Journal of Statistical Software

July 2016, Volume 71, Issue 7. doi: 10.18637/jss.v071.i07

rftld: Smooth One-Dimensional Random Field
Upcrossing Probabilities in Python

Todd Pataky
Shinshu University

Abstract

Through topological expectations regarding smooth, thresholded n-dimensional Gaus-
sian continua, random field theory (RFT) describes probabilities associated with both the
field-wide maximum and threshold-surviving upcrossing geometry. A key application of
RFT is a correction for multiple comparisons which affords field-level hypothesis testing
for both univariate and multivariate fields. For unbroken isotropic fields just one pa-
rameter in addition to the mean and variance is required: the ratio of a field’s size to
its smoothness. Ironically the simplest manifestation of RFT (1D unbroken fields) has
rarely surfaced in the literature, even during its foundational development in the late
1970s. This Python package implements 1D RFT primarily for exploring and validating
RFT expectations, but also describes how it can be applied to yield statistical inferences
regarding sets of experimental 1D fields.

Keywords: random field theory, Gaussian random fields, multivariate analysis, time series,
continuum analysis.

1. Introduction

1.1. Theory

Random field theory (RFT) extends Gaussian behavior to smooth, continuous n-dimensional
(nD) processes, and in particular describes the probability that Gaussian fields (Figure 1) will
reach particular heights when acting over arbitrary nD geometries (Adler and Taylor 2007).
The primary application of this probability is to correct for multiple comparisons across the
entire field, thereby affording field-level hypothesis testing (Worsley, Taylor, Tomaiuolo, and
Lerch 2004; Friston, Ashburner, Kiebel, Nichols, and Penny 2007).

RFT inferences stem from the expected topological features of an nD Gaussian field which

http://dx.doi.org/10.18637/jss.v071.i07

2 rftld: One-Dimensional Random Field Theory in Python

4 (a) FWHM = 0% ' 1 [®) FwaM=5% ' 1 T © FwHM=10%

- () FWHM =50% ' 1 F@® FwHM =00

w

L L L L L L L L L L L L
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Field position (%) Field position (%) Field position (%)

Figure 1: Gaussian 1D fields of varying smoothnesses; FWHM is the full-width-at-half max-
imum of a Gaussian smoothing kernel. (a) Uncorrelated Gaussian noise. (b—e) Same data
as (a), but convolved with increasingly broad Gaussian kernels and rescaled to unit variance.
(f) Infinitely smooth fields, equivalent to 0D Gaussian scalars.

has been thresholded at a value u. The two key topological features of interest are the Euler
characteristic (EC) and the Hadwiger characteristic (HC), and in the 1D case both the EC and
HC directly represent the number of threshold upcrossings (Figure 2). In the RFT literature,
topological expectations were derived first for the EC and for two- and three-dimensional
fields (Adler and Hasofer 1976), and were subsequently generalized to n-dimensional fields
(Hasofer 1978, Equation 4) as follows:

E(EC) = A(S)(2m) 2 D[A2 P(u)e/2, (1)

where:

EC is the Euler characteristic at threshold u over the finite nD space .S,

A(S) is the Lebesgue measure of S,

|A] is the determinant of the covariance matrix of the field’s partial derivatives,

P(u) is the Hermite polynomial:

p =S g0) .

= 12\ 25

Equation 1 suggests that only one additional parameter, in addition to the mean and standard
deviation, is required to describe smooth nD Gaussian behavior: the ratio of the field size
A(S) to its smoothness |A|.

Journal of Statistical Software 3

(¢) EC=0, HC=1

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Field position (%) Field position (%) Field position (%)

Figure 2: Topological features of smooth 1D fields which have been thresholded at u. EC
= Euler characteristic, HC = Hadwiger characteristic. Whereas the HC increments for each
upcrossing, the EC increments only if the upcrossing does not touch the right boundary.

Using the expected EC and HC in classical hypothesis testing is straightforward: One simply
finds the height u* for which the expected EC or HC is «, and the null hypothesis is rejected if
the observed test statistic field traverses u*. In practice a Poisson heuristic is often also used
to correct for multiple upcrossings (Friston et al. 2007). Thus, when coupled with a Poisson
heuristic, the expected EC or HC can directly control the family-wise error rate « across the
whole field, thereby affording field-wide analysis in a single hypothesis test.

RFT has been applied most widely to 3D /4D functional neuroimaging analyses (Friston et al.
2007) via extensions of the expected EC to test statistic fields including ¢, F' and x? (Worsley
1995), Hotelling’s T2 (Cao and Worsley 1999), Roy’s maximum root (Worsley et al. 2004) and
Wilks’s A (Carbonell, Worsley, and Galan 2011). Since the most common software implemen-
tations of RFT are also 3D/4D, RFT accessibility is naturally limited by two factors: data
visualization and algorithmic sophistication (to cope with large data volumes). Fortunately,
both limitations can be easily overcome by considering the simpler 1D case. In particular:

1. 1D Gaussian fields can be easily computed and visualized (Figure 1).

2. The key theoretical concept — expected topology — simplifies to the expected number of
threshold-surviving maxima, which can also be easily visualized in 1D (Figure 2).

3. Theoretical validation, via random field generation, can be conducted effectively instan-
taneously.

Moreover, Equation 1 reduces to a surprisingly simple form when n = 1:

R Q
W 2r

4 rftld: One-Dimensional Random Field Theory in Python

=)

— - EC (Hasofer, 1978)
— HC (Worsley, 1995) [

w

® o Simulated

— FWHM=5
— FWHM =10
FWHM =25

o
T

w

N

Topological characteristic

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 3: Validation of topological expectations for smooth, unbroken 1D Gaussian random
fields with size S = 100. The variables EC and HC' are the Euler (Equation 3) and Hadwiger
(Equation 5) characteristics, respectively. These validations were performed using the rftld
random field generator: rftid.randnid.

where S is the field length and where W is the full-width-at-half-maximum (FWHM) of a
Gaussian kernel used to smooth uncorrelated Gaussian fields (Figure 1):

4log?2

W=\

: (4)

Although quite simple, Equation 3 quite accurately predicts the EC for high thresholds
(Figure 3). Its main limitation is that threshold upcrossings can touch the field boundary,
and thereby affect the EC (Figure 2). Worsley (1995) solved this problem using the Hadwiger
characteristic (HC), which is invariant to boundary touches and equivalent to the EC other-
wise, and which more accurately describes Gaussian field topology (Figure 3). The solution
given for n = 2 in Worsley (1995, Theorem 2) reduces to, for an unbroken, bounded field of
unit variance and n =1 to:

S y4log?2 o2/

E(HC)=P(X >
(HC)=P(X 2)+ Y0 ,

()
where P(X > u) is the usual Gaussian survival function. For broken Gaussian fields (Figure 4),
for which S now represents the total unbroken field length, one needs simply to multiply the
survival function by the number of unbroken field segments ¢ (Worsley 1995):

5 y4log?2 22

W 2r (6)

E(HC) = ¢(P(X > u)) +
Broken-field expectations are also easily validated (Figure 5). The key result is thus that only
two parameters (c and S/W) are required to accurately specify the topological behavior of
both broken and unbroken Gaussian fields. These two parameters have been termed “resolu-
tion element counts” or “resel counts” (Worsley, Marrett, Neelin, Vandal, Friston, and Evans

Journal of Statistical Software

3| (@) FWHM =5% | (b) FWHM = 10% | (c) FWHM =25%

L
0 20 40 60 40 60 0 20 40 60 80 100

Field position (%) Field position (%) Field position (%)

Figure 4: Broken (piecewise continuous) Gaussian 1D fields. These fields have undefined
heights over the intervals [20,35%] and [60,80%], and thus a total of ¢ = 3 unbroken field
segments (see Equation 6).

25F T T T 3
: — Unbroken field

Broken field |
® o Simulated (broken field)
— FWHM=5
— FWHM=10

20\ e

FWHM =25

Hadwiger characteristic

Figure 5: Validation of the expected Hadwiger characteristic (Equation 6) for the broken fields
depicted in Figure 4. Although the number of unbroken field segments is actually ¢ = 3, the
“unbroken field” results use ¢ = 1.

1996) to emphasize the fact that these parameters specify field geometry in a manner which
is invariant to sampling frequency.

From this yearamental topological expectation stems many probabilities regarding Gaussian
field behavior (Friston et al. 2007). Three key probabilities include:

1. Height-based inference: the probability that Gaussian fields or test statistic fields will
reach a particular height.

2. Cluster-level inference: the probability that Gaussian fields or test statistic fields, when
thresholded at w, will produce an upcrossing (or “cluster”) with a particular extent k.

3. Set-level inference: the probability that Gaussian fields or test statistic fields, when
thresholded at u, will produce at least ¢ upcrossings with a minimum extent of k.

The overall goal of the rftld software package is to make these RF'T concepts accessible and

6 rftld: One-Dimensional Random Field Theory in Python

explorable for students and researchers who deal with 1D field data including time series.

1.2. Comparison with other software packages

The software packages most closely related to rftld are:

1. SPM12 (Friston et al. 2014);
2. fmristat (Worsley 2006);
3. nipy (Millman and Brett 2007);

4. spmld (Pataky 2012).

The first two packages were written for MATLAB (The MathWorks, Inc. 2014) and the last
two were written for Python (van Rossum 2014). The SPM12, fmristat and nipy packages
primarily target the field of Neuroimaging, and in particular the analysis of 3D functional
magnetic resonance images (fMRI). These packages offer a comprehensive suite of tools for
fMRI data analysis, and all implement three-dimensional RFT. From the perspective of a
user who wishes to learn RFT concepts, these three fMRI-related packages are non-ideal for
a number of reasons:

e Software bulk — Since these packages target applied image analysis, a substantial portion
of their functionality involves 3D image management, processing and visualization, so
finding the RFT-related code and understanding how it interacts with the rest of the
software can be challenging and time-consuming.

o Ezperimental modeling complexity — Experimental design matrices for most fMRI ex-
periments require a time-dependent model of the brain’s hemodynamic response which
is observable in the raw fMRI data (Friston et al. 2007). This complicates the relation
amongst single images, residual images, and test statistic images. Thus the connection
between the original fMRI data and 3D Gaussian random fields is not evident until one
appreciates how the model residuals are generated.

o Three-dimensional RFT — Although all three fMRI-related packages also support one-
and two-dimensional RFT, they primarily target three-dimensional RF'T. This naturally
introduces two important barriers to generalized RFT adoption:

— Code complexity: Three-dimensional code is naturally more complex than is needed
for 1D and 2D analysis.

— Random field exploration: It is much easier to visualize 1D random and 2D ran-
dom fields than it is to visualize 3D random fields. Similarly, it is much easier to
simultaneously visualize multiple 1D random fields (Figure 1) than it is to simul-
taneously visualize multiple 2D random fields. Thus the randomness that RFT
models is clearest for 1D data.

The fourth package (spmld) partially addresses these limitations. In particular, it compactly
focusses on 1D data, and utilizes simple models which much more closely retain the connection

Journal of Statistical Software

between the raw 1D data and 1D residuals. However, it is a preliminary applied package which
only implements univariate analyses and which does not provide any conceptual aids for the
RFT core which drives its probability computations. Moreover, it fails to implement a number
of RFT-relevant computations including those pertaining to: (i) broken fields, (ii) multiple
test statistic fields in conjunction, (iii) circular fields, and (iv) node-based vs. element-based
field sampling.

The goals of the rftld package are:
e To promote RFT learning through exclusive focus on one-dimensional fields;
o To simplify and accelerate existing one-dimensional RFT implementations;

e To introduce a novel high-level interface to core RFT expectations and probabilities
which uses minimum input parameter sets, and which does not require special data
structures as input arguments;

e To provide a set of scripts which emphasize RFT concepts and which validate RFT
predictions;

o To implement RFT procedures for: (i) broken fields, (ii) multiple test statistic fields in
conjunction, (iii) circular fields, and (iv) node-based vs. element-based field sampling;

e To provide HTML documentation regarding all aforementioned RF'T concepts.

In addition to facilitating RFT explorations (Section 3) and validations (Section 4), the rft1d
package supports practical statistical inference. An example of classical hypothesis testing,
using both RFT and a mirroring non-parametric technique, is described in Section 5.

2. Python implementation

Dependencies of rft1d include: Python 2.7, NumPy 1.8 (van der Walt, Colbert, and Varoquaux
2011), SciPy 0.14 (Jones, Oliphant, Peterson et al. 2001) and, to run its example scripts:
matplotlib 1.3 (Hunter 2007). Other versions of these dependencies should also work but
have not yet been tested thoroughly. rftld was developed using Canopy 1.4 (Enthought, Inc.

2014).

The rft1ld package consists of four modules:
1. distributions — a SciPy-like interface to RFT expectations and probabilities;
2. geom — functions/classes for calculating geometrical features of fields/upcrossings;
3. prob — core RF'T probability calculations along with a high-level interface;

4. random — smooth 1D Gaussian field generation.

The core module rftid.prob translates, simplifies and accelerates existing MATLAB (The
MathWorks, Inc. 2014) implementations of 3D RFT (SPM8 and SPM12b) which are both
open-source and available from: http://www.fil.ion.ucl.ac.uk/spm. Unlike the 3D RFT

http://www.fil.ion.ucl.ac.uk/spm

8 rftld: One-Dimensional Random Field Theory in Python

implementation in the SPM software, rft1d exclusively focusses on 1D fields, and also provides
a novel high-level interface that emphasizes which parameters are required for particular
expectation and probability calculations.

Users interested in reproducing SPM8 and SPM12 results can do so using the function rftid.
prob.rft, but otherwise users are encouraged to initially interact with the high-level interface
in rftid.distributions, which is also accessible from the top-level package interface in a
SciPy-like manner. For example, the Gaussian survival function at a height © = 2.0 can be
computed as follows.

> from scipy import stats
>u=2.0
> p = stats.norm.sf (u)

In rftld, the Gaussian survival function requires two additional parameters: the number of
discrete field nodes (nNodes) and the field smoothness (FWHM).

> import rftid

>u = 3.0

> nNodes = 101

> FWHM = 10.0

> p = rftld.norm.sf (u, nNodes, FWHM)

This yields p = 0.030.

rft1d also implements four test statistic distributions: Student’s ¢, x2, F and Hotelling’s T°2.
Survival functions for these distributions require an additional degrees of freedom parameter
which, to follow SciPy syntax, should follow the height wu.

> p = rftid.t.sf(u, 8, nNodes, FWHM)

> p = rftld.chi2.sf(u, 8, nNodes, FWHM)

> p = rftid.f.sf(u, (2, 15), nNodes, FWHM)
> p = rftld.T2.sf(u, (2, 15), nNodes, FWHM)

The resulting probabilities are 0.180, 0.934, 0.744 and 0.964.

Inverse survival functions are accessible via the isf method:

> alpha = 0.05

> u = rftld.norm.isf (alpha, nNodes, FWHM)

> u = rftld.t.isf(alpha, 8, nNodes, FWHM)

> u = rftid.chi2.isf(alpha, 8, nNodes, FWHM)

> u = rftld.f.isf(alpha, (2, 15), nNodes, FWHM)
> u = rft1d.T2.isf(alpha, (2, 15), nNodes, FWHM)

The resulting critical heights are 2.826, 4.115, 24.433, 10.063 and 22.421, respectively.

For more convenient theoretical explorations (Figure 6), multiple heights can be submitted
to the survival functions, and multiple Type I error rates can be submitted to the inverse
survival functions as follows:

Journal of Statistical Software 9

035 ‘
FWHM = 5%
0.30 | —
FWHM = 10%
=M — FWHM=20% |]
A ol — FWHM=40% ||
E’Eé — FWHM = 100%
0.15 _
\13/ === Standard normal
Ay 0.10 i
0.05 —; .
0.00 .

2.0 2.5 3.0 3.5 4.0

Figure 6: Survival functions for Gaussian field maxima (zmax) as a function of smoothness.

> import numpy as np

> heights = np.linspace(2, 4, 51)

> sf = rftld.norm.sf (heights, nNodes, FWHM)
> from matplotlib import pyplot

> pyplot.plot(heights, sf)

> alpha = [0.001, 0.01, 0.05, 0.1]

> u = rftld.norm.isf (alpha, nNodes, FWHM)

“Cluster-level” inferences (Section 1) can similarly be accessed through the interface provided
by rftild.distribution using the observed cluster extent k, which should be in resels units.
For example, the FWHM-dependent probability that Gaussian random fields will yield an
upcrossing which spans 1.7 nodes is given by:

> FWHM = 8.0

>k =1.7 / FWHM

>u = 3.0

> p = rftld.norm.p_cluster(k, u, nNodes, FWHM)

The result is p = 0.032.

“Set-level” inferences (Section 1) require just one more parameter (c), the number of upcross-
ings. In this case k should be the minimum upcrossing extent (in resels units).

>c =2

> FWHM = 8.0

>k =0.7 / FWHM

>u=3.0

> p = rftld.norm.p_set(c, k, u, nNodes, FWHM)

The result is p = 0.00067.

rftld implements a variety of additional functionality including, for example: a common
interface for both unbroken and broken fields, and adjustments for very rough fields (for which

10 rftld: One-Dimensional Random Field Theory in Python

the Bonferroni correction may be less conservative). This functionality, along with complete
API details, are described in the HTML documentation in the supplementary material.

3. Exploring RFT expectations and probabilities

rftls implements two separate interfaces for exploring RFT expectations and probabilities.
The first is a procedural-type interface, as briefly outlined above in Section 2. The second
is an object-oriented interface which facilitates systematic explorations of particular field
geometries. The object-oriented interface stems from objects of the ‘RFTCalculator’ class as
follows:

STAT = "T"

df = (1, 19)

nNodes = 101

FWHM = 10.0

calc = rftld.prob.RFTCalculator (STAT, df, nNodes, FWHM)

vV VvV Vv Vv V

The STAT variable should be one of: "Z", "T", "X2", "F" and "T2" which respectively reference
the Gaussian, Student’s t, 2, F' and Hotelling’s 72 distributions.

Now that the calculator is instantiated, a variety of expectations can be accessed conveniently
through its “expected” methods by specifying a height of u:

= 3.0

= calc.expected.number_of_upcrossings (u)
nodes = calc.expected.nodes_per_upcrossing(u)
= calc.expected.resels_per_upcrossing(u)

>
>
>
> =
> = calc.expected.number_of_suprathreshold_nodes (u)

u
c
k_
k
N

RFT probabilities can also be accessed in a similar fashion, using the number ¢ and extent k
of upcrossings. The probabilities of observing (i) at least one upcrossing at a height u = 3.0,
(ii) an upcrossing at u = 3.0 with an extent of k = 0.2 resels, and (iii) ¢ = 2 upcrossings at
u = 3.0 with a minimum extent of k = 0.2 resels are given by the following code:

3.0

=0.2

=2
calc.p.upcrossing(u)
calc.p.cluster(k, u)
calc.p.set(c, k, u)

V V.V V Vv Vv
o o BT -
I

P

This interface emphasizes that, in addition to the typical degrees of freedom parameter,
only basic geometric information (nNodes, FWHM) is needed to generate rather comprehensive
expectations and probabilities.

An important theoretical concept is the intersection of RFT and Bonferroni probabilities.
Following Nyquist theory, when fields become very rough one runs the risk of under-sampling
the field process. In this case a Bonferroni correction across field nodes may be less conser-
vative than the RFT correction because numerical derivatives become poor estimates of the

Journal of Statistical Software 11

0.30

. FWHM = 1%
. — FWHM=2% ||

’5 0.20 — FWHM=3% ||
A\ Bonferroni
% 0.as)
g
N
~ o0l
o

0.00
2.7 2.8 2.9 3.0 3.1 32 33 34 35 3.6

Figure 7: Survival functions for rough fields. The Bonferroni correction (across 101 nodes)
is less conservative than the RFT correction for high thresholds (v > 3) when the fields are
rough (FWHM < 2%).

true local smoothness (Figure 7). To explore this issue one can first compute the critical
Bonferroni-corrected height using scipy.optimize as follows:

> import scipy.optimize

> import rftid

> STAT = "Z"

> df = Nomne

> nNodes = 101

> alpha = 0.05

> p = lambda x: rftld.prob.p_bonferroni(STAT, x, df, nNodes)

> objective_fn = lambda x:(p(x) - alpha) ** 2

>x0=5.0

> u = scipy.optimize.fmin(objective_fn, x0)

This yields a critical height of u = 3.293. Next, the RFT inverse survival function can be
computed as a function of the FWHM using rftid.norm. isf as outlined above in Section 2.
From the resulting isoprobability contours (Figure 8) it is clear that the RFT and Bonferroni
isoprobabilities cross at a particular FWHM value, and for smaller FWHMs it is more pow-
erful to adopt the Bonferroni approach. All relevant rftld procedures allow one to control
acceptance of Bonferroni correction via the keyword withBonf as follows:

>u = 3.0

> nNodes = 101

> FWHM = 1.5

> p0 = rftid.norm.sf (u, nNodes, FWHM, withBonf = False)
> pl = rftid.norm.sf(u, nNodes, FWHM, withBonf = True)

In this case the pure RFT probability, which ignores the Bonferroni correction, is pg = 0.179.
The unified probability, which adopts the least conservative threshold, is p; = 0.136. For
sufficiently smooth fields the keyword has no effect:

12 rftld: One-Dimensional Random Field Theory in Python

5.0 :

— RFT

4.5 — - Bonferroni |

a=0.001

40k 4
a=0.010

33 a=0.050

3.0 -

! ! ! ! !
1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0

FWHM (%)

Figure 8: Inverse survival function isoprobabilities: RFT vs. Bonferroni approaches. The
RFT functions are smoothness-dependent but the Bonferroni functions are not.

>u=3.0

> nNodes = 101

> FWHM = 5.0

> p0 = rftid.norm.sf(u, nNodes, FWHM, withBonf
> pl = rftid.norm.sf(u, nNodes, FWHM, withBonf

False)
True)

In this case pg = p1 = 0.058.

4. Validating RFT expectations

While previously published 1D RFT validations exist for relatively long fields (S > 4000)
with relatively low FWHMs (Friston, Worsley, Frackowiak, Mazziotta, and Evans 1994) there
are no validation results for short fields, and in particular for S = 100, which is a natural
choice for data interpolation (i.e., 0% to 100%).

4.1. Random field generation

Gaussian 1D fields can be generated using the rft1d.randnl1d function:

> import rftid
> y = rftld.random.randn1d (20, 101, FWHM = 10)

The function can also be accessed from the top-level interface:
> y = rftld.randn1d (20, 101, FWHM = 10)
This yields 20 Gaussian fields sampled at @ = 101 nodes (S = 100) with an FWHM of 10%

(Figure 1c), where the output y is an (20 x 101) NumPy array. Reproducing the identical
fields can be done using numpy.random. seed as follows:

Journal of Statistical Software

import numpy as np

np.random. seed (0)

yA = rftld.randn1d(5, 101, 20.0)
yB = rftld.randni1d(5, 101, 20.0)
np.random.seed(0)

yC = rftld.randnid(5, 101, 20.0)

V V VvV Vv Vv Vv

In this case yA and yB are different, but yA and yC are identical.
Broken fields (Figure 4) can be produced using a binary field array:

b = np.array([True] * 101)

b[20 : 30] = False

b[60 : 80] = False

y = rftild.randn1d(20, b, FWHM = 10)

vV VvV Vv V

This yields 20 Gaussian fields with an FWHM of 10%, but with undefined heights over the
intervals [20, 30%] and [60, 80%], similar to the fields depicted in Figure 1b.

4.2. Field-wide maxima

Since the fields are stored as NumPy arrays their maxima can be easily extracted using
NumPy array methods:

> ymax = y.max(axis = 1)

and these maxima can be compared to the theoretical expectation via the rftld survival
functions as follows:

> nNodes = 101

> FWHM = 10.0

>u=3.0

> p_simulated = (ymax > u).mean()

> p_expected = rftld.norm.sf(u, nNodes, FWHM)

This procedure can easily be extended to validate the results of Figure 6, as depicted in
Figure 9.

4.3. Cluster-level inference

Upcrossing extents can be easily computed using various SciPy functions like scipy.ndimage.
label, but since upcrossing extent computations can involve various complications like in-
terpolation (Figure 10b) and wrapping (for circular fields), it may be more convenient to use
rftld’s ‘ClusterMetricCalculator’ class as follows:

> nNodes = 101

> FWHM = 10.0

>u=3.0

> calc = rftld.geom.ClusterMetricCalculator()

13

14 rftld: One-Dimensional Random Field Theory in Python

035 ;
FWHM = 5%
FWHM = 10%

S\ 0.25 FWHM =20%
A o020 FWHM = 40%
e Theoretical
g 0.15 Standard normal ||
Ay o010

0.00 -
2.0 . k . 4.0

Figure 9: Validation of the RFT Gaussian survival function for field maxima (zmax).

> interp = True

> wrap = False

> y = rftld.randn1d (1000, nNodes, FWHM)

> kmax = [calc.max_cluster_extent(yy, u, interp, wrap) for yy in y]

These maximum cluster extents can then be compared to RFT expectations as follows:

> kO_nodes = 2.0

> kO_resels = kO_nodes / FWHM

> p_simulated = (np.array(kmax) >= kO_nodes).mean ()

> p_expected = rftld.norm.p_cluster(kO_resels, u, nNodes, FWHM)

Repeating this procedure for a variety of height and cluster extent thresholds shows close
agreement between simulated and theoretical results (Figure 11).

4.4. Set-level inference

Set-level inference requires one to simply count the number of upcrossings which exceed a
particular extent threshold kn;, when thresholded at w. This can then be compared to the
theoretical expectation as follows:

> nNodes = 101

> FWHM = 10.0

>u = 3.0

> kmin_resels = 2.0 / FWHM

>c =2

> p_expected = rftld.norm.p_set(c, kmin_resels, u, nNodes, FWHM)

Repeating for a variety of cluster extent thresholds (kmin) and height thresholds (u) yields
simulation results which follow theoretical expectation reasonably well (Figure 12) but as
reported elsewhere (Barnes, Ridgway, Flandin, Woolrich, and Friston 2013) simulated prob-
abilities tend to be lower than predicted. Since the prediction error is in the conservative

Journal of Statistical Software 15

1o} (a) Upcrossing 17T (b) Upcrossing (zoomed) 1
maximum height z .
_____ - | st -
03 threshold u]
N 00 0.7 i
05} 4 sl -
akte e
_ [- A
Lo 1 ost extent (interpolated) \
0 20 40 60 80 100 24 26 28 30 32 34 36 38
Field position (%) Field position (%)

Figure 10: A threshold-surviving upcrossing. The maximum height metric ymax describes the
whole field. When thresholded at a particular height u, surviving clusters can be characterized
using various metrics including extent, integral, etc. Given the field smoothness W, two key
probabilities are: P(zmax|W') and P[k|(u, W)], where k is the upcrossing extent.

0.25 T T T T T T T

— u=22
0.20 — u=24 4
N 015 u=2.8 R
§ — Theoretical
=< oo Simulated
oW

0.05

0.00

Figure 11: Validation of cluster-level inference: The probability that Gaussian fields will
produce an upcrossing with an extent of when thresholded at a height w.

direction it is not considered a serious limitation. More accurate set-level inference proce-
dures have recently been developed (Barnes et al. 2013) and will be incorporated into future
versions of rftld.

4.5. Other validations

Only the main validations (field maxima, cluster-level inference and set-level inference) were
described above, and only for unbroken Gaussian fields. Validations for (i) test statistic fields,
(ii) broken fields, (iii) univariate and multivariate procedures, and (iv) test statistic fields in
conjunction are available in the ./rft1d/examples directory in scripts named “valx*.py”.

16 rftld: One-Dimensional Random Field Theory in Python

0.08 :
0.07 — u=2.0
— u=22
o1 006} o 4
I ®e — u=24
0.05 | i e
AN ° —— Theoretical
—~ L
é 0.04 Simulated
= 00
>
oo
0.01
0.00

Figure 12: Validation of set-level inference: The probability that Gaussian fields will produce
¢ or more upcrossings (here ¢ = 2) with a minimum extent kpi, when thresholded at w.

5. Example application

This section describes how RFT can be used for classical hypothesis testing on 1D fields, and
also presents a non-parametric procedure which mirrors the parametric approach.

5.1. Dataset

A public weather dataset containing daily temperature data from four different regions of
Canada (Figure 13) was downloaded on 2014-08-16 from http://www.psych.mcgill.ca/
misc/fda/downloads/FDAfuns/Matlab (in the file weather.zip). A more thorough descrip-
tion of the dataset is available at http://www.psych.mcgill.ca/misc/fda/ex-weather-al.
html. For simplicity only the two regions with the largest number of fields are analyzed here:

)
‘E':, i
jav}
=
o i
&
5 Atlantic)
= Pacific
-30 . 4
— Continental
—40 |- — Artic =
| | | | | | |
0 50 100 150 200 250 300 350 400
Day

Figure 13: Weather dataset (Ramsay and Silverman 2005). Each field represents the record-
ings at one of 35 separate weather stations.

http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab
http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab
http://www.psych.mcgill.ca/misc/fda/ex-weather-a1.html
http://www.psych.mcgill.ca/misc/fda/ex-weather-a1.html

Journal of Statistical Software 17

OF = Actual

@ @ Estimated

40

30

20

Estimated FWHM (%)

! ! !
0 10 20 30 40 50

Actual FWHM (%)

Figure 14: Field smoothness estimations from simulated null data with known FWHM (sample
size = 10, S = 100). For each FWHM, 500 iterations were performed. Dots and error bars
depict the mean and SD of the FWHM estimate across iterations.

the Atlantic and Continental regions, with 15 and 12 fields, respectively.

5.2. Smoothness estimation

Since the field FWHM is not known a priori it can be estimated from the model residuals. If
the Atlantic and Continental fields are stored in NumPy arrays yA and yB, respectively, the
model residuals can be computed by subtracting sample means:

> mA, mB = yA.mean(axis = 0), yB.mean(axis = 0)
>rA, rB = yA - mA, yB - mB
> residuals = np.vstack([rA, rB])

rftld employs an unbiased FWHM estimation procedure (Kiebel, Poline, Friston, Holmes,
and Worsley 1999) which can be accessed from the rft1d.geom module as follows:

> FWHM = rftld.geom.estimate_fwhm(residuals)

For this dataset the estimated FWHM is 135.7. These FWHM estimates can be validated
using rftld.randnld to generate residuals of known smoothness, then repeating for many
iterations for various FWHMs (Figure 14).

5.3. Classical hypothesis testing

Assuming equal variance for simplicity, the two-sample test statistic field can be computed
as follows:

> nA, nB = 15, 12
> mA, mB = yA.mean(axis = 0), yB.mean(axis = 0)
> sA, sB = yA.std(ddof = 1, axis = 0), yB.std(ddof = 1, axis = 0)

>s =np.sqrt(((nA - 1) * sA * sA + (nB - 1) * sB * sB) / (nA + nB - 2))
>t (mA - mB) / (s * np.sqrt(1.0 / nA + 1.0 / nB))

18 rftld: One-Dimensional Random Field Theory in Python

7 T
— t field
— — Critical threshold

t value

0 50 100 150 200 250 300 350 400

Day

Figure 15: Classical hypothesis testing comparing the Atlantic and Continental regions from
the weather dataset (Figure 13).

where sA and sB are sample standard deviations and s is the pooled standard deviation. The
critical threshold can then be computed using the rftid.distribution interface:

> alpha = 0.05

> df =nA + nB - 2

> nNodes = 365

> t_critical = rftid.t.isf(alpha, df, nNodes, FWHM)

This yields a critical threshold of 2.566, and for comparison the uncorrected (0D) threshold
is 1.708. Since the computed test statistic field exceeds the critical threshold (Figure 15), the
null hypothesis is rejected at o = 0.05.

5.4. Set- and cluster-level inferences

There are two upcrossings with extents of 0.689 and 1.067 resels, respectively. Set- and
cluster-level inference can be conducted as follows:

>c =2

> k [0.689, 1.067]
> tstar = 2.566

> df = 25
>
>
>
>

nNodes = 365

FWHM = 135.7

Pset = rftid.t.p_set(c, min(k), tstar, df, nNodes, FWHM)

Pcluster = [rftld.t.p_cluster(kk, tstar, df, nNodes, FWHM) for kk in k]

The set-level p value is approximately 0.00008, implying that Gaussian fields of the identical
smoothness would produce two t-field upcrossings with a minimum extent of 0.689 with a
probability of 0.00008. The cluster-level p values are 0.013 and 0.002, respectively (Figure 15),
implying that Gaussian fields of the identical smoothness would produce t-field upcrossings
of the given extents with probabilities of 0.013 and 0.002, respectively.

Journal of Statistical Software 19

7 T
— t field
Critical threshold

- p=0.000007

t value

0 50 100 150 200 250 300 350 400

Day

Figure 16: Classical hypothesis testing for the weather dataset, assuming a circular field.

It is important to note that the above analyses ignore the fact that this is a circular field: The
last day of the year is followed by the first day of the next year. In this case the upcrossing
should be wrapped from the end to the start of the field. This yields just one upcrossing with
a much larger extent and thus a much lower p value (Figure 16).

5.5. Non-parametric inference

Classical hypothesis testing using RFT can be regarded as a two-stage procedure involving
(i) the critical threshold computation based on the expected test statistic field maximum,
followed by (ii) set-level and/or cluster-level inference. Nichols and Holmes (2002) propose a
non-parametric permutation procedure which mirrors this two-stage RFT procedure:

1. (Stage 1) Randomly permute the labels;
2. Compute the test statistic field based on the new labels;
3. Extract and store the field maximum (¢pax);

4. Repeat (1)—(3) until all permutations have been exhausted or for a set number of random
permutations;

5. Compute the critical test statistic (¢t*) from the ¢yax distribution;

6. (Stage 2) Repeat (1)—(4), this time extracting the maximum upcrossing extent (Kmax)
at threshold t* for each permutation;

7. For cluster-based inference, compute upcrossing-specific p values based on the empirical
kmax distribution.

This procedure yields a critical threshold (2.359) that is somewhat lower than the RFT thresh-
old (2.566), but also yields upcrossings p values which are essentially identical (Figure 17).
Since the results are qualitatively identical, it may be concluded that RFT’s assumption of
Gaussian field randomness is a reasonably good one for this dataset.

20 rftld: One-Dimensional Random Field Theory in Python

7 T
— 1t field
Critical threshold

t value

0 50 100 150 200 250 300 350 400

Day

Figure 17: Non-parametric hypothesis testing results following Nichols and Holmes (2002).

6. Summary

This paper has described a Python package called rft1d which implements random field theory
(RFT) expectations and probabilities regarding upcrossings in smooth 1D Gaussian and test
statistic fields. These probabilities may be used to make a variety of statistical inferences re-
garding experimental fields, including classical univariate and multivariate hypothesis testing.
Validations of RFT probabilities for relatively short fields (length = 100) are available in the
example scripts in the supplementary material for unbroken and broken fields, and also for
test statistic fields in conjunction. It is hoped that this 1D implementation will both help to
make RFT procedures more accessible to researchers for 1D data analysis, and help to reduce
conceptual barriers associated with RFT in higher-dimensional datasets.

Acknowledgments

This work was supported by Wakate A Grant 15H05360 from the Japan Society for the
Promotion of Science.

References
Adler RJ, Hasofer AM (1976). “Level Crossings for Random Fields.” The Annals of Probability,

4(1), 1-12. doi:10.1214/a0p/1176996176.

Adler RJ, Taylor J (2007). Random Fields and Geometry. Springer-Verlag. doi:10.1007/
978-0-387-48116-6.

Barnes G, Ridgway G, Flandin G, Woolrich M, Friston K (2013). “Set-Level Threshold-Free
Tests on the Intrinsic Volumes of SPMs.” Neurolmage, 68, 133-140. doi:10.1016/j.
neuroimage.2012.11.046.

http://dx.doi.org/10.1214/aop/1176996176
http://dx.doi.org/10.1007/978-0-387-48116-6
http://dx.doi.org/10.1007/978-0-387-48116-6
http://dx.doi.org/10.1016/j.neuroimage.2012.11.046
http://dx.doi.org/10.1016/j.neuroimage.2012.11.046

Journal of Statistical Software 21

Cao J, Worsley K (1999). “The Detection of Local Shape Changes via the Geometry of
Hotelling’s 72 Fields.” The Annals of Statistics, 27(3), 925-942. doi:10.1214/aos/
1018031263.

Carbonell F, Worsley KJ, Galan L (2011). “The Geometry of the Wilks’s A Random
Field” The Annals of the Institute of Statistical Mathematics, 63(1), 1-27. doi:
10.1007/s10463-008-0204-2.

Enthought, Inc (2014). “Canopy: Scientific and Analytic Python Deployment with Integrated
Analysis Environment.” URL https://www.enthought.com/products/canopy/.

Friston KJ, Ashburner J, Barnes G, Flandin G, Gitelman D, Glauche V, Hutton C, Litvak V,
Moran R, Oostenveld R, Penny W, Phillips C, Pinotsis D, Ridgway G, Seghier M, Stephan
KE, Andersson J, Brett M, Buechel C, Chen CC, Chumbley J, Daunizeau J, Harrison L,
Heather J, Henson R, Holmes A, Rosa M, Kiebel S, Kilner J, Mattout J, Nichols T, Poline
JB, Worsley KJ (2014). “Statistical Parametric Mapping.” The Wellcome Trust Centre for
Neuroimaging, URL http://www.fil.ion.ucl.ac.uk/spn/.

Friston KJ, Ashburner J, Kiebel S, Nichols T, Penny W (2007). Statistical Parametric Map-
ping: The Analysis of Functional Brain Images. Elsevier, London.

Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994). “Assessing the
Significance of Focal Activations Using Their Spatial Extent.” Human Brain Mapping, 1(3),
210—-220. doi:10.1002/hbm.460010306.

Hasofer A (1978). “Upcrossings of Random Fields” Advances in Applied Probability, 10,
14-21. doi:10.2307/1427002.

Hunter J (2007). “Matplotlib: A 2D Graphics Environment.” Computing in Science &
Engineering, 9(3), 90-95. doi:10.1109/mcse.2007.55.

Jones E, Oliphant T, Peterson P, et al. (2001). “SciPy: Open Source Scientific Tools for
Python.” URL http://www.scipy.org/.

Kiebel SJ, Poline JB, Friston KJ, Holmes AP, Worsley KJ (1999). “Robust Smoothness
Estimation in Statistical Parametric Maps Using Standardized Residuals from the General
Linear Model.” NeuroImage, 10(6), 756-766. doi:10.1006/nimg.1999.0508.

Millman K, Brett M (2007). “Analysis of Functional Magnetic Resonance Imaging in Python.”
Computing in Science and Engineering, 9(3), 52-55. doi:10.1109/mcse.2007 .46.

Nichols TE, Holmes AP (2002). “Nonparametric Permutation Tests for Functional Neu-
roimaging: A Primer with Examples” Human Brain Mapping, 15(1), 1-25. doi:
10.1002/hbm. 1058.

”

Pataky T (2012). “One-Dimensional Statistical Parametric Mapping in Python.” Computer
Methods in Biomechanics and Biomedical Engineering, 15(3), 295-301. doi:10.1080/
10255842.2010.527837.

Ramsay J, Silverman B (2005). Functional Data Analysis. Springer-Verlag, New York. doi:
10.1007/978-1-4757-7107-7.

http://dx.doi.org/10.1214/aos/1018031263
http://dx.doi.org/10.1214/aos/1018031263
http://dx.doi.org/10.1007/s10463-008-0204-2
http://dx.doi.org/10.1007/s10463-008-0204-2
https://www.enthought.com/products/canopy/
http://www.fil.ion.ucl.ac.uk/spm/
http://dx.doi.org/10.1002/hbm.460010306
http://dx.doi.org/10.2307/1427002
http://dx.doi.org/10.1109/mcse.2007.55
http://www.scipy.org/
http://dx.doi.org/10.1006/nimg.1999.0508
http://dx.doi.org/10.1109/mcse.2007.46
http://dx.doi.org/10.1002/hbm.1058
http://dx.doi.org/10.1002/hbm.1058
http://dx.doi.org/10.1080/10255842.2010.527837
http://dx.doi.org/10.1080/10255842.2010.527837
http://dx.doi.org/10.1007/978-1-4757-7107-7
http://dx.doi.org/10.1007/978-1-4757-7107-7

22 rftld: One-Dimensional Random Field Theory in Python

The MathWorks, Inc (2014). “MATLAB — The Language of Technical Computing, Version
R2014a” The MathWorks, Inc., Natick, Massachusetts, URL http://www.mathworks.
com/products/matlab/.

van der Walt S, Colbert S, Varoquaux G (2011). “The NumPy Array: A Structure for
Efficient Numerical Computation.” Computing in Science and FEngineering, 13, 22-30.
doi:10.1109/mcse.2011.37.

van Rossum G (2014). “The Python Library Reference Release 2.7.8” URL https://docs.
python.org/2/library/.

Worsley KJ (1995). “Estimating the Number of Peaks in a Random Field Using the Hadwiger
Characteristic of Excursion Sets, with Applications to Medical Images.” The Annals of
Statistics, 23(2), 640-669. doi:10.1214/a0s/1176324540.

Worsley KJ (2006). “FMRISTAT: A General Statistical Analysis for fMRI Data.” URL
http://www.math.mcgill.ca/keith/fmristat/.

Worsley KJ, Marrett S, Neelin P, Vandal A, Friston KJ, Evans AC (1996). “A Unified Sta-
tistical Approach for Determining Significant Signals in Images of Cerebral Activation.”
Human Brain Mapping, 4(1), 58-73. doi:10.1002/(sici)1097-0193(1996)4:1<58::
aid-hbm4>3.3.co;2-1.

Worsley KJ, Taylor J, Tomaiuolo F, Lerch J (2004). “Unified Univariate and Multivariate
Random Field Theory.” Neurolmage, 23, S189-5S195. doi:10.1016/j.neuroimage.2004.
07.026.

Affiliation:

Todd C. Pataky

Institute for Fiber Engineering
Department of Bioengineering
Shinshu University

Tokida 3-15-1, Ueda, Nagano, Japan
E-mail: tpataky@shinshu-u.ac.jp
URL: http://www.tpataky.net/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
July 2016, Volume 71, Issue 7 Submitted: 2014-08-25

doi:10.18637/jss.v071.107 Accepted: 2015-12-17

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://dx.doi.org/10.1109/mcse.2011.37
https://docs.python.org/2/library/
https://docs.python.org/2/library/
http://dx.doi.org/10.1214/aos/1176324540
http://www.math.mcgill.ca/keith/fmristat/
http://dx.doi.org/10.1002/(sici)1097-0193(1996)4:1<58::aid-hbm4>3.3.co;2-l
http://dx.doi.org/10.1002/(sici)1097-0193(1996)4:1<58::aid-hbm4>3.3.co;2-l
http://dx.doi.org/10.1016/j.neuroimage.2004.07.026
http://dx.doi.org/10.1016/j.neuroimage.2004.07.026
mailto:tpataky@shinshu-u.ac.jp
http://www.tpataky.net/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v071.i07

	Introduction
	Theory
	Comparison with other software packages

	Python implementation
	Exploring RFT expectations and probabilities
	Validating RFT expectations
	Random field generation
	Field-wide maxima
	Cluster-level inference
	Set-level inference
	Other validations

	Example application
	Dataset
	Smoothness estimation
	Classical hypothesis testing
	Set- and cluster-level inferences
	Non-parametric inference

	Summary

