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Abstract

Simulations are a practical and reliable approach to power calculations, especially for
multi-level mixed effects models where the analytic solutions can be very complex. In
addition, power calculations are model-specific and multi-level mixed effects models are
defined by a plethora of parameters. In other words, model variations in this context are
numerous and so are the tailored algebraic calculations. This article describes ipdpower in
Stata, a new simulations-based command that calculates power for mixed effects two-level
data structures. Although the command was developed having individual patient data
meta-analyses and primary care databases analyses in mind, where patients are nested
within studies and general practices respectively, the methods apply to any two-level
structure.

Keywords: Stata, ipdpower, power, coverage, meta analysis, multi level, mixed effects, random
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1. Introduction
The size of primary care databases (PCDs) allows for investigations that cannot normally
be undertaken in much smaller randomized controlled trials (RCTs), such as the moderating
effect of a patient characteristic on the effect of an intervention. However, researchers quite
often underestimate the numbers needed to detect such effects and assume that the size of
the database alone guarantees adequate power for any type of investigation. The essential
structure of a PCD dataset closely resembles that of an individual patient data (IPD) meta-

http://dx.doi.org/10.18637/jss.v074.i12


2 ipdpower: Simulation-Based Power Calculations in Stata

analysis, with patients nested (clustered) in general practices in the former and in studies in
the latter, thus the same modeling approaches and power analysis considerations are applica-
ble to both. In individual patient data meta-analyses, the quantity of the collected data from
numerous RCTs sometimes deceives researchers with regards to the power in their analysis
and can lead to the assumption that a power calculation is not necessary. However, even
though power calculations are quite often needed in these contexts, especially for detecting
a moderating effect, available software options are not user friendly or can only cope with
simple models (e.g., without random effects for the higher level clusters). Hence, it is not
uncommon for researchers to use a rough ‘four-times as many patients needed as for the main
effect’ over-simplification to estimate power (McClelland and Judd 1993).
More recently, an algebraic approximation approach, which uses study summary statistics,
was developed by Kovalchik and Cumberland (2012) and implemented in R (Kovalchik 2013; R
Core Team 2016) for individual patient data meta-analysis. Overall, Kovalchik and Cumber-
land found that their computationally cheap method performed well in simulations although
it is constrained by distributional assumptions and performance deteriorated in some scenar-
ios. Although this approach can be very useful, it is limited to a randomized controlled trial
setting with a binary treatment, a patient-level covariate and a binary or continuous outcome.
In addition, random effects for the intercept and intervention were modeled but other random
effects (e.g., for the covariate) were not considered.
Using simulations to calculate power is a well-known but computationally expensive approach
(Feiveson 2002), but with the availability of powerful computers, simulations can be a very
useful alternative when it comes to complex study designs for which power equations are
unavailable or prohibitively complex (Arnold, Hogan, Colford, Jr, and Hubbard 2011). For
example, the simsam command offers a very flexible approach, allowing users to calculate
power, coverage and other performance metrics under any probability model that can be
programmed in Stata (Hooper 2013). However, the data structures need to be manually
generated and the complexity of multi-level model structures, random-effects, interaction
effects and non-normal data makes such an approach very difficult or even prohibitive. The
ipdpower command for Stata (StataCorp. 2011) provides a simple but flexible framework
for simulation-based power calculations via regression modeling, for a plethora of complex
data structures. Various random effects at the cluster (e.g., practice, study) level can be
hypothesized, the outcome can be continuous, binary or count data, covariates and moderators
(i.e., interactions) can be modeled at the cluster- or patient-level, exposure can be binary (e.g.,
intervention) or continuous (as is often the case in observational studies), distributions for the
random effects and continuous variables can be simulated to be non-normal, and ‘missingness’
mechanisms for the outcome can be implemented. Besides power, the command provides
additional information that can be useful when designing a study, for example coverage (type
I error) which might depart from the nominal level when the data structure is complex.

2. Methods
The command proceeds in two steps, within each simulation iteration. First, it generates a
dataset, defining the outcome according to the specified coefficients for the intercept (con-
stant), the exposure (intervention), the covariate and the exposure-covariate interaction (mod-
erator effect). Second, it uses regression modeling to calculate model fit statistics, power and
coverage for the dataset. Information is then aggregated across all simulated datasets. Power
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indicates the percentage of iterations in which a model coefficient was found to be statis-
tically significant and in the hypothesized direction. Coverage indicates the percentage of
confidence intervals around the coefficient that include the true value and should correspond
to the hypothesized α level. Binomial proportion confidence intervals using the cii command
are calculated for both power and coverage.

2.1. Dataset generation

For a continuous outcome, each dataset is generated using the following set of equations:

Yij = β0j + β1jgroupij + β2jXij + β3jgroupij ∗Xij + εij (1a)

with

β0j = γ0 + u0j

β1j = γ1 + u1j

β2j = γ2 + u2j

β3j = γ3 + u3j

(2)

and when assuming a normal distribution for the error and random effects

εij ∼ N(0, σ2
j )

u0j ∼ N(0, τ2
0 )

u1j ∼ N(0, τ2
1 )

u2j ∼ N(0, τ2
2 )

u3j ∼ N(0, τ2
3 )

(3)

where

• i the patient,

• j the the cluster (e.g., study),

• Yij the outcome for patient i in cluster j,

• groupij exposure for patient i in cluster j,

• Xij the covariate (e.g., baseline level) for patient i in cluster j,

• groupij ∗Xij the exposure-covariate interaction (moderator) for patient i in cluster j,

• β0j the intercept for cluster j,

• γ0 the mean common intercept,

• β1j the exposure effect for cluster j,

• γ1 the mean exposure effect,

• β2j the covariate effect for cluster j,
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• γ2 the mean covariate effect,

• β3j the interaction effect for cluster j,

• γ3 the mean interaction effect,

• u0j the random intercept for cluster j,

• u1j the random exposure effect for cluster j,

• u2j the random covariate effect for cluster j,

• u3j the random interaction effect for cluster j,

• τ02 the between-cluster variance for the intercept,

• τ12 the between-cluster variance for the exposure effect,

• τ22 the between-cluster variance for the covariate effect,

• τ32 the between-cluster variance for the interaction effect,

• εij the error term for patient i in cluster j,

• σ2
j the within-cluster variance for cluster j.

If the outcome is dichotomous Equation 1a becomes:

ln
(

pij

1− pij

)
= β0j + β1jgroupij + β2jXij + β3jgroupij ∗Xij (1b)

where pij the probability that the outcome is 1 for patient i in cluster j and coefficients now
correspond to log odds (β0) and log odds ratios (β1,β2 and β3).
And for a count outcome, Equation 1a becomes:

ln(E(Yij)) = β0j + β1jgroupij + β2jXij + β3jgroupij ∗Xij (1c)

where E(Yij) the expectation of Yij and the coefficients correspond to log incidence (β0) and
log incidence rates(β1,β2 and β3).
However, we also implemented two alternative skew-normal distributions for the random
effects and residual error using methods described by Ramberg, Dudewicz, Tadikamalla, and
Mykytka (1979). Besides normal distributions (skewness = 0; kurtosis = 3), ipdpower can
model moderate-skew (skewness = 1; kurtosis = 4) and extreme-skew (skewness = 2; kurtosis
= 9) distributions with the same means and variances as described in Equation 3. Although
non-normal distributions for the random effects have not been found to notably affect the
performance of two-stage meta-analysis methods (Kontopantelis and Reeves 2012), deviations
from normality are not necessarily insignificant in this context.
ipdpower allows various random effects components (intercept, exposure, covariate and in-
teraction) to be incorporated in each dataset. In meta-analysis nomenclature, the variance
associated with random effects is described as heterogeneity of the exposure (treatment) ef-
fect in two-stage meta-analyses (stage 1: obtain or calculate study results; stage 2: calculate
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overall effect using an appropriate method). When individual patient data are available,
meta-analysts can choose one of many mixed effects regression models to combine informa-
tion and model various random effects in a single stage (Kontopantelis and Reeves 2013),
which is considered the best approach to meta-analysis (Mathew and Nordstrom 2010). Usu-
ally heterogeneity is quantified with I2 (Higgins and Thompson 2002) or H2 (Mittlbock and
Heinzl 2006), using the within (σ2) and between-study (τ12) variance estimates (assuming
within-variance is similar across clusters). Since the error ε (defined using variance σ2

j ) is
only meaningful in OLS regressions, these heterogeneity measures are only relevant when the
outcome is continuous in IPD meta-analysis (in Stata, σ2

j is fixed to π2/3 for logistic regres-
sions). For this reason ipdpower accepts between-cluster variance inputs (τ02, τ12, τ22 and
τ32) to define the random effects for each cluster. However, when the outcome is continuous
and users wish to utilize I2 as a starting point to define model heterogeneity, solving for τ2

returns (Higgins and Thompson 2002):

τi
2 = σ2Ii

2

100− Ii
2 (4)

Similarly, τi
2 = (Hi

2− 1)σ2, where i ∈ {0, 1, 2, 3}, and the command also provides I2 and H2

as outputs for users to double-check their calculations.

2.2. Regression modeling
ipdpower provides seven different regression modeling options, consistent across the three
possible outcome types, to account for the various levels of complexity in the generated
datasets. The simplest analysis approach, model(1), does not account for clustering, assumes
no random effects and employs commands regress, logit or poisson for continuous, binary
or count outcomes respectively. A more advanced approach (model(2)), declares the data
as clustered using xtset and analyses with xtreg, xtlogit or xtpoisson. With this family
of models only a random effects component for the intercept (τ02 > 0) is considered and
estimated. More advanced modeling options, which allow consideration of more random
effects components, have also been implemented. However, these models which use xtmixed,
xtmelogit and xtmepoisson (renamed in Stata 13), can be computationally expensive and
do not always converge. These modeling approaches have been described in the IPD meta-
analysis context (Higgins, Whitehead, Turner, Omar, and Thompson 2001; Turner, Omar,
Yang, Goldstein, and Thompson 2000; Whitehead 2002; Kontopantelis and Reeves 2013).
The simplest of them, model(3), assumes a fixed common intercept, random exposure effects
(τ12 > 0) and fixed effect for the covariate. The recommended model for meta-analyses
(Whitehead 2002), model(4), assumes fixed study specific intercepts, random exposure effects
(τ12 > 0) and fixed study specific effects for the covariate. model(5) assumes random study
intercepts (τ02 > 0), random exposure effects (τ12 > 0) and fixed study specific effect for the
covariate. model(6) assumes random study intercepts (τ02 > 0), random exposure effects
(τ12 > 0) and random effects for the covariate (τ22 > 0). model(7) assumes random study
intercepts (τ02 > 0), random exposure effects (τ12 > 0), random effects for the covariate
(τ22 > 0) and random effects for the interaction (τ32 > 0). The more complicated the model
the more likely analysis will fail to converge in a particular dataset, and this is often the case
for the last three models – especially the last one.
Although fixed effect models are widely used in two-stage meta-analyses, even when hetero-
geneity is not zero (Kontopantelis, Springate, and Reeves 2013), accounting for even low levels
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of between-cluster variability is a more conservative approach (Hunter and Schmidt 2000).
When a fixed effects model is incorrectly assumed, both coverage and power deteriorate as
true heterogeneity increases (Brockwell and Gordon 2001; Kontopantelis and Reeves 2012).
Analogously, for patient data analyses, we would expect poor fit from model(1), the fixed
effect approach, in the presence of heterogeneity. More generally, the closer the modeling
assumptions to the true data structure, the better the expected performance. However, as
explained previously, the more complex models come with practical limitations so users must
make the choice that best suits their needs in this trade-off between feasibility and model
correctness. From this point of view, the usability of ipdpower is not limited to power calcu-
lations for a moderator effect, but it can be used to evaluate the overall performance of current
modeling approaches in various simulated scenarios. For example, to compare model(4), the
preferred IPD meta-analysis approach, to the simpler model(3).

3. The ipdpower command

3.1. Syntax
ipdpower, sn(#) ssl(#) ssh(#) b0(#) b1(#) b2(#) b3(#) [ minsh(#) hpoisson
icluster outc(string ) cb(#) cexp cexpd(string ) errsd(#) sderrsd(#)
derr(string ) ccovd(string ) bcov bcb(#) slcov tsq0(#) tsq1(#) tsq2(#)
tsq3(#) dtp0(string ) dtp1(string ) dtp2(string ) dtp3(string )
covmat(name ) missp(#) mar(#) mnar(#) minum(#) mipmm(#) model(#) clvl(#)
seed(#) nskip dnorm xnodts nodisplay moreon ]

3.2. Required
sn(#) Number (integer) of simulations to execute. At least 1000 are recommended for rela-
tively narrow confidence intervals.
ssl(#) Total number (integer) of patients across all higher level units (clusters).
ssh(#) Number (integer) of higher level units (e.g., studies, general practices etc.).
b0(#) Coefficient (real) for the intercept (constant) of regression model. For logistic and
Poisson regression log odds and log incidence rates are expected respectively. The coefficient
can be zero.
b1(#) Coefficient (real) for the exposure variable (e.g., intervention: treatment vs no treat-
ment) of the regression model. For logistic and Poisson regression log odds ratios and log
incidence rate ratios are expected respectively. The coefficient can be zero.
b2(#) Coefficient (real) for the covariate variable (e.g., age) of the regression model. It can be
continuous (default) or binary (bcov option), and patient-level (default) or study-level (slcov
option). For logistic and Poisson regression log odds ratios and log incidence rate ratios are
expected respectively. The coefficient can be zero. Note that the covariate, when continuous,
is always assumed to be standardized (mean = 0 and sd = 1) since interactions are included
in the models. Users need to take that into consideration when deciding on b2.
b3(#) Coefficient (real) for the exposure-covariate interaction variable. The command can
automatically handle a binary by continuous, binary by binary or continuous by continu-
ous interaction term. For logistic and Poisson regression log odds ratios and log incidence
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rate ratios are expected respectively. The coefficient can be zero. Note that the covariate,
when continuous, is always assumed to be standardized (mean = 0 and sd = 1) to allow for
meaningful estimates. Users need to take that into consideration when deciding on b3.

3.3. Optional

Data Structure

minsh(#) Minimum mumber (integer) of patients in a higher level unit. The default is 50
since this is usually the threshold above which the effort required to obtain individual patient
data for meta-analysis is justified. The command uses the numbers provided with ssl(#),
ssh(#) and minsh(#) to draw sizes for the higher level units from a uniform distribution. If
the average size for the higher level unit is smaller than the minimum number of patients the
command will return an error.
hpoisson Inform the command that the higher level unit sizes will not be drawn from a
uniform but a Poisson distribution with mean = ssl(#)/ssh(#). This approach provides
cluster sizes that are much more similar in size. Cannot be used with option minsh(#).
icluster Inform the command that the exposure is clustered at the higher level units (e.g.,
cluster-RCT). Can only be selected when exposure is binary and with balanced designs (i.e.,
cannot be used with cexp or cb(#)). Clusters assigned an odd identifier are assumed to
include controls and clusters assigned even identifiers are assumed to include the intervention
cases (i.e., if an odd number of higher level units is simulated with icluster there will be an
additional cluster of controls).
outc(string ) Type of outcome: continuous (‘cont’ default); dichotomous (‘binr’); count
(‘count’). The model for a continuous outcome is y = b0 + b1 * grp + b2 * xcovar + b3
* xcovar * grp + u0 + u1 * grp + u2 * xcovar + u3 * xcovar * grp + errx,
where grp the exposure variable, xcovar the covariate, xcovar * grp their interaction,
u0–u3 the random effects components and errx the residual errors. For a binary outcome
the model is y = uniform() < invlogit(b0 + b1 * grp + b2 * xcovar + b3 * xcovar
* grp + u0 + u1 * grp + u2 * xcovar + u3 * xcovar * grp) and for a count outcome
it is y = rpoisson(exp(b0 + b1 * grp + b2 * xcovar + b3 * xcovar * grp + u0 + u1
* grp + u2 * xcovar + u3 * xcovar * grp)). Negative binomial models were considered
as an alternative for count data but they were thought to be too complex to be of much prac-
tical use in the assumption-laden context of power calculations. Note that residual errors can
only be directly controlled in the OLS regression model.
cb(#) Probability (real) for patient membership to the exposure group (grp = 1), when
exposure is binary. The default is 0.5 for a balanced design.
cexp Inform the command that exposure is continuous (standardized, i.e., mean = 0 and sd
= 1) rather than binary (the default).
cexpd(string ) Distribution for continuous exposure: normal (‘norm’ default); moderate
skew (‘sknorm’); extreme skew (‘xsknorm’). Normal distribution for the exposure (skew =
0, kurtosis = 3) is the default. Moderate (skew = 1, kurtosis = 4) and extreme skewness (skew
= 2, kurtosis = 9) are implemented using Ramberg et al. (1979) method. The distribution
for the exposure will not affect the distribution of the outcome much unless b1 is reasonably
large. Note that the exposure, when continuous, is always assumed to be standardized (mean
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= 0 and sd = 1) since interactions are included in the models. Users need to take that into
consideration when deciding on b1 and b3.
errsd(#) For continuous outcome only, standard deviation for the residual error (real). The
default is 1. This value, combined with the model coefficients, will affect the model fit; e.g.,
a large value will drive down the average adjusted R2. It also affects model heterogeneity
since this is effectively the sd for the outcome within the higher level unit (e.g., within-study
variability).
sderrsd(#) For continuous outcome only, standard deviation for the standard deviation of
the residual error (real). In other words, it allows the residual error to vary across higher-
level units, which might be a more realistic modeling strategy. The default is 0, not allowing
variation which complies with modeling and heterogeneity assumptions (e.g., pooled within-
variance is used for heterogeneity calculations).
derr(string ) For continuous outcome only, distribution for errors and hence outcome: nor-
mal (‘norm’ default); moderate skew (‘sknorm’); extreme skew (‘xsknorm’). Normal dis-
tribution for the error (skew = 0, kurtosis = 3) is the default. Moderate (skew = 1, kurtosis
= 4) and extreme skewness (skew = 2, kurtosis = 9) are implemented using Ramberg et al.
(1979) method. The distribution for the errors will affect the distribution of the outcome and
the larger the modeled errors the more similar the two distributions.
ccovd(string ) Distribution for continuous covariate: normal (‘norm’ default); moderate
skew (‘sknorm’); extreme skew (‘xsknorm’). Normal distribution for the covariate (skew =
0, kurtosis = 3) is the default. Moderate (skew = 1, kurtosis = 4) and extreme skewness (skew
= 2, kurtosis = 9) are implemented using Ramberg et al. (1979) method. The distribution
for the covariate will not affect the distribution of the outcome much unless b2 is reasonably
large. Note that the covariate, when continuous, is always assumed to be standardized (mean
= 0 and sd = 1) since interactions are included in the models. Users need to take that into
consideration when deciding on b2 and b3.
bcov Inform the command that the covariate is binary covariate instead of continuous (the
default).
bcb(#) For binary covariate only, probability (real) that xcovar = 1. The default is 0.5.
slcov Inform the command that the covariate is higher-level (e.g., study-level: recruitment
setting) rather than patient-level(the default).

Random effects

tsq0(#) Random effect between higher level variance for the intercept. The default value is 0,
which assumes homogeneity and no random effects. Heterogeneity for this model factor (inter-
cept) is calculated using tsq0 and errsd. For example I2 = 100 ∗ tsq0/(tsq0 + errsd2) and
H2 = 1/(1−tsq0/(tsq0+errsd2)). Solving for tsq0 we obtain tsq0 = (I2 ∗errsd2)/(100−
I2) and tsq0 = H2 ∗errsd2−errsd2. Although ipdpower does not allow I2 or H2 inputs for
the random effects components, they can be easily calculated using these formulas. Addition-
ally users can use the obtained the hypothesized heterogeneity levels for the inputted within-
and between- variance parameters (say in a small trial simulation, if unsure of calculations).
tsq1(#) Random effect between higher level variance for the exposure. The default value is
0, which assumes homogeneity and no random effects. Heterogeneity for this model factor
(exposure) would be calculated using tsq1 and errsd. See tsq0(#) for calculation details.
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tsq2(#) Random effect between higher level variance for the covariate. The default value is
0, which assumes homogeneity and no random effects. Heterogeneity for this model factor
(covariate) would be calculated using tsq2 and errsd. See tsq0(#) for calculation details.
tsq3(#) Random effect between higher level variance for the exposure * covariate interaction
term. The default value is 0, which assumes homogeneity and no random effects. Hetero-
geneity for this model factor (interaction) would be calculated using tsq3 and errsd. See
tsq0(#) for calculation details.
dtp0(string ) Distribution for intercept random effect: normal (‘norm’ default); moderate
skew (‘sknorm’); extreme skew (‘xsknorm’). Normal distribution (skew = 0, kurtosis = 3)
is the default. Moderate (skew = 1, kurtosis = 4) and extreme skewness (skew = 2, kurtosis
= 9) are implemented using the Ramberg et al. (1979) method. In the standard two-stage
meta-analysis setting, a non-normal distribution for the random effects has been found to
have a small effect on power and coverage – even when the distribution is quite extreme.
dtp1(string ) Distribution for exposure random effect: normal (‘norm’ default, skew = 0
kurtosis = 3); moderate skew (‘sknorm’, skew = 1 kurtosis = 4); extreme skew (‘xsknorm’,
skew = 2 kurtosis = 9).
dtp2(string ) Distribution for covariate random effect: normal (‘norm’ default, skew = 0
kurtosis = 3); moderate skew (‘sknorm’, skew = 1 kurtosis = 4); extreme skew (‘xsknorm’,
skew = 2 kurtosis = 9).
dtp3(string ) Distribution for exposure * covariate interaction random effect: normal (‘norm’
default, skew = 0 kurtosis = 3); moderate skew (‘sknorm’, skew = 1 kurtosis = 4); extreme
skew (‘xsknorm’, skew = 2 kurtosis = 9).
covmat(name ) Covariance matrix for normally distributed random effects. Alternative ran-
dom effects definition to allow modeling of relationships between the random effects compo-
nents. The matrix needs to be a 4x4 symmetrical non-negative matrix, with the diagonal
elements corresponding to the random effects variances for intercept (name [1,1]), exposure
(name [2,2]), covariate (name [3,3]) and interaction (name [4,4]). Non-normal random ef-
fects cannot be modeled using this approach.

Missing data

missp(#) Probability (real) that outcome is missing, to allow for missing data mechanisms. If
option mar(#) is defined, data are assumed to be missing under a missing at random (MAR)
mechanism. If option mnar(#) is defined, data are assumed to be missing under a missing
not at random (MNAR) mechanism. If neither mar(#) or mnar(#) are provided along with
missp(#), data are assumed to be missing under a missing completely at random (MCAR)
mechanism. Please note that multiple imputation models can satisfactorily deal with MCAR
and MAR mechanisms and not MNAR mechanisms, although they will improve power in all
three scenarios. In terms of minimizing estimate bias, multiple imputations are not really
needed for MCAR data (a complete case analysis should provide similar estimates) and are
mainly needed for MAR data. There is some evidence that multiple imputation can offer
some protection against MNAR mechanisms, but in general the estimates from such models
will be biased. However, it is impossible to assess whether data are MNAR, without obtaining
additional external data, and the multiple imputation models are now used routinely whenever
‘missingness’ is encountered. Therefore, we decided to offer a MNAR modeling option with
the under-performing, in this scenario, multiple imputation approach to allow inquisitive
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researchers to practically calculate the performance of these models, in terms of power.
mar(#) Odds ratio (real) that defines a missing at random (MAR) mechanism. The relation-
ship between the covariate and missingness in the outcome is defined by z = ln(mar(#)) ∗
xcovar (i.e., a logistic regression model), and the missing data are selected (i.e., set to miss-
ing) from the z = 1 sub-sample. So a value of 1 implies the mechanism is MCAR, a value
above 1 implies that the outcome is more likely to be missing for larger values of the covariate
and a value below 1 implies that the outcome is more likely to be missing for smaller values
of the covariate.
mnar(#) Odds ratio (real) that defines a missing not at random (MNAR) mechanism. The re-
lationship between the outcome and missingness in the outcome is defined by z = ln(mnar(#))∗
y (i.e., a logistic regression model), and the missing data are selected (i.e., set to missing)
from the z = 1 sub-sample. So a value of 1 implies the mechanism is MCAR, a value above 1
implies that the outcome is more likely to be missing for larger values of the outcome and a
value below 1 implies that the outcome is more likely to be missing for smaller values of the
outcome.
minum(#) Number (integer > 1) of multiple imputations to be executed. This options informs
ipdpower that multiple-imputation models will be used and therefore missing data with one
of the three available structures (MCAR, MAR, MNAR) need to have been defined. For
the imputations, univariate linear, logistic or Poisson regression is used depending on the
outcome (see mi impute). Under all imputation models, the outcome depends on exposure,
covariate and their interaction, and for multi-level models (2–7) additionally on higher level
units (clusters). The imputed datasets are then analyzed using mi estimate as a prefix,
for the seven available models. Note that this process can be time consuming for complex
models and binary or count outcomes, while convergence issues are amplified since all imputed
datasets must run successfully for mi estimate to return results. Therefore 5 imputations
are recommended for most models, and 2–3 for non-continuous outcomes and models 5, 6 or 7
(see model(#) below).
mipmm(#) For a continuous outcome, it informs that missing data will be imputed using a
predictive mean matching algorithm (rather than linear regression). The algorithm is com-
putationally more expensive and # defines the number (integer ≥ 1) of closest observations
(nearest neighbors) to draw from.

Modeling

model(#) Specifies the form of the regression model: 1 simple, 2 random effects for intercept,
3–7 various mixed effects options. Model 1 corresponds to a regression with regress, logit
or poisson, for continuous, binary and count outcomes respectively. Random effects are not
considered at all under these models. Model 2 uses the xt family of models, sets the higher
level as a panel variable with xtset and analyses with xtreg, xtlogit or xtpoisson. Only
a random effects component for the intercept is considered under with this set of models.
Models 3–7 allow for more advanced modeling options, accounting for various random effect
components, but are computationally expensive and do not always converge (using xtmixed,
xtmelogit and xtmepoisson which have been renamed in Stata 13 – but we wished to ensure
ipdpower was compatible with Stata 12). The modeling approaches have been described for
ipdforest and in the following descriptions we assume the highel level is study (i.e., patients
nested within studies), for convenience. Model 3 assumes a fixed common intercept, random
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# Commands Intercept Exposure Covariate Interaction
1 regress/logit/poisson Fixed Fixed Fixed Fixed
2 xtreg/xtlogit/xtpoisson Random Fixed Fixed Fixed
3 xtmixed/xtmelogit/xtmepoisson Fixed Random Fixed Fixed
4 xtmixed/xtmelogit/xtmepoisson Fixed† Random Fixed† Fixed
5 xtmixed/xtmelogit/xtmepoisson Random Random Fixed† Fixed
6 xtmixed/xtmelogit/xtmepoisson Random Random Random Fixed
7 xtmixed/xtmelogit/xtmepoisson Random Random Random Random

Table 1: Modeling options with ipdpower (†cluster-specific fixed-effects; different estimate
for each higher level unit rather than overall)

exposure effects and fixed effect for the covariate. Model 4 assumes fixed study specific
intercepts, random exposure effects and fixed study specific effects for the covariate (which
is usually the recommended model for performing individual patient data meta-analysis).
Model 5 assumes random study intercepts, random exposure effects and fixed study specific
effects for the covariate. Model 6 assumes random study intercepts, random exposure effects
and random effects for the covariate. Model 7 assumes random study intercept, random
exposure effects, random effects for the covariate and random effects for the interaction.
Models 5 and 6 often fail to converge and for model 7 non-convergence is more frequent than
convergence. The models are summarized in Table 1.
clvl(#) Set confidence level. The default is 95% (alpha level of 5%). See level.
seed(#) Set initial value of random-number seed, for the simulations. See set seed.
nskip Add noskip option to xtlogit or xtpoisson to return McFadden’s pseudo R2. This
option is only relevant when model(2) with outc(1) or outc(2) is used. Computationally,
this approach is more expensive since it additionally fits a full maximum-likelihood model
with only a constant for the regression equation be fit (which is used as the base model for
the comparison with the final model).
dnorm Add normal option to xtpoisson to assume normally distributed random effects for
the intercept. The default is gamma-distributed which is computationally less expensive.
Additionally, when the normal option is specified, model convergence often fails. This option
is only relevant when model(2) with outc(2). A skew-normal distribution is similar to
gamma and perhaps skew-normal random effects should be considered when modeling count
data.
xnodts Suppress simulation progress display. If option not specified, a ‘.’ is displayed for
each successful model run (i.e., converging) and an ‘x’ for each unsuccessful iteration.
nodisplay Do not display results at the end of the simulation process. Suppressed results
include: simulation characteristics, average model fit, average statistics for the outcome,
average b0–b3, hypothesized heterogeneity values, power and coverage.
moreon Set more on (default is off).

3.4. Saved results

Table 2 lists the saved scalar results of ipdpower in r(). Coefficient estimates, power, cov-
erage, simulations and computational time information is always returned. An R2 statistic
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Name Description
r(bo) Average coefficient estimate for the intercept
r(b1) Average coefficient estimate for the exposure
r(b2) Average coefficient estimate for the covariate
r(b3) Average coefficient estimate for the interaction
r(nsim) Number of simulations
r(nrun) Number of successful simulations
r(ctime) Computational time (minutes)
r(rsq) Average adjusted or pseudo R2

r(errsd) Within-sd (error)
r(consd) between-sd (intercept)
r(grpsd) Within-sd (exposure)
r(covsd) between-sd (covariate)
r(intsd) Within-sd (interaction)
r(pow0) Power to detect b0
r(lpow0) Power to detect b0, lower CI
r(upow0) Power to detect b0, upper CI
r(pow1) Power to detect b1
r(lpow1) Power to detect b1, lower CI
r(upow1) Power to detect b1, upper CI
r(pow2) Power to detect b2
r(lpow2) Power to detect b2, lower CI
r(upow2) Power to detect b2, upper CI
r(pow3) Power to detect b3
r(lpow3) Power to detect b3, lower CI
r(upow3) Power to detect b3, upper CI
r(cov0) Coverage for b0
r(lcov0) Coverage for b0, lower CI
r(ucov0) Coverage for b0, upper CI
r(cov1) Coverage for b1
r(lcov1) Coverage for b1, lower CI
r(ucov1) Coverage for b1, upper CI
r(cov2) Coverage for b2
r(lcov2) Coverage for b2, lower CI
r(ucov2) Coverage for b2, upper CI
r(cov3) Coverage for b3
r(lcov3) Coverage for b3, lower CI
r(ucov3) Coverage for b3, upper CI

Table 2: Saved results of ipdpower in r() (CI = confidence interval).

cannot be returned for the more advanced multi-level models with xtmixed, xtmelogit or
xtmepoisson or for multiple imputations. With model(1), the average adjusted R2 is re-
turned from regress and the average pseudo R2 from logit or poisson. With model(2),
the average overall R2 is returned from xtreg and, if the nskip option is specified, the average
overall McFadden’s pseudo R2 from xtlogit or xtpoisson. Within-sd is only reported for
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continuous outcomes and when data are analyzed with xtreg or xtmixed. The between-sd
components are only returned if accounted for and estimated by the specified model.

3.5. Example

As an example, we used ipdpower to calculate the power in a few designs where the outcome
is continuous. First we assumed 20 clusters, a total of 5000 patients, no random effects and
the default level for the residual error ε (σ = 1). The generated outcome for the model could
be described by Yij = 1 + 0.5groupij + 0.3Xij + 0.1groupij ∗Xij + εij and we proceeded to
analyze using option model(2), i.e., xtreg allowing for a random intercept.

. ipdpower, sn(1000) ssl(5000) ssh(20) b0(1) b1(0.5) b2(0.3) b3(0.1) model(2)
> xnodts seed(7)

model 2: random effects regression, for study i.e. intercept
outcome type: continuous
exposure type: binary
covariate type: continuous
random seed number: 7
number of converging runs: 1000
computational time (min): 1.8

Characteristics for the outcome
--------------------------------

| group0 group1
-----------+--------------------
mean | 0.983 1.512
sd | 1.038 1.104
--------------------------------

Modelled variance and heterogeneity measures
---------------------------------------------------------------------------

| exposure covariate interaction intercept
--------------------------+------------------------------------------------
between variance (tau^2) | 0.000 0.000 0.000 0.000
I^2 (range: 0 to 100%) | 0.000 0.000 0.000 0.000
H^2 (range: 1 to +inf) | 1.000 1.000 1.000 1.000
---------------------------------------------------------------------------
modelled within-study variance (pooled): 1.000

Results: model estimates
---------------------------------------------------------------------------

| exposure covariate interaction intercept
--------------------------+------------------------------------------------
coefficient mean | 0.500 0.300 0.101 1.000
between-sd | . . . 0.013
---------------------------------------------------------------------------
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within-sd(error): 1.000
R^2(%): 15.834

Results: coverage
----------------------------------------------------

| estimate [95% Conf. Interval]
----------------+-----------------------------------
exposure | 94.2 92.6 95.6
covariate | 94.6 93.0 95.9
interaction | 95.9 94.5 97.0
intercept | 96.1 94.7 97.2
----------------------------------------------------

Results: power
----------------------------------------------------

| estimate [95% Conf. Interval]
----------------+-----------------------------------
exposure | 100.0 99.6 100.0
covariate | 100.0 99.6 100.0
interaction | 95.4 93.9 96.6
intercept | 100.0 99.6 100.0
----------------------------------------------------

The model setup details (within/between-variance, heterogeneity, outcome characteristics
etc.) are always provided as outputs for confirmation. On average, the model explained
approximately 15.8% of the variance and performed well in the parameter estimation. As-
suming we are interested in capturing the hypothesized interaction effect, the power to detect
it was estimated at 95.4%. Coverage for the interaction effect was above nominal at 95.9%.
In the next step we introduce heterogeneity for the exposure.

. ipdpower, sn(1000) ssl(5000) ssh(20) b0(1) b1(0.5) b2(0.3) b3(0.1)
> tsq1(0.5) model(2) xnodts seed(7)

model 2: random effects regression, for study i.e. intercept
outcome type: continuous
exposure type: binary
covariate type: continuous
random seed number: 7
number of converging runs: 1000
computational time (min): 3.8

Characteristics for the outcome
--------------------------------

| group0 group1
-----------+--------------------
mean | 1.026 1.513
sd | 1.045 1.278
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--------------------------------

Modelled variance and heterogeneity measures
---------------------------------------------------------------------------

| exposure covariate interaction intercept
--------------------------+------------------------------------------------
between variance (tau^2) | 0.500 0.000 0.000 0.000
I^2 (range: 0 to 100%) | 33.333 0.000 0.000 0.000
H^2 (range: 1 to +inf) | 1.500 1.000 1.000 1.000
---------------------------------------------------------------------------
modelled within-study variance (pooled): 1.000

Results: model estimates
---------------------------------------------------------------------------

| exposure covariate interaction intercept
--------------------------+------------------------------------------------
coefficient mean | 0.504 0.300 0.100 0.998
between-sd | . . . 0.347
---------------------------------------------------------------------------
within-sd(error): 1.057
R^2(%): 13.697

Results: coverage
----------------------------------------------------

| estimate [95% Conf. Interval]
----------------+-----------------------------------
exposure | 24.7 22.1 27.5
covariate | 94.9 93.3 96.2
interaction | 94.9 93.3 96.2
intercept | 100.0 99.6 100.0
----------------------------------------------------

Results: power
----------------------------------------------------

| estimate [95% Conf. Interval]
----------------+-----------------------------------
exposure | 99.6 99.0 99.9
covariate | 100.0 99.6 100.0
interaction | 92.2 90.4 93.8
intercept | 100.0 99.6 100.0
----------------------------------------------------

The modeled heterogeneity was moderate, with I2 = 33.3%. On average, the model explained
less of the variance in the outcome, approximately 13.7%. The model betas and the residual
error (within-sd) were estimated accurately on average but the model assumes a random
intercept and underestimates the hypothesized heterogeneity (since the selected modeling
approach assumes a random intercept, when a random exposure effect exists in the simulated
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data). The power to detect the interaction was slightly lower, estimated at 92.2%, but coverage
was almost at the nominal level with 94.9%. However, notice the very low coverage for the
exposure which was due to the introduced heterogeneity for that factor.
Next, we change the distribution for the errors from normal to extreme skew-normal.

. ipdpower, sn(1000) ssl(5000) ssh(20) b0(1) b1(0.5) b2(0.3) b3(0.1)
> tsq1(0.5) model(2) derr(xsknorm) xnodts seed(7)

model 2: random effects regression, for study i.e. intercept
outcome type: continuous
exposure type: binary
covariate type: continuous
random seed number: 7
number of converging runs: 1000
computational time (min): 5.8

Characteristics for the outcome
--------------------------------

| group0 group1
-----------+--------------------
mean | 1.019 1.587
sd | 1.052 1.269
--------------------------------

Modelled variance and heterogeneity measures
---------------------------------------------------------------------------

| exposure covariate interaction intercept
--------------------------+------------------------------------------------
between variance (tau^2) | 0.500 0.000 0.000 0.000
I^2 (range: 0 to 100%) | 33.333 0.000 0.000 0.000
H^2 (range: 1 to +inf) | 1.500 1.000 1.000 1.000
---------------------------------------------------------------------------
modelled within-study variance (pooled): 1.000

Results: model estimates
---------------------------------------------------------------------------

| exposure covariate interaction intercept
--------------------------+------------------------------------------------
coefficient mean | 0.502 0.300 0.098 1.000
between-sd | . . . 0.349
---------------------------------------------------------------------------
within-sd(error): 1.058
R^2(%): 13.603
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Results: coverage
----------------------------------------------------

| estimate [95% Conf. Interval]
----------------+-----------------------------------
exposure | 25.6 22.9 28.4
covariate | 95.4 93.9 96.6
interaction | 94.2 92.6 95.6
intercept | 100.0 99.6 100.0
----------------------------------------------------

Results: power
----------------------------------------------------

| estimate [95% Conf. Interval]
----------------+-----------------------------------
exposure | 99.4 98.7 99.8
covariate | 100.0 99.6 100.0
interaction | 90.3 88.3 92.1
intercept | 100.0 99.6 100.0
----------------------------------------------------

Although the non-normal errors did not appear to affect the model fit, power and coverage
were slightly affected. The power to detect the interaction dropped to 90.3% and coverage
was 94.2%. Coverage was still very problematic for the exposure.
Next, we proceeded to analyze with a more appropriate model (model(3)), one that accounts
for the exposure heterogeneity.

. ipdpower, sn(1000) ssl(5000) ssh(20) b0(1) b1(0.5) b2(0.3) b3(0.1)
> tsq1(0.5) model(3) derr(xsknorm) xnodts seed(7)

model 3: fixed common intercept; random treatment effect; fixed effect for
> baseline
outcome type: continuous
exposure type: binary
covariate type: continuous
random seed number: 7
number of converging runs: 1000
computational time (min): 12.7

Characteristics for the outcome
--------------------------------

| group0 group1
-----------+--------------------
mean | 1.019 1.587
sd | 1.052 1.269
--------------------------------
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Modelled variance and heterogeneity measures
---------------------------------------------------------------------------

| exposure covariate interaction intercept
--------------------------+------------------------------------------------
between variance (tau^2) | 0.500 0.000 0.000 0.000
I^2 (range: 0 to 100%) | 33.333 0.000 0.000 0.000
H^2 (range: 1 to +inf) | 1.500 1.000 1.000 1.000
---------------------------------------------------------------------------
modelled within-study variance (pooled): 1.000

Results: model estimates
---------------------------------------------------------------------------

| exposure covariate interaction intercept
--------------------------+------------------------------------------------
coefficient mean | 0.503 0.301 0.099 1.000
between-sd | 0.685 . . .
---------------------------------------------------------------------------
within-sd(error): 1.000
R^2(%): .

Results: coverage
----------------------------------------------------

| estimate [95% Conf. Interval]
----------------+-----------------------------------
exposure | 94.2 92.6 95.6
covariate | 95.5 94.0 96.7
interaction | 94.0 92.3 95.4
intercept | 95.0 93.5 96.3
----------------------------------------------------

Results: power
----------------------------------------------------

| estimate [95% Conf. Interval]
----------------+-----------------------------------
exposure | 87.1 84.9 89.1
covariate | 100.0 99.6 100.0
interaction | 93.2 91.5 94.7
intercept | 100.0 99.6 100.0
----------------------------------------------------

The model performed well and slightly under-estimated the hypothesized between-study vari-
ance (

√
0.5 ≈ 0.707). The power to detect the interaction was 93.2% and coverage was 94.0%.

As expected, coverage for the exposure was not an issue for this model, since it is a much
more accurate reflection of the hypothesized data structure.
Finally, we analyzed the data with the recommended model for IPD meta-analyses which is
computationally more expensive (model(4)). Under this model, fixed cluster specific effects
for the covariate and fixed cluster specific intercepts were assumed (i.e., different parameter
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estimates for each cluster) and therefore covariate and intercept information could not be
reported.

. ipdpower, sn(1000) ssl(5000) ssh(20) b0(1) b1(0.5) b2(0.3) b3(0.1)
> tsq1(0.5) model(4) derr(xsknorm) xnodts seed(7)

model 4: fixed study specific intercepts; random treatment effect; fixed
> study specific effect for baseline
outcome type: continuous
exposure type: binary
covariate type: continuous
random seed number: 7
number of converging runs: 1000
computational time (min): 44.4

Characteristics for the outcome
--------------------------------

| group0 group1
-----------+--------------------
mean | 1.019 1.587
sd | 1.052 1.269
--------------------------------

Modelled variance and heterogeneity measures
---------------------------------------------------------------------------

| exposure covariate interaction intercept
--------------------------+------------------------------------------------
between variance (tau^2) | 0.500 0.000 0.000 0.000
I^2 (range: 0 to 100%) | 33.333 0.000 0.000 0.000
H^2 (range: 1 to +inf) | 1.500 1.000 1.000 1.000
---------------------------------------------------------------------------
modelled within-study variance (pooled): 1.000

Results: model estimates
---------------------------------------------------------------------------

| exposure covariate interaction intercept
--------------------------+------------------------------------------------
coefficient mean | 0.503 . 0.099 .
between-sd | 0.677 . . .
---------------------------------------------------------------------------
within-sd(error): 0.996
R^2(%): .
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Results: coverage
----------------------------------------------------

| estimate [95% Conf. Interval]
----------------+-----------------------------------
exposure | 93.7 92.0 95.1
covariate | . . .
interaction | 93.6 91.9 95.0
intercept | . . .
----------------------------------------------------

Results: power
----------------------------------------------------

| estimate [95% Conf. Interval]
----------------+-----------------------------------
exposure | 87.9 85.7 89.9
covariate | . . .
interaction | 93.2 91.5 94.7
intercept | . . .
----------------------------------------------------

The model did not appear to perform better than model(3). The average heterogeneity
estimate was similar and so were power and coverage for the interaction at 93.2% and 93.6%
respectively. However, a more thorough investigation would be required to make a convincing
recommendation on model choice.

4. Discussion
We aimed to describe ipdpower, a new simulation-based power calculation command. The
command can be viewed as a tool that uses simulation to evaluate a particular model under
working assumption but, mainly, calculate power once a plausible model has been chosen.
It offers a plethora of modeling choices for researchers, and can help them decide whether
to obtain or extract data from existing sources and perform an analysis. Its novelty lies
with non-normal distribution options and the various random effects assumptions that can be
implemented. However, ipdpower is flexible and, at its simplest, the higher-level inputs can
be ignored to produce power calculation of a one-level model. In addition, if a parameter is
not needed (say the covariate or the interaction) the user can just set the respective coefficient
to zero when defining the model structure.
Usually researchers wish to input the desired power level and estimate the number of patients
and second level units required. Such an approach would be more complicated to implement in
ipdpower since the parameters of interest are two (number of patients and number of higher-
level units) and the combinations that would provide the desired power are many, unless one
of them is fixed. Nevertheless, users with a little programming experience should call the
command from a binary search algorithm (since power is a monotonic function of sample
size), that dichotomizes the search area to arrive to the solution quickly, in order to calculate
the sample sizes needed to have a desired power level (Cormen, Leiserson, Rivest, Stein, and
others 2001). Either the average number of patients in a cluster or the number of clusters
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should be fixed in this approach. Similarly, researchers interested in generating datasets with
the specified characteristics, rather than calculating power, can easily obtain them by taking
advantage of the fact that ipdpower keeps the last simulated dataset in memory. Calling
ipdpower from within a loop, with sim(1) and a different seed number for each iteration,
and appending the generated datasets (possibly adding an identifier for each iteration) will
produce a sample of datasets.
It might appear confusing that the command accepts variance inputs for the between-cluster
heterogeneity and returns standard deviation estimates. In the meta-analysis literature, het-
erogeneity is usually defined using the variance, but, on the other hand, Stata models typically
return standard deviations. We attempted to satisfy both practices.
When modeling continuous predictors (e.g., covariate or exposure), ipdpower generates them
as standardized (mean = 0, sd = 1) to avoid potential complications due to the interaction
term. However, in most cases users will wish to hypothesize effects for non-standardized
variables plus it might not be straightforward to define mean levels for outcomes through
b0(#) (e.g., Pr(Y = 1|group = 0) for a binary outcome). To help researchers in setting
up the correct design we have provided an accompanying Microsoft Excel file with exam-
ples across all possible exposure-covariate scenarios, with or without interaction effects (from
http://www.statanalysis.co.uk/files/defining_betas.xlsx). The command also re-
turns detailed information for inputs, assumed heterogeneity levels and aggregated model
estimates (coefficients, coverage and power). Since advanced usage of the command can
be challenging, users should utilize these outputs to ensure they are modeling the desired
structure, and re-specify if necessary. Regarding setting heterogeneity levels and their inter-
pretation, there are numerous practical guides that can prove helpful (Fletcher 2007; Higgins,
Thompson, Deeks, and Altman 2003). Although we present information on data missingness
mechanisms in the help file, interested users can find more details in an excellent overview
provided by Horton and Kleinman (2007).
When many random effects are modeled, assuming that all correlations between them are zero
might not always be a realistic assumption. From a practical point of view, these correlations
might have very small effects on performance while their hypothesized values for a particular
study could be anyone’s guess. Nevertheless, we have allowed relationships between normally
distributed effects to be specified using a covariance matrix (option covmat(name)), and
modeled with the drawnorm command. Such an approach was not possible when modeling
non-normal random effects, however, and all correlations between non-normal effects are
assumed to be zero.
ipdpower uses some of the mixed effects modeling commands that were renamed in Stata 13;
xtmixed to mixed, xtmelogit to meqrlogit and xtmepoisson to meqrpoisson. However,
we wished to ensure Stata 12 users would have access to the command and our choice does
not affect users of later versions. In terms of model choice, users should carefully consider
the implications of using very complex models where non-convergence is not that uncommon,
especially for analyses of a small number of patients and a few clusters. The command output
provides the number of converging runs which can inform on modeling decisions. For example,
if the rate of non-converging iterations is high, users should consider that they may be unable
to use the specified modeling approach with their data, when they have collected them. In
this case, they should probably consider an alternative, simpler modeling approach. On the
other hand, if the selected modeling approach is considered essential (for example, to model
and investigate specific random-effects), users should consider increasing the sample sizes to

http://www.statanalysis.co.uk/files/defining_betas.xlsx
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improve the convergence rates.
Future work could involve using ipdpower as a platform to inform on the effectiveness of
multiple-imputation mechanisms, especially in Primary Care Databases under MNAR as-
sumptions. In addition, although one-stage IPD meta-analysis is considered to be more
robust from a theoretical perspective (Mathew and Nordstrom 2010), the simplicity of a two-
stage IPD analysis and circumstantial evidence where results were very close with the two
approaches make the latter appealing to researchers. However, the asymptotic nature of the
methods implies that a theoretical comparison does not provide a complete picture and a sim-
ulation study is also needed to compare the two approaches, especially for small numbers of
meta-analyses studies and in the presence of heterogeneity. Until such comparisons are made
we must warn researchers that heterogeneity estimates in two-stage aggregate meta-analyses
can be very inaccurate and more often than not seem to fail to account for existing hetero-
geneity (Kontopantelis and Reeves 2012; Kontopantelis et al. 2013), and these methodological
problems are likely to be an issue in two-stage IPD meta-analyses as well.
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