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Abstract

Jacquez’s Q is a set of statistics for detecting the presence and location of space-time
clusters of disease exposure. Until now, the only implementation was available in the
proprietary SpaceStat software which is not suitable for a pipeline Linux environment. We
have developed an open source implementation of Jacquez’s Q statistics in Python using an
object-oriented approach. The most recent source code for the implementation is available
at https://github.com/sjirjies/pyJacqQ under the GPL-3. It has a command line
interface and a Python application programming interface.
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1. About Jacquez’s Q-statistics

Epidemiology benefits from the existence of several geo-spatial clustering methods. For exam-
ple, Moran’s I is capable of globally detecting spatial autocorrelation (Moran 1948). Cuzick
and Edward proposed a method using k-nearest neighbors (KNN) that is capable of detect-
ing the presence and location of clusters (Cuzick and Edwards 1990). The limitation of these
methods is that they operate on a static geography and do not account for the movement of
individuals. The Knox test (Knox and Bartlett 1964) and Jacquez’s K (Jacquez 1996) are
examples of methods that do consider individuals’ movements; however, they indicate only
the presence of space-time clusters and not their locations.

http://dx.doi.org/10.18637/jss.v074.i06
https://github.com/sjirjies/pyJacqQ
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Figure 1: Relationship between study entities and time slices. The white and gray persons
represent individual cases and controls, respectively. The factory represents a focus location
of interest. The large rectangles represent discrete snapshots in time. The area within a
particular slice of time represents the geographic area of the study at that time. Each time
slice captures the location of cases, controls, and focus points of interest. Times between
the discrete time slices are not considered. Here, gray points are the location of cases and
white points the location of controls. Diamonds are the locations in the focus geography. The
dotted lines connecting points show the relation of cases, controls, and focus entities through
time. Note that individuals and focus points can enter or exit the study at different times as
shown in the diagram.

Recently, Jacquez, Kaufmann, Meliker, Goovaerts, AvRuskin, and Nriagu (2005) have devel-
oped an elaborate method, Jacquez’s Q, that can detect the existence of space-time clusters
in addition to elucidating their locations and time ranges (Jacquez et al. 2005). The method
shows many similarities to the ones previously mentioned, especially Cuzick and Edward’s
KNN and Jacquez’s K. This method operates on the residential histories of cases and con-
trols by creating a discrete time slice for every occurrence when a case or control changes
residence (Jacquez et al. 2005). This is done in such a way that ensures consistency in the
arrangement of points for all times between adjacent time slices (Jacquez et al. 2005). Then
for every time slice, every case present at that time slice has a count of the number of other
cases in its KNNs. This method also includes the ability to test for space-time clustering of
cases around arbitrary geographic locations, or a ‘focus’ geography (Jacquez et al. 2005). Fo-
cus points, for example, could represent sources of contamination and can be static or mobile.
Cases, controls, and focus points are capable of entering and leaving the study at any time
and are only considered during times in which they are part of the study. In Figure 1, we
show a diagram of the relationship between cases, controls, focus locations, and time slices.
Instead of a single statistic, this method generates a plethora of statistics that fall within
certain sets. The local statistics are composed of the above mentioned counts that are per-
formed for every case at every time slice in which the case is present. The local statistic
is denoted Qit. The ‘it’ represents clustering around an individual case at a specific time.
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Figure 2: Relationship between Q-statistics. The skewed rectangles represent time slices, as
in Figure 1. Each time slice contains a Qit statistic for each case and a Qfit statistic for each
focus point. The sum of a local statistic for a case through time produces a Qi statistic for
that case, indicated by the dotted arrow. This also holds for focus points. The sum of all
Qi statistics across cases produces the global Q and the sum of all Qfi statistics across focus
entities produces the global Qf statistic as shown by the brackets. The rounded rectangles
demonstrate that time slice statistics (Qt) are the sum of all local case statistics within the
time slice.

A summation of all the local statistics within a given time slice yields that time slices’s Qt

statistic (Jacquez et al. 2005). A Qt statistic exists for every time slice in the study and mea-
sures global clustering at a given time (Jacquez et al. 2005). Yet another set of statistics exist
for the summation of all Qit statistics for an individual through time, denoted Qi. Again, a
Qi statistic is calculated for every case in the study and measures the tendency for a case to
be part of clusters through time (Jacquez et al. 2005). Finally, the method also calculates a
global Q statistic which is the summation of all cases’ Qi statistics. The Q statistic measures
global clustering throughout the entire study (Jacquez et al. 2005).
The statistics generated by the focus geography also fall into sets. Similar to Qit, each focus
point can have a statistic calculated for every time slice in which it exists, creating a Qfit

statistic. Since focus points do not have a case-control status, Qfit is calculated by counting
the number of cases within the focus points KNN disregarding other focus points (Jacquez
et al. 2005). Analogous to Qi, a focus points’s Qfit can be summed through time to yield a
Qfi statistic. There is also a global Qf statistic which is the sum of all Qfi statistics. The Qf

statistic indicates the global presence of clustering around focus points in the study, similar
to Q (Jacquez et al. 2005). The relationships between all of these statistics are illustrated in
Figure 2.
Each of the described set Q statistics also have multiple versions, depending on the desires of
the investigator. Researchers can opt to employ the statistics with exposure periods, requiring
them to supply latency and exposure durations for cases and controls. Here a latency duration
is an estimated length of time when an individual had the disease but it remained dormant.
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An exposure duration is the estimated length of time that an individual was susceptible to
receive the disease. A date of diagnosis must also be given for each case and matched control
allowing for a window of opportunity for disease exposure calculated from latency period
and exposure duration. Jacquez et al. (2005) refer to this window of opportunity for disease
exposure as an “exposure trace”. The exposure trace spans the time between initial exposure
and disease formation. The date of initial exposure can be estimated by subtracting both the
latency period and exposure duration from the date of diagnosis. Similarly, the date of disease
formation is found by subtracting just the latency period from the date of diagnosis. A cases
is referred to as “active” at times when it falls within its exposure trace (Jacquez et al. 2005).
In the exposure clustering setup, the local statistic is performed only for active cases and
consists of the count of KNN that are also active cases (Jacquez et al. 2005). This version
allows researchers to find clusters of actual disease exposure rather than simply detecting
clusters of cases regardless of their disease status at cluster time.
Similarly, another version of all these statistics accounts for covariates in the cases and control
by allowing researchers to supply the probability of each individual being a case, possibly
as the result of a logistic regression (Jacquez et al. 2005, 2006). The use of case weights
helps ensure that detected clusters share an association with their geographic location rather
than containing individuals who all share similar covariates. For example, a study of lung
cancer using this method could detect clusters that have the disease in association with
their geographic location instead of finding clusters of smokers. It is worth noting that these
versions can be combined to yield statistics that use both exposure windows and case weights.
The significance of each measure within Jacquez’s Q statistics is calculated using Monte Carlo
tests (Jacquez et al. 2005). This is performed by first shuffling the case-control status of each
individual in the study, which is done in one of two manners. The simpler scheme is used under
the assumption of equal disease risk for all individuals in the study. Here the total number of
cases in the study is counted and individuals are then chosen with uniform randomness and
assigned as a case until the original number of cases in the study is achieved.
The second method involves the use of the previously mentioned case weights and accounts for
covariates. The individuals are sorted by their case weight and each weight is normalized by
dividing by the sum of case weights under consideration (Jacquez et al. 2006). Each weight is
then mapped to an interval proportional to its magnitude such that each interval is contiguous
with its sorted neighbor intervals and the total range spans 0–1 (Jacquez et al. 2006). A
uniform random number is chosen between 0–1 and the individual with an interval spanning
this random number is marked as a case (Jacquez et al. 2006). The new case is removed and
the procedure is repeated until the original number of cases have been selected (Jacquez et al.
2006). The remaining individuals are the controls (Jacquez et al. 2006).
Regardless of the method chosen, all statistics are then recalculated with the new case-control
distribution. This is a single permutation of the Monte Carlo test. This entire procedure,
involving redistribution of case-control status and recalculation of all statistics, is repeated
for several permutations and a pseudo-p value is calculated for each statistic as (a+1) ÷ (b+
1) (Jacquez et al. 2005). Here a is the number of permutations where the statistic was at
least as extreme as observed in the original data and b is the total number of permutations
conducted (Jacquez et al. 2005). For example, if a local statistic for a case was observed to
have 14 case neighbors out of 15 then the local statistic, Qit, for this case would be 14 cases.
If out of 99 Monte Carlo permutations this statistic happened to be 14 or above a total of
three times, the p value for this local statistic would be calculated as (3+1) ÷ (99+1) = 0.04.



Journal of Statistical Software 5

Note that the minimum p value obtainable is 1 ÷ (b+ 1), meaning that the p value resolution
is determined by the number of permutations used during Monte Carlo testing. For example,
the minimum p value possible for 99 shuffles is 0.01 and the minimum for 999 shuffles is 0.001.
Jacquez’s Q is a promising method given its capacity to pinpoint the location and times
of space-time clusters and could be of great potential to epidemiologists and public health
informaticians, however, there have been mixed findings regarding its utility (Sloan et al.
2012; Nordsborg, Meliker, Ersboll, Jacquez, and Raaschou-Nielsen 2013). An analysis of
the method using simulated data conducted by Sloan et al. (2012) found that investigating
significant intersections of Qi and Qit proved the best strategy. They also found that Q
statistics performs best when the population is large and mobile but recommend checking
the findings with scan statistics (Sloan et al. 2012). According to their analysis, Jacquez’s
Q is expensive with a worst-case running time of O(n2 · log(n)) and for this reason they
recommend using other methods for populations that are not very mobile (Sloan et al. 2012).
A study into space-time clustering of non-Hodgkin Lymphoma in Denmark found the method
unable to consistently detect any significant clusters (Nordsborg et al. 2013). The team used
3,210 cases and two sets of controls each with 3,210 individuals; on average an individual lived
in four locations throughout the study period of 33 years (Nordsborg et al. 2013). They even
supplied case-weights to adjust for known covariates (Nordsborg et al. 2013). Despite this
they were unable to detect the same clusters using their two control groups or any clusters
when they combined their controls; presenting largely inconsistent results (Nordsborg et al.
2013). This group found the biggest issue with Q-stats is the time required for analysis, which
could take 8 hours with a dataset their size (Nordsborg et al. 2013).
In addition, there are several challenges presented in interpreting the results produced by
Jacquez’s Q. This is caused chiefly by the number of tests conducted. The issues can be
demonstrated using the previously mentioned Danish study as a numerical guide. In a study
with 3,000 cases and the same number of controls where each individual moves three times
throughout the study, a conservative estimate places the number of time slices at (3, 000 +
3, 000) · 3 = 18, 000. Each one of these 18,000 time slices would have 3,000 local statistics, one
for each case at that time. This would produce 18, 000 · 3, 000 = 54, 000, 000 local statistics.
The total number of statistics would be the sum of all local, case, and time slice statistics.
In this example, the total would be 54, 000, 000 + 3, 000 + 18, 000 = 54, 021, 000 statistics.
Given the typical 0.05 alpha used for each test, we would expect 5% or 2,701,050 of these
statistics to be false positives. A correction must be applied to account for this multiple
testing problem. As explained previously, the p value resolution is determined by the number
of permutations conducted during Monte Carlo testing. If 99 permutations were used, each
of these 54,021,000 statistics would have to be calculated under 100 conditions, once for each
permutation and once for the observed data to produce a minimum possible p value of 0.01.
If a family-wise correction such as the Bonferroni were applied for the multiple testing in
this example, the corrected alpha would be 0.05 ÷ 2, 701, 050 = 1.85 · 10−8. It is impossible
for any statistic calculated using 99 permutations to fall below this significance since the
minimum possible p value is magnitudes larger. In fact, achieving 1.85 · 10−8 as a minimum
p value would require 54,021,000 permutation shuffles. Recalling that the time complexity of
Jacquez’s Q is O(n2 · log(n)) (Sloan et al. 2012), the method is time consuming even for 99
shuffles rendering family-wise corrections impractical. Sloan et al. (2012) found that the false
discovery rate correction can be used but only with some success.
One method of dealing with this is to have each set of statistics undergo a binomial test
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comparing the total number of significant statistics to the expected number of significant
statistics within each set (Sloan et al. 2012). Here the sets are the local statistics (all Qit),
the time slice statistics (all Qt), and the case statistics (all Qi). If a focus point geography is
provided this also includes the focus statistics (all Qfi) and the local focus statistics (all Qfit).
This is done for each set with a null hypothesis that the number of significant statistics in the
set is the same as the number of expected false positives and an alternative hypothesis that
the number of significant statistics in the set is not the expected number of false positives.
The binomial test is given in Equation 1 (Sloan et al. 2012):

P(S) =
S∑

j=0

N !
j! (N − j)!α

j(1 − α)N−j . (1)

Here S is the number of significant statistics within the set, N is the total number of statistics
within the set, and α is the significance level used for each test. This gives the cumulative
distribution function, denoted in the equation as P(S), between zero and the observed number
of significant statistics. Equation 1 can be used to produce a p value for the set in question
using Equation 2 given below

pvalue = 1 − P(S − 1). (2)

Here pvalue is the output p value and both P and S denote the same concepts as in Equation 1.
Continuing the previous example; if we observe 980 significant time slice statistics in the set
of all 18,000 Qi time slice statistics, each with an alpha of 0.05, Equation 1 would produce a
p value of approximately 0.003. A separate alpha for this test would be chosen in advance to
draw a conclusion regarding the significance in the number of p values at or below α within
this set. Researchers could then investigate the sets that exhibit such a condition after using
this above technique (Sloan et al. 2012).
We refer readers to the original publications for more information on Jacquez’s, including
the formal equations Q (Jacquez et al. 2005, 2006; Meliker and Jacquez 2007). Until now,
the only implementation of this method was in the proprietary SpaceStat software owned by
BiomedWare Inc. (BioMedware 2015b), a company founded by Geoffrey Jacquez of Jacquez’s
Q (BioMedware 2015a). A limitation of SpaceStat is that it is only available for the Microsoft
Windows operating system (BioMedware 2015b), hence our development of pyJacqQ.

2. Code and its explanation
The latest version of the project can be found at https://github.com/sjirjies/pyJacqQ.
Previous versions can be accessed at https://github.com/sjirjies/pyJacqQ/releases.
The project is released under the GPL-3. More details can be found in the LICENSE file
distributed with the project. The dependencies for pyJacqQ are Python version 3.4 or greater,
numpy version 1.8.2 or greater (Van der Walt, Colbert, and Varoquaux 2011), and scipy
version 0.13.3 or greater (Jones, Oliphant, Peterson, and others 2015).
We developed pyJacqQ using an object oriented approach. The entire analysis is encapsulated
within a ‘QStatsStudy’ object which contains all the global information needed to perform
the method on a set of raw data. During analysis, a ‘QStatsStudy’ object will have a list of
‘StudyEnitity’ objects, one of ‘FocusEntity’ objects, and another of ‘TimeSlice’ objects.
Each ‘StudyEnitity’ object holds case-control information that does not change over time

https://github.com/sjirjies/pyJacqQ
https://github.com/sjirjies/pyJacqQ/releases
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Figure 3: Simplified class diagram for interacting classes. The rectangles represent classes
given by their containing label. A connecting line between classes represents a relationship
between them. A diamond indicates that a class acts as a container, exhibiting a “has a”
relationship. For example, an instance of ‘QStatsStudy’ contains ‘TimeSlice’ instances. A
triangle indicates inheritance: the “is a” relationship. For example, ‘StudyPoint’ is a special
case of ‘BaseQPoint’. Cardinalities, attributes, and methods are not shown.

such as the individual’s identifier, case-control status, case weight, exposure duration, latency
period, and so forth. ‘FocusEntity’ objects store similar information but for the real-world
object represented by focus points. Both the ‘StudyEnitity’ class and the ‘FocusEntity’
class inherit from a ‘BaseQEntity’ class to reduce redundancy.
A ‘TimeSlice’ object is instantiated for every distinct time in which any case, control, or
focus point moves location or when any case or control enters or exits its exposure trace
if exposure clustering is enabled. Each ‘TimeSlice’ object contains a list of ‘StudyPoint’
objects and one of ‘FocusPoint’ objects for every individual or focus entity present in the
study at the time represented by the ‘TimeSlice’ object. ‘StudyPoint’ objects hold the
information for a ‘StudyEnitity’ object that changes over time, namely the x and y location.
Likewise for ‘FocusPoint’ objects and their associated ‘FocusEntity’ objects. Again to
reduce redundancy, the ‘StudyPoint’ and ‘FocusPoint’ classes inherit from a ‘BaseQPoint’
class. Each of the previously mentioned ‘StudyEnitity’ objects and ‘FocusEntity’ objects
maintains a list of their respective ‘StudyPoint’ object and ‘FocusPoint’ objects. In this
scheme, we have an entity for each item of study linked to points representing the entity’s
location for each discrete time slice.
All of the objects previously mentioned contain the required information to calculate a par-
ticular statistic. This is done with the aid of a ‘StudyStatistic’ object which is a container
for the statistic and its p value. In Figure 3 we summarize the relationships in a simple class
diagram.
The type of statistic tracked in a ‘StudyStatistic’ object depends on its owner. For example,
each ‘StudyPoint’ object has a ‘StudyStatistic’ object that records its Qit statistic. Table 1
lists the relationships between the objects of the classes in the implementation and the Q-
statistic tracked.
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Object of class ‘StudyStatistic’
‘QStatsStudy’ Q and Qf

‘TimeSlice’ Qt

‘StudyEnitity’ Qi

‘FocusEntity’ Qfi

‘StudyPoint’ Qit

‘FocusPoint’ Qfit

Table 1: Objects and their Q-statistic tracked by ‘StudyStatistic’.

As previously mentioned, the ‘QStatsStudy’ class drives the analysis and is the only class
the user must interact with to perform the calculations. First, a ‘QStatsStudy object’ is
instantiated with the locations of two files in comma-separated-values (CSV) form. The
first CSV designates the identifier and case-control status of each individual in the study.
Optionally it may also contain columns for the date of diagnosis, latency period, case weight,
and exposure duration. The second CSV file holds the residential histories of the individuals
with their identifiers, start and end dates of residence, and the x and y locations of their
residence. ‘QStatsStudy’ initialization also accepts the location of an optional third CSV for
a focus geography. After this, a user would call the run_analysis method which takes study
parameters such as the type of correction to apply and the number of permutation shuffles.
This method performs the majority of the work. It first loads the data from the CSVs and
converts the raw CSV data to the previously discussed objects. Then it calculates the observed
statistic, performs Monte Carlo testing to obtain the reference distribution, calculates the
p values, applies any corrections specified for multiple testing, and then builds and returns
a ‘QStudyResults’ object that users can query for results. During calculation of the local
statistic, nearest neighbor ties are broken arbitrarily. Multiple testing is dealt with by either
applying the binomial tests previously mentioned, using a Benjamini-Yekutieli false discovery
rate adjustment (Benjamini and Yekutieli 2001), or by ignoring it; as depending on user
choice.
All of this previously mentioned functionality is contained within the jacqq.py file. This file
also contains a function, check_data_dirty, that takes the paths to the CSVs and returns
any errors present in the data; for example, missing values or incorrect data types. Users can
run this function on their datasets before performing an analysis to check if they have any
issues with their data. This file also contains a directive that instantiates a command line
interface when it is called as the main module which by default runs check_data_dirty on the
inputs and if any errors are found they are written to standard error, otherwise the analysis
proceeds as usual. pyJacqQ also contains other files that are used to generate simulated data
and perform unit testing using test cases to ensure the validity of the implementation.

2.1. Test cases

We created test cases for the entire implementation using test datasets. These tests and
datasets are available in the tests directory within the project. We fed these datasets through
SpaceStat v. 4.0.20 (BioMedware 2015b) and the results of all statistics are converted to CSV
and saved with the project. This is done once for each test data set. When these tests are
run, the test datasets are fed into pyJacqQ producing results for all statistics. The “correct”
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Figure 4: Null test dataset geography. The black circles indicate case locations and the
white circles indicate control locations. Each case is surrounded by controls. The black square
in the center represents a focus point. The example shown here is a 2 × 2 lattice. This pattern
can be repeated to any size.

results from SpaceStat (BioMedware 2015b) are then loaded from file, and the two sets of
results are compared for differences. If differences in the statistic are found the test fails
producing a message specifying the reason for failure. Since both implementations use Monte
Carlo tests to acquire the p values and therefore contain elements of randomness, the p values
are not compared. These tests are available in the project and can be automatically run
at any time. Test datasets are kept small enough to run quickly while still allowing for a
meaningful test. This is important as they were run frequently before and after the addition
of each feature to ensure that changes to the code did not invalidate the implementation.
We crafted several of these test datasets under different study conditions. We designed one
of these, which we call a null data set, such that all resulting statistics are zero. We achieved
this by creating a lattice where each case is surrounded by five controls in isolated pentagonal
patterns so that the five nearest neighbors of each case consist entirely of controls. Similarly,
focus points are placed between these clusters so that their five nearest neighbors are also
composed entirely of controls. This null data set spans a single time duration and results in
only one time slice. This test dataset is the output of a script we wrote that is available in
the project and creates this pattern for any user specified lattice size. The purpose of this
dataset is to detect any bugs that would affect the edge case of a zero statistic. In Figure 4
we diagram the null data set.
To test clustering in maximum and moderation we created a simple dataset distinguished
by three primary clusters. The first is a cluster of cases, the second a mixture of cases and
controls, and the third a cluster of controls. A focus point is also placed within each cluster.
This simple, static dataset also spans a single time slice. In Figure 5 we show the distribution
of points. This dataset tests the situation in which clustering of cases occurs at its maximum
and near the center of its range when five nearest neighbors are used during calculation of the
statistics. For example, using five nearest neighbors we expect the left focus point to have a
Qfit of five cases since it is surrounded only by cases.
We also created a dataset to test the case weights feature. This test dataset consists of four
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Figure 5: Simple test dataset geography. Cases and controls are shown as black and white
circles respectively. The black squares represent focus points. The left cluster consists of cases
and the right of controls. A mix of case and controls occupies the center of the geography.
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Figure 6: Weighted test dataset geography. Black triangles and black circles are heavy-
weighted cases and light-weighted cases respectively. White triangles and white circles are
heavy-weighted controls and light-weighted controls respectively. Black squares are focus
points.

clusters. The first consists of cases with the maximum weight, the second consists of cases
with the minimum weight, the third consists of controls with the maximum weight, and the
fourth consists of controls with the minimum weight. Here the maximum weight is unity (1.0)
and the minimum weight is zero (0.0). This dataset allows us to test the extreme situations
using the case weights option. A focus point is also placed within each cluster. In Figure 6
we show the geography of this weights dataset.
We designed yet another test dataset, this time to test the exposure clustering feature. This
test dataset ensures that the first and last dates of an exposure trace, or the date of initial
exposure and date of disease formation, are handled correctly. The geography is static and
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Figure 7: Milestones in the exposure test dataset with geography. Here gray circle and
white circles are cases and controls respectively; diamonds are focus points. The exposure
trace is the period of time between initial disease exposure and the disease formation. All
cases share this same exposure trace; therefore they are eligible for disease exposure on the
same date of initial exposure up to, but not including, the same date of disease formation. As
shown by the ‘X’s above the first and last time slices, theses should not exhibit any clustering
or non-zero statistics as they lie outside the exposure trace for all cases. The central time
slice, indicated by the checkmark, should have non-zero statistics as it lies within the exposure
trace.

consists of scattered cases, controls, and focus points. Each of these have only a single
location of residence that spans a single, large date range. Everybody is given the same date
of diagnoses, latency period, and exposure duration. The values for these are chosen such that
all individuals have the same dates of initial exposure and disease formation. The exposure
trace for each individual falls entirely within the start and end dates of their residential
histories. Case points are only counted if they are active, that is, within a time slice that falls
on or after the case’s date of initial exposure but before the cases’s date of disease formation.

Because all cases in this test dataset have the same dates of initial exposure and disease
formation, they are all active within the same window of time. Proper analysis of such a
dataset should produce three time durations split by the dates of initial exposure and disease
formation. The first and last time duration should contain only statistics with values of zero
since these durations lie outside the individuals’ exposure traces. The center duration should
contain non-zero clustering statistics. In Figure 7 we illustrate the concept using this exposure
dataset.

Lastly, we created dirty datasets each with a unique problem, such as missing column titles
or empty fields, to test that the check_data_dirty function detects them. This is all in
addition to unit tests that ensure that the most commonly used methods of each class produce
expected output under several cases. All of the test scripts are available in the tests folder
of the project and the test datasets are available in the datasets directory within that folder.
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3. Examples
As previously mentioned, pyJacqQ has a Python application programming interface (API)
and a command line interface (CLI). Examples of both are given below.

3.1. Application programming interface

Here is an example use of the API as seen using Python’s interactive interpreter. The first con-
sideration is instantiating a ‘QStatsStudy’ object with the file paths of the details, residential
histories, and optionally the focus geography

>>> import jacqq
>>> details = "tests/simulation_data/input_details.csv"
>>> histories = "tests/simulation_data/input_residence_histories.csv"
>>> focus = "tests/simulation_data/input_focus.csv"

At this point you may elect to use the data preparser to check for errors given the parameters
you plan to use:

>>> errors = jacqq.check_data_dirty(details, histories, focus,
... exposure = True, weights = True)
>>> print(errors)

[]

This returns a list of errors present in the data that need correction, for example, miss-
ing attributes or wrong data types. If errors are present, they should be corrected and
check_data_dirty re-run to ensure no additional errors. Next instantiate a ‘QStatsStudy’
object with the location of the input files:

>>> study = jacqq.QStatsStudy(details, histories, focus)

At this point, simply call the run_analysis method with the parameters desired:

>>> r = study.run_analysis(k = 5, use_exposure = True,
... use_weights = True, correction = 'BINOM', seed = 4077096852)

This returns a ‘QStudyResults’ object that contains all the results for the study ran with
the given options. Note that the run_analysis method could be re-run and the new results
assigned to a different variable. In this case r contains the results. The results contain global
study data, case data, and focus entity data. In addition it holds time slice data and all the
data for every point within every time slice. To make the ‘QStudyResults’ object convenient,
users can query the results across either the individual or date axis. In addition it is possible
to select only significant results. Below are example operations:
Find out if exposure clustering was used

>>> r.exposure_enabled

True
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Get the adjusted (or final) alpha (significance level)

>>> r.adjusted_alpha

0.05

Get the number of shuffles in the Monte Carlo testing

>>> r.number_permutation_shuffles

99

Get the seed value used for random number generation

>>> r.seed

4077096852

Get global Q as (statistic case-years, p value, significance)

>>> r.Q_case_years

(501.26575342465753, 0.01, 1)

Get the Qf statistic normalized by the number of cases

>>> r.normalized_Qf

1.2561643835616438

Get all of the time slice results

>>> r.time_slices

OrderedDict([(20150101,
<jacqq.QStudyTimeSliceResult object at 0x7f276e8c1080>), ... ])

Get the Qt statistic for the slice at January 3rd, 2015

>>> r.time_slices[20150103].stat

(87, 0.02, 1)

Get a list of only significant case points at that date

>>> r.time_slices[20150103].sig_points
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OrderedDict([('BM',
<jacqq.QStudyPointResult object at 0x7f276e880d68>), ... ])

Get the local Qit statistic for case ‘BM’ on January 3rd, 2015

>>> r.time_slices[20150103].points['BM'].stat

(2, 0.03, 1)

>>> r.cases['BM'].points[20150103].stat

(2, 0.03, 1)

Get only significant Qit stats for case ‘BM’

>>> r.cases['BM'].sig_points

OrderedDict([(20150101,
<jacqq.QStudyPointResult object at 0x7f276e849c18>), ...])

Find the x, y location of case ‘BM’ on January 2nd, 2015

>>> r.cases['BM'].points[20150102].loc

(59.0, 67.0)

Get the focus Qfi results in tabular/tuple form

>>> r.get_tabular_focus_data()

(['id', 'Qif_case_years', 'pval', 'sig'],
[['Away From Sources', 0.0, 1.0, 0],
['Large Constant', 2.106849315068493, 0.01, 1],
['Medium Linear', 1.2027397260273973, 0.01, 1],
['Small Constant', 1.715068493150685, 0.01, 1]])

Get the binomial test results for dates as (number significant statistics, p value, significance)

>>> r.binom.dates

(200, 1.1102230246251565e-16, 1)

Get time slices that have less than k + 1 points

>>> r.dates_lower_k_plus_one

{}
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Write the results to files using a path and filename prefix:

>>> r.write_to_files_prefixed('path/to/my_results_folder', 'my_study_prefix')

Write the results to files but specify individual file names:

>>> r.write_to_files('global.csv', 'cases.csv', 'dates.csv',
... 'local_cases.csv', 'focus_results.csv', 'focus_local.csv')

More detail can be found using the built-in Python help() function on any of the objects or
classes.

3.2. Command line interface

To use the CLI simply call Python with jacqq.py and the required parameters. These pa-
rameters are the location of input CSV files and the desired location of output CSV files. In
addition, flags such as the number of permutation shuffles and significance can be set. Some
options, such as the use of exposure clustering or case weights, are set by the presence of a
flag without further values.
An explanation of all options and flags can be accessed by passing a -h or –help flag:

$ python3 jacqq.py --help

usage: jacqq.py [-h] --resident HISTORIES --details DETAILS --output_location
OUTPUT_LOCATION --output_prefix OUTPUT_PREFIX [--exposure]
[--weights] [--focus_data FOCUS_DATA] [--neighbors NEIGHBORS]
[--alpha ALPHA] [--shuffles SHUFFLES]
[--correction CORRECTION] [--no_inspect] [--seed SEED]
[--only-cases]

Calculate the Jacquez Q-statistics.

optional arguments:
-h, --help show this help message and exit
--resident HISTORIES, -r HISTORIES

Location of the residential histories file. (default:
None)

--details DETAILS, -d DETAILS
Location of individuals' status dataset. Case-control
status must be given for all individuals. (default:
None)

--output_location OUTPUT_LOCATION, -o OUTPUT_LOCATION
Pathway to the folder to output the results. (default:
None)

--output_prefix OUTPUT_PREFIX, -p OUTPUT_PREFIX
The prefix to include in the file names of the output.
(default: None)
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--exposure, -e If this flag is added then the dataset containing
case-control flags must also contain columns 'DOD' and
'latency' for the date of diagnosis and the number of
days of disease latency. These values must be
specified for both cases and controls. The presence of
this flag signals for clustering of exposure. In its
absence clustering of points will be done instead.
(default: False)

--weights, -w If this flag is supplied then individuals will have
their case-control flags shuffled in a way that
adjusts for co-variates. A 'weight' column must be
supplied in the case-control dataset with values
between 0 and 1. If this flag is not added then the
calculation will assume equal disease risk for
everyone. (default: False)

--focus_data FOCUS_DATA, -f FOCUS_DATA
Location of the dataset containing focus points of
geographic interest, such as factories. The dataset
must be in time series format. (default: None)

--neighbors NEIGHBORS, -k NEIGHBORS
Value K to use for number of nearest neighbors.
(default: 15)

--alpha ALPHA, -a ALPHA
Value used to check for significance of test results.
(default: 0.05)

--shuffles SHUFFLES, -s SHUFFLES
The number of case-control permutations to conduct
when calculating pseudo p-values. (default: 99)

--correction CORRECTION, -c CORRECTION
Correction to apply for multiple testing. 'FDR'
applies a Benjamini-Yekutieli False Discovery Rate.
Note that this often requires a large number of
shuffles for any significance.'BINOM' applies the
binomial method used in [1]; this is the default. If
any other string such as 'NONE' is given than no
correction will be used. (default: BINOM)

--no_inspect, -N Pass this flag to prevent the program from pre-parsing
the data for errors. (default: False)

--seed SEED The seed to use with the random number generator.
(default: None)

--only-cases, -O Pass this flag to prevent output of control results.
(default: False)

[1] Sloan CD, Jacquez GM, Gallagher CM, et al. Performance of cancer cluster
Q-statistics for case-control residential histories. Spatial and spatio-
temporal epidemiology. 2012;3(4):297-310. doi:10.1016/j.sste.2012.09.002.
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For example, say the residential histories file, case-control details file, and optional focus
points file are located within the tests/simulation_data/ directory with respective file
names input_residence_histories.csv, input_details.csv, and input_focus.csv. The
following example runs the analysis using exposure clustering and case weight and saves the
output to various files prefixed with ‘study1’ in a directory ‘studyDir’:

$ python3 jacqq.py -r=tests/simulation_data/input_residence_histories.csv \
> -d=tests/simulation_data/input_details.csv \
> -f=tests/simulation_data/input_focus.csv \
> -o=studyDir -p=study1 -e -w

When using the CLI, pyJacqQ will first pre-parse the datasets and write any errors to standard
error. Users are expected to repair these errors and retry. An example is given below:

$ python3 jacqq.py \
> -r=tests/datasets/dirty_data/histories_wrong_types.csv \
> -d=tests/simulation_data/input_details.csv \
> -o=studyDir -p=study1 -e -w

This would produce the following error:

File 'histories_wrong_types':
Row 2 requires date format YYYYMMDD for attribute 'start_date'

File 'histories_wrong_types':
Row 3 requires date format YYYYMMDD for attribute 'end_date'

File 'histories_wrong_types':
Row 4 requires a number for attribute 'x'

The error pre-parser can be disabled by passing the no_inspect or -N flag.
If the tests folder is set as the current working directory, all the unit tests can be run
automatically using nose (Pellerin 2009).

pyJacqQ/tests$ nosetests3

......................................................................
----------------------------------------------------------------------
Ran 103 tests in 0.259s

OK

4. Conclusion
Jacquez’s Q is a recent advancement in space-time analysis that detects clusters of disease
exposure. This has significant potential for epidemiology since it detects the location and
duration of clusters. Up until now, the only available implementation of this method was in
SpaceStat (BioMedware 2015b) owned by BiomedWare. We here present the first open-source
version of this method, available at https://github.com/sjirjies/pyJacqQ. We hope our
implementation will be of use to public health researchers.

https://github.com/sjirjies/pyJacqQ
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