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Abstract

This paper introduces the R package CDM for cognitive diagnosis models (CDMs).
The package implements parameter estimation procedures for two general CDM frame-
works, the generalized-deterministic input noisy-and-gate (G-DINA) and the general di-
agnostic model (GDM). It contains additional functions for analyzing data under these
frameworks, like tools for simulating and plotting data, or for evaluating global model and
item fit. The paper describes the theoretical aspects of implemented CDM frameworks
and it illustrates the usage of the package with empirical data of the common fraction
subtraction test by Tatsuoka (1984).
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1. Introduction

In recent years educational research was characterized by an increasing demand of complex
information on students’ achievement. This may be caused by a growing interest in explain-
ing the results of international comparative studies like the trends in international science
study (TIMSS; Mullis, Martin, Ruddock, O’Sullivan, Arora, and Erberer 2005), the progress
in international reading study (PIRLS; Mullis, Martin, Kennedy, and Foy 2007) and the pro-
gramme for international student assessment (PISA; OECD 2010). It may also be caused
by a strong need to explain the social and ethnic disparities detected in these studies (e.g.,
Mullis et al. 2007).
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At present, the preferred method to model students’ responses in an achievement test are
item response theory (IRT) models (e.g., van der Linden and Hambleton 1997). These mod-
els deliver a quantification of the items’ difficulties and the respondents’ abilities through
real-valued parameters which are measured on one or more continuous factors. In order
to obtain qualitative interpretations of the parameters, each of the continuous factors may
be partitioned into discrete hierarchically ordered competence levels through cut points by
means of a so-called standard setting procedure (Cizek, Bunch, and Konns 2004). A discrete
classification of the students’ abilities into these competence levels may then serve as a kind
of feedback, for example, for evaluating if students fulfill educational standard norms (e.g.,
Martin, Mullis, and Kennedy 2007).
Another method allowing diagnostic conclusions about students’ abilities is a cognitive diag-
nosis model (CDM; Rupp, Templin, and Henson 2010), which comprises two steps: In a first
qualitative step of a CDM analysis, educational and didactic experts have to subdivide the
tested ability into different basic abilities, which are termed skills. For the description of the
skills and their connections to the tested ability the experts often rely on information given in
so-called competence models. In these competence models the skills may be defined through
components in the process of task solving, for example, finding a common denominator in
fractional arithmetics (Tatsuoka 1984), or they represent coarsely defined abilities, for exam-
ple, the six basic skills systems, classification, observation, measurement, prediction and data
(Ackerman, Zhang, Henson, and Templin 2006; Rupp et al. 2010, p. 31f.). After defining the
number and content of the skills, the experts expose in a so-called Q-matrix which skills are
required to master each item (Tatsuoka 1983). Then, in a second quantitative step of the
CDM analysis, the students are classified into dichotomous latent skill classes, which predict
their presence or absence of the before defined skills. The main results are threefold: Firstly,
the distribution of the skill classes allows for statements how many students in the test popu-
lation possess certain combinations of skills. Secondly, the skill mastery probabilities include
information about the percentage of students in the test population possessing the individual
skills. Thirdly, for each individual student a skill class is deduced which is called the stu-
dent’s skill profile and which predicts the possession or nonpossession of the individual skills.
Together all three issues provide a solid empirical base for targeted pedagogical interventions
both on the level of the test population and on the individual student’s level. In contrast to
information obtained from the IRT framework, the CDM results may be interpreted directly
in terms of competences the respondents possess. For further methodical differences between
the CDM and the IRT models see for example Kunina-Habenicht, Rupp, and Wilhelm (2009).
CDMs have several connections to well-established areas in psychometrics: firstly, the theory
of classification, where basic ideas can be found in the mastery model by Macready and
Dayton (1977) and in restricted latent class models by Haertel (1989). Secondly, IRT with
initial approaches in the multicomponent model by Whitely (1980) and in the linear logistic
test model by Fischer (1973), and thirdly, in mathematical psychology, and here especially
the field of knowledge space theory, see for example Doignon and Falmagne (1999). Based
on the multitude of different approaches, CDMs have many names, as for example diagnostic
classification models, cognitive psychometric models, or structured IRT models.
The CDM framework incorporates a huge variety of models which differ basically in three
aspects: firstly, the combination in which students have to possess the skills for success-
fully mastering an item, that is, compensability: In some CDMs all assigned skills have to
be possessed for mastering the items (noncompensatory models), in other CDMs just one
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of the assigned skills has to be possessed, and other CDMs require one of several special
combinations of the assigned skills (compensatory models). Secondly, CDMs vary in their
item dimensionality: CDMs in which exactly one skill is required for mastering each item are
called CDMs with between item dimensionality, whereas CDMs requiring more than one skill
per item have a within item dimensionality. Finally, CDMs differ in the way the stochastic
component is introduced into the model, that is, students can slip or guess in items, in skills,
or in both. In an achievement test each item may follow another CDM. The different CDM
rules for the items are sometimes also called the items condensation rules or simply the item
rules (DiBello, Roussos, and Stout 2006).
Furthermore, CDM approaches may be partitioned into specific CDMs and generalized frame-
works. The latter allow specifying many of the specific CDMs by constraining their parameters
and defining their link functions. There are three common generalized CDM frameworks: the
generalized-deterministic input noisy-and-gate (G-DINA; de la Torre 2011) model, the gener-
alized diagnostic model (GDM; von Davier 2008) and the log-linear cognitive diagnosis model
(LCDM; Henson, Templin, and Willse 2009).
The present work introduces and discusses the R (R Core Team 2016) package CDM (Ro-
bitzsch, Kiefer, George, and Ünlü 2016) for estimating and analyzing CDMs. The package
contains routines for the estimation of the noncompensatory deterministic input noisy-and-
gate (DINA; Haertel 1989; Junker and Sijtsma 2001) model, the compensatory deterministic
input noisy-or-gate (DINO; Junker and Sijtsma 2001) model, and their generalized version,
the G-DINA. These three model types and their parameter estimation process are reviewed
in Sections 2.2, 2.3, and 2.4. Section 2.5 reviews the additional possibilities of the GDM and
gives first prospects of its implementation. The LCDM framework is not exclusively imple-
mented as it is very similar to one form of the G-DINA. Further implemented methods for the
analysis of the before mentioned CDM frameworks are described in Section 2.6. In Section
3 the structure of the R package CDM is described, and Section 4 illustrates all models and
methods with data of the fraction subtraction test by Tatsuoka (1984). Finally, Section 5
sheds light on parameter recovery and speed of the R package CDM.

2. Theory

2.1. Terminology and notation

Consider an achievement test in which I students respond to J items. A value of 1 indicates
a correct item response and a value of 0 an incorrect one. The dichotomous manifest response
of student i, i = 1, . . . , I, to item j, j = 1, . . . , J , is denoted by Xij . The empirical responses
of all I students to all J items are given in a I × J binary data matrix X. The i-th row
Xi of X represents the responses of student i to all J items and is called the i-th student’s
response pattern.
Educational experts define K (K ≤ J) skills αk, k = 1, . . . ,K, which students have to possess
for mastering each of the J items under consideration. For each student i a latent dichotomous
skill profile αi = [αi1, . . . , αiK ] denotes his possession (αik = 1) and nonpossession (αik = 0)
of the K predefined skills. Obviously, these individual skill profiles are unknown (it is one
goal of the CDM analysis to estimate them). Educational experts also define which skills are
required to master which item in a J ×K matrix Q (Tatsuoka 1983): The (j, k)-th element
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qjk of Q equals 1 if skill k is relevant for the mastery of item j and equals 0 otherwise.
Additionally, the experts have to specify the items’ condensation rules (i.e., the specific CDM
each item follows).
CDMs assume that the manifest response Xij of student i to item j arises as a result of his
possessed skills i, the skills required for item j defined in the j-th row qj of the Q-matrix,
and the j-th item’s condensation rule. Because the skills αk are unknown, a CDM algorithm
deduces from the manifest responses, the Q-matrix, and the condensation rules information
on the K skills the student possesses.
This procedure comprises two steps: In a first step, all students are classified into skill classes
αl, l = 1, . . . , L, satisfying a global optimization criterion. Note that the largest possible
number of disjunctive skill classes is L = 2K , arising from all combinations of the assumed
K skills. From this first step the distribution of the skill class probabilities, that is, the
relative frequencies P (αl), l = 1, . . . , L, of students classified into the skill classes αl, is
obtained. Further, we obtain the skill mastery probabilities P (αk), k = 1, . . . ,K, giving for
each skill αk the relative frequency of students in possession of it. Both the distribution of
the skill classes and the skill mastery probabilities allow for diagnostic statements about the
test population, that is, which skills are possessed in which combination and frequency.
In a second step, the CDM algorithm deduces the most probable skill classes each individual
i, i = 1, . . . , I, belongs to. The i-th student’s vector of present and absent skills is also called
the i-th student’s skill profile and is denoted by αi = [αi1, . . . , αiK ]. The skill profiles provide
the basis for individual based diagnostic feedback, forming a solid empirical base for further
instruction and learning.
Note that we have to distinguish between the skill classes αl, l = 1, . . . , L, in the population
and the individual skill profiles αi, i = 1, . . . , I, both being K-length dichotomous vectors.
The L possible skill classes cover all I skill profiles. For the ease of notation we use the same
symbol “α”. It will always become clear from the context whether α1 refers to the first skill
class or the first individual skill profile.

2.2. DINA and DINO

Because of its simplicity and its parsimony the DINA (Haertel 1989; Junker and Sijtsma 2001,
function din in the R package) model is one of the most commonly used and most popular
core CDMs. The DINA model’s noncompensability asserts that students have to possess all
skills assigned to an item for successfully mastering it. On the contrary, the compensatory
DINO (Junker and Sijtsma 2001, function din) model requires students to possess at least
one of the assigned skills for successfully mastering the respective item.
In both, DINA and DINO models, the i-th student’s probability to master the j-th item
involves two components: a deterministic and a probabilistic one. The former states whether
the student is expected to master the j-th item given his possessed skills. In the DINA model
the deterministic component is expressed through the dichotomous latent response

ηij =
K∏
k=1

α
qjk

ik

of student i with skill profile αi = [αi1, . . . , αiK ] to item j. The vector [qj1, . . . , qjK ] again
denotes the q-th row of the Q-matrix which indicates the skills required for the mastery of



Journal of Statistical Software 5

item j. A student who possesses all or even more than these required skills is expected to
master the item and ηij = 1. Otherwise, for a student who is not expected to master the item
ηij = 0. In the DINO model, the deterministic latent response

ηij = 1−
K∏
k=1

(1− αik)qjk

of student i to item j equals 1 if the student possesses at least one of the required skills. The
second, that is the probabilistic component, possible deviates from these expectations: On
the one hand, if student i is expected to master the item, he nevertheless may slip and fail
the item. On the other hand, even if the student is not expected to master the item, he may
succeed by a lucky guess. The probabilities gj of guessing and sj of slipping are modeled as
item specific parameters with

gj = P(Xij = 1| ηij = 0), j = 1, . . . , J

and
sj = P(Xij = 0| ηij = 1), j = 1, . . . , J.

The probability of student i to solve item j results from combining both components

P(Xij = 1|αi, gj , sj) = (1− sj)ηij · g(1−ηij)
j =

{
1− sj for ηij = 1,
gj for ηij = 0.

(1)

Hence, the probability P(Xij = 1|αi, gj , sj) is modeled by only two values: All students who
are not expected to master the item (i.e., ηij = 0) have the chance gj to solve the item by
lucky guess, and all students who are expected to master the item (i.e., ηij = 1) have the
chance 1− sj to actually solve the item without slipping.

2.3. Parameter estimation in the DINA and DINO model

Parameter estimation of the DINA and DINO model is performed by means of marginal
maximum likelihood (MML) estimation. A pertinent way to implement this method is the
expectation-maximization (EM; Dempster, Laird, and Rubin 1977) algorithm (de la Torre
2009b). The EM algorithm iterates between an E-step and an M-step: In the E-step, expected
counts for each item and each group are calculated. Then, the M-step updates the parameter
estimates for the DINA or DINO model using maximization methods. Finally, the E-step and
M-Step alternate until a previously set convergence criterion or a fixed maximum number of
iterations is attained. Note that the process of parameter estimation is carried out in the
same way if different items follow different condensation rules. Note also that for reasons of
simplicity we present the parameter estimation process by the example of the DINA model
(i.e., the DINO model, depending on the definition of the dichotomous latent response ηij),
but it may be extended to more complex CDMs in a straightforward manner (Xu and von
Davier 2008a).
Up to this point, the probability P(Xij = 1|αi) is interpreted as the probability of student
i to master item j given his skills αi. This notion facilitates the interpretation and the
understanding of the models. But the students’ skill profiles are unknown and the goal is to
estimate them. Thus, we should understand P(Xij = 1|αi) as the probability of student i to
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master item j if he would be classified in skill class l = i, l = 1, . . . , L. This convention is
used throughout the following steps.
It is assumed that the responses Xi of student i to the items are independent conditional on
αi (local independence assumption). Furthermore, it is assumed that examinees are mutually
independent as well, because we expect them to represent a random sample of the population.
Let δ = [g, s] be the vector of all item parameters with g = [g1, . . . , gJ ] and s = [s1, . . . , sJ ].
Furthermore let

P
(
Xi

∣∣∣αl, δ) =
J∏
j=1

P (Xij = 1|αl; gj , sj)Xij [1− P (Xij = 1|αl; gj , sj)]1−Xij

be the probability of response vector Xi if student i possesses the skills of skill class αl,
l = 1, . . . , L.
For estimating the DINA model, the marginal log-likelihood

log L(δ,γ) =
I∑
i=1

log L(Xi; δ,γ) =
I∑
i=1

log
[
L∑
l=1

P (Xi|αl; δ) · P(αl|γ)
]

is maximized with respect to the item parameters δ and the parameters γ = [γ1, . . . , γL′ ]
describing the skill class distribution P(αl), l = 1, . . . , L. In case of the estimation of an
unrestricted skill space it holds L = L′ and γl = P(αl) for all l = 1, . . . , L. In case of an
restricted skill space (i.e., through the application of a log-linear skill space or skill hierarchies)
L′ ≤ L − 1. For the ease of presentation in the following we assume unrestricted skill class
distributions.
Prior to the first iteration of the EM algorithm, initial item parameters δ and skill distribution
parameters γ have to be chosen. Then, the EM algorithm alternates between the E-step and
the M-step described in the following:

E-Step

a. The individual posterior distribution can be deduced via Bayes’ theorem:

P(αl |Xi) = P(Xi |αl) P(αl|γ)∑L
m=1 P(Xi |αm) P(αm|γ)

, l = 1, . . . , L.

b. Two types of expected counts are derived from the posterior: The first count is the
expected number

Tjl =
I∑
i=1

P(αl|Xi; δ)

of students which are classified into skill class αl for item j, j = 1, . . . , J . Note that in
case of no missing data Tjl = Tj′l for all j, j′ = 1, . . . , J . The second count

Rjl =
I∑
i=1

Xij · P(αl|Xi; δ)

describes the expected number of students classified in skill class αl while responding
item j correctly.
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M-Step

a. The item parameter vector δ = [g, s] is updated. The estimating equations are obtained
by setting the first derivative of the expected complete log-likelihood with respect to the
item parameters equal to zero. The derivative only involves the two counts obtained in
the E-step. Let

T
(0)
j =

L∑
l=1

Tjl · (1− ηlj)

be the expected number of students lacking at least one of the skills required for the
mastery of item j (i.e., ηlj = 0) and

R
(0)
j =

L∑
l=1

Xij · Tjl · (1− ηlj)

be the expected number of students among T (0)
j who correctly respond to item j. Fur-

thermore, let T (1)
j and R

(1)
j have the same interpretation except that they belong to

students who possess all skills required for item j (i.e., ηlj = 1). Based on this defini-
tions, the items parameters of item j are updated according to

ĝj =
R

(0)
j

T
(0)
j

and ŝj = 1−
R

(1)
j

T
(1)
j

.

b. The skill class distribution P(αl;γ) is updated. Therefore the expected number nl of
students in skill class αl is calculated, namely

nl =
I∑
i=1

P(αl|Xi; δ).

Then the skill class distribution is updated by

P(αl|γ) = nl
I

l = 1, . . . , L.

and the skill mastery probabilities are defined as

P(αk) =
L∑
l=1

αlk · P(αl|γ), k = 1, . . . ,K.

The E- and M-Step alternate until convergence. Convergence may be achieved if the maximal
change between the parameter estimates or the relative change in the deviance is below a spe-
cific predefined value or after a maximum number of iterations. Finally, the covariance matrix
for the estimated δ̂ and γ̂ parameters (i.e., the empirical standard errors) is computed using
the empirical cross-product approach (Paek and Cai 2014). As an other possibility, statistical
inference based on resampling methods (jackknife, repeared replicate weights, bootstrap) can
be conducted by applying IRT.jackknife to a fitted model.
Once the algorithm converged, the individual student classifications or individual skill profiles
can be deduced from the probabilities P(αl|Xi), according to three methods: Firstly, following
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the approach of maximum a priori (MAP) classification, the largest value of P(αl|Xi) gives
the skill class into which student i is classified:

α̂i;MAP = arg max
αl

{P(αl |Xi)}.

Secondly, an individual classification of student i based on maximum likelihood estimation
(MLE) is obtained by maximizing

α̂i;MLE = arg max
αl

{P(Xi |αl)}.

Finally, for a classification of student i based on expected a posteriori probabilities (EAP),
the marginal skill probability P(αk |Xi) of student i for mastering skill k is computed as the
sum of all P(αl |Xi) corresponding to mastery of skill k (i.e., having a 1 in the k-th element)

P(αk |Xi) =
L∑
l=1

αlk · P(αl |Xi), k = 1, . . . ,K.

Then, the i-th student’s EAP skill profile is estimated by

α̃i;EAP = [ P(α1 |Xi), . . . ,P(αK |Xi) ] .

For deducing the dichotomous skill class α̂i;EAP in which student i is classified according to
EAP, each marginal skill mastery probability P(αk|Xi), smaller than 0.5 is set to 0, whereas
each one larger or equal to 0.5 is set to 1. For a comparison of MAP, MLE, and EAP
classification methods see Huebner and Wang (2011).
It remains noting three aspects concerning the estimation algorithm: Firstly, the algorithm
may also handle sampling weights, which is not presented here. Secondly, in particular situa-
tions not all L = 2K skill classes have to be estimated, for example assumptions of hierarchy
between the K skills may be implemented in predefining specific skill class occurrence prob-
abilities P(αl) to be zero. Thirdly, in cases where models have almost as many parameters
as observations, which, consequently, would lead to weakly or nonidentifiable skill classes, Xu
and von Davier (2008b) proposed to change from the unreduced skill space P(αl), l = 1, . . . , L,
to a log-linear smoothed form of the skill space.

2.4. G-DINA

For relaxing this restrictive two-probability constraint, de la Torre (2011) introduced the
G-DINA (function gdin in the R package) framework. In this model, students exhibiting
different sets of required skills have different probabilities of mastering item j. The G-DINA
model employs the item response function

P
(
Xij = 1

∣∣∣α∗j;i, δj) = δj;0 +
K∗j∑
k=1

δj;kα
∗
j;ik+

K∗j−1∑
k=1

K∗j∑
k′=k+1

δj;kk′α
∗
j;ikα

∗
j;ik′+ . . .+δj;12...K∗j

K∗j∏
k=1

α∗j;ik.

(2)
Here α∗j;i = [α∗j;i1, . . . , α∗j;iK∗j ] is the shortened skill profile of student i, which includes only the
skills relevant for item j. ThusK∗j =

∑K
k=1 qjk represents the number of skills which are neces-

sary for the mastery of item j, that is, K∗j is the sum of ones in the j-th row of the Q-matrix. In
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the following, for notational convenience and without loss of generality, let the firstK∗j of allK
skills be the ones required for item j. Then the former skill profiles αi decompose into differ-
ent reduced skill profiles depending on item j, which necessitates the notation of an additional
item index in each skill profile. Furthermore δj = [δj;0, δj;1, . . . , δK∗j ;1, δj;12, . . . , δj;12...K∗j ] in-
cludes the item parameters with respect to item j, with δj;0 being an intercept parameter,
δj;k representing first-order effects, δj;kk′ second-order effects and so on.
If only first-order effects δj;k are modeled (i.e., all other parameters are defined to be zero),
the resulting models are called G-DINA 1way models. In the same manner, G-DINA models
with first-order effects δj;k and second-order interaction effects δj;kk′ are called G-DINA 2way
models. Note that other versions of the G-DINA model use the logit or log link instead of the
identity link (cf. Equation 2) for modeling the response probabilities. Note also that many
core CDMs, as for example the DINA and DINO model, may be derived from the G-DINA
framework by restricting parameters.

2.5. Possibilities of the GDM

The GDM (von Davier 2008, function gdm in the R package) framework includes nearly all
common CDMs for both dichotomous and polytomous response data. Furthermore, with
GDMs polytomous and even (quasi-)continuous skills can be established. Hence, the class
of GDMs also includes a partial credit model for polytomous response data as well as uni-
and multidimensional IRT models. Furthermore, in this framework Q-matrices with polyto-
mous entries may be handled. The estimation of GDMs is based on MML methods and is
implemented in the R package CDM based on an EM algorithm (Xu and von Davier 2008b).

2.6. Some methods for the analysis of CDMs

Model fit

The R package CDM supports the evaluation of model fit via the Akaike information criterion
(AIC; Akaike 1973, function AIC) and the Bayesian information criterion (BIC; Schwarz 1978,
function BIC) or an χ2 overall goodness-of-fit measure which is based on the idea of local
dependence between the items (Chen and Thissen 1997, function IRT.modelfit).
The AIC and BIC indices follow the well known formulas

AIC = −2 log L(X) + 2 · p

and
BIC = −2 log L(X) + log I · p,

where log L(X) denotes the maximal log-likelihood of the model and p represents the total
number of estimated parameters. For example for DINA or DINO models with K underlying
skills it holds p = 2 · J + L− 1.
The χ2 measure evaluates, roughly spoken, the difference between the observed and the model-
predicted response probabilities: While the predicted response probabilities are calculated
assuming local independence between the items, the observed probabilities may deviate from
this assumption. Consequently, if the analyzed CDM model approximates the (dependencies
in the) data well, the χ2 measure provides low values.
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Let N(Xj = n,Xj′ = m) be the observed absolute number of students’ responses fulfilling
Xj = n and Xj′ = m, n,m = 0, 1. Let

N̂(Xj = n,Xj′ = m) =
I∑
i=1

L∑
l=1

P(Xij = n|αl)P(Xij′ = m|αl)P(αl|Xi).

be the predicted absolute number of students in the same response category, where P(αl|Xi)
is the individual posterior from the fitted model and P(Xij = n|αl) = P(Xij = n|αl; δ)
denotes the DINA model’s item response function. Then the difference between the observed
and the predicted probabilities for two arbitrary items j and j′, j, j′ = 1, . . . , J , j 6= j′, is
defined by

χ2
jj′ =

1∑
n=0

1∑
m=0

[
N(Xj = n,Xj′ = m)− N̂(Xj = n,Xj′ = m)

]2
N̂(Xj = n,Xj′ = m)

.

This fit statistic is chi square distributed with one degree of freedom. As a criterion of absolute
fit, the maximal χ2

jj′ is considered (Chen, de la Torre, and Zhang 2013) and compared to the
1− α∗ quantile χ2

1−α∗,1 of the chi squared distribution with one degree of freedom. Here, α∗
is the Holm corrected (Holm 1979) significance level of the desired level α.
As other methods for evaluating the absolute model fit the CDM package contains effect size
measures (function modelfit.cor.din) as introduced by Chen and Thissen (1997), Chen
et al. (2013) DiBello et al. (2006), Maydeu-Olivares (2013) and McDonald and Mok (1995).

Item fit

The R package CDM provides as an item fit statistic the so called root mean square error
of approximation (item-fit RMSEA; Kunina-Habenicht, Rupp, and Wilhelm 2009, function
itemfit.rmsea), which indicates how good an item coincides with the model. The item-fit
RMSEA of item j compares the model-predicted item response probabilities P(Xj = 1|αl)
with the predicted absolute number of correct responses N̂(Xj = 1|αl) in each skill class αl:

RMSEAj =

√√√√ L∑
l=1

p(αl)
[
P(Xj = 1|αl)−

N̂(Xj = 1|αl)
N̂(Xj |αl)

]2

.

Here p(αl) is the frequency of students classified in skill class αl and N̂(Xj |αl) the predicted
total number of responses (i.e., correct and incorrect ones) to item j given by students in skill
class αl. Kunina-Habenicht et al. (2009) recommend to evaluate item fit according to the
following rules of thumb: Items with item fit indices below .05 indicate good fit, items with
RMSEA values below .10 demonstrate moderate fit, and item-fit indices with RMSEAj > .10
imply poor fit.

Item discrimination index

In DINA and DINO models the additional constraint gj < 1−sj ensures that the probability of
mastering an item in possession of all required skills without slipping is higher than the prob-
ability of guessing an item while lacking at least one required skill. Because this constraint is
not considered in the estimation process it may be checked with the item discrimination index
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IDIj = 1− sj − gj (Lee, de la Torre, and Park 2012, function summary.din), where negative
IDI values indicate a violation of this constraint. The IDI may also be seen as a diagnostic
index, reporting for each item how it discriminates between students possessing all skills (i.e.,
having a response probability of 1−sj) and students lacking in at least one skill (i.e., guessing
with probability gj). Thus, IDIs close to 1 signal a good discrimination or “diagnosticity” of
the item, whereas IDI values close to 0 detect items with a low discrimination.

Classification criteria
In some studies it is not only of interest to assess the global model fit but also to evaluate how
well the response behavior of individual students is described by the model. In these cases
classification criteria as the model’s classification accuracy and consistency might be utilized.
Classification accuracy is a measure of how well individual students are correctly classified in
their true skill classes, whereas classification consistency is a measure for the consistence of the
classifications in two parallel test forms with the same items and parameters. In the R package
CDM, the classification accuracy and consistency (function cdm.est.class.accuracy) are
assessed via simulation methods (cf. DiBello et al. 2006) and analytically by the method of
Cui, Gierl, and Chang (2012). Concerning the former, the simulation is conducted with the
estimated model parameters δ̂ and γ̂. Note that both, the accuracy and consistency measures,
rely on the assumption that the specified model is the correct one.

Tetrachoric correlation between skills
It may also be of interest to analyze correlations between the estimated skills. The calcula-
tion is based on the assumptions that latent continuous variables are underlying the latent
dichotomous skill variables and that, under bivariate normality assumptions, the correlation
between two skill variables equals the correlation between the two underlying continuous vari-
ables. With 1 denoting the indicator function, this so-called tetrachoric correlation between
two skills αk and αk′ (cf. Templin, Henson, Templin, and Roussos 2008) is inferred on the
basis of a two times two frequency table with

P(αk = n, αk′ = m) =
L′∑
l=1

1{αlk = n}1{αlk′ = m}P(αl|γ).

3. Structure of the package
The R package CDM provides the three main functions din, gdina, and gdm which allow the
estimation of DINA and DINO, G-DINA and GDM models, respectively. For objects returned
by the model estimation functions dina, gdin, and gdm, S3 methods for generics like print
and summary as well as some additional functions for further analysis of the respective CDMs
are available. The package includes the simulated example data sets sim.dina and sim.dino
for DINA and DINO models while simultaneously it allows to construct response data from
DINA, DINO, and G-DINA models by using the simulation tools sim.din and sim.gdina.
Table 1 yields a scheme of the package structure, whereas the basic output values of the
main functions din, gdin, and gdm and their descriptions are given in Table 2. The functions
attribute.patt, skill.patt, and pattern are not defined for the gdm function because
they are not generalizable for the case of nondichotomous data and skills.
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Command Description din gdina gdm
anova Likelihood ratio test X X X
coef Model parameters X X X
logLik Log-likelihood X X X
plot Graphical illustration X X X
print Model output X X X
summary Summary of model X X X
IRT.compareModels Model comparison (≥ 2 models) X X X
IRT.factor.scores Estimated individual skill profiles α̂i X X X
IRT.likelihood Individual likelihood P(Xi|αl) X X X
IRT.jackknife Generation of standard errors X X X
IRT.modelfit χ2 goodness-of-fit X X X
IRT.posterior Individual posterior P(αl|Xi) X X X
cdm.est.class.accuracy Class. accuracy/consistency X X
itemfit.rmsea RMSEA item fit X X X
skill.cor Tetrachoric correlation of skills X X X
sim.din Simulation of DINA/O data X
sim.gdin Simulation of G-DINA data X

Table 1: S3 methods from R base package for CDM objects (top), S3 methods from CDM
package for CDM objects (middle), and functions (bottom) provided by the CDM package.

Command Description din gdina gdm
Npars Number of estimated parameters X X X
posterior Posterior skill class distribution X X X
attribute.patt Skill class distribution X X
skill.patt Skill mastery probabilities X X
pattern Individual skill profiles X X

Table 2: Main elements contained in the objects returned by din, gdina, and gdm.

4. Examples
The following examples are conducted using data of the well-known fraction-subtraction data
(Tatsuoka 1984), which comprises dichotomous responses of I = 536 junior high school stu-
dents to J = 20 fraction subtraction items. The items, the definition of the K = 8 underlying
skills, and their assignment to the items are given in Table 3. In the R package CDM,
the response data is included in the object fraction.subtraction.data and the respective
Q-matrix in the fraction.subtraction.qmatrix object.

DINA

The estimation of a DINA model, in which it is required that the students possess all assigned
skills for mastering the items, is conducted with the command

R> colnames(fraction.subtraction.qmatrix) <- paste("Skill", 1:8, sep = "_")
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No. Item Skills No. Item Skills
1 5

3 −
3
4 α4, α6, α7 11 41

3 − 24
3 α2, α5, α7

2 3
4 −

3
8 α4, α7 12 11

8 −
1
8 α7, α8

3 5
6 −

1
9 α4, α7 13 33

8 − 25
6 α2, α4, α5, α7

4 31
2 − 23

2 α2, α3, α5, α7 14 34
5 − 32

5 α2, α5
5 43

5 − 3 4
10 α2, α4, α7, α8 15 2− 1

3 α1, α7
6 6

7 −
4
7 α7 16 45

7 − 14
7 α2, α7

7 3− 21
5 α1, α2, α7 17 73

5 −
4
5 α2, α5, α7

8 2
3 −

2
3 α7 18 4 1

10 − 2 8
10 α2, α5, α6, α7

9 37
8 − 2 α2 19 4− 14

3 α1, α2, α3, α5, α7
10 4 4

12 − 2 7
12 α2, α5, α7, α8 20 41

3 − 15
3 α2, α3, α5, α7

Table 3: Assignment of 8 skills to 20 items of fraction subtraction test by Tatsuoka (1984). In
the table the skills are denoted as follows: α1 describes the skill of converting a whole number
to a fraction, α2 is separating a whole number from a fraction, α3 denotes simplifying before
subtracting, α4 stands for finding a common denominator, α5 indicates the skill of borrowing
from whole part, α6 expresses column borrowing to subtract the second numerator from the
first, α7 represents subtracting numerators, and α8 stands for reducing answers to simplest
form.

R> fractions.dina <- din(data = fraction.subtraction.data,
+ q.matrix = fraction.subtraction.qmatrix, rule = "DINA",
+ progress = TRUE)

With the command

R> summary(fractions.dina)

important information about the model is obtained, as for example the values and the number
of the estimated model parameters, goodness-of-fit measures and the tetrachoric correlations
between the skills. All model parameters can be accessed through

R> coef(fractions.dina)

Additionaly a comprehensive item parameter summary, including item parameters and the
item-fit RMSEA measure, is stored in the object

R> fractions.dina$item

The following output is only given for the first 5 out of the altogether 20 items:

type guess se.guess slip se.slip rmsea
Item1 DINA 0.030 0.002 0.089 0.016 0.0527
Item2 DINA 0.016 0.001 0.041 0.008 0.0562
Item3 DINA 0.000 0.000 0.134 0.024 0.0985
Item4 DINA 0.224 0.015 0.110 0.021 0.1489
Item5 DINA 0.301 0.036 0.172 0.019 0.1356
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Furthermore, the tetrachoric correlations between the skills

R> skill.cor(fractions.dina)$cor.skills

Skill_1 Skill_2 Skill_3 Skill_4 Skill_5 Skill_6 Skill_7 Skill_8
Skill_1 1.000 0.351 0.436 0.690 0.643 0.517 0.140 0.416
Skill_2 0.351 1.000 0.424 0.317 0.190 0.498 0.918 0.693
Skill_3 0.436 0.424 1.000 0.365 0.602 0.383 0.401 0.395
Skill_4 0.690 0.317 0.365 1.000 0.554 0.607 0.341 0.319
Skill_5 0.643 0.190 0.602 0.554 1.000 0.514 0.180 0.327
Skill_6 0.517 0.498 0.383 0.607 0.514 1.000 0.569 0.427
Skill_7 0.140 0.918 0.401 0.341 0.180 0.569 1.000 0.634
Skill_8 0.416 0.693 0.395 0.319 0.327 0.427 0.634 1.000

show that especially Skills 2 and 7 provide a very high correlation and may thus be not distin-
guishable given the 20 fraction subtraction items. Gathered from the skill class distribution

R> fractions.dina$attribute.patt

most students (36%) are classified into the skill class “11111111”, in which they are predicted
to master all skills. The skill mastery probabilities are given with

R> fractions.dina$skill.patt

skill.prob
Skill_1 0.580
Skill_2 0.786
Skill_3 0.717
Skill_4 0.688
Skill_5 0.602
Skill_6 0.792
Skill_7 0.814
Skill_8 0.817

According to this result only 58% of the junior high school students are able to convert a
whole number to a fraction (α1), but 81% of the students master subtract numerators (α7)
and to reduce answers to simplest form (α8). The method IRT.factor.scores extracts the
individual student classifications, with for example,

R> IRT.factor.scores(fractions.dina, type = "MLE")[1, ]

MLE.skill1 MLE.skill2 MLE.skill3 MLE.skill4 MLE.skill5 MLE.skill6
1 1 1 0 1 1

MLE.skill7 MLE.skill8
1 1
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specifying the MLE classification of the first student. Accordingly, the MAP and EAP clas-
sifications can be obtained by specifying the respective type. Thus, student 1 is classified
into class “11101111” via MLE meaning that he probably lacks skill α4. The classifications
via MAP and EAP correspond. The main results of a DINA model, including the EAP
classification of an arbitrary student (here: Student 1), may be illustrated by

R> par(mfrow = c(2,2))
R> plot(fractions.dina, pattern = "00010011011101110111", ask = FALSE)

All plots are shown in Figure 1. The first plot on the top left hand side of Figure 1 depicts
the DINA model’s item parameters, that is, the guessing and nonslipping probabilities for
each item. The plot signalizes low discriminations for Items 5 and 8. The second plot on the
top right hand side illustrates the skill mastery probabilities: Students most probably master
skills α8 reduce answers, α7 substract numerators and α6 column borrow. The third plot on
the bottom left hand side shows the skill class distribution. Skill classes in which students
are most frequently classified are labeled. The fourth plot analyzes the possessed skills of an
individual student, in this case Student 1. According to the model Student 1 possesses all
skills except of α4 find a common denominator.

G-DINA

The command

R> fractions.gdina1 <- gdina(fraction.subtraction.data,
+ fraction.subtraction.qmatrix, rule = "GDINA1")

fits a G-DINA 1way model for the fraction subtraction data and the respective Q-matrix.
The distribution of the skill classes, the skill mastery probabilities, and the individual skill
profile for Student 1 may again be accessed via

R> fractions.gdina1$attribute.patt
R> fractions.gdina1$skill.patt
R> IRT.factor.scores(fractions.gdina1, type = "MLE")[1, ]

The full G-DINA model including all interaction effects is obtained with the command

R> fractions.gdina <- gdina(fraction.subtraction.data,
+ fraction.subtraction.qmatrix)

For selecting the more appropriate model, one may compare the goodness of fit by AIC, BIC,
and χ2 indices of the two models

R> AIC(fractions.gdina1)
R> BIC(fractions.gdina1)
R> IRT.modelfit(fractions.gdina1)

or conduct a likelihood ratio test:

R> anova(fractions.gdina1, fractions.gdina)
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GDM

As an example for fitting item response models in CDM, we estimate the Rasch model (Rasch
1960) by using the commands

R> theta.k <- seq(-6, 6, len = 15)
R> fractions.rasch <- gdm(fraction.subtraction.data, irtmodel = "1PL",
+ theta.k = theta.k, centerintercepts = TRUE)

where theta.k defines the cutpoints for the discretization of the continuous ability parameter.
The model’s summary shows, among others, the common item difficulty parameters b.Cat1.
The following output is again only given for the first 5 out of the altogether 20 items.

R> fractions.rasch$item[1:5,]

item N M b.Cat1 a.F1 itemfit.rmsea
Item1 Item1 536 0.532 -0.0285 1 0.0820
Item2 Item2 536 0.576 0.3193 1 0.0995
Item3 Item3 536 0.515 -0.1587 1 0.1044
Item4 Item4 536 0.528 -0.0575 1 0.1281
Item5 Item5 536 0.584 0.3776 1 0.1422

5. Parameter recovery and speed
This section focuses on parameter recovery issues of the EM algorithm for estimating CDMs
which is implemented in the R package CDM. For illustrational purposes, DINA models
including J = 30 items, K = 5 skills, and sample sizes of I = 100, 300, and 1000 students
are simulated, with all guessing and slipping parameters varying between 0 and 0.29. The Q-
matrix used for the simulation can be found in Table 1 of de la Torre (2009b). 5000 data sets
are simulated for each of the three sample sizes. Each of the simulated data sets is fitted with
a DINA model by setting the convergence criterion conv.crit of the din function to 0.0001.
Table 4 gives the mean bias and the minimal and maximal absolute bias between the true
and the estimated guessing, slipping, and skill class parameters. Table 4 also gives the mean,
minimal, and maximal root mean square error (RMSE) between the true and the estimated
guessing, slipping, and skill class parameters. The results indicate that the algorithm can
provide accurate parameter estimates. All parameter estimates are unbiased and the RMSE
decreases with increasing sample size. Parameter recovery for the above mentioned data sets
is also tested with algorithms in other noncommercial software packages as for example the
Ox (Doornik 2009) script by de la Torre (2009b), an lem (Vermunt 1997) procedure, and
the mdltm software by von Davier (2008). The estimated item parameters and skill class
probabilities of all the three before mentioned software packages and the R package CDM
coincided up to the third or fourth position after the decimal point, which shows a reasonable
agreement between the results. We may note that at the time of writing, no R function
allowed the estimation of restricted latent class models as required for fitting CDMs.
Furthermore, we compared the speed of the CDM R algorithm with the Ox code for the
DINA model provided by de la Torre (2009b). In both programs a DINA model is fitted to a
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Bias RMSE
Parameter type I mean |min| |max| mean min max
Guessing gj 100 −0.001 0.000 0.011 0.042 0.013 0.083

300 0.000 0.000 0.003 0.024 0.007 0.046
1000 0.000 0.000 0.001 0.013 0.004 0.025

Slipping sj 100 0.000 0.000 0.005 0.059 0.005 0.100
300 0.000 0.000 0.003 0.033 0.002 0.057

1000 0.000 0.000 0.001 0.018 0.000 0.031
Skill class distribution P (αl) 100 0.000 0.000 0.004 0.017 0.005 0.038

300 0.000 0.000 0.001 0.009 0.003 0.022
1000 0.000 0.000 0.001 0.005 0.018 0.012

Table 4: Mean bias, minimal and maximal absolute bias and mean, minimal and maximal
RMSEA between the true and the estimated guessing, slipping and skill class parameters in
a simulation study for parameter recovery in DINA models with J = 30 items, K = 5 skills
and sample sizes of I = 100, 300, 1000.

simulated dataset with a sample size of I = 1000 persons, J = 30 items, and K = 5 attributes
(for details of the simulated data see de la Torre 2009b) while the convergence criterion for
item parameter change is set to 10−5. On a desktop computer with a 2.67 GHz processor and
4 GB of memory, the CDM din function for R had a higher computational speed than the
Ox script (R: 0.37 s, Ox: 1.04 s).

6. Conclusion
This paper introduces the R package CDM, covering parameter estimation procedures for
DINA, DINO, G-DINA, and GDM models (din, gdina, gdm). Additionally, the package
provides functions for analyzing data under these models: a simulation tool for generat-
ing data (sim.din, sim.gdina), functions for evaluating the global model fit or item fit
(IRT.modelfit, itemfit.rmsea), and a method for describing the model’s classification ac-
curacy (cdm.est.class.accuracy). The methods contained in the package CDM have been
described and their usage has been demonstrated by the empirical fraction subtraction data
fraction.subtraction.data of Tatsuoka (1984). The package CDM further includes other
data published data sets (e.g., data.ecpe; Templin and Hoffman 2013).
The R package CDM provides some more advanced methods which have not been discussed
in this article: For example, it allows the estimation of multiple group designs (cf. Xu and von
Davier 2008b) or the reduction of the skill space (cf. Xu and von Davier 2008a). In addition,
the user may specify hierarchies on skills (skillspace.hierarchy; cf. Leighton, Gierl, and
Hunka 2004; Templin and Bradshaw 2014), conduct a deterministic classification method
(din.deterministic; Chiu, Douglas, and Li 2009), or empirically validate the Q-matrix
(din.validate.qmatrix; de la Torre 2008). One may also evaluate CDMs concerning the test
items’ quality by means of the item discrimination index (cdi.kli; Henson, Roussos, Douglas,
and He 2008), or concerning their uniqueness in terms of equivalent models (equivalent.dina
von Davier 2014) or ambiguity of skill classes (equivalent.dina Groß and George 2014).
Moreover, Wald tests can be employed for the item-specific choices of DINA or a G-DINA
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rules (gdina.wald; de la Torre and Lee 2013) or for assessing differential item functioning
(gdina.dif; Hou, de la Torre, and Nandakumar 2014).
Alternatively to conducting polytomous GDMs, it is further possible to estimate cognitive
diagnosis models for polytomous attributes (pgdina; Chen and de la Torre 2013). Polytomous
items can be handled by using the gdm function or by transforming the polytomous items in
a set of dichotomous pseudo items (sequential.items; Tutz 1997), which are then deployed
subsequently in DINA or GDINA models. Furthermore, multiple choice CDMs (de la Torre
2009a) may also be analyzed with the R package CDM as well as the generalized distance
discrimination method (Sun, Xin, Zhang, and de la Torre 2013).
In principle, the implementation of the structured latent class model (slca Formann 1992;
Formann and Kohlmann 1998) in the R package CDM covers most, if not all, of the im-
plemented cognitive diagnostic models in the package. This function can also, and more
generally, be used for the specification of constrained latent class analysis or many multidi-
mensional item response models. For example, recent developments in the field of cognitive
diagnostic models (e.g., Hong, Wang, Lim, and Douglas 2015; Huo and de la Torre 2014) may
be implemented as a particular structured latent class model using the slca function (c.f.
von Davier 2009).
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