
JSS Journal of Statistical Software
October 2016, Volume 74, Issue 9. doi: 10.18637/jss.v074.i09

ClickClust: An R Package for Model-Based
Clustering of Categorical Sequences

Volodymyr Melnykov
The University of Alabama

Abstract

The R package ClickClust is a new piece of software devoted to finite mixture model-
ing and model-based clustering of categorical sequences. As a special kind of time series,
categorical sequences, also known as categorical time series, exhibit a time-dependent
nature and are traditionally modeled by means of Markov chains. Clustering categorical
sequences is an important problem with multiple applications, but grouping sequences of
sites or web-pages, also known as clickstreams, is one of the most well-known problems
that helps discover common navigation patterns and routes taken by users. This popular
application is recognized in the package title ClickClust. The paper discusses method-
ological and algorithmic foundations of the package based on finite mixtures of Markov
models. The number of Markov chain states can often be large leading to high-dimensional
transition probability matrices. The high number of model parameters can affect cluster-
ing performance severely. As a remedy to this problem, backward and forward selection
algorithms are proposed for grouping states. This extends the original clustering problem
to a biclustering framework. Among other capabilities of ClickClust, there are the esti-
mation of the variance-covariance matrix corresponding to model parameter estimates,
prediction of future states visited, and the construction of a display named click-plot that
helps illustrate the obtained clustering solutions. All available functions and the utility
of the package are thoroughly discussed and illustrated on multiple examples.

Keywords: categorical sequences, model-based cluster analysis, finite mixture models, Markov
models, biclustering, click-plot, R.

1. Introduction

The objective of cluster analysis is to group data in such a way that each cluster contains
data points with similar features while clusters are relatively distinct from one another. This
area of machine learning is popular in statistics and computer science due to a large variety

http://dx.doi.org/10.18637/jss.v074.i09

2 ClickClust: Model-Based Clustering of Categorical Sequences in R

of applications. There are many clustering approaches considered in literature. Among them
there are the well-known k-means (Forgy 1965; MacQueen 1967), k-medoids (Kaufman and
Rousseuw 1990), and various hierarchical clustering algorithms (Sorensen 1948; Sneath 1957;
Ward 1963). Model-based clustering (Banfield and Raftery 1993; Fraley and Raftery 2002;
Melnykov 2013a) is a standalone technique of grouping data which assumes that each data
cluster can be seen as a sample from some probability distribution. In case there are multiple
data groups, several distributions are needed and finite mixture models (McLachlan and Peel
2000) should be employed. Then the task of grouping data is tied to the problem of finding
the best fitting mixture model.

Model-based clustering is known for remarkably good performance in grouping complex ob-
jects. Among many challenging applications addressed by this technique, there are the analy-
sis of social networks (Handcock, Raftery, and Tantrum 2007), mass spectrometry data (Mel-
nykov 2013b), and text classification (Nigam, McCallum, Thrun, and Mitchell 2000). Some
work has been done in the direction of model-based clustering of time series (Liao 2005) and
regression time series (Chen and Maitra 2011; Melnykov 2012). Despite a high number of
interesting applications that can be addressed by grouping categorical sequences, this area
has been given very limited attention in the literature on model-based clustering. One such
application is grouping sequences of sites or web-pages visited by customers. These sequences
reflect the navigation behavior of users and are commonly referred to as clickstreams. The
name of the software package ClickClust, which is considered in this paper, reflects the im-
portance of this application. As pointed out by Cadez, Heckerman, Meek, Smyth, and White
(2003), the main challenge in the cluster analysis of clickstreams is their categorical nature
and dynamic behavior. The authors remark that these issues can be addressed with the use
of finite mixtures with Markov model components. A recent paper by Melnykov (2016a) ex-
tends their work, provides a variability assessment procedure, and remarks that the number
of parameters can be excessive when the number of states in a Markov model is high. The
author develops backward and forward state selection algorithms that allow to cluster states
along with clickstreams, thus transforming the problem into a biclustering framework.

As a result of limited attention to the analysis of categorical sequences, there is also a lack of
software devoted to addressing this problem. The only piece of software with a specific focus
on the analysis of categorical sequences by means of transition probabilities that the author
of this paper is aware of is the recent contribution in the form of the R package clickstream
(Scholz 2016a,b). The package offers the functionality for estimating the overall transition
probability matrix as well as clustering sequences by means of the k-means algorithm applied
to transition matrices constructed for all sequences. While clearly useful in many situations,
k-means clustering implemented in clickstream is often oversimplistic due to the constraint
imposed by the use of the Euclidean metric for measuring distance between cluster centers
and data points. Other contributions important in the considered framework are R packages
TraMineR (Gabadinho, Ritschard, Müller, and Studer 2011) and WeightedCluster (Studer
2013). These tools aim at the analysis of categorical sequences through distance (dissimilarity)
measures rather than modeling state transition patterns. Some methods of assessing similarity
in data rely on distances calculated based on the longest common prefix, suffix, and common
subsequence as well as optimal matching. After the dissimilarity between sequences has been
calculated, the user can apply various clustering procedures such as k-medoids or hierarchical
clustering algorithms mentioned in the beginning of this section. Besides the above-mentioned
R packages, tools for clustering categorical sequences through distances and dissimilarities

Journal of Statistical Software 3

such as SQ (Brzinsky-Fay, Kohler, and Luniak 2006) and SADI (Halpin 2014) are also available
in Stata (StataCorp. 2015).
In this paper, we present an R (R Core Team 2016) package called ClickClust (Melnykov
2016b) that allows grouping of categorical sequences and running state selection procedures
by means of finite mixture modeling and model-based clustering. Despite the fact that there
is a variety of R packages devoted to modeling Markov processes (e.g., depmixS4, Visser and
Speekenbrink 2010; HiddenMarkov, Harte 2016), they do not provide clustering capabilities
similar to those of ClickClust. The core of ClickClust is written in C and the package is
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=ClickClust.
The paper is organized as follows. Section 2 briefly discusses the methodological aspects
of finite mixtures with Markov model components, corresponding estimation and variability
assessment procedures, state selection algorithms, state prediction, and visual representation
of obtained results by means of click-plots. Section 3 provides a comprehensive description of
functions available in ClickClust and illustrates their use on multiple demo examples included
in the package. Section 4 focuses on demonstrating the utility of the package via a compre-
hensive analysis of a challenging simulated dataset. Section 5 is devoted to the analysis of a
real-life clickstream dataset. The paper concludes with a brief summary provided in Section 6.

2. Methodological and algorithmic details
This section is devoted to describing methodological developments in model-based clustering
of categorical sequences. It outlines the EM algorithm, state selection approaches, a variability
assessment procedure, prediction of future locations and introduces a graphical display called
click-plot.

2.1. Model-based clustering of categorical sequences

The fundamental assumption of model-based clustering is the ability to model each data group
by means of a distribution of some pre-specified functional form. The probability distribution
corresponding to a finite mixture model is given by

f(y|ϑ) =
K∑

k=1
αkfk(y|ϑk), (1)

where K is the total number of component distributions fk(·|ϑk) with corresponding param-
eter vectors ϑk and α1, . . . , αK are mixing proportions, subject to the restrictions αk > 0
and ∑K

k=1 αk = 1. ϑ = (α1, . . . , αK−1,ϑ
>
1 , . . . ,ϑ

>
K)> represents the entire parameter vector

that has to be estimated. The estimation of ϑ is usually carried out by a two-stage iterative
procedure called the expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin
1977). The EM algorithm aims to incorporate missing or unavailable information. In the
mixture modeling framework, it is assumed that each observation i comes from one of K
component distributions and that its true membership label ti is missing. The first stage of
the EM algorithm is called the expectation step and aims to find the conditional expecta-
tion of the complete-data log-likelihood function given observed data. At the maximization
step, this expectation has to be maximized with respect to the parameter vector ϑ. Upon

https://CRAN.R-project.org/package=ClickClust
https://CRAN.R-project.org/package=ClickClust

4 ClickClust: Model-Based Clustering of Categorical Sequences in R

convergence in parameters or log-likelihood values, the EM algorithm provides the maximum
likelihood estimate (MLE) ϑ̂ and the matrix of estimated posterior probabilities (ẑik)n×K ,
where n is the sample size and ẑik is the probability that the i-th observation yi belongs to
the k-th component distribution.
Let Y i = (Yi1, . . . , YiSi)> represent the i-th categorical sequence of length Si following the
first-order Markov model with p unique states. Then, we can write P(Y i = yi) = P(Yi1 =
yi1)∏Si

s=2 P(Yis = yis|Yi(s−1) = yi(s−1)), where yis, s = 1, . . . , Si, takes values in {1, . . . , p} and
represents the state observed in the s-th position of yi. To simplify our notation, we denote
the initial state probability as βj = P(Yi1 = j) and transition probability as γjj′ = P(Yis =
j′|Yi(s−1) = j), subject to the restrictions ∑p

j=1 βj = 1 and ∑p
j′=1 γjj′ = 1 for j = 1, . . . , p.

Now, noting that

P(Y i = yi) = P(Yi1 = yi1)
Si∏

s=2
P(Yis = yis|Yi(s−1) = yi(s−1)) =

p∏
j=1

β
I(yi1=j)
j

p∏
j=1

p∏
j′=1

γ
xijj′
jj′ , (2)

where I(·) is the indicator function and xijj′ represents the frequency of transitions from state
j to state j′ within the i-th sequence, and assuming that each categorical sequence originates
from one of the K components, Equation 1 can be written as

f(yi1,Xi|ϑ) =
K∑

k=1
αk

p∏
j=1

β
I(yi1=j)
kj

p∏
j=1

p∏
j′=1

γ
xijj′
kjj′ (3)

for a p × p matrix Xi with elements xijj′ . As we can see from Equation 3, the information
about the i-th sequence is summarized in terms of the first state observed and the transition
frequency matrix, i.e., a pair (yi1,Xi). While the information about the order of states is not
preserved under such data representation, the pair (yi1,Xi) is a minimal sufficient statistic
for estimating parameters of the model given in (2).
It can be shown that the expectation step in this setting reduces to the calculation of posterior
probabilities at the m-th iteration by

z
(m)
ik =

α
(m−1)
k

∏p
j=1(β(m−1)

kj)I(yi1=j)∏p
j=1

∏p
j′=1(γ(m−1)

kjj′)xijj′∑K
k′=1 α

(m−1)
k′

∏p
j=1(β(m−1)

k′j)I(yi1=j)∏p
j=1

∏p
j′=1(γ(m−1)

k′jj′)xijj′

and the maximization step involves updating parameter estimates by

α
(m)
k = 1

n

n∑
i=1

z
(m)
ik , β

(m)
kj =

∑n
i=1 z

(m)
ik I(yi1 = j)∑n
i=1 z

(m)
ik

, γ
(m)
kjj′ =

∑n
i=1 z

(m)
ik xijj′∑n

i=1 z
(m)
ik

∑p
r′=1 xijr′

.

In many applications, the mixture model order is unknown and thus K has to be estimated.
Traditionally, the best K is detected by minimizing the Bayesian information criterion (BIC)
(Schwarz 1978). In the considered setting, BIC is calculated as −2∑n

i=1 log f(yi1,Xi|ϑ̂) +
N logn, where n represents the number of clickstream sequences and the number of model
parameters is given byN = Kp2−1. Melnykov (2016a) argued that some clusters obtained can
reflect the initial state preference rather than navigation patterns associated with transitions.
For example, a separate cluster “homepage” is likely to be constructed in the analysis of
clickstreams. Therefore, when the focus of an application is on studying transitions, the initial

Journal of Statistical Software 5

state effect should be eliminated by assuming fixed probabilities βkj = 1/p for j = 1, . . . , p
and k = 1, . . . ,K. In this case, the number of parameters is given by N = Kp2−Kp+K−1.
A model-based clustering solution is obtained via the Bayes decision rule that assigns ob-
servations to the class with the highest posterior probability, i.e., according to the rule
t̂i = argmaxk{ẑik}. The function click.EM() from the package ClickClust is responsible
for running the outlined EM algorithm. The description and use of the function are provided
in Section 3.2.

2.2. Variability assessment procedure

If it is needed to construct confidence intervals or conduct tests for model parameters and
functions involving them, the variability in parameter estimates has to be assessed. Melnykov
(2016a) showed that the observed information matrix corresponding to Equation 1 can be
calculated by

I(ϑ̂) =
n∑

i=1
∇ log f(yi1,Xi|ϑ̂)∇ log f(yi1,Xi|ϑ̂)>,

where ∇ log f(yi1,Xi|ϑ) is the gradient vector containing the K − 1 elements

∂ log f(yi1,Xi|ϑ)
∂αk

= zik

αk
− ziK

αK
, k = 1, . . . ,K − 1,

the K(p− 1) elements

∂ log f(yi1,Xi|ϑ)
∂βkj

= zik

(
I(yi1 = j)

βkj
− I(yi1 = p)

βkp

)
, k = 1, . . . ,K, j = 1, . . . , p− 1,

and the Kp(p− 1) elements

∂ log f(yi1,Xi|ϑ)
∂γkjj′

= zik

(
xijj′

γkjj′
− xijp

γkjp

)
, k = 1, . . . ,K, j = 1, . . . , p, j′ = 1, . . . , p− 1.

An estimated variance-covariance matrix for the MLE can be obtained by computing the
inverse of the observed information matrix I(ϑ̂). The function click.var() calculates the
estimated variance-covariance matrix. The description of the function is provided in Sec-
tion 3.4.

2.3. State selection for merging or splitting

In the previous subsections we observed that the number of model parameters is equal to
Kp2 − 1, and thus it is a quadratic function of the number of states p. Therefore, the model
might suffer from overparameterization and, as a result, the performance of the clustering pro-
cedure might degrade severely. Melnykov (2016a) conducted a simulation study and showed
that the mixture model order is often underestimated under such a scenario. To address
this issue, backward and forward state selection algorithms that allow combining states to-
gether are proposed. These algorithms compare reduced and full models. Under the reduced
model, it is assumed that there are similar (or equivalent) states, i.e., states where their cor-
responding transition probabilities are the same row-wise and column-wise. Such states are

6 ClickClust: Model-Based Clustering of Categorical Sequences in R

combined in so-called equivalence blocks. Statistically, this idea can be formulated as restric-
tions γkj1 = γkj′1, . . . , γkjp = γkj′p and γk1j = γk1j′ , . . . , γkpj = γkpj′ for all j and j′ within
the same equivalence block. States that do not get combined into equivalence blocks form
singleton blocks. This prevents mixing states with blocks and unifies introduced terminology.
The assumption of similar states is often realistic. For example, in the analysis of clickstream
sequences collected at an internet-based store, states representing different models of the
same brand can often be so closely related that the behavior of customers with regard to
these states will follow the same patterns. Since the definition of equivalence blocks relies
entirely on the equality of corresponding rows and columns in transition probability matrices,
some states without immediate and vivid relationship can also be declared similar due to the
closeness of their estimated transition probability distributions. For example, rarely visited
states can often be included in the same equivalence block. In general, the usefulness of the
proposed tool depends on the specific problem. However, in many applications such an idea
can help provide better results.
Forward and backward state selection algorithms can be proposed as the three-stage procedure
outlined below.

1. Initialization. Propose an initial model by considering all states combined into one
equivalence block (forward selection) or by treating each state as individual equivalence
block (backward selection). Calculate BIC for the initial model.

2. Splitting/merging. Consider all possible models obtained by separating one state into a
new block (forward selection) or by merging two equivalence blocks together (backward
selection). Choose the best model in terms of BIC. Stop if no improvement is reached,
otherwise proceed to Step 3.

3. Rearrangement. Consider all possible models with the current number of equivalence
blocks by reassigning states among blocks and choose the best model in terms of BIC.
Proceed to Step 2.

The outlined algorithm is implemented in ClickClust through the functions click.forward()
and click.backward() discussed and illustrated in Section 3.5.

2.4. Prediction of future states visited

Given the set of transition probability matrices Γ1, . . . ,ΓK and a probability distribution
π1, . . . , πK associated with the mixture components, theM -step transition probability matrix
can be found by

ΓM =
K∑

k=1
πkΓM

k ,

where ΓM
k represents the matrix Γk raised to the power M . For example, Γ3

k = ΓkΓkΓk.
The choice of the distribution π1, . . . , πK depends on the particular application, but the
two immediate candidates are the vector of estimated mixing proportions (i.e., α̂1, . . . , α̂K)
and the vector of estimated posterior probabilities associated with a specific sequence yi

(i.e., ẑi1, . . . , ẑiK). The function click.predict() from the package ClickClust provides the
functionality outlined in this section. Corresponding examples along with the description of
available parameters can be found in Section 3.6.

Journal of Statistical Software 7

(a)

A B C D E

E

D

C

B

A

0 0.12 0.25 0.38 0.5 0.62 0.75 0.88 1

(b)

Figure 1: Click-plots representing clustering solutions obtained by the EM algorithm (a) with
and (b) without estimation of initial state probabilities.

2.5. Graphical display click-plot

After finding a model-based clustering solution, it is important to present the obtained results
in a form that is easy to understand and interpret. Traditional graphical tools are not readily
effective in the considered framework. Melnykov (2016a) proposed constructing a graphical
display that we call a click-plot. Two examples of such plots are provided in Figure 1. In plot
(a) we can see 25 cells associated with a 5× 5 transition probability matrix. Each cell is split
by a black horizontal separator into two segments representing the first and second cluster.
Within each segment, we can observe a number of thin horizontal lines of different colors.
Each line corresponds to a particular observation with the color marking the magnitude of the
relative frequency of transitions associated with the specific cell. The colors are summarized
in the legend provided at the bottom of the plot. According to the chosen color scheme, the
darker the red color is, the larger the value of the relative transition frequency is. Thus, the
high number of reddish horizontal lines in the top segment of the last cell in the first row
implies that there are many observations in the first cluster with relatively large proportions
of transitions from state A to state E. On the contrary, the majority of light cyan hues in the
bottom segment of the same cell indicates low transitional activity from state A to state E
associated with the second cluster. If the initial state probabilities are among the estimated
parameters, an additional column of cells can be provided within a click-plot along with
the relative transition frequency matrix as shown in Figure 1 (a). The interpretation here
is similar, but there are only two colors involved. The dark red horizontal line highlights
observations that start in the particular state and the cyan line implies that the sequence
begins with some other state. This column of cells can be helpful in the analysis of partitions
from the initial state standpoint.
To improve the visibility of the plot, the user has an option to replace all color hues within

8 ClickClust: Model-Based Clustering of Categorical Sequences in R

 1

Fr
eq

. (
n=

17
6)

T1 T4 T7 T11 T15 T19 T23 T27 T31 T35 T39 T43 T47

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 2

Fr
eq

. (
n=

74
)

T1 T4 T7 T11 T15 T19 T23 T27 T31 T35 T39 T43 T47

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
B

C
D

E

Figure 2: Chronograms of the clustering solution presented in Figure 1 (b).

each cell segment with the corresponding median color. Figure 1 (b) illustrates such an
option. As we can see, the distinction in colors is sharper and more vivid compared to that
in display (a). For example, we can clearly see that the top cluster of the smaller size has
higher relative transition frequencies in cells A–E, B–E, and E–A, while the other cluster is
primarily characterized by high proportions of transitions between states A and B.
To emphasize the effectiveness of click-plots in visualizing clustering results based on transition
patterns, we compare them with a popular display called chronogram. Chronograms repre-
sent state distributions and are often useful in studying the properties of obtained partitions.
Chronograms presented in Figure 2 are constructed by means of the R package TraMineR
(Gabadinho et al. 2011) and illustrate the same clustering solution as that presented in Fig-
ure 1 (b). Indeed, some useful information can be obtained by the comparison of the plots
on the left (cluster 1) and right (cluster 2). We can notice, that state E given in blue color is
visited more frequently in observations assigned to the second group. All other states seem to
be slightly more frequent in observations associated with the first group. While chronograms
provide a great summary of the relative frequencies of state visits over time, they are not
capable of reflecting the transitional behavior of sequences within detected groups. Some
other interesting display options worth mentioning in the context of this discussion are index
and transition pattern plots. The former is similar to chronograms but plots each sequence
as a line. The latter is somewhat similar to our click-plots as it also provides a p× p plot to
display transition rates. However, within each cell of such a plot, transition rates are plotted
against time. While useful in many applications where data are recorded by days or months,
such a tool might be confusing in situations where the notion of time is not clearly defined
(for example, in clickstream applications).
Thus, we can conclude that the proposed colorful representation helps assess the quality of
the illustrated clustering solution and discover important navigation patterns in the detected
partition. The function click.plot() available in the package is discussed in Section 3.3.

Journal of Statistical Software 9

3. Package description and illustrative examples
This section provides a comprehensive coverage of the ClickClust functionality. Every feature
discussed below is thoroughly illustrated through examples, also included in the package in
the form of demos. The following list summarizes the main capabilities of the package:

• running the EM algorithm for finite mixture models with Markov model components;

• model-based clustering by means of the Bayes decision rule;

• estimating the variance-covariance matrix for model parameter estimates;

• illustrating clustering results by means of click-plots;

• identifying equivalence blocks by backward and forward state selection procedures;

• predicting future locations after M transitions;

• simulating categorical sequences according to specified model parameters.

All functions available in the package ClickClust are listed in Table 1. Their use is illustrated
via corresponding examples that can be run by the function demo(). All demo examples
available in the package are provided in Table 2.

Function Description
click.read() Transforms categorical sequences into the frequency matrix form.
click.EM() Runs the EM algorithm for a mixture of Markov models.
click.var() Estimates the covariance matrix for the obtained MLEs.
click.plot() Constructs a click-plot to display clustering results.
click.forward() Runs a forward state selection procedure.
click.backward() Runs a backward state selection procedure.
click.predict() Predicts future states visited in M transition steps.
click.sim() Simulates categorical sequences given model parameters.

Table 1: Summary of functions implemented in ClickClust.

Section Demo names
Section 3.1 "ReadData"
Section 3.2 "EMalgorithm1", "EMalgorithm2"
Section 3.3 "ClickPlot1", "ClickPlot2"
Section 3.4 "ConfidenceIntervals"
Section 3.5 "ForwardSelection", "BackwardSelection"
Section 3.6 "StatePrediction"
Section 3.7 "DataSimulation"
Section 4 "utility"
Section 5 "msnbc323"

Table 2: Summary of demo examples included in ClickClust.

10 ClickClust: Model-Based Clustering of Categorical Sequences in R

Arguments Description
S List of categorical sequences.

Returned values Description
$X Data array of transition frequencies.
$y Vector containing the initial states of the sequences.

Table 3: Summary of arguments and values returned by the function click.read().

3.1. Reading categorical sequences with ClickClust
We start the review of the package with a discussion of how to organize user data in the
format used by ClickClust. The main function considered in this section is click.read().
It reads the list of numeric sequences and returns an array of transition frequencies for all
states along with the initial state vector. This format of data is required by the functions
click.EM(), click.backward(), and click.forward() considered in future sections. The
function call is as follows below:

click.read(S)

The argument and returned values related to click.read() are summarized in Table 3. The
parameter S represents the list of categorical sequences with states provided in integer form.
The function returns the array $X of dimensions p× p× n containing n transition frequency
matrices and the vector $y with the initial states for all n sequences.
The dataset synth, available in the package, contains a vector of 250 simulated sequences
($data) along with the vector of true membership labels ($id). The sequences involve 5
states (denoted as A, B, C, D, and E) and have lengths varying between 10 and 50 elements.
As a result, some sequences are rather short and do not include all five states. There are 8
sequences that do not contain state C and 7 sequences that do not contain state D. Two of
these sequences (#50 and #69) do not have both states. The following example available
through the demo "ReadData" demonstrates how the dataset synth$data can be read and
converted into the form standard in ClickClust.

R> data("synth", package = "ClickClust")
R> synth$data

[1] "E A C C E A D A C E C A E A E E E A C E A A E B C C"

...

[250] "C A B A A B A B A D E B C E C D A B C A D D B A C B B A A"

R> repl.levs <- function(x, ch.lev) {
+ for (j in 1:length(ch.lev)) x <- gsub(ch.levs[j], j, x)
+ return(x)
+ }
R> d <- paste(synth$data, collapse = " ")

Journal of Statistical Software 11

R> d <- strsplit(d, " ")[[1]]
R> ch.levs <- levels(as.factor(d))
R> S <- strsplit(synth$data, " ")
R> S <- sapply(S, repl.levs, ch.levs)
R> S <- sapply(S, as.numeric); S

S
[[1]]
[1] 5 1 3 3 5 1 4 1 3 5 3 1 5 1 5 5 5 1 3 5 1 1 5 2 3 3

...

[[250]]
[1] 3 1 2 1 1 2 1 2 1 4 5 2 3 5 3 4 1 2 3 1 4 4 2 1 3 2 2 1 1

R> C <- click.read(S)
R> C

$X
, , 1

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 3 1 3
[2,] 0 0 1 0 0
[3,] 1 0 2 0 3
[4,] 1 0 0 0 0
[5,] 5 1 1 0 2

...

, , 250
[,1] [,2] [,3] [,4] [,5]

[1,] 2 4 1 2 0
[2,] 5 1 2 0 0
[3,] 2 1 0 1 1
[4,] 1 1 0 1 1
[5,] 0 1 1 0 0

$y
[1] 5 4 4 5 3 3 2 5 3 4 3 5 3 5 5 1 4 2 3 1 2 1 5 4 2 1 2 3 1 2 1 3 4 1 1 5

[37] 1 2 2 1 4 4 5 1 5 4 2 5 2 1 3 4 5 5 1 4 4 4 3 1 3 2 5 3 2 2 1 1 2 1 2 5
[73] 2 3 2 1 2 4 5 3 5 2 2 4 1 2 5 3 5 1 4 5 1 5 3 4 5 3 3 3 4 1 1 2 3 2 2 3

[109] 2 5 4 1 2 3 1 3 2 2 2 3 2 5 4 1 2 2 2 2 3 1 2 2 4 3 5 5 2 2 4 3 2 5 1 5
[145] 4 4 4 4 2 3 2 1 5 5 2 2 2 5 2 3 4 1 1 3 1 4 5 3 4 3 5 3 3 1 1 2 2 3 1 1
[181] 4 3 4 3 1 2 4 4 3 4 1 4 2 3 3 4 2 1 1 4 2 5 5 4 1 2 3 5 1 5 3 2 3 1 4 4
[217] 2 1 2 3 4 3 3 2 1 3 2 2 5 4 2 5 2 2 3 5 4 3 4 3 2 1 4 5 5 4 1 1 1 3

In the example given above, all states are identified and saved into the variable ch.levs first.
The function repl.levs() replaces states ch.levs given in character format with the states

12 ClickClust: Model-Based Clustering of Categorical Sequences in R

Arguments Description
X Data array of transition frequencies.
y Data vector of initial states visited.
K Number of mixture components.
eps Tolerance level.
r Number of random starts for the initialization of the EM algorithm.
iter Number of iterations for each EM run at the initialization stage.
min.beta Lower bound for initial state probabilities.
min.gamma Lower bound for transition probabilities.
scale.const Scaling constant for handling numerical issues.

Returned values Description
$z Matrix of posterior probabilities.
$id Classification vector.
$alpha Vector of mixing proportions.
$beta Matrix of initial state probabilities.
$gamma Array of transition probability matrices.
$logl Maximized log-likelihood value.
$BIC Bayesian information criterion.

Table 4: Summary of arguments and values returned by the function click.EM().

provided in the form of integer values. The list of numeric vectors with integers representing
particular states is denoted as S. This format is convenient for managing sequences and
expected by the function click.read(). In the output produced by the code, some printout
is intentionally omitted to save space as indicated where necessary.

3.2. Finite mixture modeling with ClickClust
click.EM() is the core function of the package that runs the EM algorithm for finite mixtures
with first-order Markov model components. The command has the following syntax:

click.EM(X, y = NULL, K, eps = 1e-10, r = 100, iter = 5, min.beta = 1e-3,
min.gamma = 1e-3, scale.const = 1)

The parameters of the function and objects returned by it are listed in Table 4. The description
of the array X and vector y produced by the function click.read() was given in the previous
section. In many applications, the primary focus is on the analysis of transitions, as we
discussed in Section 2.1. In such cases, the user should not provide the initial state vector y.
Then, probabilities βk will not be estimated and all states will be assumed equally likely as
starting points. The parameter K specifies the order of the mixture model and takes on positive
integers. The default tolerance level eps is set at the level of 10−10. The choice of initialization
strategy for the EM algorithm is important for finding the correct solution. Biernacki, Celeux,
and Govaert (2003) developed a two-stage approach called emEM that is incorporated in
click.EM(). The emEM algorithm runs multiple EM algorithms from random initial points
for some pre-specified number of iterations. Then, the best intermediate solution obtained this
way is used to initialize the final EM algorithm. The parameters r and iter of the function

Journal of Statistical Software 13

click.EM() specify the number of initial EM algorithm runs and the number of iterations
for such runs, respectively. By default, r is set equal to 100 and iter is equal to 5. Common
sense suggests that Markov chains considered in our framework are usually irreducible. This
implies that all transition probabilities must be greater than zero and the user should be
able to set the smallest probability value. The arguments min.beta and min.gamma provide
lower bounds for initial state probabilities and transition probabilities, respectively. The
final parameter scale.const is devoted to handling numerical issues that might occur in the
course of the EM algorithm due to raising low probabilities to high powers. The default value
is 1, which represents the situation with no scaling applied. In the majority of cases, the
specific value of this parameter is not important. However, increasing scale.const can help
to overcome some numerical issues.
The first object returned by the function click.EM() is the n×K matrix of posterior proba-
bilities $z. An estimated classification vector obtained by the Bayes decision rule is provided
in the vector $id. Objects $alpha, $beta, and $gamma represent estimates of mixing propor-
tions, initial state probabilities, and transitional probabilities, respectively. $alpha is a vector
of length K, $beta is a matrix consisting of K initial state probability vectors of length p, and
$gamma is an array containing K p×p transition probability matrices. Finally, the parameters
$logl and $BIC provide the maximized log-likelihood and corresponding BIC values.
We illustrate the utility of the function click.EM() on two examples. In both cases, we
use the dataset synth$data. The corresponding demos are called "EMalgorithm1" and
"EMalgorithm2".

R> set.seed(123)
R> N2 <- click.EM(X = C$X, K = 2)
R> N2

K = 2, p = 5, logl = -11688.35, BIC = 23603.09

Cluster sizes:
1 2

176 74

id:
[1] 2 2 1 2

[37] 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2
[73] 1

[109] 1 1 2 1
[145] 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[181] 1
[217] 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

alpha:
[1] 0.6949289 0.3050711

Use $ to access:
-transition probability matrices (gamma)
-posterior probabilities (z)

14 ClickClust: Model-Based Clustering of Categorical Sequences in R

As we can see from the vector id in the output provided above, the first group of data
is denoted as cluster 2 and followed by observations assigned to cluster 1. This is a well-
documented phenomenon known as label switching that does not cause serious practical
issues in the considered framework.
In the second example, which is run on the same simulated dataset, it is assumed that initial
state probabilities have to be estimated along with the other parameters. This is achieved by
specifying the vector of initial states visited, C$y.

R> set.seed(123)
R> M2 <- click.EM(X = C$X, y = C$y, K = 2)
R> M2

K = 2, p = 5, logl = -11684.21, BIC = 23638.98

Cluster sizes:
1 2

174 76

id:
[1] 2 2 1 2

[37] 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2
[73] 1

[109] 1 1 2 1
[145] 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[181] 1 2 1 1 1 1 1 1 2
[217] 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

alpha:
[1] 0.6958358 0.3041642

beta:
[,1] [,2] [,3] [,4] [,5]

[1,] 0.1715453 0.2763954 0.2148031 0.1809289 0.1563273
[2,] 0.2519450 0.1830399 0.1792858 0.1910258 0.1947035

Use $ to access:
-transition probability matrices (gamma)
-posterior probabilities (z)

As we can see from the output for both demos, the maximized log-likelihood value is equal
to −11, 688.35 in the first case versus the value of −11, 684.21 in the second one. Expectedly,
the model with initial state probabilities included yields a higher log-likelihood value as it fits
the data slightly better. The difference is rather marginal and the model without initial state
probabilities is preferred over the model with them based on the BIC value of 23,603.09 versus
BIC equal to 23,638.98. The preferred model also demonstrates slightly better performance
in terms of the number of correctly classified observations. It yields 8 misclassifications (rate
0.032) versus 10 misclassifications (rate 0.040) obtained in the other case. The relatively low

Journal of Statistical Software 15

misclassification rates can be explained by considerable differences in the true transition prob-
ability matrices associated with the two components. These can be easily observed by means
of click-plots constructed and thoroughly discussed for these two examples in Section 3.3.

3.3. Constructing a click-plot with ClickClust
After a clustering result is obtained, a click-plot can be constructed by means of the function
click.plot(). It produces the plot either in a graphical window or saves it into a PDF file.
The function has the following syntax:

click.plot(X, y = NULL, file = NULL, id, states = NULL, marg = 1,
font.cex = 2, font.col = "black", cell.cex = 1, cell.lwd = 1.3,
cell.col = "black", sep.lwd = 1.3, sep.col = "black", obs.lwd = NULL,
colors = c("lightcyan", "pink", "darkred"), col.levels = 8, legend = TRUE,
leg.cex = 1.3, top.srt = 0, frame = TRUE)

All available function arguments with brief descriptions are listed in Table 5. The first two
parameters of the function are X and y, representing the array of transition frequencies and
the vector of initial states visited, respectively. While X is a required parameter, y is not. If y
is not provided (default setting), initial state probabilities will not be shown in the plot. The
argument file specifies the name of the PDF file for output. If the name is not provided,
the function constructs the plot, but does not save it into a file. The vector id contains the
proposed partitioning vector. The rest of the parameters provide graphical capabilities for the
constructed click-plot. states contains the names of states. If the names are not included,
all states will be denoted by integers starting from 1. marg is responsible for setting the
size of the left and top plot margins. font.cex and font.col specify the magnification and
color of row and column labels. The latter is also responsible for the color of legend labels,
if applicable. Parameters cell.cex, cell.lwd, and cell.col specify the size of the intercell
interval, the width of the cell frame, and frame color, respectively. Similarly, the parameters
sep.lwd and sep.col are responsible for the width and color of horizontal lines separating
cell segments. obs.lwd specifies the width of lines representing individual observations. If
this width is not provided (default state), the color of each cell segment is chosen based on the
corresponding median. The argument colors specifies base colors for the color interpolation
with col.levels number of hues produced. The default number of the color levels is 8. The
next two arguments are responsible for presenting the color hues through a legend. legend is
an indicator specifying whether the legend should be presented or not while leg.cex provides
the magnification of the font for legend labels. top.srt allows to rotate the state names given
in the top of the plot. This feature is helpful when state names are lengthy and cannot be
provided horizontally. Finally, the parameter frame controls whether a frame around the plot
is constructed.
In the following we construct click-plots for the results obtained in the two illustrations from
Section 3.2.

R> click.plot(X = C$X, y = C$y, id = M2$id, states = ch.levs, obs.lwd = 0.3)
R> click.plot(X = C$X, id = N2$id, states = ch.levs)

The examples can be run by commands demo("ClickPlot1", package = "ClickClust")
and demo("ClickPlot2", package = "ClickClust"), respectively. Figure 1 displays the

16 ClickClust: Model-Based Clustering of Categorical Sequences in R

Arguments Description
X Data array of transition frequencies.
y Data vector of initial states visited.
file Name of the output PDF file.
id Classification vector.
states Names of states.
marg Left and top plot margin.
font.cex Font scaling.
font.col Font color.
cell.cex Cell scaling.
cell.lwd Width of the cell frame.
cell.col Color of the cell frame.
sep.lwd Width of the group separator line.
sep.col Color of the group separator line.
obs.lwd Width of observation lines.
colors Color scheme.
col.levels Number of colors.
legend Inclusion of legend.
leg.cex Legend font scaling.
top.srt Rotation of state labels in the top.
frame Plot frame.

Table 5: Summary of arguments of the function click.plot().

click-plots constructed in these two examples. The detailed discussion of the plots was al-
ready provided in Section 2.5. Both displays effectively illustrate obtained clustering solu-
tions, suggesting that the distinction between the two clusters is mostly due to the difference
in transitions A–B, A–E, B–A, B–E, and E–A. For the cells associated with these transitions,
the color discrepancy between the corresponding segments reaches its highest levels. The de-
scribed solution characteristics agree well with the original parameter values of this simulated
dataset that can be found in Section 3.7. From plot (a), we can also conclude that initial
state probabilities do not contribute to separating the two clusters.

3.4. Variability assessment with ClickClust
The function click.var() employs the algorithm for assessing the variability of obtained
estimates as outlined in Section 2.2. The function has the following syntax:

click.var(X, y = NULL, alpha, beta = NULL, gamma, z)

All available parameters are listed in Table 6. The arguments have the same meaning as
before. z represents the n × K matrix of posterior probabilities. The only object returned
by the function is the estimated variance-covariance matrix. The parameters associated with
this matrix are arranged in the following order: mixing proportions (K − 1 elements), initial
state probabilities (if specified, K(p−1) elements) listed by rows, and transition probabilities
(Kp(p− 1) elements) listed by rows for all transition probability matrices.
The following example illustrates how 95% confidence intervals can be calculated for the

Journal of Statistical Software 17

Arguments Description
X Data array of transition frequencies.
y Data vector of initial states visited.
alpha Vector of mixing proportions.
beta Matrix of initial state probabilities.
gamma Array of transition probability matrices.
z Matrix of posterior probabilities.

Table 6: Summary of arguments for the function click.var().

parameter estimates obtained in the course of the first example considered in Section 3.2. The
corresponding demo can be run by the command demo("ConfidenceIntervals", package
= "ClickClust").

R> V <- click.var(X = C$X, alpha = N2$alpha, gamma = N2$gamma, z = N2$z)
R> st.err <- sqrt(diag(V))
R> Estimates <- c(N2$alpha[-2], as.vector(apply(N2$gamma[, -5,], 3, t)))
R> Lower <- Estimates - qnorm(0.975) * st.err
R> Upper <- Estimates + qnorm(0.975) * st.err
R> cbind(Estimates, Lower, Upper)

[1,] 0.69492889 0.63146870 0.7583891
[2,] 0.12356408 0.10330503 0.1438231
[3,] 0.35616335 0.32698788 0.3853388
[4,] 0.19211304 0.16586742 0.2183587

...

[38,] 0.29587636 0.25465414 0.3370986
[39,] 0.30146575 0.26325962 0.3396719
[40,] 0.09661424 0.07061489 0.1226136
[41,] 0.10930597 0.08249654 0.1361154

The first column of the produced output contains obtained estimates while the second and
third columns represent the lower and upper bounds of confidence intervals, respectively.
Although there are many parameters, they are estimated quite accurately.

3.5. State merging and splitting with ClickClust

As we discussed in Section 2.3, the performance of a clustering procedure can be severely
affected by model overparameterization. Therefore, especially when the number of states is
high, it is important to identify states with similar estimated transition probability distribu-
tions. This might help reduce the number of parameters and improve the performance of the
model-based clustering procedure. The package ClickClust includes two functions responsible
for the selection of equivalent states. The function click.forward() conducts the forward
state selection and the function click.backward() is responsible for the backward search.

18 ClickClust: Model-Based Clustering of Categorical Sequences in R

Arguments Description
X Data array of transition frequencies.
K Number of mixture components.
eps Tolerance level.
r Number of random starts for the initialization of the EM algorithm.
iter Number of iterations for each EM run at the initialization stage.
bic Flag indicating which information criterion is used, BIC or AIC.
min.gamma Lower bound for transition probabilities.
scale.const Scaling constant for handling numerical issues.
silent Output control.

Returned values Description
$z Matrix of posterior probabilities.
$id Classification vector.
$alpha Vector of mixing proportions.
$gamma Array of transition probability matrices.
$states Vector of states representing equivalent blocks.
$logl Maximized log-likelihood value.
$BIC/$AIC Bayesian/Akaike information criterion.

Table 7: Summary of arguments and values returned by functions click.backward() and
click.forward().

The arguments of both functions as well as their returned values are identical and provided
in Table 7. The function calls have the following syntax:

click.forward(X, K, eps = 1e-10, r = 100, iter = 5, bic = TRUE,
min.gamma = 1e-3, scale.const = 1.0, silent = FALSE)

click.backward(X, K, eps = 1e-10, r = 100, iter = 5, bic = TRUE,
min.gamma = 1e-3, scale.const = 1.0, silent = FALSE)

The array X contains data in the transition frequency form. The parameter K specifies the
number of mixture components. Arguments eps, r, iter, min.gamma, and scale.const have
the same meaning as in the description of the function click.EM(). The argument silent
allows to disable the output produced by both functions. The focus of both model selection
procedures is on the reduction of the number of estimated transition probabilities. Therefore,
initial state probabilities are assumed fixed and equal and are not estimated in the course of
the state selection procedures.
The values returned by click.backward() and click.forward() are mainly the same as
those returned by click.EM(). The only new object $states contains the vector of length
p that represents the obtained blocks of equivalent states. States associated with the same
number are included in a common equivalence block. As a result, the array of transition
probability matrices gamma has dimensionality d×d×K, where d is the number of equivalence
blocks such that d ≤ p.
In the first example considered within this section, we illustrate the function click.forward().
The data simulated in the example of Section 3.7 are used here, which is achieved by running
the corresponding demo.

Journal of Statistical Software 19

R> set.seed(1234)
R> F2 <- click.forward(X = C$X, K = 2)

STAGE A: Separating states...
States: 2 1 1 1 1 logL = -12118.09
States: 1 2 1 1 1 logL = -12094.76
States: 1 1 2 1 1 logL = -12143.2
States: 1 1 1 2 1 logL = -12158.2
States: 1 1 1 1 2 logL = -12096.73
Current set of states: 1 2 1 1 1 logL = -12094.76 BIC = 24217.12

STAGE B: Rearranging states...
States: 2 2 1 1 1 logL = -12141.66
States: 1 2 2 1 1 logL = -12118.29
States: 1 2 1 2 1 logL = -12129.22
States: 1 2 1 1 2 logL = -12129.9
Current set of states: 1 2 1 1 1 logL = -12094.76 BIC = 24217.12

Stopped rearrangement...

STAGE A: Separating states...
States: 3 2 1 1 1 logL = -11956.31
States: 1 2 3 1 1 logL = -12057.77
States: 1 2 1 3 1 logL = -12063.25
States: 1 2 1 1 3 logL = -11928.9
Current set of states: 1 2 1 1 3 logL = -11928.9 BIC = 23929.59

...

STAGE B: Rearranging states...
States: 2 4 2 1 3 logL = -11878.51
States: 2 4 3 1 3 logL = -11877.05
States: 2 4 4 1 3 logL = -11868.52
States: 2 4 1 2 3 logL = -11858.96
States: 2 4 1 3 3 logL = -11894.13
States: 2 4 1 4 3 logL = -11856.18
Current set of states: 2 4 1 1 3 logL = -11701.26 BIC = 23540.56

Stopped rearrangement...

STAGE A: Separating states...
States: 2 4 5 1 3 logL = -11688.35
States: 2 4 1 5 3 logL = -11688.35
No improvement reached...

R> F2

20 ClickClust: Model-Based Clustering of Categorical Sequences in R

K = 2, p = 5, d = 4, logl = -11701.26, BIC = 23540.56

States:[1] 2 4 1 1 3

Cluster sizes:
1 2

177 73

id:
[1] 2 2 1 2

[37] 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2
[73] 1

[109] 1 1 2 1
[145] 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[181] 1 2
[217] 1 2 1 1 1 1 1 1 1 1

alpha:
[1] 0.6977365 0.3022635

Use $ to access:
-transition probability matrices (gamma)
-posterior probabilities (z)

As we can see from the output provided above, the search for the best model is conducted
by rearranging and separating states. The best model is chosen based on the smallest BIC
value. From the transition probabilities given in Section 3.7, we can conclude that states 3
and 4 are indeed equivalent and thus they are identified correctly. Overall, there are four
equivalence blocks detected: {1}, {2}, {3, 4}, and {5}.
In the second example, the function click.backward() is illustrated on the same dataset.

R> set.seed(1234)
R> B2 <- click.backward(X = C$X, K = 2)

STAGE A: Merging equivalence blocks...
States: 1 1 2 3 4 logL = -11917
States: 1 2 1 3 4 logL = -11878.51
States: 1 2 3 1 4 logL = -11858.96
States: 1 2 3 4 1 logL = -11960.55
States: 1 2 2 3 4 logL = -11868.52
States: 1 2 3 2 4 logL = -11856.18
States: 1 2 3 4 2 logL = -12059.25
States: 1 2 3 3 4 logL = -11701.26
States: 1 2 3 4 3 logL = -11877.05
States: 1 2 3 4 4 logL = -11894.13
Current set of states: 1 2 3 3 4 logL = -11701.26 BIC = 23540.56

Journal of Statistical Software 21

STAGE B: Rearranging states...
States: 1 2 1 3 4 logL = -11878.51
States: 1 2 2 3 4 logL = -11868.52
States: 1 2 4 3 4 logL = -11877.05
States: 1 2 3 1 4 logL = -11858.96
States: 1 2 3 2 4 logL = -11856.18
States: 1 2 3 4 4 logL = -11894.13
Current set of states: 1 2 3 3 4 logL = -11701.26 BIC = 23540.56

Stopped rearrangement...

STAGE A: Merging equivalence blocks...
States: 1 1 2 2 3 logL = -11928.52
States: 1 2 1 1 3 logL = -11928.9
States: 1 2 3 3 1 logL = -11974.71
States: 1 2 2 2 3 logL = -11917.48
States: 1 2 3 3 2 logL = -12070.8
States: 1 2 3 3 3 logL = -11956.31
Current set of states: 1 2 3 3 4 logL = -11701.26 BIC = 23540.56

R> B2

K = 2, p = 5, d = 4, logl = -11701.26, BIC = 23540.56

States:[1] 1 2 3 3 4

Cluster sizes:
1 2

177 73

id:
[1] 2 2 1 2

[37] 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2
[73] 1

[109] 1 1 2 1
[145] 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[181] 1 2
[217] 1 2 1 1 1 1 1 1 1 1

alpha:
[1] 0.6977571 0.3022429

Use $ to access:
-transition probability matrices (gamma)
-posterior probabilities (z)

According to the output from click.backward(), the results are the same as those ob-
tained by click.forward(). The BIC value produced by both state selection procedures is

22 ClickClust: Model-Based Clustering of Categorical Sequences in R

Arguments Description
M Number of transition steps.
gamma Array of transition probability matrices.
pr Probability vector associated with mixture components.

Table 8: Summary of arguments for the function click.predict().

23,540.56, which is considerably lower than corresponding BIC values obtained in Section 3.2
by the naive clustering with no state search conducted (23,603.09 and 23,638.98). This proves
that backward and forward state selection approaches are effective tools for simplifying mod-
els. The misclassification rate associated with the detected clustering solution is 0.036 (9
misclassifications). This result is similar to that of the naive clustering with and without
initial state probabilities estimated (10 and 8 misclassifications, respectively).

3.6. Predicting future states with ClickClust
The functionality for predicting future states visited is another important feature that is incor-
porated in the package ClickClust. The function click.predict() calculates the transition
probability matrix associated with the M -step transition. The description of the process is
provided in Section 2.4. The arguments of the function are listed in Table 8. The function
call has the following syntax:

click.predict(M = 1, gamma, pr = NULL)

The parameter M provides a positive integer indicating the number of transitions needed.
Thus, the default value M = 1 implies that the user is interested in a one-step transition. The
parameter gamma has the same meaning as before and denotes the set of transition probabilities
associated with K components. Finally, the parameter pr is responsible for providing a prob-
ability distribution corresponding to the components. Depending on a particular problem,
pr can be chosen to be a vector of mixing proportions or the vector of posterior probabilities
associated with a specific sequence of states. If the option pr is not specified, the function
click.predict() assumes equally likely components.
In the example provided below, the results obtained by the EM algorithm in the first example
from Section 3.2 are employed to illustrate the use of the function click.predict(). The
corresponding demo can be run by the command demo("StatePrediction", package =
"ClickClust").

R> T <- click.predict(M = 3, gamma = N2$gamma, pr = N2$z[1,])
R> colnames(T) <- ch.levs
R> T[S[[1]][length(S[[1]])],]

A B C D E
0.1985400 0.1595880 0.1601376 0.1636892 0.3180452

The function click.predict() is used to find the probability distribution associated with
the three-step transition from the last state in the first sequence, i.e., S[[1]]. The posterior
vector N2$z[1,] associated with this sequence specifies the values of the parameter pr. From

Journal of Statistical Software 23

Arguments Description
n Number of sequences to simulate.
int Vector of the lower and upper bound for the length of sequences.
alpha Vector of mixing proportions.
beta Matrix of initial state probabilities.
gamma Array of transition probability matrices.

Returned values Description
$S List of simulated sequences.
$id Group membership of generated sequences.

Table 9: Summary of arguments and values returned by the function click.sim().

the obtained results, we can see that the most likely state to visit in three steps is E; the
probability associated with this prediction is slightly higher than 0.318.

3.7. Simulating categorical sequences with ClickClust
One more important feature of ClickClust is the ability to simulate data according to the
model provided in Equation 3. The function click.sim() allows simulating categorical se-
quences according to pre-specified model parameters such as mixing proportions, initial state
probabilities, and transition probabilities. The function has the following syntax:

click.sim(n, int = c(5, 100), alpha, beta = NULL, gamma)

All available arguments and values returned by the function click.sim() are provided in
Table 9. The user specifies the number of sequences to be simulated through the parameter
n. The interval int provides the lower and upper bound for the length of simulated sequences.
The length of each sequence is a random realization from the discrete uniform distribution
defined over all integers in the interval int. Parameters alpha, beta, and gamma have the
same meaning as before. If beta is not provided, initial state probabilities are assumed to be
all equal to 1/p. The function click.sim() returns the list of simulated sequences $S and
the corresponding vector of membership labels $id. The sequences $S are provided in the
form required by the function click.read().
The following example illustrates the use of the function. 250 sequences with lengths between
10 and 50 are simulated from a mixture with two 5-state Markov model components. Mixing
proportions and transition probability matrices are specified in the objects mix.prop and
TP, respectively. Initial state probabilities are assumed equal. The code provided below
simulates the sequences and saves them along with the classification vector into the object A.
The simulated data can be also accessed by running the command data("synth", package
= "ClickClust"). This is the dataset used in previous sections for illustrating the utility
of functions. In the output produced by the code, some printout is intentionally omitted to
save space as indicated where necessary. The considered example is also available through
the demo called "DataSimulation".

R> set.seed(123)
R> n.seq <- 250

24 ClickClust: Model-Based Clustering of Categorical Sequences in R

R> p <- 5
R> K <- 2
R> mix.prop <- c(0.3, 0.7)
R> TP <- array(rep(NA, p * p * K), c(p, p, K))
R> TP[, , 1] <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,
+ 0.10, 0.10, 0.20, 0.20, 0.40, 0.15, 0.10, 0.20, 0.20, 0.35,
+ 0.15, 0.10, 0.20, 0.20, 0.35, 0.30, 0.30, 0.10, 0.10, 0.20),
+ byrow = TRUE, ncol = p)
R> TP[, , 2] <- matrix(c(0.15, 0.35, 0.20, 0.20, 0.10,
+ 0.40, 0.10, 0.20, 0.20, 0.10, 0.25, 0.20, 0.15, 0.15, 0.25,
+ 0.25, 0.20, 0.15, 0.15, 0.25, 0.10, 0.20, 0.20, 0.20, 0.30),
+ byrow = TRUE, ncol = p)
R> A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
R> A

$S
$S[[1]]
[1] 5 1 3 3 5 1 4 1 3 5 3 1 5 1 5 5 5 1 3 5 1 1 5 2 3 3

...

$S[[250]]
[1] 3 1 2 1 1 2 1 2 1 4 5 2 3 5 3 4 1 2 3 1 4 4 2 1 3 2 2 1 1

$id
[1] 1

[37] 1
[73] 2

[109] 2
[145] 2
[181] 2
[217] 2

R> C <- click.read(A$S)
R> C

$X
, , 1

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 3 1 3
[2,] 0 0 1 0 0
[3,] 1 0 2 0 3
[4,] 1 0 0 0 0
[5,] 5 1 1 0 2

...

, , 250

Journal of Statistical Software 25

[,1] [,2] [,3] [,4] [,5]
[1,] 2 4 1 2 0
[2,] 5 1 2 0 0
[3,] 2 1 0 1 1
[4,] 1 1 0 1 1
[5,] 0 1 1 0 0

$y
[1] 5 4 4 5 3 3 2 5 3 4 3 5 3 5 5 1 4 2 3 1 2 1 5 4 2 1 2 3 1 2 1 3 4 1 1 5

[37] 1 2 2 1 4 4 5 1 5 4 2 5 2 1 3 4 5 5 1 4 4 4 3 1 3 2 5 3 2 2 1 1 2 1 2 5
[73] 2 3 2 1 2 4 5 3 5 2 2 4 1 2 5 3 5 1 4 5 1 5 3 4 5 3 3 3 4 1 1 2 3 2 2 3

[109] 2 5 4 1 2 3 1 3 2 2 2 3 2 5 4 1 2 2 2 2 3 1 2 2 4 3 5 5 2 2 4 3 2 5 1 5
[145] 4 4 4 4 2 3 2 1 5 5 2 2 2 5 2 3 4 1 1 3 1 4 5 3 4 3 5 3 3 1 1 2 2 3 1 1
[181] 4 3 4 3 1 2 4 4 3 4 1 4 2 3 3 4 2 1 1 4 2 5 5 4 1 2 3 5 1 5 3 2 3 1 4 4
[217] 2 1 2 3 4 3 3 2 1 3 2 2 5 4 2 5 2 2 3 5 4 3 4 3 2 1 4 5 5 4 1 1 1 3

4. Illustrative use of the package
In this section, we consider an illustrative example that highlights the usefulness of the devel-
oped methodology on a rather complicated simulated dataset. Given parameters of the tri-
component 15-state Markov mixture model as provided in Table 10, 100 categorical sequences
were simulated with lengths varying between 10 and 100. Indeed, a sequence consisting of 10
elements is considered very short in this setting, while one with 100 elements is of considerable
length. Mixing proportions are chosen to be 0.25, 0.35, and 0.40. All states are equally likely
as starting points for all components. The code corresponding to this example is provided
in the supplementary file v74i09.R and can also be run by the command demo("utility",
package = "ClickClust").
Table 11 provides the performance summary (using MixSim, Melnykov, Chen, and Maitra
2012) for four model-based clustering methods: the EM algorithm with and without initial
state probabilities estimated as well as forward and backward state selection procedures. Each
method is evaluated over mixture models with the number of components ranging from 1 to 5.
The performance of methods is compared by means of BIC. As we can see, both EM algorithms
severely underestimate the order of the mixture, choosing the model with a single component.
On the contrary, both state selection procedures correctly estimate the order of the mixture
model, producing the lowest BIC value of 29,397.38. The goodness of the obtained partition
is evaluated by means of the adjusted Rand index (ARI; Hubert and Arabie 1985), which
compares two partitions and yields the value 1 when they match completely. The weaker the
agreement between the partitions, the lower are the values produced by ARI. Since the true
membership of all observations is known in our illustrative example, ARI can be conveniently
employed to measure the agreement between the original and estimated groupings. Table 11
provides ARI results obtained for all methods with different K values. The highest value
of 0.898 is reached by the forward and backward selection algorithms when K = 3. The
other two approaches yield lower ARI values for K = 3, implying that even when the correct
number of components is known and does not have to be estimated, the obtained partitions
are still not as good as the one obtained when the state selection procedures are applied. This

26 ClickClust: Model-Based Clustering of Categorical Sequences in R

α1 = 0.25 α2 = 0.35 α3 = 0.40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

β1 × 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
β2 × 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
β3 × 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Γ1 × 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 30 1 3 3 10 15 10 5 5 5 2 2 5 2 2
2 1 30 5 5 5 10 10 7 7 7 3 3 1 3 3
3 5 5 20 20 5 5 5 5 5 5 2 2 12 2 2
4 5 5 20 20 5 5 5 5 5 5 2 2 12 2 2
5 2 5 10 10 40 5 5 2 2 2 4 4 1 4 4
6 2 2 1 1 2 35 1 5 5 5 10 10 1 10 10
7 3 5 10 10 5 5 15 2 2 2 10 10 1 10 10
8 5 10 5 5 10 2 5 15 15 15 3 3 1 3 3
9 5 10 5 5 10 2 5 15 15 15 3 3 1 3 3
10 5 10 5 5 10 2 5 15 15 15 3 3 1 3 3
11 10 5 5 5 10 3 5 5 5 5 10 10 2 10 10
12 10 5 5 5 10 3 5 5 5 5 10 10 2 10 10
13 3 1 15 15 1 10 5 10 10 10 3 3 8 3 3
14 10 5 5 5 10 3 5 5 5 5 10 10 2 10 10
15 10 5 5 5 10 3 5 5 5 5 10 10 2 10 10
Γ2 × 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 3 3 10 5 10 5 5 5 12 12 4 12 12
2 1 5 5 5 5 10 10 16 16 16 2 2 3 2 2
3 5 5 5 5 5 5 5 15 15 15 3 3 8 3 3
4 5 5 5 5 5 5 5 15 15 15 3 3 8 3 3
5 10 5 10 10 10 5 5 4 4 4 5 5 13 5 5
6 2 2 1 1 2 5 2 5 5 5 10 10 30 10 10
7 13 2 10 10 5 5 10 3 3 3 5 5 16 5 5
8 11 1 5 5 3 2 3 5 5 5 10 10 15 10 10
9 11 1 5 5 3 2 3 5 5 5 10 10 15 10 10
10 11 1 5 5 3 2 3 5 5 5 10 10 15 10 10
11 10 5 5 5 10 15 5 5 5 5 5 5 10 5 5
12 10 5 5 5 10 15 5 5 5 5 5 5 10 5 5
13 6 1 15 15 1 10 5 10 10 10 3 3 5 3 3
14 10 5 5 5 10 15 5 5 5 5 5 5 10 5 5
15 10 5 5 5 10 15 5 5 5 5 5 5 10 5 5
Γ3 × 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 10 10 5 5 10 10 10 5 5 5 5 5 5 5 5
2 5 5 5 5 5 5 10 10 10 10 5 5 10 5 5
3 5 5 5 5 5 5 10 10 10 10 5 5 10 5 5
4 5 5 5 5 5 5 10 10 10 10 5 5 10 5 5
5 5 5 5 5 4 5 5 4 4 4 1 1 50 1 1
6 2 4 5 5 12 5 2 5 5 5 10 10 10 10 10
7 15 10 10 10 5 5 5 5 5 5 5 5 5 5 5
8 5 1 7 7 2 3 10 5 5 5 10 10 10 10 10
9 5 1 7 7 2 3 10 5 5 5 10 10 10 10 10
10 5 1 7 7 2 3 10 5 5 5 10 10 10 10 10
11 4 15 3 3 5 10 5 5 5 5 7 7 12 7 7
12 4 15 3 3 5 10 5 5 5 5 7 7 12 7 7
13 2 3 5 5 60 1 4 3 3 3 2 2 3 2 2
14 4 15 3 3 5 10 5 5 5 5 7 7 12 7 7
15 4 15 3 3 5 10 5 5 5 5 7 7 12 7 7

Table 10: Parameters of the mixture with three 15-state Markov model components used in
the illustrative example from Section 4. βk and Γk for k = 1, 2, 3 represent the vector of
initial state probabilities and transition probability matrices, respectively.

Journal of Statistical Software 27

Method K = 1 K = 2 K = 3 K = 4 K = 5
EM algorithm BIC 30504.68 30622.71 30997.65 31791.41 32648.21
(with β) ARI 0.000 0.575 0.866 0.769 0.518
EM algorithm BIC 30464.14 30531.22 30855.81 31551.64 32288.55
(without β) ARI 0.000 0.551 0.752 0.678 0.570
Forward selection BIC 29983.95 29566.18 29397.38 29997.52 30057.80

ARI 0.000 0.572 0.898 0.788 0.658
Backward selection BIC 29983.95 29566.18 29397.38 29571.22 29708.93

ARI 0.000 0.572 0.898 0.810 0.701

Table 11: Results of model-based clustering with (forward and backward selection) and with-
out (EM algorithm) state selection procedures. Corresponding BIC and ARI values are pro-
vided for each number of components K = 1, . . . , 5. BIC values given in bold font represent
the best model detected by a specific method.

example highlights the importance of the biclustering approach in which states are organized
into equivalence blocks along with the estimation of the mixture order.
Now, we focus on the optimal solution obtained by the state selection approaches. There
are 9 equivalence blocks identified by both procedures: {1}, {2}, {3, 4}, {5}, {6}, {7}, {8,
9, 10}, {11, 12, 14, 15}, and {13}. This result is fully correct as we can see from Table 10,
where the row and column probabilities match for all states within each non-singleton block.
It is also important to mention that the procedures do not discover spurious blocks. The
performance of the algorithm is quite impressive as there are just 100 observations and many
of them have rather short lengths. In particular, there are just 3 misclassifications and the
lengths of two of these observations are 11 and 12. Clearly, the correct classification of these
short data sequences is challenging. On the other hand, there are multiple observations with
similar lengths that are classified correctly.
Figure 3 provides an illustration to the 3-cluster partition obtained by the state selection
algorithms. It is worth mentioning that both selection procedures take a while to obtain
the results we discuss in this section. Therefore, as suggested by one of the reviewers, the
reader can get the immediate access to the corresponding click-plot by running the following
commands:

R> data("utilityB3", package = "ClickClust")
R> dev.new(width = 11, height = 11)
R> click.plot(X = C$X, id = B3$id, colors = c("lightyellow", "red",
+ "darkred"), col.levels = 10)

From the click-plot, we can draw several conclusions regarding the typical navigation patterns
of observations in each cluster. The first group, represented by the top segment of each cell, is
mainly responsible for transitions within the same state. This statement is supported by red
color hues associated with cells such as 1–1, 2–2, 3–3, 4–4, and 5–5. Another trend common
for this cluster is transitions between states 3 and 4 reflected by cells 3–4 and 4–3. These
results agree well with the original parameter values provided in matrix Γ1 from Table 10:
Corresponding transition probabilities are all relatively high. Two other transitions worth
mentioning with regard to the first group detected are 4–13 and 7–14. The other two clusters
do not support the described navigation behavior. The second group, illustrated by the

28 ClickClust: Model-Based Clustering of Categorical Sequences in R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Click-plot representing the clustering solution obtained by the backward and forward
selection procedures with K = 3 for the illustrative example of Section 4.

middle segment of each cell, is mostly characterized by the transitions 6–13, 13–3, 13–4, and
9–14. The final group, represented by the bottom cell segments, is almost entirely driven by
the transitions between states 5 and 13. The corresponding cells include bright and dark red
color hues. All the above-mentioned findings agree well with the model parameters specified
in Table 10.
Based on the click-plot, we can also notice that states within the detected equivalence blocks
behave similarly. To see this, we need to compare columns associated with states within
blocks as well as rows cell-wise. Thus, for the block {3, 4}, the relation between states 3 and
4 is reflected through similar color hues (and thus transition probabilities) in cells associated
with columns 3 and 4 as well as rows 3 and 4. Some minor distinction is observed between
cells 5–3 and 5–4 as well as 3–13 and 4–13. However, all other pairs of cells (1–3 and 1–4,
2–3 and 2–4, 3–3 and 3–4, etc., as well as 3–1 and 4–1, 3–2 and 4–2, etc.) support combining
states 3 and 4 into the common equivalence block. Similar analysis can be provided for the
blocks {8, 9, 10} and {11, 12, 14, 15}. The majority of cells associated with these two blocks
are pale yellow.

Journal of Statistical Software 29

Method K = 1 K = 2 K = 3 K = 4 K = 5
k-means 0.000 0.054 0.313 0.372 0.284
k-medoids 0.000 0.148 0.152 0.143 0.135
Ward 0.000 −0.010 0.111 0.098 0.101
single 0.000 0.010 0.006 0.005 0.001
complete 0.000 0.010 0.019 0.012 0.022
average 0.000 0.010 0.021 0.017 0.015

Table 12: ARI results of various clustering procedures from the package WeightedCluster and
k-means algorithm from the package clickstream.

Finally, it is worth remarking again that the considered illustrative example is rather chal-
lenging as the sample size is relatively small and the vast majority of transition probabilities
do not differ considerably over the three components. Despite this, the proposed biclustering
procedure gives impressive results. The complexity of the considered dataset can also be seen
from the results obtained by the k-means algorithm implemented in the package clickstream
(Table 12). This k-means algorithm is applied to relative transition frequency matrices. The
highest ARI value of 0.372 is reached for K = 4, while for the correct K = 3 the correspond-
ing ARI is equal to 0.313. Both ARI values are considerably lower than those obtained by
model-based clustering approaches with or without state selection procedures.
Table 12 also provides ARI values for clustering methods available through the package
WeightedCluster. There are k-medoids and four hierarchical algorithms with various links.
For all the five methods, the dissimilarity measure was calculated based on the longest com-
mon subsequence approach. As we can see, none of the considered methods is capable of
capturing the underlying clustering well. Of course, this result does not imply that our pro-
posed approach should be blindly preferred over competitors as the choice of the partitioning
method should be dictated by the goal of the study. When studying transition patterns is
the priority, our developed procedure proves to be a strong candidate.

5. Application to clickstream analysis
In this section, we consider a real-life dataset and analyze it by means of ClickClust. The
dataset msnbc323 (Melnykov 2016a) is available in the package and can be accessed by the
command data("msnbc323", package = "ClickClust"). This is a reduced version of the
dataset msnbc analyzed by Cadez et al. (2003). There are 323 clickstream sequences that
involve 17 different states: (1) frontpage, (2) news, (3) tech, (4) local, (5) opinion, (6) on-air,
(7) miscellaneous, (8) weather, (9) msn-news, (10) health, (11) living, (12) business, (13) msn-
sports, (14) sports, (15) summary, (16) bbs, and (17) travel. The length of sequences varies
from 35 to 362. There are 289 possible transitions among 17 states. Indeed, few transitions
are represented in the observed individual sequences, which makes the analyzed dataset rather
challenging for clustering.
Table 13 contains the results of the analysis by means of ClickClust. They can be reproduced
by running the command demo("msnbc323", package = "ClickClust"). The correspond-
ing code is provided in the supplementary file v74i09.R. As state selection procedures take a
rather long time in this case (and also do not provide an improvement in terms of BIC), we
focus on the direct application of the EM algorithm without the analysis of states. As we can

30 ClickClust: Model-Based Clustering of Categorical Sequences in R

Method K = 1 K = 2 K = 3 K = 4 K = 5
Model with β 115,342 113,418 113,262 113,628 114,473
Model without β 115,868 113,906 113,672 114,084 114,787

Table 13: Results of the EM algorithm with and without initial state probabilities included
in the model. Corresponding BIC values are provided for each number of components K =
1, . . . , 5. BIC values given in bold font represent the best models detected.

fr
on

tp
ag

e

ne
w

s

te
ch

lo
ca

l

op
in

io
n

on
−

ai
r

m
is

c

w
ea

th
er

m
sn

−
ne

w
s

he
al

th

liv
in

g

bu
si

ne
ss

m
sn

−
sp

or
ts

sp
or

ts

su
m

m
ar

y

bb
s

tr
av

el

travel

bbs

summary

sports

msn−sports

business

living

health

msn−news

weather

misc

on−air

opinion

local

tech

news

frontpage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: Click-plot representing the best clustering solution obtained for the clickstream
application from Section 5.

see from Table 13, the best model has three components and involves initial state probabilities
β. The corresponding BIC value is 113,262. Of course, ARI values cannot be calculated as
the true partition is unavailable. Therefore, we assess and interpret the obtained solution by
means of the click-plot provided in Figure 4.
As we can see, the cluster reflected by top cell segments is entirely driven by transitions within

Journal of Statistical Software 31

the same categories. In this cluster the red color hues correspond to diagonal cells only:
frontpage–frontpage, news–news, local–local, on-air–on-air, miscellaneous–miscellaneous, and
sports–sports. No other cell in Figure 4 has the color of its top segment other than pale
yellow. Thus, this group represents people who make the majority of transitions within their
preferred category and do not change categories frequently. It is worth remarking that the
detection of such a cluster is rather typical in the analysis of clickstream sequences. The
second cluster is characterized by higher probabilities of transitions frontpage–news, news–
news, news–summary, on-air–on-air, business–news, sports–news, and summary–news. Six
of these seven transitions involve the state news. The transition frontpage–news reflects the
common pattern for the users starting with the category frontpage to proceed directly to the
category news. Once the reader gets to the category news, he typically stays within it or
proceeds to summary. Thus, the second cluster consists of people mostly concerned with
news. The final data group represented by bottom cell segments is characterized by multiple
transitions, thus highlighting a variety of trends. Transitions opinion–news, opinion–weather,
on-air–opinion, on-air–on-air, weather–opinion, health–on-air, and living–on-air describe the
behavior of users mostly interested in the rubrics opinion and on-air. From Figure 4, we
can also conclude that users in the third cluster move from the category on-air to the cat-
egory opinion and do not return even through other rubrics. Some other interesting trends
highlighted by the click-plot suggest that people visiting the category health mostly move to
the state on-air either directly or through the states tech and living. This conclusion is sup-
ported by the transition health–on-air and the sequence of transitions health–tech, tech–living,
living–on-air. Another interesting sequence involves states business, sports, miscellaneous,
and local. More specifically, transitions frontpage–business, news–business, business–sports,
sports–miscellaneous, and miscellaneous–local suggest the common sequence of rubric transi-
tions: frontpage/news–business–sports–miscellaneous–local. This sequence has great meaning
as it is rather common for many people to follow this trend and mass media often present
their material in a similar order.
With regard to the initial states, we can see that the majority of users in the three clusters
start their clickstreams in the category frontpage. At the same time, some sequences from the
first cluster also begin in the rubric msn-news, sequences from the second cluster sometimes
start in the state on-air, while clickstreams from the last group can also originate in the
categories news and business.
The analysis of this interesting but challenging dataset illustrates how click-plots can be used
and interpreted to discover interesting navigation patterns common for observations within
detected clusters.

6. Summary
In this paper, we introduced and discussed the R package ClickClust. The proposed software
provides an efficient tool for model-based clustering and biclustering of categorical sequences.
Necessary methodological details are carefully summarized and all package capabilities are
thoroughly discussed and illustrated on demo examples. One challenging example is con-
sidered to highlight the utility of the package and to emphasize its usefulness. A real-life
application to the analysis of clickstream sequences is studied. ClickClust can be of interest
for researchers in the areas of clustering and classification as well as for a broad group of data
mining practitioners.

32 ClickClust: Model-Based Clustering of Categorical Sequences in R

References

Banfield J, Raftery A (1993). “Model-Based Gaussian and Non-Gaussian Clustering.” Bio-
metrics, 49(3), 803–821. doi:10.2307/2532201.

Biernacki C, Celeux G, Govaert G (2003). “Choosing Starting Values for the EM Algorithm for
Getting the Highest Likelihood in Multivariate Gaussian Mixture Models.” Computational
Statistics & Data Analysis, 41(3–4), 561–575. doi:10.1016/s0167-9473(02)00163-9.

Brzinsky-Fay C, Kohler U, Luniak M (2006). “Sequence Analysis with Stata.” Stata Journal,
6(4), 435–460.

Cadez I, Heckerman D, Meek C, Smyth P, White S (2003). “Model-Based Clustering and Vi-
sualization of Navigation Patterns on a Web Site.” Data Mining and Knowledge Discovery,
7(4), 399–424. doi:10.1023/A:1024992613384.

Chen WC, Maitra R (2011). “Model-Based Clustering of Regression Time Series Data via
APECM – An AECM Algorithm Sung to an Even Faster Beat.” Statistical Analysis and
Data Mining, 4(6), 567–578. doi:10.1002/sam.10143.

Dempster A, Laird N, Rubin D (1977). “Maximum Likelihood for Incomplete Data via the
EM Algorithm.” Journal of the Royal Statistical Society B, 39(1), 1–38.

Forgy E (1965). “Cluster Analysis of Multivariate Data: Efficiency vs. Interpretability of
Classifications.” Biometrics, 21, 768–780.

Fraley C, Raftery A (2002). “Model-Based Clustering, Discriminant Analysis, and Density
Estimation.” Journal of the American Statistical Association, 97(458), 611–631. doi:
10.1198/016214502760047131.

Gabadinho A, Ritschard G, Müller N, Studer M (2011). “Analyzing and Visualizing State
Sequences in R with TraMineR.” Journal of Statistical Software, 40(4), 1–37. doi:10.
18637/jss.v040.i04.

Halpin B (2014). “SADI: Sequence Analysis Tools for Stata.” University of Limerick De-
partment of Sociology Working Paper Series. URL http://www.ul.ie/sociology/pubs/
wp2014-03.pdf.

Handcock M, Raftery A, Tantrum J (2007). “Model-Based Clustering for Social Networks.”
Journal of the Royal Statistical Society A, 170(2), 301–354. doi:10.1111/j.1467-985x.
2007.00471.x.

Harte D (2016). HiddenMarkov: Hidden Markov Models. R package version 1.8-7, URL
https://CRAN.R-project.org/package=HiddenMarkov.

Hubert L, Arabie P (1985). “Comparing Partitions.” Journal of Classification, 2(1), 193–218.
doi:10.1007/bf01908075.

Kaufman L, Rousseuw P (1990). Finding Groups in Data. John Wiley & Sons, New York.

Liao T (2005). “Clustering of Time Series Data – A Survey.” Pattern Recognition, 38(11),
1857–1874. doi:10.1016/j.patcog.2005.01.025.

http://dx.doi.org/10.2307/2532201
http://dx.doi.org/10.1016/s0167-9473(02)00163-9
http://dx.doi.org/10.1023/A:1024992613384
http://dx.doi.org/10.1002/sam.10143
http://dx.doi.org/10.1198/016214502760047131
http://dx.doi.org/10.1198/016214502760047131
http://dx.doi.org/10.18637/jss.v040.i04
http://dx.doi.org/10.18637/jss.v040.i04
http://www.ul.ie/sociology/pubs/wp2014-03.pdf
http://www.ul.ie/sociology/pubs/wp2014-03.pdf
http://dx.doi.org/10.1111/j.1467-985x.2007.00471.x
http://dx.doi.org/10.1111/j.1467-985x.2007.00471.x
https://CRAN.R-project.org/package=HiddenMarkov
http://dx.doi.org/10.1007/bf01908075
http://dx.doi.org/10.1016/j.patcog.2005.01.025

Journal of Statistical Software 33

MacQueen J (1967). “Some Methods for Classification and Analysis of Multivariate Observa-
tions.” In Proceedings of the Fifth Berkeley Symposium, volume 1, pp. 281–297. University
of California Press.

McLachlan G, Peel D (2000). Finite Mixture Models. John Wiley & Sons, New York. doi:
10.1002/0471721182.

Melnykov V (2012). “Efficient Estimation in Model-Based Clustering of Gaussian Regression
Time Series.” Statistical Analysis and Data Mining, 5(2), 95–99. doi:10.1002/sam.11138.

Melnykov V (2013a). “Challenges in Model-Based Clustering.” WIREs: Computational Statis-
tics, 5(2), 135–148. doi:10.1002/wics.1248.

Melnykov V (2013b). “Finite Mixture Modelling in Mass Spectrometry Analysis.” Journal of
the Royal Statistical Society C, 62(4), 573–592. doi:10.1111/rssc.12010.

Melnykov V (2016a). “Model-Based Biclustering of Clickstream Data.” Computational Statis-
tics & Data Analysis, 93, 31–45. doi:10.1016/j.csda.2014.09.016.

Melnykov V (2016b). ClickClust: An R Package for Model-Based Clustering of Categor-
ical Sequences. R package version 1.1.5, URL https://CRAN.R-project.org/package=
ClickClust.

Melnykov V, Chen WC, Maitra R (2012). “MixSim: An R Package for Simulating Data
to Study Performance of Clustering Algorithms.” Journal of Statistical Software, 51(12),
1–25. doi:10.18637/jss.v051.i12.

Nigam K, McCallum A, Thrun S, Mitchell T (2000). “Text Classification from Labeled and
Unlabeled Documents Using EM.” Machine Learning, 39(2), 103–134. doi:10.1023/a:
1007692713085.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Scholz M (2016a). clickstream: An R Package for Analyzing Clickstreams. R package ver-
sion 1.1.9, URL https://CRAN.R-project.org/package=clickstream.

Scholz M (2016b). “R Package clickstream: Analyzing Clickstream Data with Markov Chains.”
Journal of Statistical Software, 74(4), 1–17. doi:10.18637/jss.v074.i04.

Schwarz G (1978). “Estimating the Dimensions of a Model.” The Annals of Statistics, 6(2),
461–464. doi:10.1214/aos/1176344136.

Sneath P (1957). “The Application of Computers to Taxonomy.” Journal of General Micro-
biology, 17, 201–226. doi:10.1099/00221287-17-1-201.

Sorensen T (1948). “A Method of Establishing Groups of Equal Amplitude in Plant Sociology
Based on Similarity of Species Content and Its Application to Analyses of the Vegetation
on Danish Commons.” Biologiske Skrifter, 5, 1–34.

StataCorp (2015). Stata Data Analysis Statistical Software: Release 14. StataCorp LP, College
Station. URL http://www.stata.com/.

http://dx.doi.org/10.1002/0471721182
http://dx.doi.org/10.1002/0471721182
http://dx.doi.org/10.1002/sam.11138
http://dx.doi.org/10.1002/wics.1248
http://dx.doi.org/10.1111/rssc.12010
http://dx.doi.org/10.1016/j.csda.2014.09.016
https://CRAN.R-project.org/package=ClickClust
https://CRAN.R-project.org/package=ClickClust
http://dx.doi.org/10.18637/jss.v051.i12
http://dx.doi.org/10.1023/a:1007692713085
http://dx.doi.org/10.1023/a:1007692713085
https://www.R-project.org/
https://CRAN.R-project.org/package=clickstream
http://dx.doi.org/10.18637/jss.v074.i04
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1099/00221287-17-1-201
http://www.stata.com/

34 ClickClust: Model-Based Clustering of Categorical Sequences in R

Studer M (2013). “WeightedCluster Library Manual: A Practical Guide to Creating Typolo-
gies of Trajectories in the Social Sciences with R.” LIVES Working Papers, NCCR LIVES.
doi:10.12682/lives.2296-1658.2013.24.

Visser I, Speekenbrink M (2010). “depmixS4: An R Package for Hidden Markov Models.”
Journal of Statistical Software, 36(7), 1–21. doi:10.18637/jss.v036.i07.

Ward J (1963). “Hierarchical Grouping to Optimize an Objective Function.” Journal of the
American Statistical Association, 58(301), 236–244. doi:10.2307/2282967.

Affiliation:
Volodymyr Melnykov
Department of Information Systems, Statistics, and Management Science
The University of Alabama
Tuscaloosa, AL 35487, United States of America
E-mail: vmelnykov@cba.ua.edu
URL: http://bama.ua.edu/~vmelnykov

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

October 2016, Volume 74, Issue 9 Submitted: 2014-10-01
doi:10.18637/jss.v074.i09 Accepted: 2015-09-04

http://dx.doi.org/10.12682/lives.2296-1658.2013.24
http://dx.doi.org/10.18637/jss.v036.i07
http://dx.doi.org/10.2307/2282967
mailto:vmelnykov@cba.ua.edu
http://bama.ua.edu/~vmelnykov
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v074.i09

	Introduction
	Methodological and algorithmic details
	Model-based clustering of categorical sequences
	Variability assessment procedure
	State selection for merging or splitting
	Prediction of future states visited
	Graphical display click-plot

	Package description and illustrative examples
	Reading categorical sequences with ClickClust
	Finite mixture modeling with ClickClust
	Constructing a click-plot with ClickClust
	Variability assessment with ClickClust
	State selection with ClickClust
	Predicting future states with ClickClust
	Simulating categorical sequences with ClickClust

	Illustrative use of the package
	Application to clickstream analysis
	Summary

