
JSS Journal of Statistical Software
September 2016, Volume 72, Issue 10. doi: 10.18637/jss.v072.i10

R2MLwiN: A Package to Run MLwiN from within R

Zhengzheng Zhang
University of Bristol

Richard M. A. Parker
University of Bristol

Christopher M. J. Charlton
University of Bristol

George Leckie
University of Bristol

William J. Browne
University of Bristol

Abstract

R2MLwiN is a new package designed to run the multilevel modeling software program
MLwiN from within the R environment. It allows for a large range of models to be specified
which take account of a multilevel structure, including continuous, binary, proportion,
count, ordinal and nominal responses for data structures which are nested, cross-classified
and/or exhibit multiple membership. Estimation is available via iterative generalized
least squares (IGLS), which yields maximum likelihood estimates, and also via Markov
chain Monte Carlo (MCMC) estimation for Bayesian inference. As well as employing
MLwiN’s own MCMC engine, users can request that MLwiN write BUGS model, data
and initial values statements for use with WinBUGS or OpenBUGS (which R2MLwiN
automatically calls via rbugs), employing IGLS starting values from MLwiN. Users can
also take advantage of MLwiN’s graphical user interface: for example to specify models and
inspect plots via its interactive equations and graphics windows. R2MLwiN is supported
by a large number of examples, reproducing all the analyses conducted in MLwiN’s IGLS
and MCMC manuals.

Keywords: R2MLwiN, MLwiN, R, WinBUGS, OpenBUGS, multilevel model, random effects
model, mixed model, hierarchical linear model, clustered data, maximum likelihood estima-
tion, Markov chain Monte Carlo estimation.

1. Introduction
In research fields as diverse as education, economics, medicine, psychology, and biology, it is
commonplace to encounter data which are clustered: for example, exam results from many
students across a smaller number of schools in a cross-sectional study, or clinical measurements
taken repeatedly from the same individuals in a longitudinal study. Multilevel modeling is
an efficient way to model such data; it accounts for the lack of independence in clustered

http://dx.doi.org/10.18637/jss.v072.i10

2 R2MLwiN: A Package to Run MLwiN from within R

data, and adjusts the standard errors accordingly, whilst also opening avenues of enquiry
to which more traditional multiple regression techniques are ill-suited, such as investigating
group effects (e.g., Goldstein 2010; Pinheiro and Bates 2000; Raudenbush and Bryk 2002).
Multilevel models (also known as mixed models, random effects models, hierarchical models,
etc.) achieve this by treating the units at each level (in the above examples: students and
schools, measurement occasion and individuals, respectively), as a random sample from a
larger population with an assumed distribution, partitioning the residual variance between
levels.

1.1. MLwiN software

The statistical software package MLwiN (Rasbash et al. 2009) is designed to allow researchers
to specify, estimate and interpret multilevel models. It was first released, as a Windows-
based program, in 1998, and is still actively-developed by the Centre for Multilevel Modelling
(now at the University of Bristol). With an estimated 18,000 users worldwide, the current
version (v2.36, at time of writing) was released in April 2016, and native versions of the
MLwiN engine for Mac OS X and Linux have been recently made available. MLwiN allows for
a variety of response types to be modeled, including continuous, binary, proportion, count,
ordinal, nominal, and multivariate combinations (i.e., simultaneous equations); estimation is
available via iterative generalized least squares (IGLS, Goldstein 1986), which yields maximum
likelihood estimates, and also via Markov chain Monte Carlo (MCMC) estimation for Bayesian
inference (Browne 2012). It supports a range of data structures, including nested, cross-
classified (i.e., crossed random effects) and/or multiple membership structures (Browne et al.
2001). Other features include the fitting of complex level 1 variance (heteroskedastic) models,
multilevel factor analysis (MCMC only; with multiple – correlated or uncorrelated – factors
at each level), adjustments for measurement errors in predictors, spatial conditional auto
regressive (CAR) models, autoregressive residual structures at level 1, and a selection of
MCMC algorithms to increase efficiency.
Although MLwiN can be run via a macro language and the command line, this can prove
unwieldy, reflecting its origins building on the earlier statistical package NANOStat (Healy
1989). Indeed, it is likely that many users operate MLwiN via its graphical user interface
(GUI); this has a number of innovative features, such as an interactive equations window,
in which users can point-and-click on elements of the fully-formatted mathematical formu-
lae representing their model to change its specification, and interactive graphical displays,
allowing users to ascertain the identity of plotted points by simply clicking on them.
Funding from the UK’s Economic and Social Research Council (ESRC) has allowed MLwiN
to be offered free to UK-based academics, and it is otherwise available for purchase, and as
an unrestricted 30-day trial version. The Centre for Multilevel Modelling’s website (http://
www.bristol.ac.uk/cmm/) provides details on how to obtain the software, as well as manuals
and other resources offering guidance to MLwiN, and indeed to multilevel modeling in general.

1.2. R
R (R Core Team 2016) is a freely-available, open source “language and environment for statis-
tical computing and graphics” (https://www.R-project.org/). It is designed to be highly
extensible, as evidenced by the large number of user-authored add-on packages available on
the Comprehensive R Archive Network (CRAN; https://CRAN.R-project.org/). In con-

http://www.bristol.ac.uk/cmm/
http://www.bristol.ac.uk/cmm/
https://www.R-project.org/
https://CRAN.R-project.org/

Journal of Statistical Software 3

trast to MLwiN, R is chiefly designed to be operated via a command line interface (CLI),
although alternative user interfaces are available. Considerable support and advice is avail-
able to R users via https://www.R-project.org/, together with a vibrant online community
of other forums and resources, as well as a range of books and manuals.

1.3. The R2MLwiN package

R2MLwiN has been designed to run MLwiN from within the R environment, combining the
multilevel modeling functionality of the former with the benefits of working within the envi-
ronment of the latter. For example, one can parsimoniously specify, in R, the estimation of a
series of models in MLwiN, and take advantage of R’s scripting language, and powerful and
flexible graphing functionality, to efficiently post-process the results returned. In addition,
whilst a number of sophisticated data manipulation and handling functions are available in
MLwiN, R offers further flexibility, including the import of data saved in a wide range of for-
mats. Furthermore, since the recently-released native versions of the MLwiN engine for Mac
OS X and Linux only offer an MLwiN macro interface, R2MLwiN offers a convenient means
of interacting with them. More generally, performing analyses via the use of command line
scripts can facilitate faithful documentation and thus aid reproducibility.
As with all packages available on CRAN, R2MLwiN has supporting help files, and also has a
supporting website maintained by R2MLwiN’s authors (http://www.bristol.ac.uk/cmm/
software/r2mlwin/). In addition, R2MLwiN comes with a large number of demos: R scripts
replicating all the analyses conducted in the user’s guide to MLwiN (Rasbash et al. 2012),
which describes model-fitting via iterative generalized least squares (IGLS) estimation (which
yields maximum likelihood estimates), and the guide to MCMC estimation in MLwiN (Browne
2012). The following will return a list of all available demos (note: in all the example script
which follows, R> denotes the R prompt, whilst +, if appearing at the start of a line, indicates
it is a continuation of the line above):

R> library("R2MLwiN")
R> demo(package = "R2MLwiN")

Note that on loading R2MLwiN, the default path to MLwiN will be stated in the text returned.
This can be changed away from the default via options(MLwiN_path = "path/to/MLwiN
vX.XX/"). A specific demo can be run via:

R> demo("MCMCGuide03")

In the following sections we work through a variety of examples chosen firstly to illustrate the
fundamentals of working with R2MLwiN, including for those relatively inexperienced in R,
MLwiN and/or multilevel modelling in general, and secondly to highlight features which may
be of particular interest to R users wishing to fit multilevel models, such as functionality not
commonly-supported by other R packages. We begin with an example using IGLS, and then
move on to consider MCMC. The models start fairly simple so that we can familiarize the user
with the syntax used in R2MLwiN while in later sections we describe more complex models.

https://www.R-project.org/
http://www.bristol.ac.uk/cmm/software/r2mlwin/
http://www.bristol.ac.uk/cmm/software/r2mlwin/

4 R2MLwiN: A Package to Run MLwiN from within R

2. Fitting a 2-level continuous response model via IGLS
For our first example, we will fit a 2-level continuous response model using IGLS, employing an
educational dataset available as the sample dataset tutorial in both MLwiN and R2MLwiN.
This is a subset of data from a much larger dataset of examination results from six inner-
London Education Authorities (school boards). The original analysis (Goldstein et al. 1993)
sought to establish whether some secondary schools had better student exam performance
at 16 than others, after taking account of variations in the characteristics of students when
they started secondary school; i.e., the analysis investigated the extent to which schools
‘added value’ (with regard to exam performance), and then examined what factors might be
associated with any such differences.

R> data("tutorial")

The variables we will analyze in the following examples are summarized in Table 1 (although
you can view descriptions of all the variables in the original dataset by typing ?tutorial).
We will start with an example of the simplest multilevel model one can fit: a 2-level variance
components model with a continuous response. Such models partition the variance in the
response variable between the levels specified in the model. We will choose normexam as our
response variable for student i in school j; see Equation 1.

normexamij = β0 + uj + eij

uj ∼ N
(
0, σ2

u

)
eij ∼ N

(
0, σ2

e

) (1)

Here, uj corresponds to the school-level random effect whilst eij is the student-level residual
error; uj and eij are assumed to be independent of one another and normally-distributed
with zero means and constant variances σ2

u and σ2
e . The model thus partitions the variance

in normexam between that attributable to schools (σ2
u), corresponding to departures of the

school means from the overall mean (β0), and that attributable to students within schools
(σ2

e), corresponding to departures of students’ normexam scores from the mean of the school
they attend.
We can fit this model as follows:

R> F1 <- normexam ~ 1 + (1 | school) + (1 | student)
R> (VarCompModel <- runMLwiN(Formula = F1, data = tutorial))

Variable Description
school Numeric school identifier.
student Numeric student identifier.
normexam Students’ exam score at age 16, normalized to have approxi-

mately a standard normal distribution.
standlrt Student’s score at age 11 on the London reading test (LRT),

standardized using Z-scores.

Table 1: Variables in the tutorial dataset, as modeled in the worked example.

Journal of Statistical Software 5

Here we have created an object, VarCompModel, to which we have assigned a call (with
appropriate arguments) to R2MLwiN’s runMLwiN function. In this example the Formula and
data arguments are the only ones explicitly declared. In the case of the Formula, normexam
has been specified as the response variable, since it is to the left of the tilde (~), and only an
intercept is included in the fixed part of the model. Note that the intercept is not included
by default (this is keeping with the manner in which models are specified in MLwiN), and so
is explicitly added by including 1 to the right of the tilde. The random part of the model is
specified in sets of parentheses arranged in descending order with respect to their hierarchy.
So here we have specified that the coefficient of the intercept is allowed to randomly-vary
at level 2 (1 | school) and level 1 (1 | student). Note that the variable containing the
level 1 ID needs to be explicitly specified unless the model is a discrete response model (in
which case it should not be specified). See Table 2 (plus later examples) for details of how to
specify the Formula argument when modeling other distributions, and also Section 10 for an
example using categorical explanatory variables.
Other than nominating the data.frame containing the variables to be modeled in the data
argument, we accept the defaults for runMLwiN’s other arguments (see ?runMLwiN). These
include the distribution to be modeled (defaulting to D = "Normal"; see Table 2 for other
distributions, many of which are explored in later examples) and also an argument pertaining
to estimation options; this defaults to IGLS estimation, which is denoted by estoptions
= list(EstM = 0). The argument estoptions is a list with a large number of possible
terms – some are covered in later examples, but a more comprehensive account is provided in
the relevant R2MLwiN help files. We also accept the default workdir = tempdir(), which
indicates the output files are to be saved in the temporary directory.
Once this command has been entered, functions within the R2MLwiN package will then take
this input and create an MLwiN macro file; MLwiN is then called and executes the macro
script, and the output is returned to R for post-processing, such as producing the following
output table (which can be reproduced via e.g., summary(VarCompModel)):

-*-
MLwiN (version: 2.36) multilevel model (Normal)

N min mean max N_complete min_complete mean_complete max_complete
school 65 2 62.44615 198 65 2 62.44615 198
Estimation algorithm: IGLS Elapsed time : 0.12s
Number of obs: 4059 (from total 4059) The model converged after 3 iterations.
Log likelihood: -5505.3
Deviance statistic: 11010.6

The model formula:
normexam ~ 1 + (1 | school) + (1 | student)
Level 2: school Level 1: student

The fixed part estimates:

Coef. Std. Err. z Pr(>|z|) [95% Conf. Interval]
Intercept -0.01317 0.05363 -0.25 0.806 -0.11827 0.09194
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the school level:

6 R2MLwiN: A Package to Run MLwiN from within R

D Formula Where <link>
can equal . . .

"Normal" <y1> ~ 1 + <x1> + ... + (1|<L2>) +
(1|<L1>)

(identity link
assumed)

"Poisson" <link>(<y1>) ~ 1 + offset(<offs>) + <x1> +
... + (1|<L2>)

log

"Negbinom" <link>(<y1>) ~ 1 + offset(<offs>) + <x1> +
... + (1|<L2>)

log

"Binomial" <link>(<y1>, <denom>) ~ 1 + <x1> + ... +
(1|<L2>)

logit, probit,
cloglog

"Unordered
Multinomial"

<link>(<y1>, <denom>, <ref_cat>) ~ 1 +
<x1> + ... + (1|<L2>)

logit

"Ordered
Multinomial"

<link>(<y1>, <denom>, <ref_cat>) ~
1 + <x1> + <x2>[<common>] + ... +
(1[<common>]|<L3>) + (1|<L2>)

logit, probit,
cloglog

"Multivariate
Normal"

c(<y1>, <y2>, ...) ~ 1 + <x1> +
<x2>[<common>] + ... + (1[<common>]|<L3>)
+ (1|<L2>) + (1|<L1>)

(identity link
assumed)

c("Mixed",
"Binomial",
"Normal")

c(<link>(<y2>, <denom>), <y1>, ...)
~ 1 + <x1> + <x2>[<common>] + ...
+ (1[<common>]|<L3>) + (1|<L2>) +
(1[<Normal_resp>]|<L1>)

logit‡,
probit,
cloglog‡

c("Mixed",
"Poisson",
"Normal")‡

c(<link>(<y2>), <y1>, ...) ~ 1 +
offset(<offs>) + <x1> + <x2>[<common>]
+ ... + (1[<common>]|<L3>) + (1|<L2>) +
(1[<Normal_resp>]|<L1>)

log

Table 2: A summary of options for the Formula argument in R2MLwiN. They assume an
intercept is added (which needs to be explicitly specified, here via the addition of 1). <link>
denotes the link function, <y1>, <y2>, etc. represent response variables, <denom> denotes the
denominator (optional; if not specified, a constant of ones is used as denominator), <offs>
the offset (optional), <L2>, <L1>, etc. the variables containing the level 2 and level 1 identify-
ing codes, and <ref_cat> represents the reference category of a categorical response variable
(optional: if unspecified the lowest level of the factor is used as the reference category).
Explanatory variables are specified as e.g., <x1> + <x2>. For "Ordered Multinomial",
"Multivariate Normal" and "Mixed" responses, [<common>] indicates a common coeffi-
cient (i.e., the same for each category) is to be fitted; here <common> takes the form of a
numeric identifier indicating the responses for which a common coefficient is to be added
(e.g., [1:5] to fit a common coefficient for categories 1 to 5 of a 6-point ordered variable,
[1] to fit a common coefficient for the response variable specified first in the Formula object
for a "Mixed" response model, etc.). Otherwise a separate coefficient (i.e., one for each cate-
gory) is added. <Normal_resp> indicates the position (as an integer) the Normal response(s)
appears in the formula (2 in the examples in the table). For "Mixed" response models, the
Formula arguments need to be grouped in the order the distributions are listed in D. Note
that, when using IGLS, quasi-likelihood methods are used for discrete response models (and
not, for example, adaptive quadrature). ‡ denotes IGLS only.

Journal of Statistical Software 7

Coef. Std. Err.
var_Intercept 0.16863 0.03245

The random part estimates at the student level:

Coef. Std. Err.
var_Intercept 0.84776 0.01897
-*-

The first few lines returned, not reproduced here (and omitted from the output below too),
provide information on how estimation is progressing during the model fit (such as the it-
eration number), as well as a few miscellaneous MLwiN commands. Once convergence has
been achieved then the summary is returned as above, confirming first the version of ML-
wiN used, the distribution chosen, and then some summary statistics concerning the level 2
units: namely that there were 65 schools containing a mean of 62.4 students, ranging from
a minimum of 2 to a maximum of 198 students (separate summary statistics, with the suffix
_complete, are displayed alongside pertaining to complete cases only; unless a level 2 unit
has data missing for every level 1 unit, N will equal N_complete). Otherwise, the estimation
method is confirmed, the time elapsed between R exporting the data/macros and the results
being returned, the number of (complete) observations from the total in the dataset (this
dataset has 4059 students, with no missing data for any of the modeled variables), confirma-
tion that the model converged after 3 iterations, the log likelihood, and finally the deviance
statistic (−2 × log likelihood) which can be used to compare the fit of ‘nested’ models via
likelihood ratio tests (see below).
Beneath that, there is a reiteration of the model formula/levels we specified earlier, followed
by the model estimates. First we see the coefficient estimates for the fixed part of the model,
which in this case consists only of the intercept, indicating that the overall mean of normexam
is −0.013 (which is close to zero since it has been standardized), with a standard error of
0.054, together with the corresponding z score, its p value, and confidence intervals (although
these latter statistics are of little substantive interest in this particular instance).
Next we have the estimates (with standard errors) for the random part of the model, indicating
that the school means are distributed around the overall mean with an estimated variance
of 0.169 (σ̂2

u), with the (within-school) student scores distributed around their school mean
with an estimated variance of 0.848 (σ̂2

e).

2.1. Conducting a likelihood ratio test
If we wish to investigate whether there are significant school differences in normexam (i.e.,
whether it is necessary to take account of clustering at the school-level or not), we can
conduct a likelihood ratio test: subtracting the deviance statistic from the current 2-level
model from the corresponding value from the simpler single-level model (Equation 2) and
comparing this against a χ2 distribution with the appropriate degrees of freedom (in this case
1, since the addition of only one parameter distinguishes the two models).

normexami = β0 + ei

ei ∼ N
(
0, σ2

e

) (2)

We do so here using the generic S4 method logLik included in the mlwinfitIGLS-class

8 R2MLwiN: A Package to Run MLwiN from within R

(IGLS model fit) object; this allows us to conduct a likelihood ratio test using the lrtest
function, which is part of the lmtest package (Zeileis and Hothorn 2002):

R> F2 <- normexam ~ 1 + (1 | student)
R> OneLevelModel <- runMLwiN(Formula = F2, data = tutorial)
R> if (!require(lmtest)) install.packages("lmtest")
R> lrtest(OneLevelModel, VarCompModel)

Likelihood ratio test

Model 1: OneLevelModel
Model 2: VarCompModel

#Df LogLik Df Chisq Pr(>Chisq)
1 2 -5754.7
2 3 -5505.3 1 498.72 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As such, we can see there are highly-significant effects of school on pupils’ normexam scores.

2.2. Calculating the variance partition coefficient (VPC)

If we wanted to find out how much of the variance in normexam is due to differences between
schools, and how much is due to differences between students within schools, then we could
calculate the variance partition coefficient using the relevant slots for this S4 class object to
pull out the estimates we need for the calculation; in this instance we use the slot "RP", which
stands for “random part” (typing slotNames(VarCompModel) will list all available slots):

R> print(VPC <- VarCompModel["RP"][["RP2_var_Intercept"]] /
+ (VarCompModel["RP"][["RP1_var_Intercept"]] +
+ VarCompModel["RP"][["RP2_var_Intercept"]]))

[1] 0.1659064

i.e., approximately 17% of the total variance in normexam is attributable to differences between
schools. (Note that calculating the VPC is less straightforward for random coefficients and
discrete response models; see, e.g., Goldstein et al. 2002.)

3. Storing residuals
By default, R2MLwiN does not store residuals (at any level), but it is straightforward to
request it to do so by simply toggling the value of resi.store, in the list of estoptions,
as follows (see Section 8, as well as ?runMLwiN, for more advanced options regarding saving
residuals):

R> VarCompResid <- runMLwiN(Formula = F1, data = tutorial,
+ estoptions = list(resi.store = TRUE))

Journal of Statistical Software 9

0 10 20 30 40 50 60

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Rank

In
te

rc
ep

t

Figure 1: Caterpillar plot of level 2 residuals produced by R2MLwiN’s caterpillar function.

We can then, for instance, plot the residuals using R2MLwiN’s caterpillar function, a
wrapper for the plot function with the addition of error bars, yielding the plot displayed in
Figure 1; see the R2MLwiN demo MCMCGuide04 for an alternative choice of caterpillar plot:

R> residuals <- VarCompResid@residual$lev_2_resi_est_Intercept
R> residualsCI <- 1.96 * sqrt(VarCompResid@residual$lev_2_resi_var_Intercept)
R> residualsRank <- rank(residuals)
R> rankno <- order(residualsRank)
R> caterpillar(y = residuals[rankno], x = 1:65,
+ qtlow = (residuals - residualsCI)[rankno],
+ qtup = (residuals + residualsCI)[rankno],
+ xlab = 'Rank', ylab = 'Intercept')

4. A note on debugmode and show.file

If we had included debugmode = TRUE within the list of estoptions when fitting our variance
components model, above, this would have left the MLwiN application open if running via
Windows or in Wine (Wine Development Team 2015) on other platforms, with our variables
uploaded, the equation window displayed, and the starting values (in blue) of our specified

10 R2MLwiN: A Package to Run MLwiN from within R

Figure 2: The MLwiN application is left open, with the interactive Equations window dis-
played, if debugmode is specified as TRUE.

model; see Figure 2. Pressing the ‘Resume macro’ button, within MLwiN, results in the
model iterating to convergence, at which point the estimates turn green. Pressing the button
again returns a dialogue box inviting the user to either close the application, or continue
working in the MLwiN GUI; in either case estimates from the model as fitted up to that point
are returned to R once the MLwiN application is closed (closing the application via another
method may result in model estimates not being returned to R, and an error being displayed
as a result). Working with MLwiN’s GUI allows us to employ some of its useful features,
such as the interactive equations and graph windows, as well as providing a useful aid to
trouble-shooting in the case of model misspecification (for further guidance see Rasbash et al.
2012; Browne 2012).
Including show.file = TRUE within our list of estoptions would display the MLwiN macro
file produced by R2MLwiN (clean.files = FALSE may also need to be added to the list
of estoptions, depending on the R interface you are using); an example taken from our
variance components model, above, can be found in the supplementary materials; for further
information about MLwiN commands see Rasbash et al. (2003). This macro file is also saved
in the working directory, as specified in the runMLwiN argument workdir, together with a
range of other outputs, such as a data file in Stata format (i.e., *.dta; these can be imported
by both MLwiN and R); these are deleted from the working directory once MLwiN closes, so
running in debugmode provides an opportunity to access them.

5. Fitting a 2-level continuous response model via MCMC
We fitted our variance components model, above, using the default estimation method of

Journal of Statistical Software 11

IGLS, but we can fit the same model using MCMC methods by simply toggling the value of
EstM (away from the default) as demonstrated below. MLwiN’s MCMC engine uses Gibbs
sampling for steps in the algorithm where the conditional posterior distribution has a standard
form (as is the case for all parameters in the current model), and, if not, uses single site
random walk Metropolis sampling with a normal proposal distribution and adaptive procedure
(Browne and Draper 2000).
R has, of course, a variety of other packages which fit models using MCMC methods (e.g.,
Park et al. 2016), for example the MCMCglmm package written by Jarrod Hadfield (Hadfield
2010) covers many of the same models as MLwiN and also has an impressively efficient MCMC
implementation, particularly for normal response models. However, for non-normal models
it does require that they contain over-dispersion terms for each observation, in part so that
it can efficiently estimate the model. This is less of an issue for count data, but for binary
responses can be problematic as it is not clear in such models that over-dispersion at the
observation level makes sense (Skrondal and Rabe-Hesketh 2007). Gelman and Hill (2007)
cover many aspects of multilevel modelling within R, including, from an MCMC perspective,
how to write an MCMC algorithm directly in the R language, and to call WinBUGS from
R via R2WinBUGS (Sturtz et al. 2005), which requires the user to write their own model
code to send to WinBUGS, whilst R2MLwiN generates these files, using (by default) IGLS
starting values, on behalf of the user; see Section 12.
Here we fit the model using the default MCMC estimation settings, but we would ultimately
need to investigate whether these were appropriate or not:

R> (VarCompMCMC <- runMLwiN(Formula = F1, data = tutorial,
+ estoptions = list(EstM = 1)))

-*-
MLwiN (version: 2.36) multilevel model (Normal)

N min mean max N_complete min_complete mean_complete max_complete
school 65 2 62.44615 198 65 2 62.44615 198
Estimation algorithm: MCMC Elapsed time : 1.15s
Number of obs:4059 (from total 4059) Number of iter:5000 Chains:1 Burn-in:500
Bayesian Deviance Information Criterion (DIC)
Dbar D(thetabar) pD DIC
10850.046 10790.013 60.034 10910.080

The model formula:
normexam ~ 1 + (1 | school) + (1 | student)
Level 2: school Level 1: student

The fixed part estimates:

Coef. Std. Err. z Pr(>|z|) [95% Cred. Interval] ESS
Intercept -0.01212 0.05410 -0.22 0.8227 -0.11977 0.08958 189
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the school level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_Intercept 0.17629 0.03606 0.11876 0.26114 3212

12 R2MLwiN: A Package to Run MLwiN from within R

The random part estimates at the student level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_Intercept 0.84862 0.01887 0.81254 0.88678 5016
-*-

Here we see, towards the top of the output, that the chain has run for 5000 main iterations;
this is the default in MLwiN, along with a burn-in of 500, a thinning factor of 1, and a random
number seed of 1. We have also run just one chain (the default); indeed, whilst it is not possi-
ble to run more than one chain via the MLwiN GUI, it is via R2MLwiN, which can run multiple
chains in parallel. If we wished not to use MLwiN’s defaults, then such parameters can be spec-
ified in the mcmcMeth list within the estoptions argument, e.g., estoptions = list(EstM =
1, mcmcMeth = list(burnin = 1000, nchains = 3, iterations = 10000, thinning =
10, seed = 1:3)).
Below that we have the deviance information criterion (DIC) model-fit statistic (Spiegelhalter
et al. 2002), and the quantities from which it is derived:

• D̄ (Dbar): Average deviance across all (post-burnin) iterations.

• D(θ̄) (D(thetabar)): Deviance evaluated at the estimated means of the unknown pa-
rameters θ.

• pD: The effective number of parameters, computed as D̄ −D(θ̄).

• DIC: Computed as D(θ̄) + 2pD: i.e., it is a measure of goodness of model fit which ad-
justs for model complexity, thus allowing models to be compared: models with smaller
DIC values are preferred to those with large values, with differences of 5 or more con-
sidered substantial (e.g., Lunn et al. 2012).

Finally, following the model formula, we have the model estimates, which are largely similar
to those from IGLS, and include 95% credible intervals (i.e., the 2.5th and 97.5th quantiles
of each chain) for both the fixed and random part of the model. Note that, for the fixed part
of the model, users can toggle between displaying the z score and its associated (two-tailed)
p value (i.e., assuming normality), and a one-sided Bayesian p value (see Section 6 for an
example).
The accompanying statistics include the ESS, or effective sample size (Kass et al. 1998), i.e.,
the number of iterations necessary to obtain these estimates if the sample were independent
and identically-distributed. As such, a low ESS (compared to the number of iterations the
chain has actually run for) would indicate a strongly positively autocorrelated chain, suggest-
ing it may need to be run longer and/or sampled in a different manner, or other alternative
MCMC methodologies could be employed to aid efficiency (see Section 11).
As well as the ESS, other MCMC diagnostic aids available in the R2MLwiN package include
trajectory plots, as well as a larger suite of diagnostics available via the sixway function.
We will demonstrate the latter when plotting the chain for the variance partition coefficient
(VPC) in the following section; with regard to the former, however, entering

R> trajectories(VarCompMCMC)

Journal of Statistical Software 13

0 1000 2000 3000 4000 5000

10
82

0
10

84
0

10
86

0
10

88
0

iteration

de
vi

an
ce

0 1000 2000 3000 4000 5000

−
0.

15
−

0.
05

0.
05

0.
15

iteration

F
P

_I
nt

er
ce

pt

0 1000 2000 3000 4000 5000

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

iteration

R
P

2_
va

r_
In

te
rc

ep
t

0 1000 2000 3000 4000 5000

0.
78

0.
82

0.
86

0.
90

iteration

R
P

1_
va

r_
In

te
rc

ep
t

Figure 3: Plots of MCMC chain trajectories produced by R2MLwiN’s trajectories function.

yields the plots presented in Figure 3, namely the trajectories for the deviance, the intercept in
the fixed part of the model (FP_Intercept), and the variances at level 2 (RP2_var_Intercept),
and level 1 (RP1_var_Intercept) associated with the random part of the model.

5.1. Calculating the variance partition coefficient (VPC)

For our IGLS model fitted earlier, we calculated the VPC based on a single set of point
estimates; in the case of MCMC, however, we have chains for σ2

u and σ2
e , and so can derive a

chain for the VPC, as follows:

R> VPC_MCMC <- VarCompMCMC["chains"][,"RP2_var_Intercept"] /
+ (VarCompMCMC["chains"][,"RP1_var_Intercept"] +
+ VarCompMCMC["chains"][,"RP2_var_Intercept"])
R> sixway(VPC_MCMC, name = "VPC")

As you can see (Figure 4), using R2MLwiN’s sixway function we obtain a range of useful
statistics we can use to describe this function, including mean, mode, and interval estimates
(e.g., the 95% Bayesian credible interval runs from 0.123 to 0.235), as well as a range of other

14 R2MLwiN: A Package to Run MLwiN from within R

0 1000 2000 3000 4000 5000

0.
10

0.
20

0.
30

Iterations

pa
ra

m
et

er

0.10 0.15 0.20 0.25 0.30

0
5

10
15

parameter value

ke
rn

el
 d

en
si

ty

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

A
C

F

2 4 6 8 10

0.
0

0.
4

0.
8

Lag

P
ar

tia
l A

C
F

0e+00 2e+04 4e+04 6e+04 8e+04 1e+051e
−

04
4e

−
04

7e
−

04

updates

M
C

S
E

Accuracy Diagnostics
Raftery−Lewis (quantile) : Nhat =(4267,3803)

when q=(0.025,0.975), r=0.005 and s=0.95

Brooks−Draper (mean) : Nhat = 182

when k=2 sigfigs and alpha=0.05

Summary Statistics

param name : VPC posterior mean = 0.171 SD = 0.029 mode = 0.163

quantiles : 2.5% = 0.123 5% = 0.129 50% = 0.169 95% = 0.223 97.5% = 0.235

5000 actual iterations storing every 1th iteration. Effective Sample Size (ESS) = 3181

Figure 4: An example of diagnostic plots for MCMC chains produced by R2MLwiN’s sixway
function.

charts and diagnostics: in addition to the trajectory plot (top-left), we also have a kernel
density plot of the posterior distribution (top-right), the Raftery-Lewis diagnostic (Raftery
and Lewis 1992) – indicating how long the chain should run to estimate the 0.025 and 0.975
quantiles (respectively) to a given accuracy (see defaults for the raftery.diag function in the
coda package), and also the Brooks-Draper diagnostic – indicating the number of iterations
the chain needs to run to estimate the mean to two significant places; Chapter 3 of Browne
(2012) describes these, and the other diagnostics returned, in more detail.
The chains returned by R2MLwiN, as mcmc objects, are also, of course, available for analysis
by a range of other packages and functions in R, including the many useful functions available
in the coda package (Plummer et al. 2006).

6. Adding a predictor to the fixed part of a model

If we wish to see if a predictor, e.g., students’ exam performance at age 11, appreciably

Journal of Statistical Software 15

improves the fit of the model, we can add it to the fixed part, as in Equation 3.

normexamij = β0 + β1standlrtij + uj + eij

uj ∼ N
(
0, σ2

u

)
eij ∼ N

(
0, σ2

e

) (3)

R> F3 <- normexam ~ 1 + standlrt + (1 | school) + (1 | student)
R> (standlrtMCMC <- runMLwiN(Formula = F3, data = tutorial,
+ estoptions = list(EstM = 1)))

In the resulting output (truncated below) we see its coefficient estimate is positive and much
greater than its standard error, indicating that it is a highly significant predictor, as reflected
in its 95% credible interval, which excludes zero:

The fixed part estimates:
Coef. Std. Err. z Pr(>|z|) [95% Cred. Interval] ESS

Intercept 0.00514 0.04246 0.12 0.9036 -0.07933 0.08896 211
standlrt 0.56321 0.01250 45.05 0 *** 0.53862 0.58791 4060
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that if we wish to instead view one-sided Bayesian p values – i.e., the proportion of chain
iterations which are of the opposite sign to the chain mean (the coefficient estimate in our
output) – then we can request this as follows; here the output (again, truncated) indicates
that the proportion of chain iterations which were below zero for the Intercept was 0.444,
whilst none of the 5000 iterations were below zero for standlrt:

R> print(standlrtMCMC, z.ratio = FALSE)

The fixed part estimates:
Coef. Std. Err. pMCMC(1-sided) [95% Cred. Interval] ESS

Intercept 0.00514 0.04246 0.444 -0.07933 0.08896 211
standlrt 0.56321 0.01250 0 0.53862 0.58791 4060

We also see a large reduction in the DIC in this model):

R> VarCompMCMC["BDIC"][["DIC"]] - standlrtMCMC["BDIC"][["DIC"]]

[1] 1640.952

7. Priors, starting values, and random seeds
Browne (2012) describes in detail the priors, starting values, and random seeds used by default
by MLwiN’s MCMC engine, and how to modify them to suit users’ own needs, so we will not
fully reiterate those details here, other than providing the following few examples by means
of illustration of how to do so via R2MLwiN.

16 R2MLwiN: A Package to Run MLwiN from within R

D
en

si
ty

0

10

20

30

40

50

0.80 0.85 0.90 0.95 1.00 1.05

Posterior
Prior

Figure 5: A densityplot of the prior and posterior distributions for standlrt.

For fixed parameters MLwiN employs, by default, an improper uniform prior p(β) ∝ 1, but
conjugate informative priors can readily be specified as a normal distribution with a mean
and standard deviation as determined by the user. Let us assume we have gleaned, from
prior work, some knowledge leading us to propose a prior for standlrt with a mean of 1
and standard deviation of 0.01; we can pass this information onto priorParam, listed within
mcmcMeth, itself listed within estoptions, by specifying (via fixe) that we wish to construct a
proper normal prior for the term in the fixed part of the model called standlrt, with c(mean,
sd). See Figure 5 for a plot produced using the lattice package (Sarkar 2008), automatically
loaded with R2MLwiN, indicating a strong prior which disagrees with the data.

R> informpriorMCMC <- runMLwiN(Formula = F3, data = tutorial,
+ estoptions = list(EstM = 1,
+ mcmcMeth = list(priorParam = list(fixe = list(standlrt = c(1, 0.01))))))
R> PlotDensities <- data.frame(
+ PostAndPrior = c(informpriorMCMC["chains"][, "FP_standlrt"],
+ qnorm(seq(1 / 5000, 1, by = 1 / 5000), mean = 1, sd = 0.01)),
+ id = c(rep("Posterior", 5000), rep("Prior", 5000)))
R> densityplot(~ PostAndPrior, data = PlotDensities, groups = id, ref = TRUE,
+ plot.points = FALSE, auto.key = list(space = "bottom"), xlab = NULL)

Here, by means of illustration, we have described changing the prior for a parameter in
the fixed part of the model, but R2MLwiN allows conjugate priors for other parameters to

Journal of Statistical Software 17

0 100 200 300 400 500

10
00

0
14

00
0

18
00

0

iteration

de
vi

an
ce

0 100 200 300 400 500

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

iteration

F
P

_I
nt

er
ce

pt

0 100 200 300 400 500

0.
6

0.
7

0.
8

0.
9

1.
0

iteration

F
P

_s
ta

nd
lr

t

0 100 200 300 400 500

0
1

2
3

4
5

6
7

iteration

R
P

2_
va

r_
In

te
rc

ep
t

0 100 200 300 400 500

0
5

10
15

iteration

R
P

1_
va

r_
In

te
rc

ep
t

Figure 6: Chain trajectories from a model fit with custom (non-IGLS) starting values.

be modified as well, including Wishart or gamma priors for the covariance matrix, or scalar
variance, in the random part of the model; see ?runMLwiN or ?prior2macro for further details.
By default, MLwiN’s MCMC engine uses IGLS estimates as starting values for each parameter;
this is one of the reasons its MCMC engine converges comparatively quickly which is an
advantage over for example WinBUGS. However, if we wished to change the starting values,
we can easily do so via the estoptions argument: specifically the startval list. Here we
have specified starting values of -2 and 5 for the coefficient estimates of the Intercept and
standlrt, respectively, in the fixed part of the model, and starting values of 2 and 4 for
σ2

u and σ2
e , respectively, in the random part of the model. For illustrative purposes, we also

dispense with the burnin, allowing us to subsequently view the first 500 iterations, as these
will be most influenced by the starting values:

R> OurStartingValues <- list(FP.b = c(-2, 5), RP.b = c(2, 4))
R> startvalMCMC <- runMLwiN(F3, data = tutorial,
+ estoptions = list(EstM = 1, startval = OurStartingValues,
+ mcmcMeth = list(burnin = 0, iterations = 500)))

18 R2MLwiN: A Package to Run MLwiN from within R

R> trajectories(startvalMCMC["chains"], Range = c(1, 500))

Here we can see, in Figure 6, the chains quickly moving from the starting values we have
given them to values closer to those we would have received from an initial IGLS fit.
Finally, it is also a simple matter to change the random number seed from the default of 1
(e.g., estoptions = list(EstM = 1, mcmcMeth = list(seed = 2)).

8. Adding a random slope/coefficient
In the modelling so far we have assumed that only the intercept term in our models varies
across clusters. We have already included standlrt in the fixed part of the model to allow
for a fixed slope effect; if we also include it to the left of | school in the random part of
the model, we will additionally allow the coefficient of our predictor to randomly vary across
level 2 units, thus specifying Equation 4.

normexamij = β0 + β1standlrtij + u0j + u1jstandlrtij + eij(
u0j

u1j

)
∼ N

{(
0
0

)
,

(
σ2

u0
σu01 σ2

u1

)}
eij ∼ N

(
0, σ2

e

) (4)

R> F4 <- normexam ~ 1 + standlrt + (1 + standlrt | school) + (1 | student)
R> (standlrtRS_MCMC <- runMLwiN(
+ Formula = F4, data = tutorial,
+ estoptions = list(EstM = 1, resi.store.levs = 2)))

-*-
MLwiN (version: 2.36) multilevel model (Normal)

N min mean max N_complete min_complete mean_complete max_complete
school 65 2 62.44615 198 65 2 62.44615 198
Estimation algorithm: MCMC Elapsed time : 2.12s
Number of obs:4059 (from total 4059) Number of iter:5000 Chains:1 Burn-in:500
Bayesian Deviance Information Criterion (DIC)
Dbar D(thetabar) pD DIC
9122.986 9031.321 91.666 9214.652

The model formula:
normexam ~ 1 + standlrt + (1 + standlrt | school) + (1 | student)
Level 2: school Level 1: student

The fixed part estimates:

Coef. Std. Err. z Pr(>|z|) [95% Cred. Interval] ESS
Intercept -0.00569 0.03923 -0.15 0.8847 -0.08045 0.07369 233
standlrt 0.55827 0.02047 27.27 9.883e-164 *** 0.51762 0.59858 769
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Journal of Statistical Software 19

The random part estimates at the school level:
Coef. Std. Err. [95% Cred. Interval] ESS

var_Intercept 0.09600 0.01985 0.06396 0.13998 3117
cov_Intercept_standlrt 0.01941 0.00723 0.00681 0.03476 1809
var_standlrt 0.01547 0.00450 0.00810 0.02561 1063

The random part estimates at the student level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_Intercept 0.55427 0.01257 0.52984 0.57961 5189
-*-

Here we see that including such a random slope increases the effective number of parameters
(pD), but the reduction in DIC indicates that, despite this increase in complexity, it is a
better model:

R> ComparingModels <- rbind(standlrtMCMC["BDIC"], standlrtRS_MCMC["BDIC"])
R> rownames(ComparingModels) <- c("Random intercept", "Random slope")
R> ComparingModels

Dbar D(thetabar) pD DIC
Random intercept 9209.146 9149.164 59.98223 9269.128
Random slope 9122.986 9031.321 91.66588 9214.652

We included resi.store.levs = 2 in our list of estoptions, above, to illustrate R2MLwiN’s
predLines function; this draws predicted lines against an explanatory variable for each group
at a higher level, calculating the median and quantiles in doing so (note that predLines uses
a lot of contiguous memory, so we recommend using the 64-bit version of R to mitigate against
any problems this may cause). For example, the script below produces a plot of all 65 school
lines, plus their intervals (see Figure 7). As well as specifying the model object, we also
provide the name of the predictor (xname), the level (lev), and the probabilities (probs) used
to calculate the lower and upper quantiles from which the error bars are plotted:

R> predLines(standlrtRS_MCMC, xname = "standlrt", lev = 2,
+ probs = c(0.025, 0.975), legend = FALSE)

By not declaring otherwise, we have accepted the default of selected = NULL and have thus
produced quite a busy plot, although a general fanning-out pattern is apparent, reflecting
the positive intercept/slope covariance at the school level (cov_Intercept_standlrt, in
the model output above). To better distinguish individual schools, however, we can instead
choose to select just a few (requesting a legend whilst doing so; see Figure 8):

R> predLines(standlrtRS_MCMC, xname = "standlrt", lev = 2,
+ selected = c(30, 44, 53, 59), probs = c(0.025, 0.975), legend = TRUE)

20 R2MLwiN: A Package to Run MLwiN from within R

standlrt

yp
re

d

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

Figure 7: Predicted lines (with 95% credible intervals) for each of the 65 schools in the
tutorial dataset.

standlrt

yp
re

d

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

30 44 53 59

Figure 8: Predicted lines (with 95% credible intervals) for four schools in the tutorial
dataset.

Journal of Statistical Software 21

9. Modeling complex level 1 variance
Another important aspect of multilevel models is their ability to model complex level 1 vari-
ance – i.e., residual heteroscedasticity. Whilst it is not currently possible to fit complex level 1
variance models in R packages such as lme4 (Bates et al. 2015), it is possible to do so via
MLwiN (using both IGLS and MCMC, although here we focus on the latter). For example,
taking the model we have just fitted above, we can allow for the possibility that variability
in normexam within-schools (i.e., around their fitted regression lines) may also depend on
standlrt (see Browne et al. 2002, for an algorithm to fit this extension).
When fitting this model below, note that we have chosen to include mcmcMeth = list(lclo
= 1) in our list of estoptions so that MLwiN will fit the log of the precision (1/variance) at
level 1 as a function of the predictors; since this can take any value on the real line, we are
free of the restrictions on prior distributions which result from fitting the variance as a linear
function of the predictors (see Spiegelhalter et al. 2000):

R> F5 <- normexam ~ 1 + standlrt + (1 + standlrt | school) +
+ (1 + standlrt | student)
R> standlrtC1V_MCMC <- runMLwiN(
+ Formula = F5, data = tutorial,
+ estoptions = (list(EstM = 1, mcmcMeth = list(lclo = 1))))

Having fitted this model, we can then explore how the variance changes both within and
between schools for different values of the intake score, standlrt, for example in a plot
(Figure 9):

R> l2varfn <- standlrtC1V_MCMC["RP"][["RP2_var_Intercept"]] +
+ 2 * standlrtC1V_MCMC["RP"][["RP2_cov_Intercept_standlrt"]] *
+ tutorial[["standlrt"]] + standlrtC1V_MCMC["RP"][["RP2_var_standlrt"]] *
+ tutorial[["standlrt"]]^2
R> l1varfn <- 1 / exp(standlrtC1V_MCMC["RP"][["RP1_var_Intercept"]] +
+ 2 * standlrtC1V_MCMC["RP"][["RP1_cov_Intercept_standlrt"]] *
+ tutorial[["standlrt"]] + standlrtC1V_MCMC["RP"][["RP1_var_standlrt"]] *
+ tutorial[["standlrt"]]^2)
R> plot(sort(tutorial[["standlrt"]]),
+ l2varfn[order (tutorial[["standlrt"]])], xlab = "standlrt",
+ ylab = "variance", ylim = c(0,.7), type = "l")
R> lines(sort(tutorial[["standlrt"]]),
+ l1varfn[order (tutorial[["standlrt"]])], lty = "longdash")
R> abline(v = 0, lty = "dotted")
R> legend("bottomright", legend = c("between-student", "between-school"),
+ lty = c("longdash", "solid"))

Figure 9 indicates that the between-school variation generally increases as standlrt in-
creases, whereas the opposite is true for the between-student (within-school) variation.
Finally, the following sample of three trajectory plots, plotting only the last 500 iterations
(see Figure 10), illustrate that MLwiN has recognized that a different sampling method –
Metropolis Hastings (MH), with its characteristic block-like appearance – is necessary to
update the level 1 variance parameters, with Gibbs sampling updating the other parameters.

22 R2MLwiN: A Package to Run MLwiN from within R

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

standlrt

va
ria

nc
e

between−student
between−school

Figure 9: A plot of the variance function from a random slopes model allowing for hetero-
geneity at level 1.

R> trajectories(standlrtC1V_MCMC["chains"][, "FP_Intercept",
+ drop = FALSE], Range = c(4501, 5000))
R> trajectories(standlrtC1V_MCMC["chains"][, "RP2_var_Intercept",
+ drop = FALSE], Range = c(4501, 5000))
R> trajectories(standlrtC1V_MCMC["chains"][, "RP1_var_Intercept",
+ drop = FALSE], Range = c(4501, 5000))

10. Fitting a 2-level binary response model via MCMC
We will now move on from continuous response models to consider some of the other response
distribution types supported by R2MLwiN. As Table 2 illustrates, many of these, including
the "Binomial" distribution we explore in the next example, can be fitted using IGLS or
MCMC estimation; here, though, we will stay with MCMC in order to illustrate alternative
MCMC methodology implemented in MLwiN, and also interoperability with BUGS, in the
following sections.
Our example dataset is a sub-sample of the 1989 Bangladesh Fertility Survey (Huq and
Cleland 1990), provided as bang1 in both MLwiN and R2MLwiN (see Table 3 for a list of the
variables to be modeled).
Below we construct a logit model to investigate whether the use of contraceptives at the time

Journal of Statistical Software 23

4500 4600 4700 4800 4900 5000

−
0.

10
0.

00

iteration

F
P

_I
nt

er
ce

pt

4500 4600 4700 4800 4900 5000

0.
06

0.
10

0.
14

iteration

R
P

2_
va

r_
In

te
rc

ep
t

4500 4600 4700 4800 4900 5000

0.
55

0.
60

0.
65

iteration

R
P

1_
va

r_
In

te
rc

ep
t

Figure 10: Modeling complex level 1 variance: chain trajectories of (from top) β0, σ2
u0, and

σ2
e0.

Variable Description
woman Identifying code for each woman.
district Identifying code for each district.
use Contraceptive use status at time of survey; levels are Not_using

and Using.
lc Number of living children at time of survey; levels correspond to

none (None), one (One_child), two (Two_children), or three
or more children (Three_plus).

age Age of woman at time of survey (in years), centered on the
sample mean of 30 years.

urban Type of region of residence; levels are Rural and Urban.

Table 3: Variables in the bang1 dataset, as modeled in the worked example.

of the survey is predicted by the age of the respondent, their number of children living at the
time of the survey (lc), and the type of region in which they reside (urban); furthermore,
we will allow the coefficient of the latter predictor to randomly-vary at the district-level
to explore whether variability between Urban areas within districts differs from that between

24 R2MLwiN: A Package to Run MLwiN from within R

Rural areas within districts, producing the random coefficient model in Equation 5.
useij ∼ Bernouilli(πij)

logit(πij) = β0 + β1ageij + β2lcOne_childij + β3lcTwo_childrenij + β4lcThree_plusij

+ β5urbanij + u0j + u5jurbanij(
u0j

u5j

)
∼ N

{(
0
0

)
,

(
σ2

u0
σu05 σ2

u5

)}
(5)

We can fit this, via R2MLwiN, as follows:

R> data("bang1")
R> F6 = logit(use) ~ 1 + age + lc + urban + (1 + urban | district)
R> binomialMCMC <- runMLwiN(Formula = F6, D = "Binomial", data = bang1,
+ estoptions = list(EstM = 1))
R> trajectories(binomialMCMC["chains"][,"FP_Intercept", drop = FALSE])

As discussed in Table 2, the terms in the parentheses immediately following logit are of the
form response variable, denominator; specifying the demoninator is actually optional,
and if not specified will take the form of a constant of ones, which is appropriate here. Since
MLwiN requires binary response variables to be of the form 0/1, R2MLwiN transforms it
into that format having detected it is indeed binary, and thus we are modeling a Bernoulli
distribution. lc is a factor variable and so dummy variables will be added as predictors with
None (see min(levels(bang1$lc))) as the reference category (the relevel function, part of
the stats package, can be used to assign an alternative reference category, by re-ordering the
levels of a factor prior to an runMLwiN call).
We have requested, on the last line, a plot of the chain trajectory for the intercept in the
fixed part of the model. As the resulting plot (Figure 11) indicates, mixing here looks rela-
tively poor, and so it may be worthwhile examining some of the alternative MCMC methods
implemented in MLwiN; we review these, and apply one to the current example, in the next
section.

11. Alternative MCMC methods implemented in MLwiN
MLwiN’s MCMC engine features a number of methods which can improve the efficiency of
MCMC estimation (see Browne 2012, chapters 21-25). Table 4 provides a summary of avail-
able methods, one of which – orthogonal parameterization – we explore in the example below,
before moving on to discuss further options via MLwiN’s interoperability with BUGS.

11.1. An example using orthogonal parameterization to improve mixing
Given that we encountered poor mixing in our last model fit, above, we will examine whether
orthogonal parameterization may help; this replaces a set of fixed effect predictors with an
alternative group of predictors that span the same parameter space, but are orthogonal, and is
particularly useful for instances such as this, where we are modeling a non-normal distribution
(since fixed effects in normal models are generally updated in a block).
Here, then, we redefine estoptions, toggling orth to 1 in the list of mcmcOptions, and run
the model again:

Journal of Statistical Software 25

0 1000 2000 3000 4000 5000

−
2.

4
−

2.
0

−
1.

6
−

1.
2

iteration

F
P

_I
nt

er
ce

pt

Figure 11: Chain trajectory of β0 from a binomial response model, without orthogonal param-
etization.

0 1000 2000 3000 4000 5000

−
2.

2
−

1.
8

−
1.

4

iteration

F
P

_I
nt

er
ce

pt

Figure 12: Chain trajectory of β0 from a binomial response model, with orthogonal parame-
tization.

R> (OrthogbinomialMCMC <- runMLwiN(Formula = F6, D = "Binomial",
+ data = bang1, estoptions = list(EstM = 1, mcmcOptions = list(orth = 1))))

-*-
MLwiN (version: 2.36) multilevel model (Binomial)

N min mean max N_complete min_complete mean_complete max_complete
district 60 2 32.23333 118 60 2 32.23333 118
Estimation algorithm: MCMC Elapsed time : 15.06s
Number of obs:1934 (from total 1934) Number of iter:5000 Chains:1 Burn-in:500
Bayesian Deviance Information Criterion (DIC)
Dbar D(thetabar) pD DIC
2329.877 2273.176 56.702 2386.579

The model formula:
logit(use) ~ 1 + age + lc + urban + (1 + urban | district)
Level 2: district Level 1: l1id

The fixed part estimates:

26 R2MLwiN: A Package to Run MLwiN from within R

Method As currently implemented in ML-
wiN

As specified in
mcmcOptions

Structured MCMC
(e.g., Sargent et al. 2009)

2-level nested normal response
models, with no complex level 1
variation, only

smcm = 1

Structured MVN framework
(e.g., Browne et al. 2009a)

2-level variance components
models only

smvn = 1

Othogonal fixed effect vectors
(e.g., Browne et al. 2009b)

All models orth = 1

Parameter expansion
(e.g., Liu and Wu 1999)

All models paex = c(<L>, 1)

Hierarchical centring
(e.g., Gelfand et al. 1995)

All models hcen = <L>

Table 4: A summary of some alternative methods for MCMC estimation available via the
R2MLwiN package. <L> is an integer specifying the level at which parameter expansion /
hierarchical centering (respectively) is to occur. Taking Structured MCMC as an example,
these methods are implemented as follows: estoptions = list(EstM = 1, mcmcOptions =
list(smcm = 1), ...).

Coef. Std. Err. z Pr(>|z|) [95% Cred. Interval] ESS
Intercept -1.70164 0.16702 -10.19 2.237e-24 *** -2.03503 -1.38148 246
age -0.02645 0.00798 -3.31 0.0009172 *** -0.04191 -0.01117 1063
lcOne_child 1.12627 0.16211 6.95 3.716e-12 *** 0.80576 1.45134 923
lcTwo_children 1.34947 0.17658 7.64 2.133e-14 *** 1.00799 1.69571 921
lcThree_plus 1.34643 0.18528 7.27 3.676e-13 *** 0.97975 1.70612 872
urbanUrban 0.81100 0.19211 4.22 2.426e-05 *** 0.45403 1.22458 151
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the district level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_Intercept 0.41681 0.13544 0.21169 0.73256 223
cov_Intercept_urbanUrban -0.41923 0.17235 -0.83135 -0.16282 139
var_urbanUrban 0.70042 0.29966 0.28379 1.43387 102

The random part estimates at the l1id level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_bcons_1 1.00000 1e-05 1.00000 1.00000 5000
-*-

R> trajectories(OrthogbinomialMCMC["chains"][,"FP_Intercept", drop = FALSE])

As such, we see that the mixing is considerably better (Figure 12), with the ESS considerably-
improved for the fixed effects (see comparison table in the following section). The model
indicates that the probability of contraceptive use decreases with age, but increases with the
number of living children, and is greater in Urban areas; furthermore, the variance in contra-

Journal of Statistical Software 27

ceptive use differs between Rural areas (estimated as 0.417), and Urban areas (estimated as
0.417− 2× 0.419 + 0.7 = 0.28).

12. Using R2MLwiN to write BUGS code
As well as using its own MCMC estimation engine, MLwiN can write code to fit models in
WinBUGS (Lunn et al. 2000) and OpenBUGS (Lunn et al. 2009), with the inclusion of its
own IGLS estimates as starting values. With the aid of the rbugs package (Yan and Prates
2013), the user can employ a single runMLwiN function call to obtain starting values from an
IGLS run in MLwiN, automatically generate the necessary BUGS model code, initial values,
data files, and script, and then fit the model in BUGS.
As demonstrated in the script below, WinBUGS and OpenBUGS are called via the runMLwiN
argument BUGO; this is a vector where n.chains corresponds to the number of chains, debug
determines whether BUGS stays open following completion of the model run, seed sets the
random number seed, bugs specifies the path, and OpenBUGS can toggle between FALSE for
WinBUGS, and TRUE for OpenBUGS. Here we fit the same model as in the example above
(the burnin, iterations and thinning we specify are the defaults, we simply make them
explicit here for the purposes of this example); by specifying show.file = TRUE in the list
of estoptions, the BUGS model is returned (see supplementary materials):

R> WinBUGS <- "C:/WinBUGS14/WinBUGS14.exe"
R> BUGSmodel = runMLwiN(Formula = F6, D = "Binomial",
+ data = bang1, estoptions = list(EstM = 1,
+ mcmcMeth = list(burnin = 500, iterations = 5000, thinning = 1)),
+ BUGO = c(n.chains = 1, debug = FALSE, seed = 1,
+ bugs = WinBUGS, OpenBugs = FALSE))
R> summary(BUGSmodel)

Iterations = 1:5000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
beta[1] -1.721e+00 0.161037 0.0022774 0.0097350
beta[2] -2.675e-02 0.007946 0.0001124 0.0002641
beta[3] 1.140e+00 0.158146 0.0022365 0.0053347
beta[4] 1.366e+00 0.179230 0.0025347 0.0068177
beta[5] 1.365e+00 0.181054 0.0025605 0.0087925
beta[6] 8.136e-01 0.171615 0.0024270 0.0081912
deviance 2.329e+03 14.099908 0.1994028 0.5284579
sigma2.u2[1,1] 4.216e-01 0.138640 0.0019607 0.0063190
sigma2.u2[1,2] -4.350e-01 0.187684 0.0026542 0.0098587

28 R2MLwiN: A Package to Run MLwiN from within R

sigma2.u2[2,1] -4.350e-01 0.187684 0.0026542 0.0098587
sigma2.u2[2,2] 7.283e-01 0.341042 0.0048231 0.0199511
u2[1,1] -9.429e-01 0.334778 0.0047345 0.0118369
u2[1,2] 3.969e-01 0.417123 0.0058990 0.0149241
...

On finishing the model run, the model estimates are returned (including the quantiles, not
displayed in the truncated output above), but this time as a summary of an mcmc.list (see
coda (Plummer et al. 2006)).
Running this on our machine took 140 seconds in WinBUGS, which uses (by default) a
multivariate Metropolis update of the fixed effects (Gamerman 1997), whilst it took 16 seconds
to run the model for the same length of chain in MLwiN (both via R2MLwiN), which uses
a single site Metropolis sampler. As the table below indicates, however, the effective sample
sizes (ESSs) from the run in BUGS are considerably larger than those from the run (without
orthogonal parameterization) in MLwiN (although there is considerable improvement when
we opt for orthogonal parameteristion in MLwiN, at least for the fixed effects; this took 15
seconds to run on our machine).

R> cc = cbind(binomialMCMC["FP"], OrthogbinomialMCMC["FP"])
R> dd = cbind(head(binomialMCMC["RP"], -1),
+ head(OrthogbinomialMCMC["RP"], -1))
R> ESS.binMCMC = effectiveSize(binomialMCMC["chains"][,2:10])
R> ESS.orthogMCMC = effectiveSize(OrthogbinomialMCMC["chains"][,2:10])
R> ESStable = round(rbind(cc, dd), 3)
R> BUGSlist <- c(1:6, 8, 9, 11)
R> BUGS.Coeff <- round(summary(BUGSmodel)$statistics[BUGSlist, 1], 3)
R> BUGS.ESS <- as.data.frame(effectiveSize(BUGSmodel))
R> ESStable = cbind(ESStable[, 1], round(ESS.binMCMC), ESStable[, 2],
+ round(ESS.orthogMCMC), BUGS.Coeff, round(BUGS.ESS[BUGSlist,]))
R> colnames(ESStable) = c("A)Coeff.", "A)ESS", "B)Coeff.",
+ "B)ESS", "C)Coeff.", "C)ESS")
R> cat("NB: A = MLwiN(non-orthog.), B = MLwiN(orthog.), C = WinBUGS\n");
+ ESStable

NB: A = MLwiN(non-orthog.), B = MLwiN(orthog.), C = WinBUGS
A)Coeff. A)ESS B)Coeff. B)ESS C)Coeff. C)ESS

FP_Intercept -1.724 61 -1.702 246 -1.721 274
FP_age -0.027 203 -0.026 1063 -0.027 905
FP_lcOne_child 1.157 229 1.126 923 1.140 879
FP_lcTwo_children 1.376 186 1.349 921 1.366 691
FP_lcThree_plus 1.384 102 1.346 872 1.365 424
FP_urbanUrban 0.805 110 0.811 151 0.814 439
RP2_var_Intercept 0.418 206 0.417 223 0.422 481
RP2_cov_Intercept_urbanUrban -0.432 127 -0.419 139 -0.435 362
RP2_var_urbanUrban 0.738 142 0.700 102 0.728 292

Journal of Statistical Software 29

13. Modeling a cross-classified data structure
So far the multilevel models we have examined have been strictly hierarchical, but researchers
may well encounter data structures which are cross-classified (i.e., crossed random effects),
exhibit multiple membership, or indeed a combination of these; R2MLwiN allows users to fit
such models via MCMC estimation.
In the following example we use an educational dataset from Fife in Scotland (available as the
sample dataset xc in MLwiN and R2MLwiN); see Table 5 for a description of the variables
we will model.
We wish to model students’ examination attainment, whilst controlling for clustering due
to their current (secondary) school (sid), but also controlling for clustering due to their
(earlier) primary school too (pid); since not all students who attended a given primary school
all subsequently attended the same secondary school, the former are not nested within the
latter, and so we have a cross-classified structure; see Equation 6, which uses the classification
notation as per Browne et al. (2001).

attaini = β0 + u
(2)
sid(i) + u

(3)
pid(i) + ei

u
(2)
sid(i) ∼ N(0, σ2

u(2))

u
(3)
pid(i) ∼ N(0, σ2

u(3))

ei ∼ N(0, σ2
e)

(6)

As indicated below, we need to specify that the data structure is cross-classified by declaring
xc = TRUE within the list of estoptions:

R> data("xc")
R> F7 = attain ~ 1 + (1 | sid) + (1 | pid) + (1 | pupil)
R> (XCModel <- runMLwiN(Formula = F7, data = xc,
+ estoptions = list(xc = TRUE, EstM = 1)))

-*-
MLwiN (version: 2.36) multilevel model (Normal)

N min mean max N_complete min_complete mean_complete max_complete
sid 19 92 180.78947 290 19 92 180.78947 290
pid 148 1 23.20946 72 148 1 23.20946 72
Estimation algorithm: MCMC Cross-classified Elapsed time : 2.12s
Number of obs:3435 (from total 3435) Number of iter:5000 Chains:1 Burn-in:500

Variable Description
attain Attainment score of pupils at age 16.
pid Primary school identifying code.
sid Secondary school identifying code.
pupil Pupil identifying code.

Table 5: Variables in the xc dataset, as modeled in the worked example.

30 R2MLwiN: A Package to Run MLwiN from within R

Bayesian Deviance Information Criterion (DIC)
Dbar D(thetabar) pD DIC
16940.564 16833.400 107.164 17047.729

The model formula:
attain ~ 1 + (1 | sid) + (1 | pid) + (1 | pupil)
Level 3: sid Level 2: pid Level 1: pupil

The fixed part estimates:

Coef. Std. Err. z Pr(>|z|) [95% Cred. Interval] ESS
Intercept 5.50404 0.18959 29.03 2.69e-185 *** 5.10783 5.86623 225
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the sid level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_Intercept 0.41403 0.20965 0.14194 0.92900 1042

The random part estimates at the pid level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_Intercept 1.15258 0.21475 0.79583 1.62561 1319

The random part estimates at the pupil level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_Intercept 8.11992 0.20175 7.73324 8.52689 4657
-*-

As such we see (below) that 11.9% of the variation in exam attainment at age 16 is attributable
to primary schools with less, 4.3%, attributable to secondary schools, possibly because the
latter are larger, more socially-heterogeneous, institutions (e.g., Goldstein 2010):

R> PercentExplainedBy <- cbind(
+ XCModel["RP"][["RP3_var_Intercept"]] /
+ (XCModel["RP"][["RP1_var_Intercept"]] +
+ XCModel["RP"][["RP2_var_Intercept"]] +
+ XCModel["RP"][["RP3_var_Intercept"]]) * 100,
+ XCModel["RP"][["RP2_var_Intercept"]] /
+ (XCModel["RP"][["RP1_var_Intercept"]] +
+ XCModel["RP"][["RP2_var_Intercept"]] +
+ XCModel["RP"][["RP3_var_Intercept"]]) * 100)
R> colnames(PercentExplainedBy) <- c("sid", "pid")
R> PercentExplainedBy

sid pid
[1,] 4.274312 11.89881

Journal of Statistical Software 31

14. Modeling a multiple membership data structure
Multiple membership models arise when we wish to control for clustering at a given ‘level’ or
classification, but have lower-level units which belong to more than one group at that higher
level. For example, if we wished to model employees’ earnings over the past financial year,
we might want to control for non-independence due to the companies which employed them
during this time. If the employees were employed by more than one company, however (i.e.,
they were a ‘member’ of more than one group at this higher level), it would be judicious to
control for the effects of all of them.
Below we fit such a model, using the wage1 sample dataset (available in both MLwiN and
R2MLwiN); see Table 6 for a description of the variables we will model, and Equation 7 for
the model itself.

logearni = β0 + β1age_40i + β2numjobsi +
∑

j∈company(i)
w

(2)
i,j u

(2)
j + ei

i = 1, ..., N
company(i) ⊂ (1, ..., J)

u
(2)
j ∼ N(0, σ2

u(2))
ei ∼ N(0, σ2

e)

(7)

You can see, below, that the argument mm, specifying the structure of the multiple membership
model, has been included in the list of estoptions (NB since mm is non-NULL, xc defaults
to TRUE). The argument mm can be a list of variable names, a list of vectors, or a matrix
(e.g., see ?df2matrix). Here we employ variable names, which need to be assigned as lists
to mmvar, specifying the classification units, and weights, specifying the weights. In the

Variable Description
id Identifying code for each office worker.
company Identifying code for first company worked for over the last 12

months.
company2 If worked for > 1 company over the last 12 months, identifying

code for second company.
company3 If worked for > 2 company over the last 12 months, identifying

code for third company.
company4 If worked for > 3 company over the last 12 months, identifying

code for fourth company.
logearn Workers’ (natural) log-transformed earnings over the last finan-

cial year.
numjobs The number of companies worked for over the last 12 months.
weight1 Proportion of time worked for employer listed in company.
weight2 Proportion of time worked for employer listed in company2.
weight3 Proportion of time worked for employer listed in company3.
weight4 Proportion of time worked for employer listed in company4.
age_40 Age of workers, centered on 40 years.

Table 6: Variables in the wage1 dataset, as modeled in the worked example.

32 R2MLwiN: A Package to Run MLwiN from within R

variables comprising the mmvar list, the same company, e.g., ACME Ltd, has the same value,
e.g., 8, throughout. The weights specify the employee-level weighting given to each company
they worked for; here we have chosen the proportion of time an employee has spent with
a particular company. Each element of the list corresponds to a level (classification) of the
model, in descending order, so the final NA indicates that there is not a multiple membership
classification at level 1.

R> data("wage1")
R> F8 = logearn ~ 1 + age_40 + numjobs + (1 | company) + (1 | id)
R> OurMultiMemb <- list(list(
+ mmvar = list("company", "company2", "company3","company4"),
+ weights = list("weight1", "weight2", "weight3", "weight4")), NA)
R> (MMembModel <- runMLwiN(Formula = F8, data = wage1,
+ estoptions = list(EstM = 1, drop.data = FALSE, mm = OurMultiMemb)))

-*-
MLwiN (version: 2.36) multilevel model (Normal)

N min mean max N_complete min_complete mean_complete max_complete
company 141 2 21.43262 49 141 2 21.43262 49
Estimation algorithm: MCMC Cross-classified Elapsed time : 1.46s
Number of obs:3022 (from total 3022) Number of iter:5000 Chains:1 Burn-in:500
Bayesian Deviance Information Criterion (DIC)
Dbar D(thetabar) pD DIC
4625.279 4514.715 110.564 4735.843

The model formula:
logearn ~ 1 + age_40 + numjobs + (1 | company) + (1 | id)
Level 2: company Level 1: id

The fixed part estimates:

Coef. Std. Err. z Pr(>|z|) [95% Cred. Interval] ESS
Intercept 3.04872 0.03534 86.26 0 *** 2.98024 3.11807 851
age_40 0.01273 0.00098 13.06 5.924e-39 *** 0.01084 0.01460 4273
numjobs -0.11190 0.02223 -5.03 4.803e-07 *** -0.15446 -0.06892 4594
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the company level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_Intercept 0.05793 0.00916 0.04225 0.07808 2196

The random part estimates at the id level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_Intercept 0.27064 0.00711 0.25717 0.28472 4614
-*-

R> MMembModel["RP"][["RP2_var_Intercept"]] /
+ (MMembModel["RP"][["RP2_var_Intercept"]] +
+ MMembModel["RP"][["RP1_var_Intercept"]]) * 100

Journal of Statistical Software 33

[1] 17.63173

The model indicates (as calculated at the bottom) that company accounted for 17.6% of the
variance in (log-transformed) earnings, having controlled for age and number of jobs. Looking
at the fixed effects, earnings on average increase with age, but those employees working for
more companies over the past 12 months earn on average less; it would be interesting to
investigate whether these effects persist once other variables available in the dataset are
taken into account, such as sex of the employee, and whether they work part-time or not, but
we will leave this model as it is, and move on to our next example.

15. Multivariate response models
Here we illustrate fitting a multivariate response model. In this example dataset (see Browne
2012), taken from the larger junior school project (JSP) dataset (Mortimore et al. 1988),
we have two responses (see Table 7): english – an English test score marked out of 100,
and behaviour – a binary behaviour score taken in the same year. We’re interested in the
correlation between English test performance and behaviour, and the effect of predictors –
such as sex, and an earlier test score (ravens) – on both of them, and also the effect of an
earlier English fluency indicator (fluent) on the english test (i.e., not behaviour, since
preliminary investigation revealed no correlation between the two); see Equation 8.
Note that the MCMC engine in MLwiN can fit mixed response multivariate models, as well as
normal response models, but only if they consist of a mixture of normal responses and binary
responses (with a probit, rather than logit, link), as in this case. In practice latent normal
variables are constructed for each binary response with the value of the binary response
governing the sign of the latent variable as illustrated below:

englishij = β0 + β1sexij + β2ravensij + β3fluentij + u0j + e0ij

behaviour∗ij = β4 + β5sexij + β6ravensij + u4j + e4ij

where behaviour∗ij ≥ 0 if behaviourij = 1
and behaviour∗ij < 0 if behaviourij = 0(

u0j

u4j

)
∼ N

{(
0
0

)
,

(
σ2

u0
σu04 σ2

u4

)}
(
e0ij

e4ij

)
∼ N

{(
0
0

)
,

(
σ2

e0
σe04 1

)}
(8)

R> data("jspmix1")
R> F9 = c(english, probit(behaviour)) ~ 1 + sex + ravens + fluent[1] +
+ (1 | school) + (1[1] | id)
R> (MixedRespMCMC <- runMLwiN(Formula = F9, D = c("Mixed", "Normal",
+ "Binomial"), data = jspmix1, estoptions = list(EstM = 1,
+ mcmcMeth = list(fixM = 1, residM = 1, Lev1VarM = 2))))

Here then we have two terms to the left of the tilde (~) in the model formula, corresponding to
the two responses (their order matters, insofar as we use it to distinguish them when referring
to the response variables in other parts of our model specification). Firstly we have english,

34 R2MLwiN: A Package to Run MLwiN from within R

Variable Description
school Identifying code for school.
id Identifying code for pupil.
sex Sex of pupil, with levels female and male.
fluent Fluency at English measure taken in Year 1, where 0 = begin-

ner, 1 = intermediate, 2 = fully fluent.
ravens Test score in Year 1, marked out of 40.
english English test score taken in Year 3, marked out of 100.
behaviour Behaviour rating taken in Year 3, coded lowerquarter if pupil

rated in bottom 25%, and upper otherwise.

Table 7: Variables in the jspmix1 dataset, as modeled in the worked example.

and then our binary variable behaviour: this is modeled via a probit link and, since we have
not specified otherwise, a constant of ones as the denominator. The default is for predictors
added to the right of the tilde to have separate coefficients (i.e., one for each category) unless
their name is suffixed by square brackets. In the case of the latter, a common coefficient is
added to the model for the response(s) indicated in the numeric identifier within the square
brackets. In this example, then, the model formula specifies separate coefficients for sex and
ravens, and a common coefficient for fluent to be added to the response we earlier listed
first (english). Finally, separate coefficients for the intercept are allowed to vary at level 2
(school) and also at level 1 (id), but the latter is only applicable in the case of the normal
response variable (english; hence 1[1]).
Next, after requesting MCMC estimation, and Gibbs sampling (denoted by 1) as the method
used to update both the fixed (fixM) and the random effects (residM), and univariate MH
(denoted by 2; 3 corresponds to multivariate MH – see ?write.MCMC for further details) to
update the level 1 variance (Lev1VarM), we specify our runMLwiN function call. The arguments
here will be familiar to you now, although we encounter a slightly different format for the
value we assign to the distribution: if our multivariate response model consisted only of
normal responses, we would simply specify "Multivariate Normal"; since we have mixed
response types, however, we must identify the distribution of each (in an order corresponding
to their position in the preceding model formula), hence the character string: D = c("Mixed",
"Normal", "Binomial").

-*-
MLwiN (version: 2.36) multilevel model (Mixed)

N min mean max N_complete min_complete mean_complete max_complete
school 47 7 23.80851 76 47 7 23.80851 76
Estimation algorithm: MCMC Elapsed time : 3.95s
Number of obs:1119 (from total 1119) Number of iter:5000 Chains:1 Burn-in:500
Deviance statistic: NA

The model formula:
c(english, probit(behaviour)) ~ 1 + sex + ravens + fluent[1] +

(1 | school) + (1[1] | id)
Level 2: school Level 1: id

Journal of Statistical Software 35

The fixed part estimates:
Coef.Std. Err. z Pr(>|z|) [95% Cred. Interval] ESS

sexmale_english -6.23710 1.03073 -6.05 1.438e-09 *** -8.25154 -4.23264 4371
sexmale_behaviour -0.41890 0.08912 -4.70 2.595e-06 *** -0.59441 -0.24209 1411
ravens_english 1.65807 0.09131 18.16 1.092e-73 *** 1.47805 1.83770 3974
ravens_behaviour 0.05722 0.00774 7.39 1.456e-13 *** 0.04204 0.07242 1045
fluent_1 6.36146 1.28814 4.94 7.873e-07 *** 3.86164 8.85984 3720
Intercept_1 -9.19443 3.23664 -2.84 0.004501 ** -15.64483 -2.93315 3021
Intercept_2 -0.36147 0.19366 -1.87 0.06197 . -0.74739 0.01087 1219
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the school level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_Intercept_1 41.50795 12.01852 23.29346 69.47876 1734
cov_Intercept_1_Intercept_2 0.05258 0.42969 -0.77081 0.92794 628
var_Intercept_2 0.06297 0.02899 0.02167 0.13411 437

The random part estimates at the id level:

Coef. Std. Err. [95% Cred. Interval] ESS
var_bcons_2 1.00000 0.00001 1.00000 1.00000 5000
cov_bcons_2_Intercept_1 6.22663 0.70827 4.77651 7.53054 347
var_Intercept_1 291.91324 12.51061 267.92679 316.88733 740
-*-

The model indicates that the Year 1 ravens test score has a positive effect on both of the
Year 3 response variables we have fitted, whilst the Year 1 measure of fluency in English
has a positive effect on the Year 3 English test score. Girls are found to both have a higher
behaviour rating, and a better Year 3 English test score, than boys. There is a positive cor-
relation between the two response variables at the pupil-level, but the correlation is negligible
at the school-level:

R> CompareCorrelation <- cbind(
+ MixedRespMCMC["RP"][["RP2_cov_Intercept_1_Intercept_2"]] /
+ sqrt(MixedRespMCMC["RP"][["RP2_var_Intercept_1"]] *
+ MixedRespMCMC["RP"][["RP2_var_Intercept_2"]]),
+ MixedRespMCMC["RP"][["RP1_cov_bcons_2_Intercept_1"]] /
+ sqrt(MixedRespMCMC["RP"][["RP1_var_Intercept_1"]] *
+ MixedRespMCMC["RP"][["RP1_var_bcons_2"]]))
R> colnames(CompareCorrelation) <- c("school-level", "pupil-level")
R> CompareCorrelation

school-level pupil-level
[1,] 0.03252201 0.3644402

Furthermore, the model indicates that school effects explain 12.2% of the residual variation
in the Year 3 English test scores, and less, 6.1%, of the residual variation in the behaviour
test scores (on the latent response scale):

36 R2MLwiN: A Package to Run MLwiN from within R

R> ExplainedBySchool <- cbind(
+ MixedRespMCMC["RP"][["RP2_var_Intercept_1"]] /
+ (MixedRespMCMC["RP"][["RP1_var_Intercept_1"]] +
+ MixedRespMCMC["RP"][["RP2_var_Intercept_1"]]) * 100,
+ MixedRespMCMC["RP"][["RP2_var_Intercept_2"]] /
+ (MixedRespMCMC["RP"][["RP1_var_bcons_2"]] +
+ MixedRespMCMC["RP"][["RP2_var_Intercept_2"]]) * 100)
R> colnames(ExplainedBySchool) <- c("english", "behaviour")
R> ExplainedBySchool

english behaviour
[1,] 12.4491 5.923972

Note, as reflected in the output returned, that the DIC is currently not available for mixed
response models fitted in MLwiN.

16. Running simulations/fitting multiple models
Whilst MLwiN can be run via a macro language and the command line, the R environment
is particularly well-suited to requesting the estimation of a series of models, and the efficient
post-processing of their results.
For example, simulation studies can be a useful tool for researchers wishing to investigate hy-
potheses such as how sensitive, or biased, their model estimates are to the different estimation
methods which could be used to derive them. We will illustrate this with an example based on
Browne and Draper (2000, 2006), and also Chapter 8 of Browne (2012), comparing Bayesian
and likelihood-based methods of estimating multilevel models with very few level 2 units.
Here we simulate a series of datasets from ‘true’ parameter values, and then fit each dataset
to a model via the estimation methods of interest, before investigating how sensitive the model
estimates are with regard to the methods used to derive them (see demo(MCMCGuide08) for
an example of conducting such a study using parallel processing).
First we generate a dataset of 108 pupils, evenly-distributed across 6 schools; we will fit a
variance components model, and so will also generate a constant (cons) for the intercept, and
we also specify the structure of our model (the variable resp will be generated later):

R> set.seed(1)
R> pupil <- 1:108
R> school <- rep(1:6, each = 18)
R> F10 <- resp ~ 1 + (1 | school) + (1 | pupil)

Next we will fit two models – one via Bayesian MCMC methods and one via IGLS (accepting
R2MLwiN’s default settings) – to each of 100 simulated datasets in which the response
variable (resp) is generated anew from the pupil- and school-level variances (40 and 10,
respectively) and fixed effects (β0 = 30) for each dataset; the estimates from each model are
then compiled (in IGLS_array and MCMC_array, with some additional information collected
from the MCMC chains, namely the median estimate of the level 1 and levels 2 variances, and
also whether the ‘true’ parameter values fall within the 95% credible (i.e., coverage) intervals):

Journal of Statistical Software 37

R> ns <- 100
R> IGLS_array <- MCMC_array = array(, c(3, 2, ns))
R> MCMC_median <- data.frame(RP2_var_Intercept = rep(0, ns),
+ RP1_var_Intercept = rep(0, ns))
R> CounterMCMC <- rep(0, 3)
R> Actual <- c(30, 10, 40)
R> for(i in 1:ns) {
+ u_short <- rnorm(6, 0, sqrt(Actual[2]))
+ u <- rep(u_short, each = 18, len = 108)
+ e <- rnorm(108, 0, sqrt(Actual[3]))
+ resp <- Actual[1] * 1 + u + e
+ simData <- data.frame(cbind(pupil, school, resp))
+ simModelIGLS <- runMLwiN(Formula = F10, data = simData)
+ IGLS_array[,,i] <- cbind(coef(simModelIGLS), diag(vcov(simModelIGLS)))
+ simModelMCMC <- runMLwiN(
+ Formula = F10, estoptions = list(EstM = 1), data = simData)
+ MCMC_array[,,i] <- cbind(coef(simModelMCMC), diag(vcov(simModelMCMC)))
+ MCMC_median[i,] <-
+ c(median(simModelMCMC["chains"][,"RP2_var_Intercept"]),
+ median(simModelMCMC["chains"][,"RP1_var_Intercept"]))
+ if (Actual[1] >
+ quantile(simModelMCMC["chains"][,"FP_Intercept"], 0.025) &
+ Actual[1] <
+ quantile(simModelMCMC["chains"][,"FP_Intercept"], 0.975)) {
+ CounterMCMC[1] <- CounterMCMC[1] + 1
+ }
+ if (Actual[2] >
+ quantile(simModelMCMC["chains"][,"RP2_var_Intercept"], 0.025) &
+ Actual[2] <
+ quantile(simModelMCMC["chains"][,"RP2_var_Intercept"], 0.975)) {
+ CounterMCMC[2] <- CounterMCMC[2] + 1
+ }
+ if (Actual[3] >
+ quantile(simModelMCMC["chains"][,"RP1_var_Intercept"], 0.025) &
+ Actual[3] <
+ quantile(simModelMCMC["chains"][,"RP1_var_Intercept"], 0.975)) {
+ CounterMCMC[3] <- CounterMCMC[3] + 1
+ }
+ }

Having now obtained the information we need from each estimation method, for each of
the 100 simulated datasets, we now need to summarize our results; here we calculate the
percentage bias of the average estimate away from the ‘true’ parameter value, together with
the percentage interval coverage. For IGLS we use central Gaussian (mean ± 1.96 × sd)
intervals, but for alternative intervals see Browne and Draper (2006):

R> aa <- sapply(1:ns, function(x) na.omit(

38 R2MLwiN: A Package to Run MLwiN from within R

+ stack(as.data.frame(IGLS_array[, , x])))$values)
R> counterIGLS <- rep(0,3)
R> for (i in 1:ns) {
+ if (Actual[1] > aa[1,i] - 1.96 * sqrt(aa[4,i]) &
+ Actual[1] < aa[1,i] + 1.96 * sqrt(aa[4,i])) {
+ counterIGLS[1] <- counterIGLS[1] + 1
+ }
+ if (Actual[2] > aa[2,i] - 1.96 * sqrt(aa[5,i]) &
+ Actual[2] < aa[2,i] + 1.96 * sqrt(aa[5,i])) {
+ counterIGLS[2] <- counterIGLS[2] + 1
+ }
+ if (Actual[3] > aa[3,i] - 1.96 * sqrt(aa[6,i]) &
+ Actual[3] < aa[3,i] + 1.96 * sqrt(aa[6,i])) {
+ counterIGLS[3] <- counterIGLS[3] + 1
+ }
+ }
R> Percent_interval_coverage <- (counterIGLS / ns) * 100
R> Mean_across_simus <- round(c(mean(aa[1,]), mean(aa[2,]), mean(aa[3,])), 2)
R> Percent_bias <- round(-100 * (1 - Mean_across_simus / Actual), 2)
R> IGLS_results <- cbind(Mean_across_simus, Actual, Percent_bias,
+ Percent_interval_coverage)
R> rownames(IGLS_results) <- c("beta0", "sigma2_u", "sigma2_e")
R> Percent_interval_coverage <- (CounterMCMC / ns) * 100
R> bb <- sapply(1:ns, function(x) na.omit
+ (stack(as.data.frame(MCMC_array[,,x])))$values)
R> Mean_across_simus <- round(c(mean(bb[1,]), mean(bb[2,]), mean(bb[3,])), 2)
R> Percent_bias <- round(-100 * (1 - Mean_across_simus / Actual), 2)
R> MCMC_results <- cbind(Mean_across_simus, Actual, Percent_bias,
+ Percent_interval_coverage)
R> rownames(MCMC_results) <- c("beta0", "sigma2_u", "sigma2_e")
R> cat("Simulation results using IGLS\n"); IGLS_results

Simulation results using IGLS
Mean_across_simus Actual Percent_bias Percent_interval_coverage

beta0 29.78 30 -0.73 87
sigma2_u 8.12 10 -18.80 77
sigma2_e 40.70 40 1.75 93

R> cat("Simulation results using MCMC\n"); MCMC_results

Simulation results using MCMC
Mean_across_simus Actual Percent_bias Percent_interval_coverage

beta0 29.57 30 -1.43 94
sigma2_u 16.20 10 62.00 91
sigma2_e 42.14 40 5.35 96

Whilst conducting fewer simulations (with fewer chain iterations too) than Browne and Draper
(2006), the results are still largely in keeping with theirs, indicating little bias for the intercept,

Journal of Statistical Software 39

slight bias (particularly via MCMC) for the level 1 variance, and considerable bias for the
level 2 variance. Furthermore, the interval coverages tend to be better for MCMC, and this
is especially so for the level 2 variance. Incidentally, Browne and Draper (2006) found that
the median estimate when specifying Γ(ε, ε) priors has considerably less bias, as we find here:

R> Mean_across_simus <- round(c(mean(MCMC_median$RP2_var_Intercept),
+ mean(MCMC_median$RP1_var_Intercept)), 2)
R> Actual <- tail(Actual, -1)
R> Percent_bias <- round(-100 * (1 - Mean_across_simus / Actual), 2)
R> Percent_interval_coverage <- tail(Percent_interval_coverage, -1)
R> MCMC_results2 <- cbind(Mean_across_simus, Actual, Percent_bias,
+ Percent_interval_coverage)
R> rownames(MCMC_results2) <- c("sigma2_u", "sigma2_e")
R> cat("Simulation results based on median MCMC estimates\n"); MCMC_results2

Simulation results based on median MCMC estimates
Mean_across_simus Actual Percent_bias Percent_interval_coverage

sigma2_u 10.21 10 2.10 91
sigma2_e 41.53 40 3.83 96

17. Other models and features
In addition to the models covered in the examples above, MLwiN, via R2MLwiN, has a
number of other useful features; examples of many of these can be found in R2MLwiN’s
demos (see Section 1.3), e.g., (with relevant demo in parentheses): adjusting for measure-
ment errors in predictors (MCMCGuide14), fitting multiple membership multiple classification
(MMMC) models (MCMCGuide16), fitting spatial data models (MCMCGuide17), creating impu-
tations for multilevel datasets with missing values (MCMCGuide18), modeling autoregressive
residual structures at level 1 (MCMCGuide19), and multilevel factor analysis (MCMCGuide20).

18. Conclusions
This paper has introduced R2MLwiN, a new package which calls the multilevel modeling
software MLwiN from within the R environment. As such, it offers a route other than the GUI,
or direct authoring of macros, to run MLwiN, enabling users to benefit from working within
the R environment (e.g., to parsimoniously fit multiple models, and compile and analyze
the results returned using the many statistical and graphical functions available in R). In
addition, R2MLwiN offers functionality not commonly-supported by existing R packages,
such as modeling complex level 1 variance, multiple membership models, multivariate response
models, writing (and running) BUGS models with automatically-generated model code and
IGLS starting values, and MLwiN’s interactive equation and graphics windows available via
its GUI, which can be opened from R (if running via Windows or in Wine (Wine Development
Team 2015) on other platforms). As a means to call MLwiN externally R2MLwiN joins
the recently-developed programme Stat-JR (Charlton et al. 2013) (which interoperates with
a large range of statistical software programmes) and the Stata package (StataCorp. 2015)

40 R2MLwiN: A Package to Run MLwiN from within R

runmlwin (Leckie and Charlton 2013). This work therefore has the potential to be of benefit
to a range of research communities, offering an accessible means of addressing a common
research problem: namely modeling datasets with multilevel structures.

Acknowledgments
This research was funded mainly under the e-Stat project, a quantitative node of the UK
Economic and Social Research Council (ESRC)’s National Centre for E-Social Science and
Digital Social Research programmes (grant number RES-149-25-1084), and latterly under
the ESRC-funded research grants LEMMA 3 (RES-576-25-0032) and ‘The use of interactive
electronic books in the teaching and application of modern quantitative methods in the social
sciences’ (ES/K007246/1).
We thank two anonymous referees for their constructive comments on the manuscript and the
R2MLwiN package, and also Dr. Rebecca Pillinger for her helpful remarks on the package,
all of which have helped improve both.

References

Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Browne WJ (2012). MCMC Estimation in MLwiN Version 2.26. Centre for Multilevel Mod-
elling, University of Bristol.

Browne WJ, Akkol S, Goldstein H (2009a). “MCMC Algorithms for Structured Multivariate
Normal Models.” Unpublished manuscript, URL http://seis.bris.ac.uk/~frwjb/esrc/
smvn-2.pdf.

Browne WJ, Draper D (2000). “Implementation and Performance Issues in the Bayesian
and Likelihood Fitting of Multilevel Models.” Computational Statistics, 15, 391–420. doi:
10.1007/s001800000041.

Browne WJ, Draper D (2006). “A Comparison of Bayesian and Likelihood-Based Methods
for Fitting Multilevel Models.” Bayesian Analysis, 1, 473–550. doi:10.1214/06-ba117.

Browne WJ, Draper D, Goldstein H, Rasbash J (2002). “Bayesian and Likelihood Methods
for Fitting Multilevel Models With Complex Level-1 Variation.” Computational Statistics
& Data Analysis, 39(2), 203–225. doi:10.1016/s0167-9473(01)00058-5.

Browne WJ, Goldstein H, Rasbash J (2001). “Multiple Membership Multiple Classification
(MMMC) Models.” Statistical Modelling, 1, 103–124. doi:10.1191/147108201128113.

Browne WJ, Steele F, Golalizadeh M, Green M (2009b). “The Use of Simple Reparame-
terisations to Improve the Efficiency of MCMC Estimation for Multilevel Models With
Applications to Discrete-Time Survival Models.” Journal of the Royal Statistical Society
A, 172, 579–598. doi:10.1111/j.1467-985x.2009.00586.x.

http://dx.doi.org/10.18637/jss.v067.i01
http://seis.bris.ac.uk/~frwjb/esrc/smvn-2.pdf
http://seis.bris.ac.uk/~frwjb/esrc/smvn-2.pdf
http://dx.doi.org/10.1007/s001800000041
http://dx.doi.org/10.1007/s001800000041
http://dx.doi.org/10.1214/06-ba117
http://dx.doi.org/10.1016/s0167-9473(01)00058-5
http://dx.doi.org/10.1191/147108201128113
http://dx.doi.org/10.1111/j.1467-985x.2009.00586.x

Journal of Statistical Software 41

Charlton CMJ, Michaelides DT, Parker, A RM, Cameron B, Szmaragd C, Yang H, Zhang
Z, Frazer AJ, Goldstein H, Jones K, Leckie G, Moreau L, Browne WJ (2013). “Stat-JR
Version 1.0.” URL http://www.bristol.ac.uk/cmm/software/statjr/.

Gamerman D (1997). “Sampling from the Posterior Distribution in Generalized Linear Mixed
Models.” Statistics and Computing, 7, 57–68. doi:10.1023/a:1018509429360.

Gelfand AE, Sahu SK, Carlin BP (1995). “Efficient Parameterisations for Normal Linear
Mixed Models.” Biometrika, 82, 479–488. doi:10.1093/biomet/82.3.479.

Gelman A, Hill J (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press, Cambridge. doi:10.1017/CBO9780511790942.

Goldstein H (1986). “Multilevel Mixed Linear Model Analysis Using Iterative Generalised
Least Squares.” Biometrika, 73, 43–56. doi:10.1093/biomet/73.1.43.

Goldstein H (2010). Multilevel Statistical Models. 4th edition. John Wiley & Sons, London.
doi:10.1002/9780470973394.

Goldstein H, Browne WJ, Rasbash J (2002). “Partitioning Variance in Multilevel Models.”
Understanding Statistics, 1, 223–231. doi:10.1207/s15328031us0104_02.

Goldstein H, Rasbash J, Yang M, Woodhouse G, Pan H, Nuttall D, Thomas S (1993). “A
Multilevel Analysis of School Examination Results.” Oxford Review of Education, 19, 425–
433. doi:10.1080/0305498930190401.

Hadfield JD (2010). “MCMC Methods for Multi-Response Generalized Linear Mixed Models:
The MCMCglmm R Package.” Journal of Statistical Software, 33(2), 1–22. doi:10.18637/
jss.v033.i02.

Healy MJR (1989). NANOSTAT: The Easy-to-Use Statistical Package. Alpha Bridge, London.

Huq NM, Cleland J (1990). Bangladesh Fertility Survey, 1989. National Institute of Popula-
tion Research and Training (NIPORT), Dhaka.

Kass RE, Carlin BP, Gelman A, Neal R (1998). “Markov Chain Monte Carlo in Practice: A
Roundtable Discussion.” The American Statistican, 52, 93–100. doi:10.1080/00031305.
1998.10480547.

Leckie G, Charlton C (2013). “runmlwin: A Program to Run the MLwiN Multilevel Modeling
Sofware From Within Stata.” Journal of Statistical Software, 52(11), 1–40. doi:10.18637/
jss.v052.i11.

Liu JS, Wu YN (1999). “Parameter Expansion for Data Augmentation.” Journal of the
American Statistical Association, 94, 1264–1274. doi:10.1080/01621459.1999.10473879.

Lunn DJ, Jackson C, Best N, Thomas A, Spiegelhalter D (2012). The BUGS Book: A Practical
Introduction to Bayesian Analysis. Chapman & Hall/CRC, Boca Raton.

Lunn DJ, Spiegelhalter D, Thomas A, Best N (2009). “The BUGS Project: Evolu-
tion, Critique, and Future Directions.” Statistics in Medicine, 28, 3049–3067. doi:
10.1002/sim.3680.

http://www.bristol.ac.uk/cmm/software/statjr/
http://dx.doi.org/10.1023/a:1018509429360
http://dx.doi.org/10.1093/biomet/82.3.479
http://dx.doi.org/10.1017/CBO9780511790942
http://dx.doi.org/10.1093/biomet/73.1.43
http://dx.doi.org/10.1002/9780470973394
http://dx.doi.org/10.1207/s15328031us0104_02
http://dx.doi.org/10.1080/0305498930190401
http://dx.doi.org/10.18637/jss.v033.i02
http://dx.doi.org/10.18637/jss.v033.i02
http://dx.doi.org/10.1080/00031305.1998.10480547
http://dx.doi.org/10.1080/00031305.1998.10480547
http://dx.doi.org/10.18637/jss.v052.i11
http://dx.doi.org/10.18637/jss.v052.i11
http://dx.doi.org/10.1080/01621459.1999.10473879
http://dx.doi.org/10.1002/sim.3680
http://dx.doi.org/10.1002/sim.3680

42 R2MLwiN: A Package to Run MLwiN from within R

Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000). “WinBUGS – A Bayesian Modelling
Framework: Concepts, Structure, and Extensibility.” Statistics and Computing, 10, 325–
337. doi:10.1023/a:1008929526011.

Mortimore P, Sammons P, Stoll L, Lewis D, Ecob R (1988). School Matters. Open Books,
Wells.

Park JH, Martin AD, Quinn KM (2016). “CRAN Task View: Bayesian Inference.” Ver-
sion 2016-08-18, URL https://CRAN.R-project.org/view=Bayesian.

Pinheiro JC, Bates DM (2000). Mixed-Effects Models in S and S-PLUS. Springer-Verlag, New
York.

Plummer M, Best N, Cowles K, Vines K (2006). “coda: Convergence Diagnosis and Output
Analysis for MCMC.” R News, 6(1), 7–11. URL https://CRAN.R-project.org/doc/
Rnews/.

Raftery AE, Lewis SM (1992). “How Many Iterations in the Gibbs Sampler?” In JM Bernado,
JO Berfer, AP Dawid, AFM Smith (eds.), Bayesian Statistics 4, pp. 765–776. Oxford
University Press, Oxford.

Rasbash J, Browne WJ, Goldstein H (2003). MLwiN 2.0 Command Manual. Centre for
Multilevel Modelling, University of Bristol.

Rasbash J, Charlton CMJ, Browne WJ, Healy M, Cameron B (2009). MLwiN, V2.1. Centre
for Multilevel Modelling, University of Bristol, URL http://www.bristol.ac.uk/cmm/
software/mlwin/.

Rasbash J, Steele F, Browne WJ, Goldstein H (2012). A User’s Guide to MLwiN, V2.26.
Centre for Multilevel Modelling, University of Bristol.

Raudenbush SW, Bryk AS (2002). Hierarchical Linear Models. 2nd edition. Sage Publications,
Thousand Oaks.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Sargent DJ, Hodges JS, Carlin BP (2009). “Structured Markov Chain Monte Carlo.” Journal
of Computational and Graphical Statistics, 9, 217–234. doi:10.1080/10618600.2000.
10474877.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
URL http://lmdvr.R-Forge.R-project.org/.

Skrondal A, Rabe-Hesketh S (2007). “Redundant Overdispersion Parameters in Multilevel
Models for Categorical Responses.” Journal of Educational and Behavioral Statistics, 32(4),
419–430. doi:10.3102/1076998607302629.

Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002). “Bayesian Measures of
Model Complexity and Fit.” Journal of the Royal Statistical Society B, 64, 191–232. doi:
10.1111/1467-9868.00353.

http://dx.doi.org/10.1023/a:1008929526011
https://CRAN.R-project.org/view=Bayesian
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
http://www.bristol.ac.uk/cmm/software/mlwin/
http://www.bristol.ac.uk/cmm/software/mlwin/
https://www.R-project.org/
http://dx.doi.org/10.1080/10618600.2000.10474877
http://dx.doi.org/10.1080/10618600.2000.10474877
http://lmdvr.R-Forge.R-project.org/
http://dx.doi.org/10.3102/1076998607302629
http://dx.doi.org/10.1111/1467-9868.00353
http://dx.doi.org/10.1111/1467-9868.00353

Journal of Statistical Software 43

Spiegelhalter DJ, Thomas A, Best NG (2000). WinBUGS Version 1.3: Examples Volume II.
Medical Research Council Biostatistics Unit, Cambridge.

StataCorp (2015). Stata Statistical Software: Release 14. StataCorp LP, College Station.
URL http://www.stata.com/.

Sturtz S, Ligges U, Gelman A (2005). “R2WinBUGS: A Package for Running WinBUGS
from R.” Journal of Statistical Software, 12(3), 1–16. doi:10.18637/jss.v012.i03.

Wine Development Team (2015). Wine. URL https://www.winehq.org/.

Yan J, Prates M (2013). rbugs: Fusing R and OpenBugs and Beyond. R package version
0.5-9, URL https://CRAN.R-project.org/package=rbugs.

Zeileis A, Hothorn T (2002). “Diagnostic Checking in Regression Relationships.” R News,
2(3), 7–10. URL http://CRAN.R-project.org/doc/Rnews/.

Affiliation:
Zhengzheng Zhang
c/o Centre for Multilevel Modelling
Graduate School of Education
University of Bristol
35 Berkeley Square
Bristol, BS8 1JA, United Kingdom
E-mail: zhengzhengzhang@gmail.com
URL: http://www.bristol.ac.uk/cmm/software/r2mlwin/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
September 2016, Volume 72, Issue 10 Submitted: 2013-09-18
doi:10.18637/jss.v072.i10 Accepted: 2015-07-03

http://www.stata.com/
http://dx.doi.org/10.18637/jss.v012.i03
https://www.winehq.org/
https://CRAN.R-project.org/package=rbugs
http://CRAN.R-project.org/doc/Rnews/
mailto:zhengzhengzhang@gmail.com
http://www.bristol.ac.uk/cmm/software/r2mlwin/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v072.i10

	Introduction
	MLwiN software
	R
	The R2MLwiN package

	Fitting a 2-level continuous response model via IGLS
	Conducting a likelihood ratio test
	Calculating the variance partition coefficient (VPC)

	Storing residuals
	A note on debugmode and show.file
	Fitting a 2-level continuous response model via MCMC
	Calculating the VPC

	Adding a predictor to the fixed part of a model
	Priors, starting values, and random seeds
	Adding a random slope/coefficient
	Modeling complex level 1 variance
	Fitting a 2-level binary response model via MCMC
	Alternative MCMC methods implemented in MLwiN
	An example using orthogonal parameterization to improve mixing

	Using R2MLwiN to write BUGS code
	Modeling a cross-classified data structure
	Modeling a multiple membership data structure
	Multivariate response models
	Running simulations/fitting multiple models
	Other models and features
	Conclusions

