferred computing clusters.
Finally, we expect that our research and the DeCo GPU implementation would benefit enor-
mously from improvement in the MATLAB parallel computing toolbox, such as the possible
incorporation of a parallel “for” loop command for GPU; by the inclusion in the package
of different particle filters, such as post- and pre-regularized particle filters and of different
density combination schemes; and by applications to large sets of predictive densities as in
Casarin, Grassi, Ravazzolo, and van Dijk (2015).
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A. Flow-chart of GPU DeCo package

Transfer the data and initialize
the particle set on GPU (Step 0 )At time t = t0

Propagate particle values and
update particle weights on
GPU (Steps 1 and 2.a-2.c)

If ESSt < κ ( Step 2.d)

Transfer the data back
to the CPU ( Step 2.d)

Resampling particles
on the CPU ( Step 2.d)

Transfer the data back
to the GPU ( Step 2.d)

Update the particle set
on GPU ( Step 2.d)

t = t+ 1

If t < T

Yes

Transfer data back and
finalize calculations

No

Yes

No

Figure 7: Flow chart of the parallel SMC filter given in Section 2.

B. The GUI
Figure 8 shows the GUI of the DeCo package, which contains all the necessary inputs for our
program. The list box loads and displays the available dataset in the directory Dataset. The
figure shows, as example, the dataset Total_long.mat. The directory Dataset also contains



26 DeCo: Density Combination in MATLAB

Figure 8: The GUI of the DeCo package, case of GPU available.

two other datasets of different dimensions. The three databases differ in sample size, number
of predictive series and number of series to be predicted.
The panel Options contains the command for saving and plotting the results. The results are
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Figure 9: The GUI of the DeCo package, case of no GPU available.

saved in the directory OutputCPU or OutputGPU depending on the type of calculation chosen.
The panel Settings contains the selection of the number of particles, the number of blocks of
draws (see Section 3.2) and the resampling threshold κ. All three options have default values
that are also reported. The number of block of draws is only relevant for the GPU version.
The panel Setting Learning Parameter allows the user to perform the calculation with or
without learning in the weights, see Section 4.2. When the option Learning is chosen, the
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edit box allows the learning parameter to be set, the default values are λ = 0.95 and τ = 9.
The panel Set the main diagonal of Lambda and Sigma reports an editable table that
allows the values for Sigma and Lambda to be set (default values are loaded). The check box
Estimate Sigma and Lambda allows the estimation of the Sigma and Lambda matrix. Once
the option is selected, the editable table reports the mean values of the priors and the user
also has to select the variance of the shocks (smoothing factor) for those matrices. A default
value of 0.01 is set.
Finally the button CPU starts the corresponding CPU program and the button GPU executes
the program on the GPU. In the case of no GPU card available, the corresponding button
and the edit box Blocks of Draws are not visible, see Figure 9 using as example the dataset
Total_medium.mat.
Some considerations are in order. First, the CPU is already implemented in parallel form
and the user has to start a parallel session in MATLAB by typing the command matlabpool
open in the MATLAB main window. Please refer to MATLAB online help and to the toolbox
description. Second, the dataset accepted by the program is the mat format and has the
following structure. It includes two variables, the first one is defined as vY and it contains
a (T × L) matrix of the the variables {yt}Tt=1 to be predicted, where T is the number of
1-step ahead forecasts and L the size of observable variables to forecast. The second one
is a 4 − D matrix defined mX with the following dimensions (T,M,L,KL) , where M is
the size of i.i.d. samples from the predictive densities, and KL the number of 1-step ahead
predictive densities. See Appendix C for a discussion of default values. Finally, the user might
apply different learning mechanisms based on other scoring functions than the one applied
and discussed in Section 2. In order to do this, the user should change the functions in the
files PFCoreCPU.m and PFCoreGPU.m.

C. The MATLAB functions
As an alternative to the GUI interface, one can use the two functions DeCo_CPU and DeCo_GPU
for density combination on CPU and GPU, respectively. Both functions have as required
input the name of the mat file, which contains the dataset. The dataset must be placed in the
directory Dataset and must have the structure described in Appendix B. The two functions
have some optional input parameters, which are described in Table 5. The default values are
the same for the functions DeCo_CPU and DeCo_GPU. The number of block of draws is only
relevant for the GPU version and depends on the size of the RAM of the GPU card. Table 6
suggests a set of values for different sizes of the GPU card assuming that the number of draws
from the different individual predictive densities is 1000. The default value of the number of
particles is set to 50, which is useful to have an indication on how the code runs and what
findings to expect. Anyway, we believe they are too few to produce precise results. Table 6
also suggests a set of values for this parameter for different sizes of the GPU card. The same
values can be used for the CPU version. In this case larger number of particles increases
substantially the computational time but does not require any optimization for the number
of blocks of draws.
If the user would like to combine the densities in the dataset Total_short.mat, without using
learning in the weights, without estimating the combination parameters Λ and Σ, and setting
the number of particles to N = 1000 and the number of blocks to 20, then the following
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Optional Type Default Description
parameters value
’Learning’ Integer 0 If 0 the combination is without learning.

If 1 the combination is with learning.
’Estimate’ Integer 0 If 0 the value of parameters Λ and Σ.

provided by the user will be used.
If 1 the parameters Λ and Σ are estimated.

’Plot’ Integer 1 If 0 no graphical output is returned.
If 1 a graphical output is returned.

’Save’ Integer 1 If 0 the output is not saved.
If 1 the output is saved.

’Tau’ Integer 9 Learning parameter τ > 0.
’lambda’ Numeric 0.95 Learning parameter λ ∈ (0, 1).
’Lambda’ Numeric 0.3 Elements of the main diagonal of Λ.

Its value must be positive.
’Kappa’ Numeric 0.7 ESS resampling threshold κ > 0.
’Var’ Numeric 0.01 Smoothing factor h > 0.
’N’ Integer 50 Number of particles N > 0.
’Draws’ Integer 10 Number of blocks of draws.

Table 5: Optional input parameters for the CPU and the GPU implementations.

Optional Type Default GPU card’s Description
parameters value RAM
’Draws’ Integer 10 1 GigaBytes Number of blocks of draws,

20 2 GigaBytes k = M/m, k > 0.
100 > 2 GigaBytes

’N’ Integer 1000 1 GigaBytes Number of particles N ,
5000 2 GigaBytes with N > 0.
10000 > 2 GigaBytes

Table 6: Optional input parameter numbers of blocks, k = M/m, and particles for the GPU
code.

command can be typed at the MATLAB command line

DeCo_GPU('Total_short.mat', 'N', 1000, 'Draws', 20)

A user interested in combining the densities and estimating the Λ and Σ parameters can
modified the previous command as follows

DeCo_GPU('Total_short.mat', 'N', 1000, 'Draws', 20, 'Estimate', 1,
'Var', 0.01)

where we set to 0.01 the smoothing factor h of the regularisation step of the particle filter.
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