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Abstract

Joint models for longitudinal and survival data now have a long history of being used
in clinical trials or other studies in which the goal is to assess a treatment effect while
accounting for a longitudinal biomarker such as patient-reported outcomes or immune
responses. Although software has been developed for fitting the joint model, no software
packages are currently available for simultaneously fitting the joint model and assessing
the fit of the longitudinal component and the survival component of the model separately
as well as the contribution of the longitudinal data to the fit of the survival model. To
fulfill this need, we develop a SAS macro, called JMFit. JMFit implements a variety
of popular joint models and provides several model assessment measures including the
decomposition of AIC and BIC as well as ∆AIC and ∆BIC recently developed in Zhang,
Chen, Ibrahim, Boye, Wang, and Shen (2014). Examples with real and simulated data
are provided to illustrate the use of JMFit.

Keywords: AIC, BIC, patient-reported outcome (PRO), shared parameter model, time-varying
covariates.

1. Introduction

The joint analysis of longitudinal and time-to-event outcomes has been widely published in
statistical journals. One popular approach in joint modeling of longitudinal and survival
data is based on shared random effects, where the longitudinal model and survival model
share common random effects and these random effects then induce correlation between the
longitudinal and survival components of the model. This family of joint models is also called
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the “shared parameter models” (SPMs). There are two basic formulations of SPMs. The
first is the “time trajectory model”, denoted by SPM1, where one essentially substitutes the
polynomial time trajectory function from the longitudinal model into the hazard function of
the survival model, and in this case, the trajectory function acts like a time-varying covariate
in the survival model. The second formulation, denoted by SPM2, is to directly include the
random effects as covariates in the survival model. There are several R packages available in
fitting joint models based on shared random effects, including JM (Rizopoulos 2012), JMbayes
(Rizopoulos 2016), and joineR (Philipson, Sousa, Diggle, Williamson, Kolamunnage-Dona,
and Henderson 2012). There is also a Stata module stjm (Crowther 2012; Crowther, Abrams,
and Lambert 2013), which estimates shared random effects models. In addition, another R
package, lcmm (Proust-Lima, Philipps, and Liquet 2016), estimates joint models based on
shared latent classes.
One important issue in the joint modeling of longitudinal and survival data concerns the
separate contribution of the model components to the overall goodness-of-fit of the joint
model. Recently, Zhang et al. (2014) derived a novel decomposition of the AIC and BIC
criteria into additive components that will allow us to assess the goodness of fit for each
component of the joint model. Such a decomposition leads to the development of ∆AIC
and ∆BIC, which quantify the change of AIC and BIC in fitting the survival data with and
without using the longitudinal data. Thus, ∆AIC and ∆BIC can be used to determine the
importance of the longitudinal data relative to the model fit of the survival data. In addition,
∆AIC and ∆BIC are also very useful in assessing whether a linear trajectory or quadratic
trajectory is more suitable and also facilitating a direct comparison between SPM1s and
SPM2s. These measures will help the data analyst in not only assessing each component of
the joint model but also in determining the contribution of the longitudinal measures to the
fit of the survival data. These newly developed model assessment criteria are not available in
any of these packages or module mentioned before. We mention here that the methodology
for ∆AIC and ∆BIC was fully developed in Zhang et al. (2014), but our goal here is the
novel implementation of this methodology into user-friendly software along with a class of
joint models for jointly analyzing longitudinal and time-to-event data.
This paper introduces JMFit, a SAS macro, that will allow us to fit the SPM1, SPM2, time-
varying covariates, and two-stage models as well as to assess the goodness-of-fit of each of
the longitudinal and survival components in the joint model. A detailed analysis of the
longitudinal and survival data from a cancer clinical trial as well as an analysis of the simulated
data are carried out to illustrate the functionality of JMFit. A detailed description of JMFit
is given in Appendix A.

2. The models and model assessment

2.1. The joint models

Suppose that there are n subjects. For the ith subject, let yi(t) denote the longitudinal
measure, which is observed at time t ∈ {ai1, ai2, . . . , aimi}, where 0 ≤ ai1 < ai2 < · · · < aimi

and mi ≥ 1. Here, yi(0) denotes the baseline value of the longitudinal measure. Let ti
and δi be the failure time and the censoring indicator such that δi = 1 if ti is a failure
time and 0 if ti is right-censored for the ith subject. We further let xi(t) and zi denote a
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pL-dimensional vector of time-dependent covariates and a pS-dimensional vector of baseline
covariates, respectively. The joint model for (yi, ti) consists of the longitudinal component
and the survival component.
For the longitudinal component, a mixed effects regression model is assumed for yi(t), which
takes the form:

yi(aij) = θ>i g(aij) + γ>xi(t) + εi(aij), (1)

where g(aij) = (1, aij , a2
ij , . . . , a

q
ij)′ is a polynomial vector of order q for j = 1, . . . ,mi, θi is

a (q + 1)-dimensional vector of random effects, and γ is a p-dimensional vector of regression
coefficients. In (1), we further assume θi ∼ N(θ,Ω), where θ is the (q+1)-dimensional vector
of the overall effects, Ω is a (q + 1) × (q + 1) positive definite covariance matrix with the
lower triangle consisting of {Ω00,Ω10,Ω11, . . . ,Ωqq}, εi(aij) ∼ N(0, σ2), and θi and εi(aij) are
independent. We note that in (1), if q = 1, g(aij) = (1, aij)> and θ>i g(aij) represents a linear
trajectory, and if q = 2, g(aij) = (1, aij , a2

ij)> and θ>i g(aij) leads to a quadratic trajectory.
For the failure time ti, we assume that the hazard function takes the form

λ(t|λ0,β,α,θi, g(t), zi) = λ0(t) exp{βθ>i g(t) +α>zi} (2)

or
λ(t|λ0,β,α,θi, g(t), zi) = λ0(t) exp{β>θi +α>zi} (3)

where λ0(t) is the baseline hazard function, β is a one-dimensional regression coefficient in
(2) and β is a (q+ 1)-dimensional vector of the regression coefficients in (3). Note that in (2)
or (3), θi and g(t) are the parameters and the functions from the longitudinal component of
the joint model in (1) while λ0, β (or β), and α are the only parameters pertaining to the
survival component. As shown in Section 3.1, β (or β) controls the association between the
longitudinal marker and the time-to-event. A value of β = 0 (or β = 0) implies no association
between the longitudinal marker and the time-to-event. The joint model with hazard function
specified in (2) is the trajectory model, denoted by SPM1, while the one with hazard function
given by (3) is denoted by SPM2. Under SPM1, a positive value of β implies that a larger
current value of the longitudinal marker is associated with a larger instantaneous hazard,
whereas a negative value of β implies that a larger current value of the longitudinal marker
is associated with a smaller instantaneous hazard.

2.2. The construction of the piecewise constant baseline hazard function

Assuming λ0(t) to be a piecewise constant baseline hazard function, we partition the time
axis into J intervals with 0 = sJ0 < sJ1 < sJ2 < . . . < sJJ−1 < sJJ = ∞. Then we assign a
constant baseline hazard to each of the J intervals, that is,

λ0(t) = λj , t ∈ (sJj−1, s
J
j ] for j = 1, 2, . . . , J. (4)

Let t∗1 ≤ t∗2 ≤ · · · ≤ t∗n∗ be the n∗ event times of the ti’s, where n∗ =
∑n
i=1 δi. We consider

four algorithms to construct the sJj ’s.

Algorithm 1: Equally-spaced quantile partition (ESQP)

Step 1: Compute pj = j/J for j = 1, . . . , J − 1.
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Step 2: Let nj = [pjn∗], which is the integer part of pjn∗.

Step 3: Set

sJj =
{

(t∗nj
+ t∗nj+1)/2 if nj = pjn

∗,

t∗nj+1 if nj < pjn
∗,

(5)

for j = 1, . . . , J − 1.

The ESQP is a popular approach to construct the piecewise constant hazard function, which
is discussed in Ibrahim, Chen, and Sinha (2001, Chapter 5) and also implemented in the R
package JM developed by Rizopoulos (2010). We note that sJj is the pjth quantile of the t∗i ’s
and (5) is implemented in the SAS UNIVARIATE procedure as the default option for computing
quantiles. We also note that the ESQP algorithm does not yield nested partitions in the sense
that {sJ1

j , j = 1, . . . , J1} is not necessarily a subset of {sJ2
j , j = 1, . . . , J2} when J1 < J2.

In order to construct nested partitions, we propose the following three bi-sectional quantile
partition algorithms.

Algorithm 2: Left bi-sectional quantile partition (LBSQP)

Step 1: Decompose J into two parts:

J = 2K +M, (6)

where K and M are integers, and M < 2K . In (6), K = [log J/ log 2], and then
M = J − 2K .

Step 2: Compute

(i) ak = k/2K , for k = 1, . . . , 2K − 1; and
(ii) bm = (2m− 1)/2K+1, for m = 1, . . . ,M(≥ 1).

Step 3: Sort {a1, . . . , a2K−1, b1, . . . , bM} in ascending order and the resulting ordered J − 1
values are denoted by p1 ≤ p2 ≤ · · · ≤ pJ−1.

Step 4: Use Steps 2 and 3 of Algorithm 1 to compute {sJj , j = 1, . . . , J − 1}.

Algorithm 3: Middle bi-sectional quantile partition (MBSQP)

Step 1: The same as Algorithm 2.

Step 2: Compute

(i) ak = k/2K , for k = 1, . . . , 2K − 1; and
(ii) for m = 1, . . . ,M(≥ 1),

(a) bm = (2K −m)/2K+1, for m = 1, 3, 5, . . . ; and
(b) bm = (2K +m− 1)/2K+1, for m = 2, 4, 6, . . . .

Steps 3 and 4: The same as Algorithm 2.
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Figure 1: An illustration of three bi-sectional partition methods.

Algorithm 4: Right bi-sectional quantile partition (RBSQP)

Step 1: The same as Algorithm 2.

Step 2: Compute

(i) ak = k/2K , for k = 1, . . . , 2K − 1; and
(ii) bm = (2K+1 − (2m− 1))/2K+1, for m = 1, . . . ,M(≥ 1).

Steps 3 and 4: The same as Algorithm 2.

If there are ties in {sJj , j = 1, . . . , J}, say sJ` = sJ`+1, the interval (sJ` , sJ`+1] is undefined. Thus
we only use distinct values of the sJj . Let Jt denote the number of ties in {sJj , j = 1, . . . , J}.
Then the number of distinct intervals reduces to J − Jt.
Figure 1 shows how the partition intervals are constructed based on LBSQP, MBSQP, and
RBSQP.
Notice that when J = 2K , K = 1, 2, . . . , ESQP, LBSQP, MBSQP, and RBSQP yield the
same partition. LBSQP, MBSQP, and RBSQP are desirable when there are more events at
the beginning, in the middle, and at the end of the follow-up period, respectively. Another
advantage of LBSQP, MBSQP, and RBSQP is that the resulting partitions are nested and,
hence, the log-likelihood of the joint model increases in J when the longitudinal component
remains fixed.

2.3. The joint likelihood
We rewrite (1) as follows:

yi = Wi(θ>i ,γ>)> + εi,
where yi = (yi(ai1), . . . , yi(aimi))>, Wi = ((g(aij)>,xi(aij)>)>, j = 1, . . . ,mi)>, and εi =
(εi(ai1), . . . , εi(aimi))> ∼ N(0, σ2Imi). The complete-data likelihood function of the longitu-
dinal measures for the ith subject is given by

L(γ, σ2|yi,Wi,θi) = 1
(2πσ2)

mi
2

exp
{
− 1

2σ2 (yi −Wi(θ>i ,γ>)>)>(yi −Wi(θ>i ,γ>)>)
}
, (7)
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for i = 1, . . . , n. Note that the density of θi is given by

f(θi|θ,Ω) = |Ω|−
1
2

(2π)
q+1

2
exp

{
− 1

2(θi − θ)>Ω−1(θi − θ)
}
. (8)

Let ϕ = (λ,β,α,γ, σ2,θ,Ω). Using (2) (or (3)), (7), and (8), the observed-data likelihood
function for (yi, ti, δi) for the ith subject is given by

L(ϕ|yi, ti, δi, zi,Wi) =
∫
L(λ,β,α|ti, δi, zi,θi, g)L(γ, σ2|yi,Wi,θi)f(θi|θ,Ω)dθi, (9)

where the complete-data likelihood function for the survival component is written as

L(λ,β,α|ti, δi, zi,θi, g) =
[
λ(ti|λ0,β,α,θi, g(ti), zi)

]δi

× exp
{
−
∫ ti

0
λ(u|λ0,β,α,θi, g(u), zi)du

}
, (10)

for i = 1, . . . , n. In (2) (or (3)), when β = 0 (or β = 0), the hazard function reduces to
λ(t|λ0,α, zi) = λ0(t) exp(α>zi). In this case, we fit the survival data alone and the likelihood
function in (10) for the ith subject reduces to

L0(λ,α|ti, δi, zi) = {λ0(ti) exp(α>zi)}δi exp
[
− exp(α>zi)

{∫ ti

0
λ0(u)du

}]
. (11)

Letting Dobs = {(yi, ti, δi,xi, zi), i = 1, . . . , n} denote the observed data, the joint likelihood
for all subjects is given by

L(ϕ|g, Dobs) =
n∏
i=1

L(ϕ|yi, ti, δi, zi,Wi). (12)

2.4. AIC (BIC) decomposition and ∆AIC (∆BIC)

Write ϕ1 = (γ, σ2,θ,Ω) and ϕ2 = (λ,β,α). Let f(θi|yi,Wi,ϕ1) be the conditional density of
the random effects θi given yi, and also let L(ϕ1|yi,Wi) =

∫
L(γ, σ2|yi,Wi,θi)f(θi|θ,Ω)dθi,

which is the likelihood function corresponding to the marginal distribution of yi. Following
Zhang et al. (2014), the joint likelihood given in (12) can be decomposed as

L(ϕ|g, Dobs) = LLong(ϕ1|g, Dobs)LSurv|Long(ϕ2|g,ϕ1, Dobs), (13)

where LLong(ϕ1|g, Dobs) =
∏n
i=1 L(ϕ1|yi,Wi) and LSurv|Long(ϕ2|g,ϕ1, Dobs) =

∏n
i=1

∫
L(ϕ2|ti,

δi, zi,θi, g)f(θi|yi,Wi,ϕ1)dθi. Using (13), the decomposition of the total Akaike Information
Criterion (AIC) (Akaike 1973) developed in Zhang et al. (2014) is given as

AIC = AICLong + AICSurv|Long,

where AIC = −2 logL(ϕ̂|g, Dobs)+2 dim(ϕ), AICLong = −2 logLLong(ϕ̂1|g, Dobs)+2 dim(ϕ1),
AICSurv|Long = −2 logLSurv|Long(ϕ̂2|g, ϕ̂1, Dobs) + 2 dim(ϕ2), and ϕ̂, ϕ̂1, and ϕ̂2 are the maxi-
mum likelihood estimates (MLEs) of ϕ, ϕ1 and ϕ2. Similarly, the total Bayesian Information
Criterion (BIC) (Schwarz 1978) for the joint model can be decomposed into

BIC = BICLong + BICSurv|Long,
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where BIC = AIC+dim(ϕ)(logn−2), BICLong = AICLong+dim(ϕ1) (logn−2), BICSurv|Long =
AICSurv|Long + dim(ϕ2)(logn − 2). Using the decompositions of AIC and BIC, Zhang et al.
(2014) proposed two new model assessment criteria given by

∆AIC = AICSurv,0 −AICSurv|Long,
∆BIC = BICSurv,0 − BICSurv|Long,

where
AICSurv,0 = −2

∑n
i=1 logL0(λ̂, α̂|ti, δi, zi) + 2 dim(λ,α),

BICSurv,0 = −2
∑n
i=1 logL0(λ̂, α̂|ti, δi, zi) + dim(λ,α) logn,

and L0(λ,α|ti, δi, zi) is defined by (11). The ∆AIC or ∆BIC measure the gain of the fit in the
survival component due to the longitudinal data with a penalty for the additional parameters
in the survival component of the joint model. The model with a large value of ∆AIC (∆BIC)
is more preferred.

3. The SAS macro JMFit

3.1. Design

The SAS macro JMFit has been developed to assess model fit in joint models of longitudinal
and survival data. In fact, it can fit five models, including the two types of joint models with
linear and quadratic trajectories, as well as the time-varying covariates model. The macro
JMFit consists of five submacros, SPM1L, SPM1Q, SPM2L, SPM2Q, and TVC, corresponding to the
five models, respectively. The MODEL argument of JMFit specifies one of the following five
models to be fitted:

SPM1L: SPM1 with Linear trajectory. The hazard function has the form

λ(t|λ0,α,β,θi, g(t), zi) = λ0(t) exp{β(θ0i + θ1it) +α>zi}.

SPM1Q: SPM1 with Quadratic trajectory. The hazard function has the form

λ(t|λ0,α,β,θi, g(t), zi) = λ0(t) exp{β(θ0i + θ1it+ θ2it
2) +α>zi}.

SPM2L: SPM2 with Linear trajectory. The hazard function has the form

λ(t|λ0,α,β,θi, g(t), zi) = λ0(t) exp{β1θ0i + β2θ1i +α>zi},

where θ0i and θ1i are subject-level random intercept and random slope.

SPM2Q: SPM2 with Quadratic trajectory. The hazard function has the form

λ(t|λ0,α,β,θi, g(t), zi) = λ0(t) exp{β1θ0i + β2θ1i + β3θ2i +α>zi},

where θ0i, θ1i, and θ2i are random effects (i.e., random intercept, random slope, and
random quadratic coefficient).



8 JMFit: Joint Models of Longitudinal and Survival Data in SAS

TVC: Time-Varying Covariates model. The hazard function has the form

λ(t|λ0, β,α, zi, yi(t)) = λ0(t) exp{βyi(t) +α>zi},

where yi(t) = yi(aij) for aij ≤ t < ai,j+1 for j = 1, . . . ,mi, where ai,mi+1 = ∞. Note
that the TVC model is a “non-joint” model, and the use of this model has great potential
for bias (Fisher and Lin 1999).

We provide the two versions of SPM1L, SPM1Q, SPM2L, and SPM2Q with the TS argument.
If TS is missing or equal to 0, the joint model will be fit; while TS = 1 yields the corresponding
two-stage model. Similar to the method in Tsiatis, DeGruttola, and Wulfsohn (1995), (i) we
first fit the linear mixed model specified in (1) to the longitudinal data alone and then obtain
the estimates of θi, denoted by θ̂i; and (ii) we replace θi in (2) or (3) with the estimate θ̂i
at the second stage. The only difference between the joint model and the corresponding two-
stage model is that θi in (2) or (3) is replaced with the estimate θ̂i. This two-stage approach
may potentially lead to biased and inefficient estimates (Ibrahim, Chu, and Chen 2010).
The number of intervals J (≥ 1) for the piecewise constant baseline hazard function needs to
be specified in the NPIECES argument. For the PARTITION argument, 1 represents ESQP, 2
represents LBSQP, 3 represents MBSQP, and 4 represents RBSQP.
JMFit automatically produces a rich text file (RTF) including five tables: (i) Number of Sub-
jects; (ii) Fit Statistics; (iii) Survival Parameter Estimates (Survival Alone); (iv) Parameter
Estimates; and (v) Hazard Ratios & λ Estimates.

3.2. Implementation details
If the observed longitudinal measures are sparse, the full trajectories of longitudinal measures
might not be well estimated. For example, in the case of fitting a quadratic trajectory, the sign
of the estimated second-order coefficient could be incorrect if the longitudinal measures were
observed only within the first half of the follow-up period, leading to incorrect extrapolation
when the observed progression time was far beyond the time of the last observed longitudinal
measure.
Let tmax,i = max1≤j≤mi{aij}. When t > tmax,i, yi(t) is never observed and no longitudinal
data are available to estimate the trajectory θ>i g(t) for t > tmax,i. Under SPM1, the extrap-
olation of the trajectory θ>i g(t) beyond tmax,i may lead to a survival component of the joint
model that fits the survival data poorly. In addition, such an extrapolation also causes a
severe convergence problem in the SAS NLMIXED (SAS Institute Inc. 2011b) procedure espe-
cially when tmax,i � ti for many subjects. To circumvent these issues, for SPM1, we modify
the hazard function in (2) as

λ(t | λ0,α,β,θi, g, zi) = λ0(t) exp{βθ>i g(t− [t− t∗max,i]+) +α>zi}, (14)

or

λ(t | λ0,α,β,θi, g, zi)

= λ0(t) exp{βθ>i g(t− [t− t∗max,i]+)×
τ − (t∗max,i + [t− t∗max,i]+)

τ − t∗max,i
+α>zi}, (15)

where [t−t∗max,i]+ = max(t−t∗max,i, 0), t∗max,i = tmax,i+w×max(ti−tmax,i, 0), w (∈ [0, 1]) is the
proportion of max(ti − tmax,i, 0), and τ = max1≤i≤n{ti}, which is the last follow-up survival
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time. If w = 0 (default), tmax,i will be the starting point of the modified extrapolation of the
trajectory; while w = 1 implies that the trajectory extends to ti with no tmax,i adjustment.
This modification can also be applied to the TS model corresponding to SPM1L or SPM1Q.
There are two arguments called TMAXI and WEIGHT. If TMAXI is missing or equal to 0, no tmax,i
adjustment will be applied. If TMAXI = 1, the tmax,i adjustment based on hazard function
given in (14) will be applied with weight given in the WEIGHT argument, that is, the trajectory
will become flat after t∗max,i. If TMAXI = 2, the tmax,i adjustment based on hazard function
given in (15) will be applied with weight given in the WEIGHT argument, that is, starting
at t∗max,i, the trajectory will linearly go down to 0 at the last follow-up survival time. An
“optimal” choice of weight w in conjunction with TMAXI option may be determined by either
AICSurv|Long or BICSurv|Long. The purpose of defining tmax,i is that we create an extrapolation
of the longitudinal measures so that the trajectory function can be well estimated. This
extrapolation is needed when there are few longitudinal measures at later points. We note
here that the tmax,i method corresponds to a “prediction carried forward” approach, which
may potentially induce bias in the estimation. We also note that this is not an issue for the
SPM2, in which the hazard function is independent of g(t).
The OPTIONS argument allows users to specify options (e.g., integration method, optimization
technique, and convergence criteria) that are available in the PROC NLMIXED statement. If
OPTIONS is missing, JMFit will use adaptive Gaussian quadrature to approximate the integral
of the likelihood over the random effects, perform a quasi-Newton optimization, and apply a
relative gradient convergence criterion of 10−8. All the methods mentioned above are default
methods in PROC NLMIXED. The Riemann integral is used to compute the cumulative hazard
function for the trajectory models. Each time interval is divided into 200 subintervals.
A big challenge in fitting joint models using the SAS NLMIXED procedure is convergence. Poor
initial values may lead to the failure of convergence in NLMIXED. To address this issue, we
first fit the longitudinal data alone using the SAS MIXED procedure to obtain the estimates,
γ̂, σ̂2, θ̂, Ω̂, θ̂i, for the parameters in the longitudinal component of the joint model. Using
(θ̂i, i = 1, . . . , n) to replace (θi, i = 1, . . . , n) in (2) (or (3)), we fit the survival data alone
to obtain the estimates, β̂ (or β̂), α̂, and λ̂, for the parameters in the survival component of
the joint model. Finally, these estimates are used as the initial values for the joint model.
JMFit does not exclude any longitudinal measures for the joint models. If one wishes to
exclude the longitudinal measures observed after the survival time ti, those longitudinal mea-
sures should be pre-excluded in the input longitudinal data for JMFit. “CAUTION: Longi-
tudinal measures are observed after the survival time.” will be given at the end of the output
file if there are any longitudinal measures observed after the survival time.

4. Examples

4.1. The IBCSG data

To illustrate how JMFit works, we use the data from a clinical trial in premenopausal women
with node-positive breast cancer conducted by the IBCSG (International Breast Cancer Study
Group 1996). Each participant was randomly assigned in a 2 × 2 factorial design to receive:
(A) cyclophosphamide, methotrexate, and fluorouracil for 6 consecutive courses on months 1
to 6 (CMF6); (B) CMF6 plus three single courses of reintroduction CMF given on months 9,
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Number of Subjects 

Subjects_in_coping 1015 

Subjects_in_os 1015 

Subjects_Used 1015 

 

Figure 2: The number of subjects for coping.

12, and 15; (C) CMF for three consecutive courses on months 1 to 3 (CMF3); or (D) CMF3
plus three single courses of reintroduction CMF given on months 6, 9, and 12. Four indicators
of patients’ quality of life (QOL), appetite, perceived coping, mood, and physical well-being
were collected in this trial. We consider a subset of the IBCSG data, which consists of 1015
patients with at least three values of each longitudinal measure and six binary covariates,
including treatment (A: 1 = icyc, 0 = reint, and 0 = intera; B: 1 = icyc, 1 = reint,
and 1 = intera; C: 0 = icyc, 0 = reint, and 0 = intera; and D: 0 = icyc, 1 = reint,
and 0 = intera), age (1 = ‘> 40’ and 0 = ‘≤ 40’), the number of positive nodes of the
tumor (1 = ‘> 4’ and 0 = ‘≤ 4’), and estrogen receptor (ER) status (1 = positive and 0 =
negative). To satisfy the normality assumption for each of the four QOL indicators, following
Chi and Ibrahim (2006), the corresponding observed value of each QOL was transformed to√

100−QOL so that smaller value reflects better QOL. For the subset of 1015 patients, after
a median follow-up of 9.68 years (interquartile range, 8.10–11.04 years), 296 patients died.
We note that QOL indicators were collected only up to 1.65 years (about 18 months). By
applying joint models in this study, we compare the longitudinal QOL indicators in terms
of their contributions to the fit of overall survival (OS) via ∆AIC and ∆BIC, which are
computed using JMFit.
Suppose we fit the trajectory model with a linear trajectory as considered by Chi and Ibrahim
(2006) and Zhu, Ibrahim, Chi, and Tang (2012) and J = 9 for coping. Then we create two data
sets named as “coping” and “os” for the macro JMFit’s LONG and SURV options, respectively.
The MODEL option is set to “SPM1L” and TS is set to 0. We assign 2 to TMAXI for tmax,i
adjustment with WEIGHT=0.5. The NPIECES option is set to 9 and the PARTITION option is
set to 2 for the LBSQP algorithm.
JMFit is called:

%JMFit(LONG = coping, SURV = os, MODEL = SPM1L, TS = 0, TMAXI = 2,
WEIGHT = 0.5, NPIECES = 9, PARTITION = 2);

The RTF file ‘Output for coping under SPM1L with J=9 (Partition=2).rtf’ is gener-
ated by JMFit, which lists five tables. Table “Number of Subjects” given in Figure 2 shows
that there are 1015 patients in data sets coping and os, respectively, and 1015 subjects are
used, implying that the IDs of the subjects in these two data sets match.
Figure 3 shows the “Fit Statistics” table, which consists of the log likelihood, AICLong
(BICLong), AICSurv (BICSurv), and ∆AIC (∆BIC). Inside the JMFit macro, PROC NLMIXED
provides the log likelihood, AIC and BIC, and PROC IML (SAS Institute Inc. 2011a) is used
to compute AICLong and BICLong.
Next, the table, titled “Survival Parameter Estimates (Survival Alone)” shown in Figure 4,
is obtained by fitting the survival data alone. For this table, the estimate, the standard error
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Fit Statistics 

Log Likelihood -8069.53   

AIC 16195.07 BIC 16332.90 

AICLong 13830.46 BICLong 13889.54 

AICSurv|Long 2364.60 BICSurv|Long 2443.36 

AICSurv,0 2400.95 BICSurv,0 2474.79 

ΔAIC 36.35 ΔBIC 31.43 

 
Figure 3: The fit statistics for coping under SPM1L with J = 9 based on LBSQP.

Survival Parameter Estimates (Survival Alone) 

Param/Var Estimate SE DF T-Value P-Value 95% CI Gradient 

icyc -0.00126 0.1642 1015 -0.01 0.9939 (-0.323, 0.321) -0.00133 

reint -0.2772 0.1707 1015 -1.62 0.1046 (-0.612, 0.058) -0.00141 

intera 0.2678 0.2337 1015 1.15 0.2520 (-0.191, 0.726) -0.00211 

agegrp -0.2070 0.1356 1015 -1.53 0.1272 (-0.473, 0.059) 0.000143 

nodegrp 0.8926 0.1170 1015 7.63 <.0001 (0.663, 1.122) -0.00009 

er_stat -0.1982 0.1275 1015 -1.56 0.1203 (-0.448, 0.052) -0.00221 

log λ1 -4.9829 0.2846 1015 -17.51 <.0001 (-5.541, -4.424) -0.00031 

log λ2 -2.7823 0.2848 1015 -9.77 <.0001 (-3.341, -2.224) -0.00051 

log λ3 -2.9729 0.2373 1015 -12.53 <.0001 (-3.439, -2.507) 0.003588 

log λ4 -2.7064 0.2359 1015 -11.47 <.0001 (-3.169, -2.244) -0.00073 

log λ5 -2.6998 0.2364 1015 -11.42 <.0001 (-3.164, -2.236) -0.00167 

log λ6 -2.9433 0.2355 1015 -12.50 <.0001 (-3.406, -2.481) 0.001627 

log λ7 -2.8127 0.2387 1015 -11.78 <.0001 (-3.281, -2.344) -0.00293 

log λ8 -3.0135 0.2367 1015 -12.73 <.0001 (-3.478, -2.549) 0.001908 

log λ9 -3.4253 0.2358 1015 -14.53 <.0001 (-3.888, -2.963) -0.00119 

 

Figure 4: The estimates of the parameters obtained by (11) with J = 9 based on LBSQP.

(SE), the degrees of freedom (DF), the t value, the p value, and the 95% confidence interval
(CI) are all shown for each parameter. In addition, the gradient of the negative log-likelihood
function is displayed, which can be used to check convergence of PROC NLMIXED. A small
gradient implies better convergence. The largest absolute value of the gradients shown in
Figure 4 is 0.003588, indicating good convergence of PROC NLMIXED.
PROC NLMIXED produces the table titled “Parameter Estimates” in Figure 5, which consists
of three subtables: “Covariance Parameter Estimates”, “Longitudinal Parameter Estimates”,
and “Survival Parameter Estimates”. For each parameter in this table, the estimate, SE, DF,
t value, p value, 95% CI, and gradient are all provided. The Subtable “Covariance Parameter
Estimates” consists of the estimates of the three lower-triangle elements (Ω00,Ω10,Ω11) of the
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Parameter Estimates 

Param/Var Estimate SE DF T-Value P-Value 95% CI Gradient 

Covariance Parameter Estimates 

Ω00 0.5350 0.03274 1013 16.34 <.0001 (0.471, 0.599) -0.08107 

Ω10 -0.05658 0.02094 1013 -2.70 0.0070 (-0.098, -0.015) 0.101966 

Ω11 0.1725 0.02650 1013 6.51 <.0001 (0.120, 0.224) -0.02461 

σ 0.6149 0.007308 1013 84.14 <.0001 (0.601, 0.629) 0.087386 

Longitudinal Parameter Estimates 

Intercept 0.08643 0.07928 1013 1.09 0.2759 (-0.069, 0.242) 0.123621 

t -0.4004 0.02277 1013 -17.58 <.0001 (-0.445, -0.356) -0.15625 

icyc 0.1625 0.07073 1013 2.30 0.0218 (0.024, 0.301) 0.015924 

reint 0.1259 0.07007 1013 1.80 0.0726 (-0.012, 0.263) 0.313939 

intera -0.06607 0.09767 1013 -0.68 0.4989 (-0.258, 0.126) 0.002171 

agegrp 0.05158 0.05907 1013 0.87 0.3828 (-0.064, 0.167) -0.13258 

nodegrp 0.02780 0.05384 1013 0.52 0.6057 (-0.078, 0.133) -0.18797 

er_stat 0.02232 0.05408 1013 0.41 0.6799 (-0.084, 0.128) -0.05203 

Survival Parameter Estimates 

icyc -0.06267 0.1695 1013 -0.37 0.7116 (-0.395, 0.270) 0.024537 

reint -0.3355 0.1756 1013 -1.91 0.0563 (-0.680, 0.009) -0.01849 

intera 0.3464 0.2406 1013 1.44 0.1502 (-0.126, 0.818) 0.14234 

agegrp -0.1827 0.1397 1013 -1.31 0.1913 (-0.457, 0.091) 0.049036 

nodegrp 0.9522 0.1217 1013 7.82 <.0001 (0.713, 1.191) 0.03694 

er_stat -0.1540 0.1315 1013 -1.17 0.2418 (-0.412, 0.104) -0.00715 

log λ1 -4.9259 0.2888 1013 -17.06 <.0001 (-5.493, -4.359) 0.016501 

log λ2 -2.5917 0.2923 1013 -8.87 <.0001 (-3.165, -2.018) -0.02471 

log λ3 -2.7430 0.2482 1013 -11.05 <.0001 (-3.230, -2.256) -0.0547 

log λ4 -2.4318 0.2494 1013 -9.75 <.0001 (-2.921, -1.942) -0.06882 

log λ5 -2.3952 0.2519 1013 -9.51 <.0001 (-2.889, -1.901) -0.07637 

log λ6 -2.6149 0.2529 1013 -10.34 <.0001 (-3.111, -2.119) -0.08057 

log λ7 -2.4741 0.2571 1013 -9.62 <.0001 (-2.979, -1.970) -0.08093 

log λ8 -2.6860 0.2547 1013 -10.54 <.0001 (-3.186, -2.186) -0.0729 

log λ9 -3.1547 0.2510 1013 -12.57 <.0001 (-3.647, -2.662) -0.05614 

β 0.2643 0.06188 1013 4.27 <.0001 (0.143, 0.386) 0.314192 

 

Figure 5: The estimates of the parameters for coping under SPM1L with J = 9 based on
LBSQP.
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Hazard Ratios & λ Estimates 

Parameter Estimate 95% CI 

HR_icyc 0.9393 (0.674, 1.310) 

HR_reint 0.7150 (0.507, 1.009) 

HR_intera 1.4140 (0.882, 2.267) 

HR_agegrp 0.8330 (0.633, 1.096) 

HR_nodegrp 2.5915 (2.041, 3.291) 

HR_er_stat 0.8573 (0.662, 1.110) 

λ1 0.007256 (0.004, 0.013) 

λ2 0.07489 (0.042, 0.133) 

λ3 0.06438 (0.040, 0.105) 

λ4 0.08788 (0.054, 0.143) 

λ5 0.09116 (0.056, 0.149) 

λ6 0.07318 (0.045, 0.120) 

λ7 0.08424 (0.051, 0.140) 

λ8 0.06815 (0.041, 0.112) 

λ9 0.04265 (0.026, 0.070) 

HR_β 1.3025 (1.154, 1.471) 

 

Figure 6: The hazard ratios and λ estimates for coping under SPM1L with J = 9 based on
LBSQP.

random-effects covariance matrix as well as the estimate of the standard deviation (σ) for the
error term. The estimates of the coefficients of the variables from the longitudinal component
are shown in Subtable “Longitudinal Parameter Estimates”. In Subtable “Survival Parameter
Estimates”, “Param/Var” lists all the names of the variables as well as the parameters from the
survival component. In this subtable, log λ1, log λ2, . . . , and log λ9 are the natural logarithms
of the piecewise baseline hazards for the three intervals, respectively. The hazard ratios of the
covariates and β as well as the estimates of λ are shown in Figure 6. From Figure 5, we see
that the number of induction cycles has p values of 0.0218 and 0.7116 in the longitudinal and
survival submodels, respectively, indicating that the effect of the number of induction courses
is significant at the 0.05 level in the longitudinal submodel and is not statistically significant
in the survival submodel. The reintroduction of CMF and the interaction between the number
of initial cycles and the reintroduction do not have significant effects on QOL or OS based on
the large p values. From Figure 5, we also see that (i) the number of positive nodes is highly
significant in the survival submodel, implying that a greater number of positive nodes would
increase the risk of death, and (ii) a significant coefficient β indicates that coping is highly
associated with OS.
From the “Fit Statistics” tables in Figure 3 and Figure 7, we see that coping had the largest
values of ∆AIC and ∆BIC and physical well-being had the smallest values of ∆AIC and ∆BIC,
which indicate that coping led to the most gain in fitting the OS while physical well-being
had the least contribution to the fit of the OS.



14 JMFit: Joint Models of Longitudinal and Survival Data in SAS

Fit Statistics 

Log Likelihood -8707.14   

AIC 17470.29 BIC 17608.12 

AICLong 15085.29 BICLong 15144.36 

AICSurv|Long 2385.00 BICSurv|Long 2463.76 

AICSurv,0 2400.95 BICSurv,0 2474.79 

ΔAIC 15.96 ΔBIC 11.04 

 

Fit Statistics 

Log Likelihood -8541.07   

AIC 17138.14 BIC 17275.97 

AICLong 14760.26 BICLong 14819.33 

AICSurv|Long 2377.88 BICSurv|Long 2456.64 

AICSurv,0 2400.95 BICSurv,0 2474.79 

ΔAIC 23.08 ΔBIC 18.15 

 

(a) Appetite (b) Mood

Fit Statistics 

Log Likelihood -8767.95   

AIC 17591.90 BIC 17729.73 

AICLong 15197.49 BICLong 15256.57 

AICSurv|Long 2394.40 BICSurv|Long 2473.17 

AICSurv,0 2400.95 BICSurv,0 2474.79 

ΔAIC 6.55 ΔBIC 1.63 

 

(c) Physical well-being

Figure 7: The fit statistics for appetite, mood, and physical well-being under SPM1L with
J = 9 based on LBSQP.

AICSurv|Long ∆AIC
J LBSQP MBSQP RBSQP LBSQP MBSQP RBSQP
1 2528.20 2528.20 2528.20 3.70 3.70 3.70
2 2512.19 2512.19 2512.19 8.84 8.84 8.84
3 2449.81 2449.81 2508.67 20.41 20.41 9.65
4 2445.98 2445.98 2445.98 21.52 21.52 21.52
5 2406.02 2447.95 2443.96 29.28 21.55 22.43
6 2407.99 2449.59 2445.61 29.32 21.60 22.47
7 2409.59 2409.59 2447.57 29.41 29.41 22.50
8 2407.34 2407.34 2407.34 30.54 30.54 30.54
9 2364.60 2409.38 2409.22 36.35 30.50 30.64
10 2365.65 2409.90 2411.05 36.54 30.60 30.63

Table 1: AICSurv|Long’s and ∆AIC’s for coping under SPM1L with different partition algo-
rithms and different J ’s.

Since ∆AIC = AICSurv,0 − AICSurv|Long, both AICSurv,0 and AICSurv|Long change when J
changes. Thus, the “best J” based on ∆AIC may not necessarily lead to the best survival
submodel or the best joint model. As an illustration, Table 1 shows the values of AICSurv|Long
and ∆AIC for coping under SPM1L with different partition algorithms and different J ’s.
Note TMAXI is set to 2 with WEIGHT = 0.5 in all the models. From Table 1, we see that (i)
J = 10 or J = 9 is the “best” choice according to ∆AIC; (ii) J = 9 or J = 8 is the “best”
one based on AICSurv|Long; and (iii) the value of AICSurv|Long is 2364.60 for LBSQP when
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Coping Physical well-being
w TMAXI = 1 TMAXI = 2 TMAXI = 1 TMAXI = 2
0 2402.88 2402.95 2402.78 2402.54

0.25 2384.23 2376.58 2399.27 2396.98
0.5 2383.51 2364.60 2399.10 2394.40
0.75 2395.76 2385.60 2401.70 2399.09
1a 2402.95 2402.95 2402.82 2402.82

Table 2: AICSurv|Long’s for coping and physical well-being under SPM1L with tmax,i adjust-
ments using different w’s. a No tmax,i adjustment

J = 9, which is the smallest one among all the combination of the partition algorithms and
J ’s. Since our goal is to fit the joint model to both the longitudinal data and the survival
data, it is more appropriate to use AICSurv|Long to determine the number of intervals for the
piecewise constant baseline hazard function.
Table 2 shows the values of AICSurv|Long for coping and physical well-being under SPM1L
with J = 9 and tmax,i adjustments using different w’s. We can see from Table 2 that, among
the five values of w, for both tmax,i adjustments, coping and physical well-being have the
smallest values of AICSurv|Long at w = 0.5. For both coping and physical well-being, TMAXI =
2 outperforms TMAXI = 1 except for w = 0 for coping. In addition, both coping and physical
well-being have the largest values of AICSurv|Long at w = 1, indicating that the full trajectories
were not well estimated.

4.2. A simulated data example

We consider a simulated data example, which is similar to the data used in Zhang et al. (2014).
We generated a simulated data set with n = 400 subjects as follows. First, the time points
(aij ’s) at which the longitudinal measures were taken were fixed at (0, 21, 42, 63, 84, 105,
126)/30.4375. For each subject, we generated seven binary covariates, (xi1, . . . , xi7), indepen-
dently from Bernoulli distributions with success probabilities (i.e., P (xij = 1), j = 1, . . . , 7))
0.49, 0.92, 0.81, 0.49, 0.38, 0.56, and 0.74, respectively. These proportions were estimated from
the data in Zhang et al. (2014), corresponding to the covariates treatment, race/ethnicity,
gender, age, Karnofsky status, baseline stage of disease, and vitamin supplementation, re-
spectively. Second, we simulated the longitudinal trajectory as

µi(aij) = (θ0 + θ0i) + (θ1 + θ1i)aij + γxi,

where θ0 = 0.62, θ1 = 0.04, γ = (−0.11,−0.10,−0.18,−0.06,−0.58,−0.09, 0.10)>, and

(θ0i, θ1i)> ∼ N

(
0,
(

0.62 −0.04
−0.04 0.06

))
. Finally, we generated the longitudinal data from

a N(µi(aij), σ2) distribution with σ = 0.54 and t∗i as

t∗i = − log(1− U)
λ exp{β1(θ0 + θ0i) + β2(θ1 + θ1i) +αxi}

,

where α = (−0.36, 0.15, 0.04,−0.003,−0.33,−0.38,−0.07)>, β1 = 0.26, β2 = 1.17, λ = exp(
−1.67), and U ∼ U(0, 1). This longitudinal dataset is denoted by DLong. Note that the
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values of the parameters were obtained by fitting SPM2L to the data in Zhang et al. (2014)
in which the longitudinal measure corresponds to pain. The censoring time Ci was generated
from an exponential distribution with mean 50, and the right-censoring percentage was about
12%. The failure time and censoring indicator were calculated as ti = min{t∗i , Ci} and δi =
1{t∗i ≤ Ci}, where 1{A} denotes the indicator function such that 1{A} = 1 if A is true and 0
otherwise. This survival dataset is denoted by DSurv.
We also generated three additional sets of longitudinal data, with longitudinal trajectories
simulated from

µ`i(aij) = (θ0 + θ0i + τ`0i) + (θ1 + θ1i + τ`1i)aij + γxi,

where (i) (τ10i, τ11i)> ∼ N

(
0,
(

0.12 0
0 0.12

))
; (ii) (τ20i, τ21i)> ∼ N

(
0,
(

0.52 0
0 0.52

))
; and

(iii) (τ30i, τ31i)> ∼ N

(
0,
(

1 0
0 1

))
. Then the longitudinal data were generated from a

N(µ`i(aij), σ2) distribution with σ = 0.54 for ` = 1, 2, 3. These three additional sets of
longitudinal data were coupled with the same survival times as in DLong + DSurv to form
three additional data sets. These resulting data sets are denoted by DLong1 + DSurv, DLong2
+ DSurv, and DLong3 + DSurv. This simulation setting is similar to Simulation III in Zhang
et al. (2014) except for the six additional covariates.
Figure 8 shows the fit statistics for DLong + DSurv, DLong1 + DSurv, DLong2 + DSurv, and
DLong3 +DSurv, respectively, using JMFit. We see from Figure 8 that DLong + DSurv has the
largest values of ∆AIC and ∆BIC.

Fit Statistics 

Log Likelihood -4051.49   

AIC 8148.99 BIC 8240.79 

AICLong 6104.63 BICLong 6156.52 

AICSurv|Long 2044.36 BICSurv|Long 2084.27 

AICSurv,0 2075.71 BICSurv,0 2107.64 

ΔAIC 31.35 ΔBIC 23.37 

 

Fit Statistics 

Log Likelihood -4079.49   

AIC 8204.98 BIC 8296.78 

AICLong 6151.87 BICLong 6203.76 

AICSurv|Long 2053.11 BICSurv|Long 2093.03 

AICSurv,0 2075.71 BICSurv,0 2107.64 

ΔAIC 22.60 ΔBIC 14.61 

 

(a) DLong + DSurv (b) DLong1 + DSurv

Fit Statistics 

Log Likelihood -4399.92   

AIC 8845.84 BIC 8937.64 

AICLong 6778.37 BICLong 6830.26 

AICSurv|Long 2067.47 BICSurv|Long 2107.39 

AICSurv,0 2075.71 BICSurv,0 2107.64 

ΔAIC 8.24 ΔBIC 0.25 

 

Fit Statistics 

Log Likelihood -4775.45   

AIC 9596.91 BIC 9688.71 

AICLong 7525.67 BICLong 7577.56 

AICSurv|Long 2071.23 BICSurv|Long 2111.15 

AICSurv,0 2075.71 BICSurv,0 2107.64 

ΔAIC 4.47 ΔBIC -3.51 

 

(c) DLong2 + DSurv (d) DLong3 + DSurv

Figure 8: The fit statistics for DLong + DSurv, DLong1 + DSurv, DLong2 + DSurv, and DLong3
+ DSurv under SPM2L.
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The rest of the output for DLong +DSurv are provided in Appendix B. The output for DLong`+
DSurv (` = 1, 2, 3) are omitted here for brevity.

5. Concluding remarks
The JMFit SAS macro fits the joint models for longitudinal and survival data. The piecewise
exponential constant hazard model is assumed for the baseline hazard function. The time-
axis is partitioned into J intervals, which are constructed by four algorithms, namely, ESQP,
LBSQP, MBSQP, and RBSQP. JMFit allows users to specify the number of intervals J and
the partition method. Five models, including SPM1L, SPM1Q, SPM2L, SPM2Q, and TVC,
are implemented in JMFit. This SAS macro also computes AIC, BIC, ∆AIC, ∆BIC, and the
estimates of the parameters in the joint model. The computational time of JMFit depends
on which of SPM1L, SPM1Q, SPM2L, SPM2Q, or TVC is chosen and how big the dataset
is. For the example given in Section 4.1, it took 5 minutes to fit SPM1L with J = 9 based
on LBSQP for coping on a Dell PC with an Intel i5 processor, 3.30 GHz CPU, and 8 GB of
memory. On the same PC, it only took 10 to 11 seconds to fit SPM2L to each of the simulated
datasets illustrated in Section 4.2.
The JMFit SAS macro provides two versions for SPM1L, SPM1Q, SPM2L, and SPM2Q with
the TS argument, with TS = 1 yielding the corresponding two-stage model. Comparing these
models with TS missing or equal to 0, for the two-stage models, (i) we first fit (1) to the
longitudinal data alone and obtain the estimates of θi, denoted by θ̂i; and (ii) we then use θ̂i
in (2) and (3). The TS models are also substantially different than the TVC model since the
TS models do not require the LOCF assumption.
The current version of the JMFit SAS macro only fits linear and quadratic models for the
longitudinal outcome and the piecewise constant baseline hazard function for the survival
submodel. In the joint modeling framework, other dependence structures, such as dependence
through the derivatives of the trajectory function or interactions with covariates as well as
spline approximations to the baseline hazard could be assumed. In addition, other trajectory
functions may be more appropriate to model the time effect on the longitudinal outcomes in
certain applications. These additional features could be built in the JMFit macro in a future
release.
Finally, we note that both the IBCSG dataset and the simulated datasets DSurv, DLong,
DLong1, DLong2, and DLong3 are available for downloading from the journal website.
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A. The macro JMFit

The SAS macro JMFit as well as the five submacros should be stored in a folder named jmfit.
Then JMFit can be accessed by including the following lines:

filename jmfit "directory of the file JMFit";
%include jmfit(JMFit.sas);
%JMFit(LONG=, SURV=, MODEL=, TS=, TMAXI=, WEIGHT=, NPIECES=, PARTITION=,

OPTIONS=, INITIAL=, OUTPUT=);

Inputs for JMFit

LONG: Data set with the first three columns, SID (subject ID), Y (longitudinal measure), A
(time at which Y was taken), and additional columns for covariates (XL1-XLp), where
SID, Y, and A should be arranged in the first, second, and third columns, and XL1,
· · · , XLp should be placed after column 3, which can be enforced in SAS by using
the retain command. Note that XL1, . . . , XLp can be time-dependent or baseline
covariates. Required.

SURV: Data set with the first three columns, SID, survival time (T), censoring indicator
(delta) (1 = death and 0 = censored), and additional columns for covariates (XS1-XSq),
where SID, T, and delta should be arranged in the first, second, and third columns, and
XS1, . . . , XSq should be placed after column 3. Required.

MODEL: Model specification. Required. One of

1. SPM1L: Shared Parameter Model 1 with Linear trajectory.
2. SPM1Q: Shared Parameter Model 1 with Quadratic trajectory.
3. SPM2L: Shared Parameter Model 2 with Linear trajectory.
4. SPM2Q: Shared Parameter Model 2 with Quadratic trajectory.
5. TVC: Time-Varying Covariates Model.

TS: Indicates whether to implement the model specified in the MODEL argument or the cor-
responding two-stage model. If 0 (default), the model specified in the MODEL argument
will be fit. If 1, the corresponding two-stage model will be fit instead. It only works for
SPM1L, SPM1Q, SPM2L, and SPM2Q.

TMAXI: tmax,i adjustment to the model specified in the MODEL argument. If 0 (default), no
tmax,i adjustment will be applied. If 1, the trajectory will become flat after t∗max,i =
tmax,i+ WEIGHT×max(ti − tmax,i, 0). If 2, starting at t∗max,i, the trajectory will linearly
go down to 0 at the last follow-up survival time. It only works for SPM1L and SPM1Q.

WEIGHT: The proportion (∈ [0, 1]) of max(ti − tmax,i, 0). If 0 (default), the starting point of
the modified extrapolation of the trajectory is tmax,i. If 1, the trajectory extends to ti
with no tmax,i adjustment. It only works when TMAXI = 1 or TMAXI = 2.

NPIECES: Number of intervals J (≥ 1) for the piecewise constant baseline hazard function.
Required.
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PARTITION: Algorithm for constructing the partition of the time axis. Required. One of

(i) 1: Equally-Spaced Quantile Partition (ESQP).
(ii) 2: Left Bi-Sectional Quantile Partition (LBSQP).
(iii) 3: Middle Bi-Sectional Quantile Partition (MBSQP).
(iv) 4: Right Bi-Sectional Quantile Partition (RBSQP).

OPTIONS: Allows users to specify options that are available in the PROC NLMIXED statement.
For example, OPTIONS = %str(QPOINTS = 5 TECH = CONGRA ABSGCONV = 0.0001)
specifies Gaussian quadrature with five quadrature points for approximating the in-
tegral of the likelihood over the random effects, the conjugate-gradient optimization,
and an absolute gradient convergence criterion of 0.0001.

INITIAL: Allows users to set their own initial values. JMFit will automatically generate the
starting values for the model parameters and these initial values will be stored in the
data set _initial. Since the order of the parameters is very important when calculating
AICLong and BICLong, users are recommended to change the initial values in _initial
and then rename _initial.

OUTPUT: Name of the output rich text file (RTF). One can also specify the directory in which
the file will be put. For example, the output file named “myoutput” will be stored
in C:\...\myoutput by %JMFit(..., OUTPUT = C:\...\myoutput); If OUTPUT is not
specified, the file will be indexed by the name of Y from LONG and the model’s name.

Note 1: (i) The name of the SID variable in LONG should be the same as that of the SID
variable in SURV; (ii) A and T should be in the same unit of time (month preferred);
(iii) the categorical covariates must be coded as dummy variables; and (iv) the SAS
macro allows for any numbers of covariates for both components of the joint model and
the covariates for the longitudinal component can be totally different from those for the
survival component.

Note 2: (i) “ERROR: Not enough memory to generate code.” This might occur if J is too
big; (ii) a too long path for the OUTPUT may lead to an error; (iii) the macro is assuming
options validvarname = v7; for valid variable names that can be processed in SAS;
and (iv) the calculations of AICLong and BICLong require the IML Procedure.

Note 3: No missing values are allowed in both data sets.

Output for JMFit

The macro automatically produces an RTF file indexed by the name of Y from LONG and
the model’s name. The RTF file includes five tables: (i) Number of Subjects; (ii) Fit Statis-
tics; (iii) Survival Parameter Estimates (Survival Alone); (iv) Parameter Estimates; and (v)
Hazard Ratios & λ Estimates.

Note: The construction of the Parameter Estimates table is different for each model. For
SPM1L, SPM1Q, SPM2L, and SPM2Q, it consists of three subtables: “Covariance
Parameter Estimates”, “Longitudinal Parameter Estimates”, and “Survival Parameter
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Estimates”; for the TS model corresponding to SPM1L, SPM1Q, SPM2L, or SPM2Q,
there are two tables: “Longitudinal Parameter Estimates (Stage I)” and “Survival Pa-
rameter Estimates (Stage II)”; and for the TVC model, there is only one table named
“Parameter Estimates”.

B. Output for the simulated data DLong + DSurv under SPM2L

Number of Subjects 

Subjects_in_long 400 

Subjects_in_surv 400 

Subjects_Used 400 

 

Figure 9: The number of subjects for DLong + DSurv.

Survival Parameter Estimates (Survival Alone) 

Param/Var Estimate SE DF T-Value P-Value 95% CI Gradient 

therapy -0.3373 0.1081 400 -3.12 0.0019 (-0.550, -0.125) 0.002926 

race -0.00214 0.1811 400 -0.01 0.9906 (-0.358, 0.354) 0.001148 

gender 0.05360 0.1272 400 0.42 0.6737 (-0.196, 0.304) -0.00402 

age 0.04130 0.1078 400 0.38 0.7018 (-0.171, 0.253) 0.005914 

karnofsky -0.2666 0.1116 400 -2.39 0.0173 (-0.486, -0.047) -0.00098 

stage -0.2204 0.1088 400 -2.03 0.0435 (-0.434, -0.006) -0.00063 

bf -0.03879 0.1262 400 -0.31 0.7587 (-0.287, 0.209) 0.003399 

log λ1 -1.5883 0.2502 400 -6.35 <.0001 (-2.080, -1.096) 0.000383 

 

Figure 10: The estimates of the parameters obtained by fitting the survival data alone for
DLong + DSurv.

Hazard Ratios & λ Estimates 

Parameter Estimate 95% CI 

HR_therapy 0.7020 (0.563, 0.875) 

HR_race 1.0552 (0.732, 1.521) 

HR_gender 0.9778 (0.756, 1.264) 

HR_age 1.1057 (0.889, 1.375) 

HR_karnofsky 0.7499 (0.598, 0.940) 

HR_stage 0.8237 (0.661, 1.026) 

HR_bf 0.9328 (0.722, 1.205) 

λ1 0.1809 (0.109, 0.301) 

HR_β1 1.2041 (1.046, 1.387) 

HR_β2 3.6966 (2.312, 5.910) 

 

Figure 11: The hazard ratios and λ estimates for DLong + DSurv under SPM2L.
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Parameter Estimates 

Param/Var Estimate SE DF T-Value P-Value 95% CI Gradient 

Covariance Parameter Estimates 

Ω00 0.6819 0.05753 398 11.85 <.0001 (0.569, 0.795) 0.005795 

Ω10 -0.05231 0.01440 398 -3.63 0.0003 (-0.081, -0.024) 0.023612 

Ω11 0.06822 0.006320 398 10.79 <.0001 (0.056, 0.081) -0.0075 

σ 0.5252 0.008301 398 63.26 <.0001 (0.509, 0.542) 0.000529 

Longitudinal Parameter Estimates 

Intercept 0.6852 0.1916 398 3.58 0.0004 (0.309, 1.062) -0.0101 

longt 0.03229 0.01491 398 2.17 0.0309 (0.003, 0.062) -0.03416 

therapy -0.01673 0.08539 398 -0.20 0.8447 (-0.185, 0.151) -0.00516 

race -0.1504 0.1449 398 -1.04 0.3002 (-0.435, 0.135) -0.01036 

gender -0.1901 0.1019 398 -1.87 0.0628 (-0.390, 0.010) -0.00528 

age -0.1539 0.08503 398 -1.81 0.0711 (-0.321, 0.013) -0.02083 

karnofsky -0.5958 0.08773 398 -6.79 <.0001 (-0.768, -0.423) -0.00274 

stage -0.2010 0.08602 398 -2.34 0.0199 (-0.370, -0.032) 0.010376 

bf -0.07759 0.09840 398 -0.79 0.4309 (-0.271, 0.116) -0.00665 

Survival Parameter Estimates 

therapy -0.3539 0.1118 398 -3.16 0.0017 (-0.574, -0.134) -0.01536 

race 0.05376 0.1859 398 0.29 0.7726 (-0.312, 0.419) 0.000795 

gender -0.02245 0.1307 398 -0.17 0.8637 (-0.279, 0.234) 0.008286 

age 0.1005 0.1109 398 0.91 0.3656 (-0.118, 0.319) -0.00213 

karnofsky -0.2878 0.1150 398 -2.50 0.0128 (-0.514, -0.062) 0.010698 

stage -0.1940 0.1117 398 -1.74 0.0831 (-0.414, 0.026) -0.00047 

bf -0.06953 0.1302 398 -0.53 0.5937 (-0.326, 0.186) 0.001858 

log λ1 -1.7098 0.2590 398 -6.60 <.0001 (-2.219, -1.201) -0.0061 

β1 0.1858 0.07175 398 2.59 0.0100 (0.045, 0.327) 0.003564 

β2 1.3074 0.2387 398 5.48 <.0001 (0.838, 1.777) 0.003804 

 

Figure 12: The estimates of the parameters for DLong + DSurv under SPM2L.
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