
JSS Journal of Statistical Software
November 2016, Volume 75, Issue 3. doi: 10.18637/jss.v075.i03

Fast Estimation of Multinomial Logit Models:
R Package mnlogit

Asad Hasan
Sentrana Inc.

Wang Zhiyu
Carnegie Mellon University

Alireza S. Mahani
Sentrana Inc.

Abstract

We present the R package mnlogit for estimating multinomial logistic regression mod-
els, particularly those involving a large number of categories and variables. Compared
to existing software, mnlogit offers speedups of 10–50 times for modestly sized problems
and more than 100 times for larger problems. Running in parallel mode on a multicore
machine gives up to 4 times additional speedup on 8 processor cores. mnlogit achieves
its computational efficiency by drastically speeding up computation of the log-likelihood
function’s Hessian matrix through exploiting structure in matrices that arise in intermedi-
ate calculations. This efficient exploitation of intermediate data structures allows mnlogit
to utilize system memory much more efficiently, such that for most applications mnlogit
requires less memory than comparable software by a factor that is proportional to the
number of model categories.

Keywords: logistic regression, multinomial logit, discrete choice, large scale, parallel, econo-
metrics.

1. Introduction
Multinomial logit regression models, the multiclass extension of binary logistic regression, have
long been used in econometrics in the context of modeling discrete choice (McFadden 1974;
Bhat 1995; Train 2003) and in machine learning as a linear classification technique (Hastie,
Tibshirani, and Friedman 2009) for tasks such as text classification (Nigam, Lafferty, and
McCallum 1999). Training these models presents the computational challenge of having to
compute a large number of coefficients which increases linearly with the number of categories
and the number of variables. Despite the potential for multinomial logit models to become
computationally expensive to estimate, they have an intrinsic structure which can be exploited
to dramatically speedup estimation. Our objective in this paper is twofold: First we describe
how to exploit this structure to optimize computational efficiency, and second, to present an

http://dx.doi.org/10.18637/jss.v075.i03

2 mnlogit: Fast Estimation of Multinomial Logit Models in R

implementation of our ideas in our R (R Core Team 2016) package mnlogit (Hasan, Zhiyu,
and Mahani 2016) which is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=mnlogit.
An older method of dealing with the computational issues involved in estimating large scale
multinomial logistic regressions has been to approximate it as a series of binary logistic re-
gressions (Begg and Gray 1984). In fact the R package mlogitBMA (Sevcikova and Raftery
2013) implements this idea as the first step in applying Bayesian model averaging to multi-
nomial logit data. Large scale logistic regressions can, in turn, be tackled by a number of
advanced optimization algorithms (Komarek and Moore 2005; Lin, Weng, and Keerthi 2008).
A number of recent R packages have focused on slightly different aspects of estimating reg-
ularized multinomial logistic regressions. For example, package glmnet (Friedman, Hastie,
and Tibshirani 2010) is optimized for obtaining the entire L1-regularized paths and uses the
coordinate descent algorithm with “warm starts”, package maxent (Jurka 2012) is intended
for large text classification problems which typically have very sparse data and the package
pmlr (Colby, Lee, Lewinger, and Bull 2010) which penalizes the likelihood function with the
Jeffrey’s prior to reduce first order bias and works well for small to medium sized datasets.
There are also R packages which estimate plain (unregularized) multinomial regression mod-
els. Some examples are the VGAM package (Yee 2010), the multinom function in package
nnet (Venables and Ripley 2002) and the package mlogit (Croissant 2013).
Of all the R packages previously described, mlogit is the most versatile in the sense that it
handles many data types and extensions of multinomial logit models (such as nested logit,
heteroskedastic logit, etc.). This is especially important in econometric applications, which
are motivated by the utility maximization principle (McFadden 1974), where one encounters
data which depends upon both the observation instance and the choice class. Our package
mnlogit provides the ability of handling these general data types while adding the advantage
of very quick computations. This work is motivated by our own practical experience of the
impossibility of being able to estimate large scale multinomial logit models using existing
software.
In mnlogit we perform maximum likelihood estimation (MLE) using the Newton-Raphson
(NR) method. We speed up the NR method by exploiting structure and sparsity in inter-
mediate data matrices to achieve very fast computations of the Hessian of the log-likelihood
function. This overcomes the NR method’s well known weakness of incurring very high
per-iteration cost, compared to algorithms from the quasi-Newton family (Nocedal 1992,
1990). Indeed classical NR estimations of multinomial logit models (usually of the iteratively
reweighted least square family) have been slow for this very reason. On a single processor our
methods have allowed us to achieve speedups of 10–50 times compared to mlogit on modest-
sized problems while performing identical computations. In parallel mode1, mnlogit affords
the user an additional speedup of 2–4 times while using up to 8 processor cores.
We provide a simple formula-based interface for specifying a varied menu of models to mnlogit.
Section 2 illustrates aspects of the formula interface, the expected data format and the precise
interpretations of variables in mnlogit. To make the fullest use of mnlogit we suggest that the
user understands the simple R example worked out over the course of this section. Section 3
and Appendix A contain the details of our estimation procedure, emphasizing the ideas that

1Requires mnlogit to be compiled with OpenMP (OpenMP Architecture Review Board 2015) support (usu-
ally present by default with most R installations, except on Mac OS X).

https://CRAN.R-project.org/package=mnlogit

Journal of Statistical Software 3

underlie the computational efficiency we achieve in mnlogit. In Section 4 we present the
results of our numerical experiments in benchmarking and comparing mnlogit’s performance
with other packages while Appendix C has a synopsis of our timing methods. Finally Section 5
concludes with a short discussion and a promising idea for future work.

2. On using mnlogit
The data for multinomial logit models may vary with both the choice makers (“individuals”)
and the choices themselves. Besides, the modeler may prefer model coefficients that may (or
may not) depend on choices. In mnlogit we try to keep the user interface as minimal as possible
without sacrificing flexibility. We follow the interface of the mlogit function in package mlogit.
This section describes the mnlogit user interface, emphasizing data preparation requirements
and model specification via an enhanced formula interface. To start, we load the package
mnlogit in an R session:

R> library("mnlogit")

2.1. Data preparation

mnlogit accepts data in the “long” format which requires that if there are K choices, then
there are K rows of data for each individual (see also Section 1.1 of the mlogit vignette). Here
is a snapshot from data in the “long” format on choice of recreational fishing mode made by
1182 individuals:

R> data("Fish", package = "mnlogit")
R> head(Fish, 8)

mode income alt price catch chid
1.beach FALSE 7083.332 beach 157.930 0.0678 1
1.boat FALSE 7083.332 boat 157.930 0.2601 1
1.charter TRUE 7083.332 charter 182.930 0.5391 1
1.pier FALSE 7083.332 pier 157.930 0.0503 1
2.beach FALSE 1250.000 beach 15.114 0.1049 2
2.boat FALSE 1250.000 boat 10.534 0.1574 2
2.charter TRUE 1250.000 charter 34.534 0.4671 2
2.pier FALSE 1250.000 pier 15.114 0.0451 2

In the Fish data, there are 4 choices ("beach", "boat", "charter", "pier") available to each
individual: labeled by the chid (chooser ID). The price and catch column show, respectively,
the cost of a fishing mode and (in unspecified units) the expected amount of fish caught. An
important point here is that this data varies both with individuals and the fishing mode. The
income column reflects the income level of an individual and does not vary between choices.
Notice that the snapshot shows this data for two individuals.
The actual choice made by an individual, the “response” variable, is shown in the column
mode. mnlogit requires that the data contain a column with exactly two categories whose levels

4 mnlogit: Fast Estimation of Multinomial Logit Models in R

can be coerced to integers by as.numeric(). The greater of these integers is automatically
taken to mean TRUE.
The only other column strictly mandated by mnlogit is one listing the names of choices (like
column alt in the Fish data). However if the data frame is an ‘mlogit.data’ class object,
then this column may be omitted. In such cases mnlogit can query the index attribute of an
‘mlogit.data’ object to figure out the information contained in the alt column.

2.2. Model parametrization

Multinomial logit models have a solid basis in the theory of discrete choice models. The central
idea in these discrete models lies in the “utility maximization principle” which states that
individuals choose the alternative, from a finite, discrete set, which maximizes a scalar value
called “utility”. Discrete choice models presume that the utility is completely deterministic for
the individual, however modelers can only model a part of the utility (the “observed” part).
Stochasticity entirely arises from the unobserved part of the utility. Different assumptions
about the probability distribution of the unobserved utility give rise to various choice models
like multinomial logit, nested logit, multinomial probit, GEV (generalized extreme value),
mixed logit etc. Multinomial logit models, in particular, assume that the unobserved utility
is i.i.d. and follows a Gumbel distribution (see Train 2003, particularly Chapters 3 and 5, for
a full discussion).
We consider that the observed part of the utility for the ith individual choosing the kth
alternative is given by:

Uik = ξk + ~Xi · ~βk + ~Yik · ~γk + ~Zik · ~α. (1)

Here Latin letters (X, Y , Z) stand for design matrices while Greek letters (ξ, α, β, γ) stand
for coefficients. The parameter ξk is called the intercept. For many practical applications,
variables in multinomial logit models can be naturally grouped into two types:

• Individual specific variables ~Xi which do not vary between choices (e.g., income of
individuals in the Fish data of Section 2.1).

• Alternative specific variables ~Yik and ~Zik which vary with alternative and may also
differ, for the same alternative, between individuals (e.g., the amount of fish caught in
the Fish data: column catch).

In mnlogit we model these two types of variables with three types of coefficients:

1. Individual specific variables with alternative specific coefficients ~Xi · ~βk.

2. Alternative specific variables with alternative independent coefficients ~Zik · ~α.

3. Alternative specific variables with alternative specific coefficients ~Yik · ~γk.

The vector notation denotes that more than one variable of each type may be used to build
a model. For example in the fish data we may choose both the price and catch with either
alternative independent coefficients (the ~α) or with alternative specific coefficients (the ~γk).
Due to the principle of utility maximization, only differences between utilities are meaningful.
This implies that the multinomial logit model cannot determine absolute utility. We must

Journal of Statistical Software 5

specify the utility for any individual with respect to an arbitrary base value which we choose
to be 0. In choice model theory this is called “normalizing” the model.
For convenience in notation, we fix the choice indexed by k = 0 as the base; thus normalized
utility is given by:

Vik = Uik − Ui0 = ξk − ξ0 + ~Xi · (~βk − ~β0) + ~Yik · ~γk − ~Yi0 · ~γ0 + (~Zik − ~Zi0) · ~α. (2)

Notice that the above expression implies that Vi0 = 0 ∀i. To simplify notation we re-write
the normalized utility as:

Vik = ξk + ~Xi · ~βk + ~Yik · ~γk − ~Yi0 · ~γ0 + ~Zik · ~α k ∈ [1,K − 1] (3)

This equation retains the same meaning as Equation 2. Notice the restriction k 6= 0, since we
need Vi0 = 0. The most important difference is that ~Zik in Equation 3 stands for ~Zik − ~Zi0
(in terms of the original design matrices as expressed in Equation 2). In Equation 3 we also
write ~βk and ξk for ~βk − ~β0 and ξk − ξ0, respectively. Similarly we make the replacements ~βk
and ξk for ~βk − ~β0 and ξk − ξ0, respectively in Equation 3.
The utility maximization principle, together with the assumption on the error distribution,
implies that for multinomial logit models (Train 2003) the probability of individual i choosing
alternative k, Pik, is given by:

Pik = Pi0eVik . (4)

Here Vik is the normalized utility given in Equation 3 and k = 0 is the base alternative with
respect to which we normalize utilities. The number of available alternatives is taken as K
which is a positive integer greater than one. From the condition that every individual makes
a choice, we have that ∑K−1

k=0 Pik = 1. This gives us the probability of individual i picking
the base alternative:

Pi0 = 1
1 +∑K−1

k=1 eVik
. (5)

Note that K = 2 is the familiar binary logistic regression model.
Equation 3 has implications about which model parameters may be identified. In particular
for alternative specific coefficients of individual specific variables we may only estimate the
difference ~βk − ~β0. Similarly for the intercept only the difference ξk − ξ0, and not ξk and ξ0
separately may be estimated. For a model with K alternatives we estimate K − 1 sets of
parameters ~βk − ~β0 and K − 1 intercepts ξk − ξ0.

2.3. Formula interface

To specify multinomial logit models in R we need an enhanced version of the standard formula
interface, i.e., one which is able to handle multi-part formulas. In mnlogit we built the formula
interface using tools from the R package Formula (Zeileis and Croissant 2010). Our formula
interface closely conforms to that of the mlogit package. We illustrate it with examples
motivated by the Fish dataset (introduced in Section 2.1). Consider a multinomial logit model
where price has an alternative independent coefficient, income being individual specific has
an alternative specific coefficient and the catch also has an alternative specific coefficient.
That is, we want to fit a model that has the 3 types of coefficients described in Section 2.2.
Such a model can be specified in mnlogit with a 3-part formula:

6 mnlogit: Fast Estimation of Multinomial Logit Models in R

R> fm <- formula(mode ~ price | income | catch)

By default, the intercept is included, it can be omitted by inserting a -1 or 0 anywhere in
the formula. The following formulas specify the same model with omitted intercept:

R> fm <- formula(mode ~ price | income - 1 | catch)
R> fm <- formula(mode ~ price | income | catch - 1)
R> fm <- formula(mode ~ 0 + price | income | catch)

We can omit any group of variables from the model by placing a 1 as a placeholder:

R> fm <- formula(mode ~ 1 | income | catch)
R> fm <- formula(mode ~ price | 1 | catch)
R> fm <- formula(mode ~ price | income | 1)
R> fm <- formula(mode ~ price | 1 | 1)
R> fm <- formula(mode ~ 1 | 1 | price + catch)

When the meaning is unambiguous, an omitted group of variables need not have a placeholder.
The following formulas represent the same model where price and catch are modeled with
alternative independent coefficients and the intercept is included:

R> fm <- formula(mode ~ price + catch | 1 | 1)
R> fm <- formula(mode ~ price + catch | 1)
R> fm <- formula(mode ~ price + catch)

2.4. Using package mnlogit

The complete mnlogit function synopsis is:

mnlogit(formula, data, choiceVar = NULL, maxiter = 50, ftol = 1e-6,
gtol = 1e-6, weights = NULL, ncores = 1, na.rm = TRUE, print.level = 0,
linDepTol = 1e-6, start = NULL, alt.subset = NULL, ...)

We have described the formula and data arguments in previous sections while others are
explained in the man page, only the linDepTol argument needs further elaboration. Data
used to estimate the model must satisfy certain necessary conditions so that the Hessian
matrix, computed during Newton-Raphson estimation, has full rank (more about this in
Appendix B). In mnlogit we use the R built-in function qr, with its argument tol set to
linDepTol, to check for linear dependencies. If collinear columns are detected in the data,
using the criteria discussed in Appendix B, then some are removed so that the remaining
columns are linearly independent.
We now illustrate the practical usage of mnlogit and some of its methods by a simple example.
Consider the model specified by the formula:

R> fm <- formula(mode ~ price | income | catch)

This model has:

Journal of Statistical Software 7

• One alternative independent coefficient price corresponding to ~α.

• Two alternative specific coefficients income and intercept corresponding to ~βk. We
treat the intercept as the coefficient corresponding to an alternative specific “variable”
consisting of a vector of ones.

• One alternative specific coefficient catch corresponding to ~γk.

In the Fish data the number of alternatives K = 4, so the number of coefficients in the above
model is:

• One coefficient for a variable that may vary with individuals and alternatives, corre-
sponding to ~α.

• 2 × (K − 1) = 6, alternative specific coefficients for individual specific variables (note
that we have subtracted 1 from the number of alternatives because after normalization
the base choice coefficient cannot be identified), corresponding to ~βk.

• 1×K = 4 alternative specific coefficients for variables which may vary with individuals
and alternatives, corresponding to ~γk.

Thus the total number of coefficients in this model is 1 + 6 + 4 = 11.
We call the function mnlogit to fit the model using the Fish dataset on two processor cores.

R> fit <- mnlogit(fm, Fish, ncores = 2)
R> class(fit)

[1] "mnlogit"

For ‘mnlogit’ class objects we provide a number of S3 methods. Besides the usual methods
associated with R objects (coef, print, summary and predict), we also provide methods
such as: residuals, fitted, logLik, vcov, df.residual, update and terms. In addition,
the returned object (here fit) can be queried for details of the estimation process by:

R> print(fit, what = "eststat")

Maximum likelihood estimation using the Newton-Raphson method

Number of iterations: 7
Number of linesearch iterations: 10

At termination:
Gradient norm = 2.09e-06
Diff between last 2 loglik values = 0
Stopping reason: Succesive loglik difference < ftol (1e-06).

Total estimation time (sec): 0.036
Time for Hessian calculations (sec): 0.005 using 2 processors.

8 mnlogit: Fast Estimation of Multinomial Logit Models in R

The estimation process terminates when any one of the three conditions maxiter, ftol or
gtol is met. In case one runs into numerical singularity problems during the Newton itera-
tions, we recommend relaxing ftol or gtol to obtain a suitable estimate. The plain Newton
method has a tendency to overshoot extrema. In mnlogit we have included a “line search”
(one dimensional minimization along the Newton direction) which avoids this problem and
ensures convergence (Nocedal and Wright 2000).
As a convenience, the print method may be invoked to query an ‘mnlogit’ object for the
number and type of model coefficients.

R> print(fit, what = "modsize")

Number of observations in data = 1182
Number of alternatives = 4
Intercept turned: ON
Number of parameters in model = 11

individual specific variables = 2
choice specific coeff variables = 1
individual independent variables = 1

Finally there is provision for hypothesis testing. We provide the function hmftest to perform
the Hausman-McFadden test for IIA (independence of irrelevant alternatives), which is the
central hypothesis underlying multinomial logit models (Train 2003, Chapter 3). Three func-
tions to test for hypotheses, applicable to any model estimated by the maximum likelihood
method, are also provided:

• Function lrtest to perform the likelihood ratio test.

• Function waldtest to perform the Wald test.

• Function scoretest to perform the Rao score test.

The intent of these tests is succinctly described in Section 6 “Tests” of the mlogit package
vignette and we shall not repeat it here. We encourage the interested user to consult the
help page for any of these functions in the usual way, for example the lrtest help may be
accessed by:

R> library("mnlogit")
R> ?lrtest

Functions hmftest and scoretest are adapted from code in the mlogit package, while lrtest
and waldtest are built using tools in the R package lmtest (Zeileis and Hothorn 2002).

3. Estimation algorithm
In mnlogit we employ maximum likelihood estimation (MLE) to compute model coefficients
and use the Newton-Raphson method to solve the optimization problem. The Newton-
Raphson method is well established for maximizing the logistic family log-likelihoods (Hastie

Journal of Statistical Software 9

et al. 2009; Train 2003). However direct approaches of computing the Hessian of the multi-
nomial logit model log-likelihood function have deleterious effects on the computer time and
memory required. We present an alternate approach which exploits the structure of the inter-
mediate data matrices that arise in Hessian calculation to achieve the same computation much
faster while using drastically less memory. Our approach also allows us to optimally paral-
lelize Hessian computation and maximize the use of BLAS (basic linear algebra subprograms)
Level 3 functions, providing an additional factor of speedup.

3.1. Maximizing the likelihood

Before going into details we specify our notation. Throughout we assume that there areK ≥ 3
alternatives. The letter i labels individuals (the “choice-makers”) while the letter k labels
alternatives (the “choices”). We also assume that we have data for N individuals available to
fit the model (N is assumed to be much greater than the number of model parameters). We
use symbols in bold face to denote matrices, for example H stands for the Hessian matrix.
To simplify our calculations we organize model coefficients into a vector ~θ. If the intercept is
to be estimated then it is simply considered as another individual specific variable with an
alternative specific coefficient but with the special provision that the “data” corresponding
to this variable is equal to one for all alternatives. The likelihood function is defined by
L(~θ) = ∏

i P
(
yi|~θ

)
, where each yi labels the alternative chosen by individual i. Now we have:

P
(
yi|~θ

)
=

K−1∏
k=0

P (yi = k)δyik .

Here δyik is the Kronecker delta which is unity if y1 = k and zero otherwise. The likelihood
function is given by: L(~θ) = ΠN

i=1L(~θ|yi). It is more convenient to work with the log-likelihood
function which is given by l(~θ) = logL(~θ). A little manipulation gives:

l(~θ) =
N∑
i=1

[
−log

(
1 +

K−1∑
k=1

exp(Vik)
)

+
K−1∑
k=1

Vikδyik

]
. (6)

In the above we make use of the identity ∑k δyik = 1 and the definition of Pi0 in Equation 5.
McFadden (1974) has shown that the log-likelihood function given above is globally concave.
We solve the optimization problem by the Newton-Raphson (NR) method which requires
finding a stationary point of the gradient of the log-likelihood. Note that MLE by the Newton-
Raphson method is the same as the Fisher scoring algorithm (Hastie et al. 2009; Li 2013). For
our log-likelihood function in Equation 6, this point (which we name θ̂) is unique (because of
global concavity) and is given by the solution of the equations: ∂l(~θ)

∂~θ
= ~0. The NR method

is iterative and starting at an initial guess θold obtains an improved estimate θnew by the
equation:

~θnew = ~θold −H−1 ∂l

∂~θ
. (7)

Here the Hessian matrix, H = ∂2l
∂~θ∂~θ′ and the gradient ∂l

∂~θ
, are both evaluated at ~θold. The

vector ~δθ = −H−1 ∂l
∂~θ

is called the full Newton step. In each iteration we attempt to update

10 mnlogit: Fast Estimation of Multinomial Logit Models in R

~θold by this amount. However if the log-likelihood value at the resulting ~θnew is smaller,
then we instead try an update of ~δθ/2. This line search procedure is repeated with half the
previous step until the new log-likelihood value is not lower than the value at ~θold. Using such
a line search procedure guarantees convergence of the Newton-Raphson iterations (Nocedal
and Wright 2000).

3.2. Gradient and Hessian calculation

Each Newton-Raphson iteration requires computation of the Hessian and gradient of the log-
likelihood function. The expressions for the gradient and Hessian are well known (see for
example Section 2.5 of Croissant 2013 and Chapter 3 of Train 2003). In their usual form they
are given by:

∂l

∂~θ
=
∑
i

∑
k

(δyik − Pik) X̃ik,

H = −X̃>W̃X̃. (8)

For a model where only individual specific variables are used (that is only the matrix X
contributes to the utility in Equation 3), the matrices X̃ and W̃ are given by (Li 2013;
Böhning 1992):

X̃ =

X 0 0 · · · 0
0 X 0 · · · 0
... 0
0 · · · 0 X

 ,
here X is a matrix of order N × p (p is the number of variables or predictors) and,

W̃ =

W11 W12 · · · W1,K−1
W21 W22 · · · W2,K−1
...

... · · ·
...

WK−1,1 · · · · · · WK−1,K−1

 .
Here the sub-matrices Wk,t are diagonal matrices of order N × N , where diag(Wk,t)i =
Pik(δkt − Pit) and δkt is the Kronecker delta which equals 1 if k = t and 0 otherwise. Using
this notation the gradient can be written as (Li 2013):

∂l

∂~θ
= X̃>

(
~y − ~P

)
,

where we take vectors ~y and ~P as vectors of length N × (K − 1), formed by vertically con-
catenating the N probabilities Pik and responses I(yi = k), for each k ∈ [1,K − 1]. The
Newton-Raphson iterations of Equation 7 take the form: ~θnew = ~θold +

(
X̃>W̃X̃

)−1
X̃(~y−~P).

Although in this section we have shown expressions for models with only individual specific
variables, a general formulation of X̃ and W̃ including the two other types of variables ap-
pearing in Equation 3 exists (and is implemented in the R packages mlogit, Croissant 2013;
and VGAM, Yee 2010). This is presented in Appendix B but their specific form is tangential
to the larger point we make (our ideas extend to the general case in a simple way).

Journal of Statistical Software 11

An immediate advantage of using the above formulation is that Newton-Raphson iterations
can be carried out using the framework of IRLS (iteratively re-weighted least squares; Hastie
et al. 2009, Section 4.4.1). IRLS is essentially a sequence of weighted least squares regressions
which offers superior numerical stability compared to explicitly forming H and directly solving
Equation 7 (Trefethen and Bau 1997, Lecture 19). However this method, besides being easy
to implement, is computationally very inefficient. The matrices X̃ and W̃ are huge, of orders
(K−1)N×(K−1)p and N(K−1)×N(K−1) respectively, but are otherwise quite sparse and
possess a neat structure. We now describe our approach of exploiting this structured sparsity.

3.3. Exploiting structure – Fast Hessian calculation

We focus our attention on computation of the Hessian since it is the most expensive step, as
we later show from empirical measurements in Table 1 of Section 4. We start by ordering the
vector ~θ, which is a concatenation of all model coefficients as specified in Equation 3, in the
following manner:

~θ =
{
~β1, ~β2 . . . ~βK−1, ~γ0, ~γ1, . . . ~γK−1, ~α

}
. (9)

Here, the subscripts index alternatives and the vector notation reminds us that there may be
multiple variables modeled by coefficients of type ~β, ~γ, ~α. In ~θ we group together coefficients
corresponding to an alternative. This choice is deliberate and leads to a particular structure
of the Hessian matrix of the log-likelihood function with a number of desirable properties.
Differentiating the log-likelihood function with respect to the coefficient vector ~θ, we get:

∂l

∂~θm
=

 Mm
>
(
~ym − ~Pm

)
if ~θm is one of

{
~β1, . . . ~βK−1, ~γ0, . . . ~γK−1

}
,∑

k=1 Zk>
(
~yk − ~Pk

)
if ~θm is ~α.

(10)

Here we have partitioned the gradient vector into chunks according to ~θm which is a group
of coefficients of a particular type (defined in Section 2.2), either alternative specific or inde-
pendent. Subscript m (and subscript k) indicates a particular alternative, for example:

• If ~θm = ~β1 then m = 1.

• If ~θm = ~βK−1 then m = K − 1.

• If ~θm = ~γ1 then m = 1.

The vector ~ym is a vector of length N whose ith entry is given by δyim, which tells us whether
the observed choice of individual i is alternative m, or not. Similarly ~Pm is a vector of length
N whose ith entry is given by Pim, which is the probability of individual i choosing alternative
m. The matrices Mm and Zk contain data for choice m and k, respectively. Each of these
matrices has N rows, one for each individual. Specifically:

Mm = X if ~θm ∈
{
~β1, . . . ~βK−1

}
,

Mm = Ym if ~θm ∈ {~γ0, . . . ~γK−1} .

Similarly, the matrices Zk are analogues of the Ym and have N rows each (note that due to
normalization Z0 = 0).

12 mnlogit: Fast Estimation of Multinomial Logit Models in R

To compute the Hessian we continue to take derivatives with respect to chunks of coefficients
~θm. In doing this we can write the Hessian in a very simple and compact block format as
shown below.

Hnm = ∂2l

∂~θn∂~θ′m
=

−Mn

>WnmMm if ~θn, ~θm ∈
{
~β1, . . . ~βK−1, ~γ0, . . . ~γK−1

}
,

−
∑
k=1 Mn

>WnkZk if ~θn ∈
{
~β1, . . . ~γK−1

}
& ~θm is ~α,

−
∑
k,t=1 Zk>WktZt if ~θn is ~α & ~θm is ~α.

(11)

Here Hnm is a block of the Hessian and the matrices Wnm are diagonal matrices of dimension
N×N , whose ith diagonal entry is given by: Pin(δnm−Pim). The details of taking derivatives
in this block-wise fashion are given in Appendix A.
The first thing to observe about Equation 11 is that it effectively utilizes sparsity in the
matrices X̃ and W̃ to obtain very compact expressions for H. The block format of the
Hessian matrix is particularly suited for extremely efficient numerical computations. Notice
that each block can be computed independently of other blocks with two matrix multipli-
cations. The first of these involves multiplying a diagonal matrix to a dense matrix, while
the second requires multiplication of two dense matrices. We handle the first multiplication
with a handwritten loop which exploits the sparsity of the diagonal matrix, while the second
multiplication is handed off to a BLAS (basic linear algebra subprograms) call for optimal
efficiency (Golub and Van Loan 2013). We implement Hessian computation in a set of opti-
mized C++ routines. Computing the Hessian block-by-block is very efficient since we can use
level 3 BLAS calls (specifically DGEMM) to handle the most intensive calculations. In addition
more advanced strategies such as NUMA-aware memory allocation can be considered (Ma-
hani and Sharabiani 2015), though their implementation in the context of a cross-platform
package must be carefully considered. Another useful property of the Hessian blocks is that
because matrices Wnm are diagonal (hence symmetric), we have the symmetry property
Hnm = Hmn

>, implying that we only need to compute roughly half of the blocks.

Memory use optimization. The block structure of the Hessian requires only matrices
X and Ym instead of explicitly requiring large sparse matrices like X̃. This results in huge
memory savings as we only need to store the K matrices Y0, . . .YK−1 and one X. For
most applications where the design matrices are not dominated by Zm, this reduces memory
requirement by a factor of K or more.
Independence of Hessian blocks leads to a very fruitful strategy for parallelizing Hessian
calculations: We simply divide the work of computing blocks in the upper triangular part of
the Hessian among available threads. This strategy has the great advantage that threads do
not require any synchronization or communication overhead. However the cost of computing
all Hessian blocks is not the same: The blocks involving alternative independent coefficients
(the ~α) take much longer to compute. In the mnlogit implementation, computation of the
blocks involving alternative independent coefficients is handled separately from other blocks
and is optimized for serial computation.
Hessian calculation is, by far, the most time consuming step in solving the multinomial logit
MLE problem via the Newton-Raphson method. The choice we make in representing the
Hessian in the block format of Equation 11 has dramatic effects on the time (and memory) it
takes for model estimation. In the next section we demonstrate the impact on computation
times of this choice when contrasted with earlier approaches.

Journal of Statistical Software 13

4. Benchmarking performance
For the purpose of performance profiling mnlogit code, we use simulated data generated using
a custom R function makeModel() sourced from simChoiceModel.R which is available in the
package inside folder mnlogit/vignettes/ and in the supplementary files to this manuscript.
Using simulated data we can easily vary problem size to study performance of the code – which
is our main intention here – and make comparisons to other packages. Our tests have been
performed on a dual-socket, 64-bit Intel machine with 8 cores per socket which are clocked
at 2.6 GHz2. R has been natively compiled on this machine using gcc with BLAS/LAPACK
support from single-threaded Intel MKL v11.0.
The 3 types of model coefficients mentioned in Section 2.2 entail very different computational
requirements. In particular it can be seen from Equations 10 and 11, that Hessian and gradient
calculation is computationally very demanding for alternative independent coefficients. For
clear-cut comparisons we speed test the code with 4 types of problems described below. In
our results we shall use K to denote the number of alternatives and np to denote the total
number of coefficients in the model.

1. Problem “X”: A model with only individual specific data with alternative specific
coefficients.

2. Problem “Y”: A model with data varying both with individuals and alternatives and
alternative specific model coefficients.

3. Problem “Z”: Same type of data as problem “Y” but with alternative independent
coefficients which are independent of alternatives.

4. Problem “YZ”: Same type of data as problem “Y” but with a mixture of alternative
specific and alternative independent coefficients.

Problem “X” may be considered a special case of problem “Y”. However we have considered
it separately because it is typically used in machine learning domains as the simplest linear
multiclass classifier (Hastie et al. 2009). We shall also demonstrate that mnlogit runs much
faster for this class of problems and use it to compare with the R packages VGAM and nnet

2The machine has 128 GB of RAM and 20 MB of shared L3 cache.

Problem Pre-processing time(s) NR time(s) Hessian time(s) Total time(s) np
X 93.6 1125.5 1074.1 1226.7 4950
Y 137.0 1361.5 1122.4 1511.8 5000
Z 169.9 92.6 60.1 272.8 50
YZ 170.1 1247.4 1053.1 1417.5 4505

Table 1: Performance profile of mnlogit for different problems with 50 variables and K = 100
alternatives with data for N = 100, 000 individuals. All times are in seconds. “NR time” is
the total time taken in Newton-Raphson estimation while “Hessian time” (which is included
in “NR time”) is the time spent in computing Hessian matrices. Column np has the number of
model coefficients. Problem “YZ” has 45 variables modeled with individual specific coefficients
while the other 5 variables are modeled with alternative independent coefficients.

14 mnlogit: Fast Estimation of Multinomial Logit Models in R

which fit only this class of problems (see Appendix C). The “YZ” class of problems serves to
illustrate a common use case of multinomial logit models in econometrics where the data may
vary with both individuals and alternatives while the coefficients are a mixture of alternative
specific and independent types (usually only a small fraction of variables are modeled with
alternative independent coefficients).
The workings of mnlogit can be logically broken up into 3 steps:

1. Pre-processing: Where the model formula is parsed and matrices are assembled from a
user supplied data.frame. We also check the data for collinear columns (and remove
them) to satisfy certain necessary conditions, specified in Appendix B, for the Hessian
to be non-singular.

2. Newton-Raphson optimization: Where we maximize the log-likelihood function to es-
timate model coefficients. This involves solving a linear system of equations and one
needs to compute the log-likelihood function’s gradient vector and Hessian matrix.

3. Post-processing: All work needed to take the estimated coefficients and returning an
object of class ‘mnlogit’.

Table 1 shows the profile of mnlogit performance for the four representative problems discussed
earlier. Profiling the code clearly shows that the highest proportion of time is spent in Hessian
calculation (except for problem “Z”, for which the overall time is relatively low). This is not
an unexpected observation, it underpins our focus on optimizing Hessian calculation. Notice
the very high pre-processing time for problem “Z” whereof a large portion is spent in ensuring
that the data satisfies necessary conditions, mentioned in Appendix B, for the Hessian to be
non-singular.

4.1. Comparing mnlogit performance
We now compare the performance of mnlogit in single-threaded mode with some other R
packages. This section focuses on the comparison with the R package mlogit since it is the
only one which covers the entire range of variable and data types as mnlogit. Appendix C
contains a synopsis of our data generation and timing methods including a comparison of
mnlogit with the R packages VGAM and nnet.
Table 2 shows the ratio between mlogit and mnlogit running times for the four categories
of problems considered in Table 1. We see that for most problems, except those of type
“Z”, mnlogit outperforms mlogit by a large factor. We have not run larger problems for this
comparison because mlogit running times become too long, except for problem “Z”. In this
case with K = 100 and keeping other parameters the same as in Table 2, mnlogit outperforms
mlogit by factors of 1.35 and 1.26 while running the NR and BFGS, respectively.
Besides Newton-Raphson, which is the default, we have also run mlogit with the BFGS
optimizer. Typically the BFGS method, part of the quasi-Newton class of methods, takes more
iterations than the Newton method but with significantly lower cost per iteration since it never
directly computes the Hessian matrix. Typically for large problems the cost of computing
the Hessian becomes too high and the BFGS method becomes overall faster than the Newton
method (Nocedal and Wright 2000). Our approach in mnlogit attacks this weakness of the
Newton method by exploiting the structure and sparsity in matrices involved in the Hessian
calculation to enable it to outperform BFGS.

Journal of Statistical Software 15

Optimizer Newton-Raphson BFGS
K 10 20 30 10 20 30
Problem X 18.9 37.3 48.4 14.7 29.2 35.4
Problem Y 13.8 20.6 33.3 14.9 18.0 23.9
Problem YZ 10.5 22.8 29.4 10.5 17.0 20.4
Problem Z 1.16 1.31 1.41 1.01 0.98 1.06

Table 2: Ratio between mlogit and mnlogit total running times on a single processor for
problems of various sizes and types. Each problem has 50 variables with K alternatives and
N = 50 ×K × 20 observations to estimate the model. mlogit has been run separately with
two optimizers: Newton-Raphson and BFGS. In all cases the iterations terminated when
the difference between log-likelihoods in successive iterations reduced below 10−6. Note that
these numbers can vary depending on the BLAS implementation linked to R and hardware
specifications.

4.2. Parallel performance

We now turn to benchmarking mnlogit’s parallel performance. Figure 1 shows the speedups
we obtain in Hessian calculation for the same problems considered in Table 1. The value of
np, the number of model parameters, is significant because it is the dimension of the Hessian
matrix (the time taken to compute the Hessian scales like O(n2

p)). We run the parallel code
separately on 2, 4, 8, 16 processor cores, comparing each case with the single core time.
Figure 1 shows that it is quite profitable to parallelize problems “X” and “Y”, but the gains
for problem “Z” are not high. This is because of a design choice we make: Hessian calculation
for type “Z” variables is optimized for serial processing. In practical modeling, the number of
model coefficients associated with “Z” types variable is not high, especially when compared
to those of types “X” and “Y” (because the number of the coefficients of these types is also
proportional to the number of choices in the model, see Section 2.4). For problems of type
“YZ” (or other combinations which involve “Z”), parallelization can bring significant gains if
the number of model coefficients of type “Z” is low, relative to other types.
It can also be seen from Figure 1 that parallel performance degrades quickly as the number
of processor cores is increased beyond 4. This is a consequence of the fact that our OpenMP
program runs on a machine with shared cache and main memory, so increasing the number
of threads degrades performance by increasing the chance of cache misses and hence slow-
ing memory lookups. This is an intrinsic limitation of our hardware for which there is a
theoretically simple solution: Run the program on a machine with a larger cache!
An important factor to consider in parallel speedups of the whole program is Amdahl’s law
which limits the maximum speedup that may be achieved by any parallel program (see Chap-
ter 6 of Chandra, Dagum, Kohr, Maydan, McDonald, and Menon 2001). Assuming par-
allelization between n threads, Amdahl’s law states that the ultimate speedup is given by:
Sn = 1

fs+(1−fs)/n , where fs is the fraction of non-parallelized, serial code. Table 3 lists the
observed speedups on 2, 4 and 8 processor cores together with fs for problems of Table 1.
We take the time not spent in computing the Hessian as the “serial time” to compute fs
and neglect the serial time spent in setting up the parallel computation in Hessian calcula-
tion, which mainly involves spawning threads in OpenMP and allocating separate blocks of
working memory for each thread. For type “Z” problems, this is an underestimate because
some Hessian calculation is also serial. Our tests have shown that compared to the Hessian

16 mnlogit: Fast Estimation of Multinomial Logit Models in R

0 2 4 6 8 10 12 14 16
procs

2

4

6

8

10

Sp
ee

du
p

X (n
p
 = 4950)

Y (n
p
 = 5000)

YZ (n
p
 = 4505)

Z (n
p
 = 50)

Linear Speedup

Figure 1: Parallel Hessian calculation speedup (ratio of parallel to single thread running
time) for 2, 4, 8, 16, processor cores for problems of Table 1. The dashed “Linear Speedup”
guideline represents perfect parallelization.

Problem Serial fraction (fs) S2 S4 S8
X 0.124 1.76 (1.78) 2.87 (2.92) 4.04 (4.28)
Y 0.258 1.59 (1.62) 2.26 (2.27) 2.59 (2.85)
Z 0.780 1.08 (1.12) 1.14 (1.20) 1.17 (1.24)
YZ 0.257 1.44 (1.59) 2.08 (2.26) 2.36 (2.86)

Table 3: Parallel speedup of mnlogit versus serial performance (parentheses: predicted
ultimate speedup from Amdahl’s law) for problems of Table 1. S2, S4 and S8 are observed
speedups on 2, 4 and 8 processor cores respectively, while fs is the estimated fraction of time
spent in the serial portion of the code.

calculation, the (serial) work required in setting up parallel computation is negligible, except
for very small problems.

5. Discussion
Through mnlogit we seek to provide the community a package which combines quick calcula-
tion and the ability to handle data collinearity with a software interface which encompasses
a wide range of multinomial logit models and data types used in econometrics and machine
learning. Our main idea, exploiting matrix structure in large scale linear algebra calculations
is not novel; however this work is the first, as far as we are aware, to apply it to the estima-
tion of multinomial logit models problems in a working software package. The parallelization
capability of mnlogit, which can easily add a 2×–4× factor of speedup on now ubiquitous
multicore computers, is another angle which is underutilized in statistical software. Although
mnlogit code is not parallelized to the maximum possible extent, parallelizing the most ex-

Journal of Statistical Software 17

pensive parts of the calculation was an important design goal. We hope that users of the
package benefit from this feature in practice.
This work was initially motivated by the need to estimate large-scale multinomial logistic
regression models. For very large-scale problems, Newton’s method is usually outperformed
by gradient based, quasi-Newton methods like the l-BFGS algorithm (Liu and Nocedal 1989).
Hessian based methods, however, still hold promise for such problems. The class of inexact
Newton (also called truncated Newton) methods are specifically designed for problems where
the Hessian is expensive to compute but taking a Hessian-vector product (for any given vector)
is much cheaper (Nash 2000). Multinomial logit models have a Hessian with a structure which
permits taking cheap, implicit products with vectors. Where applicable, inexact Newton
methods have the promise of being better than l-BFGS methods (Nash and Nocedal 1991)
besides having low memory requirements (since they never store the Hessian) and are thus
very scalable. In the future we shall apply inexact Newton methods to estimating multinomial
logit models to study their convergence properties and performance.

Acknowledgments
We would like to thank Florian Oswald of the Economics Department at University College
London for contributing code for the predict method for ‘mnlogit’ objects. We are also
grateful to numerous users of mnlogit who gave us suggestions for improving the software and
reported bugs.

References

Begg C, Gray R (1984). “Calculation of Polychotomous Logistic Regression Parameters Using
Individualized Regressions.” Biometrika, 71(1), 11–18. doi:10.2307/2336391.

Bhat CR (1995). “A Heterocedastic Extreme Value Model of Intercity Travel Mode Choice.”
Transportation Research B, 29(6), 471–483. doi:10.1016/0191-2615(95)00015-6.

Böhning D (1992). “Multinomial Logistic Regression Algorithm.” Annals of the Institute of
Statistical Mathematics, 44(1), 197–200. doi:10.1007/bf00048682.

Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, Menon R (2001). Parallel Program-
ming in OpenMP. Academic Press, New York.

Colby S, Lee S, Lewinger J, Bull S (2010). pmlr: Penalized Multinomial Logistic Regression.
R package version 1.0, URL https://CRAN.R-project.org/package=pmlr.

Croissant Y (2013). Estimation of Multinomial Logit Model in R: The Package mlogit. R
package version 0.2-4, URL https://CRAN.R-project.org/package=mlogit.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.
18637/jss.v033.i01.

Golub G, Van Loan C (2013). Matrix Computations. 4th edition. The Johns Hopkins Uni-
versity Press.

http://dx.doi.org/10.2307/2336391
http://dx.doi.org/10.1016/0191-2615(95)00015-6
http://dx.doi.org/10.1007/bf00048682
https://CRAN.R-project.org/package=pmlr
https://CRAN.R-project.org/package=mlogit
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.18637/jss.v033.i01

18 mnlogit: Fast Estimation of Multinomial Logit Models in R

Hasan A, Zhiyu W, Mahani AS (2016). mnlogit: Multinomial Logit Model. R package version
1.2.5, URL https://CRAN.R-project.org/package=mnlogit.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data
Mining, Inference and Prediction. 2nd edition. Springer-Verlag.

Jurka T (2012). “maxent: An R Package for Low-Memory Multinomial Logistic Regression
with Support for Semi-Automated Text Classification.” The R Journal, 4(1), 56–59. URL
https://journal.R-project.org/archive/2012-1/RJournal_2012-1_Jurka.pdf.

Komarek P, Moore A (2005). “Making Logistic Regression a Core Data Mining Tool: A
Practical Investigation of Accuracy, Speed, and Simplicity.” Technical report, Carnegie
Mellon University.

Li J (2013). “Logistic Regression.” Course Notes. URL http://sites.stat.psu.edu/
~jiali/course/stat597e/notes2/logit.pdf.

Lin CJ, Weng R, Keerthi S (2008). “Trust Region Newton Method for Large-Scale Logistic
Regression.” Journal of Machine Learning Research, 9, 627–650.

Liu D, Nocedal J (1989). “On the Limited Memory BFGS Method for Large Scale Optimiza-
tion.” Mathematical Programming, 45(1), 503–528. doi:10.1007/bf01589116.

Mahani AS, Sharabiani MTA (2015). “SIMD Parallel MCMC Sampling with Applications
for Big-Data BayesianăAnalytics.” Computational Statistics & Data Analysis, 88, 75–99.
doi:10.1016/j.csda.2015.02.010.

McFadden D (1974). “The Measurement of Urban Travel Demand.” Journal of Public Eco-
nomics, 3(4), 303–328. doi:10.1016/0047-2727(74)90003-6.

Nash S (2000). “A Survey of Truncated-Newton Methods.” Journal of Computational and
Applied Mathematics, 124(1–2), 45–59. doi:10.1016/s0377-0427(00)00426-x.

Nash S, Nocedal J (1991). “A Numerical Study of the Limited Memory BFSG Method and the
Truncated-Newton Method for Large-Scale Optimization.” SIAM Journal of Optimization,
1(3), 358–372. doi:10.1137/0801023.

Nigam K, Lafferty J, McCallum A (1999). “Using Maximum Entropy for Text Classification.”
In IJCAI’99 Workshop on Machine Learning for Information Filtering.

Nocedal J (1990). “The Performance of Several Algorithms for Large Scale Unconstrained
Optimization.” In Large Scale Numerical Optimization, pp. 138–151. SIAM.

Nocedal J (1992). “Theory of Algorithms for Unconstrained Optimization.” Acta Numerica,
1, 199–242. doi:10.1017/s0962492900002270.

Nocedal J, Wright S (2000). Numerical Optmization. 2nd edition. Springer-Verlag.

OpenMP Architecture Review Board (2015). OpenMP Application Program Interface. Ver-
sion 4.5, URL http://www.openmp.org/.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

https://CRAN.R-project.org/package=mnlogit
https://journal.R-project.org/archive/2012-1/RJournal_2012-1_Jurka.pdf
http://sites.stat.psu.edu/~jiali/course/stat597e/notes2/logit.pdf
http://sites.stat.psu.edu/~jiali/course/stat597e/notes2/logit.pdf
http://dx.doi.org/10.1007/bf01589116
http://dx.doi.org/10.1016/j.csda.2015.02.010
http://dx.doi.org/10.1016/0047-2727(74)90003-6
http://dx.doi.org/10.1016/s0377-0427(00)00426-x
http://dx.doi.org/10.1137/0801023
http://dx.doi.org/10.1017/s0962492900002270
http://www.openmp.org/
https://www.R-project.org/

Journal of Statistical Software 19

Sevcikova H, Raftery A (2013). mlogitBMA: Bayesian Model Averaging for Multinomial Logit
Model. R package version 0.1-6, URL https://CRAN.R-project.org/package=mlogitBMA.

Train K (2003). Discrete Choice Methods with Simulation. Cambridge University Press,
Cambridge.

Trefethen L, Bau D (1997). Numerical Linear Algebra. SIAM, Philadelphia.

Venables W, Ripley B (2002). Modern Applied Statistics with S. 4th edition. Springer-Verlag,
New York. URL http://www.stats.ox.ac.uk/pub/MASS4/.

Yee T (2010). “The VGAM Package for Categorical Data Analysis.” Journal of Statistical
Software, 32(10), 1–34. doi:10.18637/jss.v032.i10.

Zeileis A, Croissant Y (2010). “Extended Model Formulas in R: Multiple Parts and Multiple
Responses.” Journal of Statistical Software, 34(1), 1–13. doi:10.18637/jss.v034.i01.

Zeileis A, Hothorn T (2002). “Diagnostic Checking in Regression Relationships.” R News,
2(3), 7–10. URL https://CRAN.R-project.org/doc/Rnews/.

https://CRAN.R-project.org/package=mlogitBMA
http://www.stats.ox.ac.uk/pub/MASS4/
http://dx.doi.org/10.18637/jss.v032.i10
http://dx.doi.org/10.18637/jss.v034.i01
https://CRAN.R-project.org/doc/Rnews/

20 mnlogit: Fast Estimation of Multinomial Logit Models in R

A. Log-likelihood differentiation
In this appendix we give the details of our computation of gradient and Hessian of the log-
likelihood function in Equation 6. We make use of the notation of Section 3.3. Taking the
derivative of the log-likelihood with respect to a chunk of coefficient ~θm one gets:

∂l

∂~θm
=

N∑
i=1

[
1

Pi0
∂Pi0
∂~θm

+
K−1∑
k=1

I(yi = k)∂Vik
∂~θm

]
.

The second term in this equation is a constant term, since the utility Vik, defined in Equation 3,
is a linear function of the coefficients. Indeed we have:

N∑
i=1

K−1∑
k=1

I(yi = k)∂Vik
∂~θm

=
{

Mm
>~ym if ~θm ∈

{
~β1, . . . ~βK−1, ~γ0, . . . ~γK−1

}
,∑

k=1 Zk> ~yk if ~θm is ~α.
(12)

The vectors ~ym and the matrices Mm and Zk are specified in Section 3.3. We take the
derivative of the base case probability, which is specified in Equation 5, as follows:

N∑
i=1

1
Pi0

∂Pi0
∂~θm

=
{
−Mm

> · ~Pm if ~θm ∈
{
~β1, . . . ~βK−1, ~γ0, . . . ~γK−1

}
,

−
∑
k=1 Zk>~Pk if ~θm is ~α.

(13)

Here the probability vector ~Pm is of length N with entries Pim. In the last line we have used
the fact that, after normalization, Z0 is 0. Using Equations 12 and 13 we get the gradient in
the form shown in Equation 10.
Upon differentiating the probability vector ~Pk (k ≥ 1) in Equation 4 with respect to ~θm we
get:

∂~Pk
∂~θm

=

 WkmMm if ~θm ∈
{
~β1, . . . ~βK−1, ~γ0, . . . ~γK−1

}
,

D(~Pk)
(
Zk −

∑
t=1 ZtD(~Pt)

)
if ~θm is ~α,

(14)

where D(~Pk) is an N ×N diagonal matrix whose ith diagonal entry is Pik and, matrix Wkm

is also an an N ×N diagonal matrix whose ith diagonal entry is Pik(δkm − Pim). In matrix
form this is: Wkm = δkmD(~Pk)−D(~Pk)D(~Pm) where δkm is the Kronecker delta.
We write the Hessian of the log-likelihood in block form as:

Hnm = ∂2l

∂~θn∂~θ′m
=

N∑
i=1

[
1

Pi0
∂2Pi0
∂~θn∂~θ′m

− 1
P2
i0

∂Pi0
∂~θn

∂Pi0
∂~θm

]
.

However it can be derived in a simpler way by differentiating the gradient with respect to
~θn. Doing this and making use of Equation 14 gives us Equation 11. The first two cases of
the equation are fairly straightforward with the matrices Wkm being the same as shown in
Equation 14. The third case, when (~θn, ~θm are both ~α), is a bit messy and we describe it here.

Hnm = −
K−1∑
k=1

[
Zk>D(~Pk)

(
Zk −

K−1∑
t=1

D(~Pt)Zt
)]

= −
K−1∑
k=1

K−1∑
t=1

Zk>
[
δktD(~Pk)−D(~Pk)D(~Pt)

]
Zt

= −
∑
k=1

∑
t=1

Zk>WktZt.

Journal of Statistical Software 21

Here the last line follows from the definition of matrix Wkt as used in Equation 14.

B. Data requirements for Hessian non-singularity
We derive necessary conditions on the data for the Hessian to be non-singular. Using notation
from Section 3.2, we start by building a “design matrix” X̃ by concatenating data matrices
X, Yk and Zk in the following format:

X̃ =

X 0 · · · 0 0 0 · · · 0 Z1/2
0 X · · · 0 0 0 · · · 0 Z2/2
...

...
...

...
...

...
0 · · · 0 X 0 0 · · · 0 ZK−1/2
0 · · · · · · 0 Y0 0 · · · 0 0
0 · · · · · · 0 0 Y1 · · · 0 Z1/2
0 · · · · · · 0 0 0 . . . 0

...
0 · · · · · · 0 0 0 · · · YK−1 ZK−1/2

. (15)

In the above 0 stands for a matrix of zeros of appropriate dimension. Similarly we build two
more matrices Q and Q0 as shown below:

Q =

W11 W12 · · · W1,K−1
W21 W22 · · · W2,K−1
...

... · · ·
...

WK−1,1 · · · · · · WK−1,K−1

 , Q0 =

W10
W20
...

WK−1,0

 .

Using the two matrices above we define a “weight” matrix W̃:

W̃ =

 Q Q0 Q
Q0
> W00 Q0

>

Q Q0 Q

 , (16)

The full Hessian matrix, containing all the blocks of Equation 11, is given by: H = X̃>W̃X̃.
For the matrix H to be non-singular, we must have that the matrix X̃ has full rank. This
leads us to the following necessary conditions on the data for the Hessian to be non-singular:

1. All matrices in the set: {X, Y0, Y1 . . . YK−1} must be of full rank.

2. At least one matrix from the set: {Z1,Z2 . . . ZK−1} must be of full rank.

In mnlogit we directly test condition 1, while the second condition is tested by checking for
collinearity among the columns of the matrix3:(

Z1 Z2 . . . ZK−1
)>

.

Columns are arbitrarily dropped one-by-one from a collinear set until the remainder becomes
linearly independent.

3Since the number of rows is less than the number of columns.

22 mnlogit: Fast Estimation of Multinomial Logit Models in R

Another necessary condition. It can be shown with some linear algebra manipulations
that if we have a model which has only data for alternative independent variables and includes
the intercept, then the resulting Hessian will always be singular. mnlogit does not attempt
to check the data for this condition which is independent of the 2 necessary conditions given
above.

C. Timing tests
We give the details of our simulated data generation process and how we setup runs of the
R packages mlogit, VGAM and nnet to compare running times against mnlogit. We start by
loading mlogit into an R session:

R> library("mlogit")

Next we generate data in the “long format” (described in Section 2) using the makeModel()
function sourced from the file simChoiceModel.R available in folder mnlogit/vignettes/ in
the package. The data we use for the timing tests shown here is individual specific (problem
“X” of Section 4) because this is the only one that packages VGAM and nnet can run. We
generate data for a model with K choices as shown below.

R> source("simChoiceModel.R")
R> data <- makeModel("X", K = 10)

Default values in makeModel() are used for the arguments on the number of variables and
the number of observations, which are:

Number of choices in simulated data = K = 10.
Number of observations in simulated data = N = 10000.
Number of variables = p = 50.
Number of model parameters = (K - 1) * p = 450.

The next steps setup a ‘formula; object which specifies that individual specific data must be
modeled with alternative specific coefficients and the intercept is excluded from the model.

R> vars <- paste("X", 1:50, sep = "", collapse = " + ")
R> fm <- formula(paste("response ~ 1|", vars, " - 1 | 1"))

Using this formula and our previously generated data.frame we run mnlogit to measure its
running time (in single threaded mode).

R> system.time(fit.mnlogit <- mnlogit(fm, data, "choices"))

user system elapsed
1.982 0.108 2.091

Likewise we measure running times for mlogit running the same problem with the Newton-
Raphson (the default) and the BFGS optimizers.

Journal of Statistical Software 23

R> mdat <- mlogit.data(data[order(data$indivID),], "response",
+ shape = "long", alt.var = "choices")
R> system.time(fit.mlogit <- mlogit(fm, mdat, method = "nr"))

user system elapsed
33.789 3.271 37.080

R> system.time(fit.mlogit <- mlogit(fm, mdat, method = "bfgs"))

user system elapsed
29.934 5.953 35.910

Here the first step is necessary to turn the data.frame into an ‘mlogit.data’ object required
by mlogit. The default stopping conditions for mnlogit and mlogit are exactly the same. The
timing results shown in Table 2 were obtained in a similar way but with different formulas
for each type of problem. All our tests use the function makeModel() to generate data.
For comparison with nnet we must make a few modifications: First we turn the data into
a format required by nnet and then change the stopping conditions from their default to
(roughly) match mnlogit and mlogit. We set the stopping tolerance so that reltol controls
convergence and roughly corresponds at termination to ftol in these packages. Note that
nnet runs the BFGS optimizer.

R> library("nnet")
R> ndat <- data[which(data$response > 0),]
R> fm.nnet <- paste("choices ~", vars, "- 1")
R> system.time(fit.nnet <- multinom(fm.nnet, ndat, reltol = 1e-12))

weights: 510 (450 variable)
initial value 23025.850930
iter 10 value 22907.389868
iter 20 value 22820.604674
iter 30 value 22809.858037
iter 40 value 22809.242004
iter 50 value 22809.232299
iter 60 value 22809.232105
iter 70 value 22809.232093
iter 70 value 22809.232093
iter 70 value 22809.232093
final value 22809.232093
converged

user system elapsed
3.729 0.000 3.729

We remind the user that since nnet and VGAM only handle individual specific data, we
cannot test them on all the categories of problems listed in Table 2. To apply the same
timing test to the vglm function from package VGAM, we first set the stopping condition to
match the default condition for mnlogit and mlogit (ftol = 1e-6).

24 mnlogit: Fast Estimation of Multinomial Logit Models in R

R> library("VGAM")
R> system.time(fit.vglm <- vglm(fm.nnet, data = ndat,
+ multinomial(refLevel = 1), control = vglm.control(epsilon = 1e-6)))

user system elapsed
44.020 1.141 45.219

The precise running times reported on compiling this Sweave document depend strongly on
the machine, whether other programs are running simultaneously and the BLAS implemen-
tation linked to R. For reproducible results this needs to be run on a “quiet” machine (with
no other programs running).

Affiliation:
Asad Hasan, Alireza S. Mahani
Scientific Computing Group
Sentrana Inc.
1725 I St NW
Washington, DC 20006, United States of America
E-mail: asadhasan32@gmail.com, alireza.s.mahani@gmail.com

Zhiyu Wang
Department of Mathematical Sciences
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213, United States of America

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

November 2016, Volume 75, Issue 3 Submitted: 2014-04-04
doi:10.18637/jss.v075.i03 Accepted: 2015-09-11

mailto:asadhasan32@gmail.com
mailto:alireza.s.mahani@gmail.com
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v075.i03

	Introduction
	On using mnlogit
	Data preparation
	Model parametrization
	Formula interface
	Using package mnlogit

	Estimation algorithm
	Maximizing the likelihood
	Gradient and Hessian calculation
	Exploiting structure – Fast Hessian calculation

	Benchmarking performance
	Comparing mnlogit performance
	Parallel performance

	Discussion
	Log-likelihood differentiation
	Data requirements for Hessian non-singularity
	Timing tests

