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Abstract

We describe bayesPop, an R package for producing probabilistic population projections
for all countries. This uses probabilistic projections of total fertility and life expectancy
generated by Bayesian hierarchical models. It produces a sample from the joint posterior
predictive distribution of future age- and sex-specific population counts, fertility rates
and mortality rates, as well as future numbers of births and deaths. It provides graphical
ways of summarizing this information, including trajectory plots and various kinds of
probabilistic population pyramids. An expression language is introduced which allows
the user to produce the predictive distribution of a wide variety of derived population
quantities, such as the median age or the old age dependency ratio. The package produces
aggregated projections for sets of countries, such as UN regions or trading blocs. The
methodology has been used by the United Nations to produce their most recent official
population projections for all countries, published in the World Population Prospects.

Keywords: Bayesian hierarchical model, population projections, expression language, popula-
tion pyramid, United Nations, World Population Prospects.

1. Introduction
Projections of countries’ future populations, broken down by age and sex, are widely used by
governments at all levels for planning purposes, by international organizations for monitoring
development and other goals, such as the Millennium Development Goals, by social and health
researchers, and the private sector for strategic and marketing decisions.
Most population projections are currently done deterministically using the cohort component
method. This is an age- and sex-structured version of the basic demographic identity that
the population of a country at the next time point is equal to the current population, plus the
number of births, minus the deaths, plus the immigrants, minus the emigrants (Leslie 1945;
Preston, Heuveline, and Guillot 2001).
Standard projections are deterministic, meaning that they yield a single value for each pro-
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jected future population quantity of interest. However, probabilistic projections are widely
desired because they are useful for decision-making when one wants to be reasonably sure of
not under- or overpredicting a number, for assessing changes and deviations of population
quantities from expectations, and for providing a general assessment of uncertainty.
A systematic framework for producing probabilistic population projections for all countries,
both developed and developing, has recently been proposed by Raftery, Li, Ševčíková, Ger-
land, and Heilig (2012). It consists of probabilistically projecting total fertility rate and life
expectancy using Bayesian hierarchical models (Alkema et al. 2011; Raftery, Chunn, Gerland,
and Ševčíková 2013), converting the results to age-specific rates, and projecting the popula-
tion forward using the cohort component method applied to each trajectory simulated from
their predictive distributions (Ševčíková, Li, Kantorová, Gerland, and Raftery 2016a). The
median projection from the method has been used as the official medium projection of the
United Nations (UN) since the 2012 revision of the World Population Prospects (United Na-
tions 2013). In July 2014 for the first time, the United Nations released official probabilistic
population projections for all countries (Gerland et al. 2014; United Nations 2015).
Here we describe a package called bayesPop (Ševčíková, Raftery, and Buettner 2016b) that
produces probabilistic population projections using this method. It is implemented in R (Ihaka
and Gentleman 1996; R Core Team 2016), and it was developed to allow users beyond the
UN to implement the methodology. The package allows an analyst to reproduce the UN
projections, to generate variations on them corresponding to different inputs or modeling
assumptions, or to use their own data. We also introduce a flexible expression language which
allows probabilistic results to be summarized and visualized in graphs, maps or population
pyramids. The software can be conveniently controlled from a graphical user interface.
The paper is organized as follows. In Section 2 we review the basic probabilistic population
projection methodology underlying the package. In Section 3 we describe the bayesPop
package and how to generate and view the probabilistic population projections using it. In
Section 4, we show how to display probabilistic population pyramids for visualizing the age-
specific results. In Section 5 we describe our expression language for generating probabilistic
projections of user-defined derived population quantities. Examples include the median age
of the population or the ratio of the population of one country to that of another. In Section 6
we indicate how to produce probabilistic projections of aggregated population quantities for
groups of countries, such as UN regions or trading blocs. We conclude in Section 7 with a
brief discussion of some related R packages.

2. Methodology
Most methods for predicting population P in country c at time period t are based on the
demographic balancing equation, namely

Pc,t = Pc,t−1 + Bc,t − Dc,t + Mc,t, (1)

where B denotes the number of births, D denotes the number of deaths and M denotes net
international migration. In most applications this equation is solved deterministically using
the cohort component method (Whelpton 1928, 1936), which decomposes it into age- and
sex-specific components.
As it has traditionally been implemented by the United Nations Population Division (United
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Figure 1: Structure of packages supported by bayesDem. Boxes shown on the left-hand
side (connected by blue arrows) depict the main steps needed for generating probabilistic
population projections. Boxes on the right-hand side show supporting functionality of the
packages. The packages operate on UN datasets included in one of the wpp packages which
can be explored and visualized using the wppExplorer package.

Nations 1956, 1989), the cohort component method for projecting a country’s population by
age and sex in future time periods t > 0 is deterministic, and requires the following inputs:

• sex- and age-specific population estimates at the initial time t = 0,

• projections of future total fertility rates (TFR),

• projections of sex ratio at birth,

• projections of female and male life expectancies (e0),

• historical data on sex- and age-specific death rates (for t ≤ 0),

• historical data on fertility distribution by age (for t ≤ 0), and

• projections of future sex- and age-specific net international migration.

In each time period t, a projection of the fertility distribution by age is obtained using
historical data (Ševčíková et al. 2016a). Then this distribution is used to convert the TFR
to age-specific fertility rates in time period t. Using the historical data on death rates,
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life expectancy is converted to age-specific mortality rates using a variant of the Lee-Carter
method (Lee and Carter 1992). See Ševčíková et al. (2016a) for more detail on these conversion
steps. Finally the cohort component method is applied.
To communicate uncertainty in the context of this deterministic approach, until recently the
UN used three scenarios, the high, medium and low variants. The medium projection is the
main one. The high and low variants are generated by adding half a child to or subtracting
half a child from the TFR, respectively, and then applying the method above. Such an
approach suffers from not having a probabilistic basis and can lead to inconsistencies (Lee
and Tuljapurkar 1994; National Research Council 2000).
Methods for probabilistic projection of the two most important inputs have recently been de-
veloped, namely TFR (Alkema et al. 2011) and life expectancy (Raftery et al. 2013). Raftery
et al. (2012) describes a way to combine these components into overall probabilistic population
projections. The idea is to simulate a large set of trajectories of future values of TFR (as im-
plemented in bayesTFR, see Ševčíková, Alkema, and Raftery 2011), then to simulate an equal
number of trajectories of life expectancy (as implemented in bayesLife, see Ševčíková, Raftery,
and Chunn 2016c), and finally to convert each of the trajectories into a future trajectory of
all sex- and age-specific populations, using the current UN methodology as described above.
The resulting set of values is viewed as a sample from the predictive distribution of population
numbers. This approach is implemented in the R package bayesPop (Ševčíková et al. 2016b).
A graphical user interface (GUI) for the three packages, bayesTFR, bayesLife and bayesPop,
is provided by the R package bayesDem (Ševčíková 2016a). Together, these packages allow one
to generate probabilistic projections of TFR and life expectancy, and combine those results
into probabilistic population projections from a single interface; see Figure 1. In addition to
the Comprehensive R Archive Network (https://CRAN.R-project.org/), all of these pack-
ages are hosted on https://github.com/PPgp. Furthermore, a mailing list accessible from
http://bayespop.csss.washington.edu/ is available to interested users.

3. Using bayesPop

3.1. Generating population projections
The main function for generating probabilistic population projection is called pop.predict. It
can be run for a single country or for a given set of countries. By default, projections are gen-
erated for all countries for which inputs are available. The data packages wpp2010 (Ševčíková
and Gerland 2013), wpp2012 (Ševčíková, Gerland, Andreev, Li, Gu, and Spoorenberg 2014),
and wpp2015 (United Nations 2016) provide such data for most countries. An argument
wpp.year (which can be one of 2010, 2012, or 2015) determines the default dataset used in
the projections. We will refer to the corresponding data package simply as a wpp package.

Inputs
The projection inputs listed in Section 2 are given in the argument inputs which is a list
containing the various input components. The deterministic components include:

popM, popF: Initial male, female age-specific population counts.

mxM, mxF: Estimates of historical male and female age-specific death rates.

https://CRAN.R-project.org/
https://github.com/PPgp
http://bayespop.csss.washington.edu/
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pasfr: Estimates of historical age-specific fertility rates as percentages of TFR.

srb: Projection of future sex ratio at birth.

mig.type: Migration base year, and an argument determining whether migration is assumed
to occur at the end of the five-year interval or to be evenly distributed over the interval.

migM, migF: Projection of future male and female age-specific net international migration.

If any of these inputs is not specified, the default dataset from the given wpp package is used.
If the user wishes to overwrite a default dataset, the corresponding component can be given as
a tab-delimited text file (the manual for pop.predict describes the structure of these files).
Note that the pop and mig components must be on the same scale which becomes the final
scale of the projections. The wpp packages maintain their datasets on the scale of thousands.
Each of the probabilistic components of the inputs argument, namely TFR and e0, can be
specified in several ways, either as a directory, or as a file. In both cases, a set of trajectories
is passed to the prediction function. The pop.predict function is designed to operate on the
results of tfr.predict and e0.predict from bayesTFR and bayesLife, respectively. Thus
one would specify here the directories in which the resulting TFR and e0 trajectories are
stored:

tfr.sim.dir: Simulation directory used to store results of tfr.predict.

e0F.sim.dir: Simulation directory used to store results of e0.predict for projections of
female life expectancy.

e0M.sim.dir: This can be a directory with a simulation of male life expectancy that is
independent of the simulation in e0F.sim.dir. Preferably, however, it can be the
keyword "joint_" in which case it is assumed that male and female e0 were generated
jointly using the gap model (Raftery, Lalic, and Gerland 2014b), and thus, they are
both extracted from e0F.sim.dir.

For convenience, these probabilistic inputs can also be specified as text files, which can be
useful, for example, if generated with software other than bayesTFR and bayesLife.
If neither of the probabilistic components of the inputs argument is given, the function
creates three trajectories which are extracted from the wpp package, namely the projection
median, and the low and high variants.
For experimental purposes, the function allows the user to enter multiple trajectories of net
migration which can be used for example to test different migration scenarios. These compo-
nents are called migMtraj and migFtraj and if used they replace the deterministic components
migM and migF.

Other arguments

Besides specifying countries (argument countries), one can define how many trajectories to
generate (nr.traj), the end year of the projection (end.year), the initial year (start.year),
or the present year (present.year). The initial year defines the first year of the historical
death rates to be used to estimate the parameters of the Lee-Carter method. The present
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Figure 2: Structure of folders and files created when generating projections with bayesPop.
The approximate sizes correspond to a simulation with 100 trajectories, 162 countries and
6 aggregated areas.

year defines the last observed time period, i.e., the initial time t = 0 from which projections
start.
By default, vital events, such as births and deaths, used during the computation in the cohort
component method are discarded. However, if the argument keep.vital.events is set to
TRUE, they are stored together with the projection trajectories and can be used later for an
analysis. It should be noted that storing vital events more than doubles the amount of data
stored per country.
The argument output.dir specifies the location on disk where the results are to be stored.

Outputs

The pop.predict function applies the cohort component method to each set of trajectories
(a set meaning one trajectory for each of TFR, female e0 and male e0), using the deter-
ministic components for the remaining input data. As a result, we have a set of sex- and
age-specific population trajectories which can be used to construct posterior distributions of
various population quantities of interest.
The trajectories are stored in the output.dir/predictions directory, one file per country,
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called totpop_countryx.rda, where x is the numerical country code. If storing vital events
is requested, trajectories for number of births by age of mother and sex of child, trajectories
for sex- and age-specific numbers of deaths, net migration, and trajectories for sex- and age-
specific fertility and mortality rates are stored in files called vital_events_countryx.rda.
Thus in such a case, there are two files per country. The resulting file structure is depicted in
Figure 2. The approximate file sizes in this figure correspond to a simulation with 100 tra-
jectories, such as in the example below. The optional aggregations sub-directory will be
described in Section 6.
An object returned by the pop.predict function is of class bayesPop.prediction. It con-
tains pre-computed quantiles for the main population quantities, including total population,
total population by sex and total population by sex and age. It also contains a pointer to the
disk location where the country-specific trajectories are stored. The package contains various
functions that help the user to view and analyze those results; these will be described in the
following sections.

3.2. Example

We first show an example of how to generate probabilistic population projection from scratch,
including generating all the probabilistic components. The blue arrows in Figure 1 show the
workflow in this process. Note that estimating and projecting TFR and e0 (step 1 and 2
below) use packages bayesTFR and bayesLife, respectively, and can be therefore considered
as prerequisites for generating population projection with bayesPop. The data used in this
example are taken from the wpp2015 package. At the time of writing, 2015 is the default
value for the wpp.year argument in all three packages involved.
A word of caution about this example is in order. We will show an example that can be
reproduced in a time-efficient manner and thus the Markov chain Monte Carlo chains (MCMC)
of the TFR and e0 models might not converge. Thus results that will be shown throughout
this paper are not UN official projections and may not even be realistic. For a real simulation,
increase the number of iterations (argument iter), set it to "auto", or use default values.
Using multiple chains and setting an argument parallel to TRUE in steps 1 and 2 below
could improve estimation results in less run time. Finally, steps 1 and 2 can be carried out
independently of one another. If all the steps are processed sequentially, allow about an half
an hour processing time on a current standard laptop.

1. Estimate TFR parameters for the phase II and phase III models (Raftery, Alkema, and
Gerland 2014a) and generate TFR projections (about 15 minutes):

R> sim.dir.tfr <- file.path(getwd(), "TFRprojections")
R> run.tfr.mcmc(iter = 1000, nr.chains = 1, thin = 1,
+ output.dir = sim.dir.tfr, seed = 1)
R> run.tfr3.mcmc(sim.dir = sim.dir.tfr, iter = 1000,
+ nr.chains = 1, thin = 1, seed = 1)
R> tfr.predict(sim.dir = sim.dir.tfr, nr.traj = 100,
+ burnin = 500, burnin3 = 500, seed = 1)

For details on the estimation, MCMC diagnostics, TFR projections etc, see Ševčíková
et al. (2011).
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2. Estimate e0 parameters using female data and generate joint female and male projections
of life expectancy (about 10 minutes):

R> sim.dir.e0 <- file.path(getwd(), "e0_projections")
R> run.e0.mcmc(sex = "Female", iter = 1000, nr.chains = 1, thin = 1,
+ output.dir = sim.dir.e0, seed = 1)
R> e0.predict(sim.dir = sim.dir.e0, nr.traj = 100, burnin = 500,
+ seed = 1)

3. Generate probabilistic population projections (about 10 minutes):

R> sim.dir.pop <- file.path(getwd(), "pop_projections")
R> pop.pred <- pop.predict(output.dir = sim.dir.pop,
+ inputs = list(tfr.sim.dir = sim.dir.tfr,
+ e0F.sim.dir = sim.dir.e0, e0M.sim.dir = "joint_"),
+ keep.vital.events = TRUE, verbose = TRUE)

The last call generates 100 trajectories, one for each trajectory of TFR and e0. (In
practice far more trajectories would be needed, but 100 can be run relatively quickly
for illustrative purposes.)

At the end of this command sequence the user has three new directories in the working
directory, for TFR, e0 and population, respectively. One can now use functions from the
bayesTFR, bayesLife, and bayesPop packages, respectively, to analyze and visualize results.
To access population projections in later sessions, issue the command:

R> pop.pred <- get.pop.prediction(sim.dir.pop)

3.3. Population trajectories

Population trajectories can be viewed on a country-specific basis. A simple summary function
gives one a quick look at quantiles of a country’s projections:

R> country <- "Netherlands"
R> summary(pop.pred, country)

Projections: 17 ( 2018 - 2098 )
Initial time point: 2013
Observed time points: 13 ( 1953 - 2013 )
Trajectories: 100
Number of countries: 178

Country: Netherlands

Projected Population:
mean SD 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

2013 16925 0.000 16925 16925 16925 16925 16925 16925 16925 16925 16925
2018 17177 50.551 17081 17100 17117 17139 17176 17209 17247 17253 17285
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2023 17388 119.019 17196 17210 17232 17307 17384 17462 17554 17572 17610
2028 17556 195.290 17235 17262 17305 17411 17553 17676 17792 17881 17940
2033 17647 267.376 17141 17191 17266 17486 17638 17805 18003 18050 18198
2038 17648 344.829 17049 17090 17171 17469 17635 17838 18067 18299 18408
2043 17582 429.780 16844 16962 17038 17321 17559 17781 18130 18522 18546
2048 17484 529.638 16602 16697 16882 17087 17455 17737 18217 18553 18712
2053 17386 633.788 16331 16434 16624 16897 17352 17706 18210 18568 18870
2058 17296 731.828 16075 16086 16463 16738 17265 17638 18301 18722 19029
2063 17239 828.020 15804 15932 16276 16692 17191 17625 18362 18812 19137
2068 17218 926.868 15655 15774 16163 16612 17124 17666 18480 18899 19354
2073 17216 1048.189 15471 15640 16011 16498 17100 17694 18677 19132 19626
2078 17193 1177.040 15218 15427 15790 16405 17067 17787 18840 19303 19851
2083 17155 1320.375 14911 15256 15520 16249 16999 17801 18974 19519 20199
2088 17103 1472.944 14623 14994 15219 16084 16926 17922 19121 19776 20524
2093 17045 1623.739 14398 14682 15030 15939 16827 18029 19496 19918 20844
2098 16990 1783.298 14106 14433 14771 15730 16785 18080 19601 20136 21120

The unit of the projections corresponds to the unit of the initial population, which is in this
case a thousand.
Trajectories can be plotted using:

R> pop.trajectories.plot(pop.pred, country = country, sum.over.ages = TRUE)

The resulting plot is shown in the left panel of Figure 3. The pop.trajectories.plot accepts
arguments for specifying sex and age. For example, the right panel of Figure 3 shows the
projection for male population up to age 14:

R> pop.trajectories.plot(pop.pred, country = country, sex = "male",
+ age = 1:3, sum.over.ages = TRUE)

If sum.over.ages is FALSE, separate plots for each age group are generated. Regarding the
age argument, see below about defining ages in bayesPop. An optional argument nr.traj
can be used to control how many trajectories are plotted. It defaults to the total number of
available trajectories, which is 100 in our example.
In addition to plotting trajectories by time, one can view them by age, see the left panel of
Figure 4:

R> pop.byage.plot(pop.pred, country = country, year = 2100)

The argument year can be either a projected year or a past time point, i.e., any year from
the x-axis of Figure 3. To compare the age structure from multiple years, the right panel of
Figure 4 shows an analogous plot for 2060 (with 50 trajectories) and 1960 in the same graph:

R> pop.byage.plot(pop.pred, country = country, year = 2060,
+ pi = 80, nr.traj = 50)
R> pop.byage.plot(pop.pred, country = country, year = 1960, add = TRUE,
+ col = "blue", show.legend = FALSE)
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Figure 3: Projected trajectories by time for the Netherlands for total population (left panel)
and for males aged 0–14 (right panel).
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Figure 4: Projected trajectories by age for the Netherlands: in 2100 (left panel) and in 2060
(right panel). In the right panel, the main projections (red lines) are compared to 1960 (blue
line).

Tabular analogues to the trajectory plots are implemented in the functions pop.trajec-
tories.table and pop.byage.table, respectively. All four functions understand an argu-
ment pi specifying the probability intervals to be viewed. The functions pop.trajectories.
plotAll and pop.byage.plotAll can be used to plot population trajectories for all countries
at once.
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Cohort projections

It is often of interest to obtain projections for specific cohorts. Simply running

R> pop.cohorts.plot(pop.pred, country = country)

will show projections of population born in ten different cohorts, starting with the present
cohort. To extract the underlying data containing all cohorts (including the ones born in the
past), one can use

R> cohort.data <- cohorts(pop.pred, country = country)

The result is a list of matrices where each list item corresponds to one cohort:

R> head(names(cohort.data))

[1] "1880-1885" "1885-1890" "1890-1895" "1895-1900" "1900-1905" "1905-1910"

Each of the elements is a matrix where the first row corresponds to the median and the
following rows correspond to quantiles which are configurable via the optional argument pi.
The cohort.data object can be also passed to the plotting function above. For example,
the following code produces a plot of projections for two already born cohorts and one future
cohort, as shown in Figure 5:

R> pop.cohorts.plot(pop.pred, cohort.data = cohort.data,
+ cohorts = c(1980, 2000, 2020))

Finally, all functions described in this section accept an argument called expression for
exploring trajectories of other population quantities which will be described in Section 5.

Defining age

Many functions in the package accept an argument called age. It refers to an index of an
ordered array of five-year age groups, as shown in Table 1. Functions that handle observed
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Age group 0–4 5–9 10–14 15–19 20–24 25–29 30–34 35–39 40–44
age 1 2 3 4 5 6 7 8 9
Age group 45-49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85–89
age 10 11 12 13 14 15 16 17 18
Age group 90–94 95–99 100–104 105–109 110–114 115–119 120–124 125–129 130+
age 19 20 21 22 23 24 25 26 27

Table 1: Definition of the argument age in various functions of the package. It is an index of
an ordered array of age groups.

data accept values of the age index up to 21 (in which case 21 corresponds to the age group
100+), whereas functions that deal with projections accept values of the age index up to
27. This distinction is due to the low availability of observed data for high ages. However,
considering increasing longevity, it is useful to generate projections for those high ages. The
package extrapolates mortality to higher ages using the Kannisto method. Other measures
can be derived by using life tables and assuming that the initial population at those ages is
zero. Ševčíková et al. (2016a) describes this in more detail.
A bayesPop.prediction object contains a component called ages which is an array of the
starting ages of each age group. Thus it can be used to determine the correspondence between
index and age, for example the one used in Figure 3 for ages 0–14:

R> which(pop.pred$ages < 15)

[1] 1 2 3

R> pop.pred$ages[1:3]

[1] 0 5 10

4. Probabilistic population pyramids
The bayesPop package supports plotting probabilistic population pyramids for any given
country and year. In addition, multiple years can be plotted in one pyramid. There are two
different kinds of pyramids – a classic pyramid consisting of boxes, and a so-called trajectory
pyramid which is created using age trajectories. The classic pyramid can display projections
for up to two years in one pyramid with one set of probability intervals; the trajectory pyramid
can include any number of years and any number of probability intervals.
A classic pyramid can be created using the function pop.pyramid:

R> pop.pyramid(pop.pred, country, year = c(2100, 2015), age = 1:23)

Here we are comparing the end year of the projections with the current year (see Figure 6
on the left). An optional argument pi for defining the probability intervals shown can be
given. In addition, the function accepts various arguments for controlling the appearance of
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Figure 6: Probabilistic population pyramid for the Netherlands. The classic type on the left
compares the end year of the projections with the current year. The trajectory type on the
right compares three different years on the scale of proportions.

the pyramid, such as colors, height and thickness of the boxes etc.; see below for an example.
Using the optional argument indicator, births and deaths can be also shown in a pyramid,
if vital events were stored during the prediction.
The following code creates a trajectory pyramid with three years (the end year, the second
prediction year, and the first observed year) with 95% probability intervals around the two
prediction years:

R> pop.trajectories.pyramid(pop.pred, country, year = c(2100, 2025, 1950),
+ age = 1:23, pi = 95, nr.traj = 0, proportion = TRUE)

It results in the right graph of Figure 6. Here the argument proportion is used, which
switches the x-axis to a proportional scale. Note that the order of the values in the year
argument matters, especially in the classic pyramid case. The first value is used to create
the main pyramid (i.e., with boxes of probability intervals in classic pyramid and using red
color in case of trajectory pyramid), whereas the remaining ones are used for the additional
pyramids in the graph.
The functions pop.pyramidAll and pop.trajectories.pyramidAll can be used to produce
pyramids for all countries and for a set of years at once. The year argument is then expected
to be a list where each element is a vector to be passed to the underlying function, i.e.,
pop.pyramid or pop.trajectories.pyramid. For example, to create the pyramid on the
left-hand side of Figure 6 and a similar pyramid comparing 2050 to the current year for all
countries, one can do:

R> pop.pyramidAll(pop.pred, year = list(c(2100, 2015), c(2050, 2015)),
+ age = 1:23, output.dir = "mypyramids")

This will create a PNG file for all combinations of countries and year elements, in this case
two files per country, and place it into the directory “mypyramids”. Alternatively, one can
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set the optional argument one.file to TRUE in which case all pyramids are put into a single
PDF file.

Pyramids for user-defined data

So far, we have shown how to create probabilistic pyramids for an object of class bayesPop.pre-
diction. However, both pyramid functions are S3 methods that can be also applied to an
object of class bayesPop.pyramid. This is a structure containing all the data necessary for a
pyramid graph; they do not need to be created using bayesPop. Thus any data fitting into a
pyramid structure can be used. An S3 method called get.bPop.pyramid can convert a ma-
trix, a data frame, or a list of matrices or data frames into the bayesPop.pyramid structure.
In addition, it can be also applied to a bayesPop.prediction object. One advantage of the
latter conversion is that it gives the user a finer control over the plot.
The main element of the bayesPop.pyramid list is called pyramid. It is a list of data frames,
each having two columns containing data for the left and right side of one pyramid and
row names determining the age labels. Consider an example dataset containing population
estimates for Washington State and King County in 2011:

R> data <- read.table(file.path(
+ find.package("bayesPop"), "ex-data", "popestimates_WAKing.txt"),
+ header = TRUE, row.names = 1)
R> head(data)

WA.male WA.female King.male King.female
0-4 224883 214629 61537 58672
5-9 219450 209870 57814 55298
10-14 224828 213562 56848 53958
15-19 234336 221463 59294 56604
20-24 238228 223712 65651 64287
25-29 244381 233876 81481 78426

In order to show the two pyramids in one graph, we create two data frames with the same
column names:

R> WA <- data[, c("WA.male", "WA.female")]
R> colnames(WA) <- c("M", "F")
R> Ki <- data[, c("King.male", "King.female")]
R> colnames(Ki) <- c("M", "F")

Now, one can create a bayesPop.pyramid object, specifying which columns contain data for
the left and right part of the pyramid, respectively:

R> pyr <- get.bPop.pyramid(list(WA, Ki), LRcolnames = c("M", "F"),
+ legend = c("Washington", "King County"))

Simply using plot and optionally specifying some aesthetics will create the pyramid shown
on the left-hand side of Figure 7:
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Figure 7: Population pyramids for user-defined data. The pyramid on the right is on the
scale of proportions.

R> plot(pyr, main = "Population in 2011",
+ pyr2.par = list(height = 0.7, col = "violet", border = "violet"))

It can also be useful to compare such data on the scale of proportions, where what is plotted
is not the actual numbers of people in each age group, but the numbers as a proportion of the
total population. The following code creates such an object and its graph (shown in Figure 7
on the right):

R> pyr.prop <- get.bPop.pyramid(list(WA, Ki), is.proportion = NA,
+ LRcolnames = c("M", "F"), legend = c("Washington", "King County"))
R> pop.pyramid(pyr.prop, main = "Population in 2011 (proportions)",
+ pyr1.par = list(col = "lightgreen", border = "lightgreen",
+ density = 30),
+ pyr2.par = list(col = "darkred", border = "darkred",
+ density = 50, height = 0.3))

If the argument is.proportion has a logical value, it determines whether the data are on
a proportional scale. An NA value means that the data frames, here WA and Ki, are not on
a proportional scale but that such a scale is desired and thus, should be computed on the
fly. Using the aesthetic arguments pyr1.par (for the main pyramid) and pyr2.par (for the
secondary pyramid) allows the user to create a wide variety of different pyramid graphs.
The plot function is an alias for pop.pyramid. If the pop.trajectories.pyramid function
is to be used, it should be called explicitly.
Apart from the pyramid element, the bayesPop.pyramid object also contains an element
for storing the probability intervals, called CI, which can be passed directly to the function
get.bPop.pyramid. Thus uncertainty can be included in the visualization of user-defined
pyramid data. The pop.trajectories.pyramid can display any number of pyramids and
probability interval sets into one graph, whereas pop.pyramid uses only the first two elements
of pyramid and only one element of CI. See the manual for more details on the structure of
bayesPop.pyramid.
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5. bayesPop expressions
As mentioned in Section 3.1, a bayesPop.prediction object contains information about sex-
and age-specific population projections. It is often of interest, however, to analyze quantities
derived from the basic population counts and vital rates, such as potential support ratio,
mean age at child-bearing, median age, and so on. For this purpose, the package implements
a simple expression language that allows one to compute such quantities on the fly.
A bayesPop expression is a collection of basic components connected via usual arithmetic
operators and combined using parentheses. Standard R functions and pre-defined functions
can be also used within expressions.

Basic component

A basic component of an expression is a character string that consists of four sub-strings, the
first two of which are mandatory. They must be in the following order:

1. Measure identification. The following upper-case characters are currently allowed and
one of them must be provided:

P Population
D Deaths
B Births
S Survival ratio
F Fertility rate
R Percent age-specific fertility
M Mortality rate
Q Probability of dying
G Net migration

Note that all but the P and G indicators can be used only if keep.vital.events was
switched on during the prediction. P and G are always available. Since net migration,
G, is currently a deterministic input to the projections, it results in only one trajectory,
namely the input.

2. Country part. This mandatory part can be a numerical country code, or a two- or
three-character ISO 3166 code (International Organization for Standardization 2016),
or characters "XXX" which serve as a wildcard for a country code. For example, "P528",
"PNL", and "PNLD" are all expressions for the total population of the Netherlands. The
use of "XXX" is limited to specific functions and will be discussed later in this section.

3. Sex sub-string. The country part can be optionally followed by either "_F" or "_M",
specifying female or male indicator, respectively. An expression consisting of two ba-
sic components "P528_F / P528" gives the ratio of female to total population in the
Netherlands.

4. Age sub-string. If the age sub-string is used, the basic component is concluded by an
array of age indices (as defined in Table 1). Such an array is delimited by either brackets
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("[ ]") or curly braces ("{ }"). The former invokes a summation of counts over the
given ages, while the latter is used when no summation is desired. Note that if the age
sub-string is missing, the counts are automatically summed over all ages. To use all
ages without summing, empty curly braces can be used. For example, the number of
females in childbearing age in France can be calculated as "PFR_F[4:10]". As another
example, the potential support ratio can be defined as "PFR[5:13] / PFR[14:27]".
In addition to the age index in Table 1, the indicators S, M and Q also allow an index -1
which corresponds to the age group 0–1, and an index 0 which corresponds to the age
group 1–4.

Not all combinations of the four parts above make sense. For example, fertility rate can be
combined only with female sex and a subset of the age groups, namely the childbearing ages
(indices 4 to 10). Births are also restricted to those age groups. The rate-like indicators
S, M, and Q should include all four components, since summing over sexes or age groups is
meaningless for this type of measure.

Connecting components

When an expression is evaluated, each basic component is replaced by the corresponding data
in the form of a four-dimensional array with the following dimensions:

1. Country dimension: It is equal to one if a specific country code is given. If "XXX" is
used in the country sub-string, this dimension equals the number of countries in the
prediction object.

2. Age dimension: It is equal to one if the age sub-string is missing or is defined within
square brackets. If the age is defined within curly braces, this dimension corresponds
to the length of the age array.

3. Time dimension: Depending on the context in which the expression is evaluated, this
dimension corresponds to either the number of projection periods or the number of
observation periods.

4. Trajectory dimension: It corresponds to the number of trajectories in the prediction
object, or if the expression is evaluated on observed data, it is equal to one.

This array is returned by the function get.pop, which is evaluated either on projections or
observed data, controlled by the logical argument observed.
Various arithmetic operations, such as +, -, *, /, ˆ, %%, %/%, and R functions can be performed
on these four-dimensional arrays. An expression should be constructed in such a way that
the age dimension is eliminated, for example by using the apply function or one of the pre-
defined functions described below. An exception to this rule is when an expression is used
in the context of functions pop.byage.plot, pop.byage.table, or the cohort functions, as
illustrated below.
There are a few aspects to keep in mind when combining basic components. They are rooted
in the fact that the combined arrays must have the same dimensions. For example, the
deterministic indicator G cannot simply be combined with the probabilistic components, unless
it is on observed data. In such cases, a special function, pop.combine (see below), needs to
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be used. Furthermore, if using curly braces, the age index of the basic components must
have the same length. For B, F and R, only age indices between 4 and 10 are allowed, so that
"BNL{}" has length 7 on its age axis whereas "PNL{}" has length 27 for predictions and 21
for observed data. Therefore, if B, F and R are combined with other indicators, the age index
specified must be of the correct length, e.g., "BNL{} / PNL{4:10}". For debugging purposes,
one can use the get.pop function to check dimensions of basic components:

R> B <- get.pop("BNL{}", pop.pred, observed = FALSE)
R> P <- get.pop("PNL{4:10}", pop.pred, observed = FALSE)
R> all(dim(B) == dim(P))

[1] TRUE

Pre-defined functions

There are a few pre-defined functions implemented in the package for convenience. The most
commonly used are:

• gmedian and gmean for computing the median and mean of grouped data;

• pop.apply is an apply wrapper for applying a function along the age dimension;

• pop.combine for combining basic components of different shapes;

• age.index01 for an index to age groups 0, 1–4, 5–9, ... (allowed for S, M, and Q);

• age.index05 for an index to age groups 0–4, 5–9, ...

Furthermore, to generate an expression for the mean age of childbearing, one can use the
function mac.expression(...), see below for an example.

Using expressions in bayesPop functions

All functions that accept expressions have an argument called expression.
Expressions can be used to view projection trajectories by time using functions pop.trajec-
tories.plot and pop.trajectories.table, as well as trajectories by age using functions
plot.byage.plot and pop.byage.table. The former two evaluate expressions on both, ob-
served and projected data. Each of the latter two accepts an argument year that specifies
on which data it is evaluated. In the case of projected data, the functions use the trajectory
dimension of the resulting array to compute desired quantiles, and possibly to show trajecto-
ries in the plot. For example, using the pop.pred object created in Section 3.2, we can plot
the median age of women in childbearing ages in Germany by

R> expr <- "pop.apply(PDE_F{4:10}, gmedian,
+ cats = seq(15, by = 5, length = 8))"
R> pop.trajectories.plot(pop.pred, nr.traj = 20, expression = expr,
+ main = "Median age of women in childbearing ages")
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Figure 8: Results of evaluating expressions. Left panel: Median age of women in childbearing
ages by time in Germany. Right panel: The mean age of childbearing in Germany.

which results in the left graph of Figure 8. The cats argument in the expression is passed to
gmedian and it is a categories definition of the grouped data.
An expression for the mean age of childbearing can be obtained and plotted as follows:

R> expr <- mac.expression(country = "DE")
R> expr

[1] "(17.5*RDE[4] + 22.5*RDE[5] + 27.5*RDE[6] + 32.5*RDE[7] + 37.5*RDE[8] +
42.5*RDE[9] + 47.5*RDE[10])/100"

R> pop.trajectories.plot(pop.pred, nr.traj = 20, expression = expr,
+ main = "Mean age of childbearing")

This results in the right graph of Figure 8.
For an age-specific plot, the number of births by mother’s age per women of the same age
can be viewed using

R> pop.byage.plot(pop.pred, expression = "BDE{} / PDE_F{4:10}", year = 2030,
+ nr.traj = 20, main = "Births by mother's age per woman - 2030")

which is shown on the left-hand side of Figure 9. This output can be obtained in tabular
rather than graphical format using the function pop.byage.table. Both of these age-specific
functions require the use of curly braces in the expressions, as the age axis of the resulting
array must not be eliminated.
Expressions can be also used in the cohort functions described in Section 3.3. For example,
the total number of children born to women of the next future cohort in Germany can be
obtained by



20 bayesPop: Probabilistic Population Projections
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

Births by mother's age per woman − 2030

15
−

19

20
−

24

25
−

29

30
−

34

35
−

39

40
−

44

45
−

49

median
80% PI
95% PI

2035 2040 2045 2050 2055 2060
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

Births for female cohort 2015−2020

median
80% PI
95% PI

Figure 9: Results of evaluating expressions for Germany. Left panel: Births by mother’s age
per women of the same age in an age-specific plot. Right panel: Total number of births for
women of the cohort 2015-2020 as a function of time.

R> pop.cohorts.plot(pop.pred, expression = "BDE{}", cohorts = 2015,
+ legend.pos = "topleft", main = "Births for female cohort 2015-2020")

which can be seen in the right panel of Figure 9. Note that expressions used in the cohort
functions must contain curly braces.
In all functions mentioned so far in this section, the expressions must be country specific.
However, basic components from different countries can be combined. For example, one
could use "PDE / PFR" to view projection of the ratio of German to French population.
Expressions can also be used in maps. For that purpose, the "XXX" wildcard should be used.
To generate a map with infant mortality in 2050, do

R> pop.map(pop.pred, expression = "MXXX[-1]", year = 2050)

The pop.map function is built on top of the rworldmap package (South 2016). Alternatively,
one can use the pop.map.gvis function which builds on the googleVis package (Gesmann and
de Castillo 2011). Creating a map via an expression involves, for each country, evaluating
an expression in which the wildcard is replaced by its country code. This means loading
trajectories of all countries from the disk one by one, evaluating the expression and obtaining
results, which can be time-expensive. For that reason, the package has a simple caching
mechanism, in which results of an expression evaluation for all time periods are stored on
disk (in a file called cache.rda located in the prediction directory). Next time the same
expression is used, for example with a different time point, the cached data are re-used. Even
though creating a map with a new expression is processed in parallel if possible (depending
on the number of cores in the user’s computer) it still can take substantially more time than
using a previously used expression. The cache is removed every time a new projection is
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generated. Alternatively, the function pop.cleanup.cache can be used for a manual removal
of the data.
In addition to maps, expressions with the "XXX" wildcard can be passed to other functions
that involve all countries, such as pop.trajectories.plotAll, plot.byage.plotAll, or
write.pop.projection.summary.
More examples of bayesPop expressions can be found by typing ?pop.expressions.

6. Aggregations
In addition to producing population estimates at the country level, the UN also provides
projections for population quantities aggregated over many different sets of countries, such as
geographic regions and trading blocs. bayesPop offers two methods for producing probabilistic
projections of aggregated quantities:

Country-based method: This combines the posterior samples from the different countries
trajectory by trajectory: aggregation is done by simply summing the population counts
in each trajectory across the countries of the regions in question.

If the input TFR and life expectancy trajectories came from the original Bayesian hier-
archical models (BHM), this corresponds to the conditional independence assumptions
in the BHM. If there is between-country correlation beyond that, the resulting posterior
distributions may underestimate uncertainty.

However, this method can be made to take account of correlations between the fore-
cast errors for different countries. Fosdick and Raftery (2014) proposed a method for
taking the between-country correlation in TFR forecast errors into account. This is
implemented in bayesTFR (controlled by the logical argument use.correlation in the
tfr.predict function). If their method is used, the output from bayesTFR that is fed
into bayesPop will take account of between-country correlations in TFR forecast errors.

Region-based method: Here aggregations are generated using a cohort component method,
similarly to pop.predict, but the function operates on aggregated input components.
While deterministic input components are aggregated on the fly, the method requires
that aggregations of all probabilistic input components described in Section 3.1 exist.
This can be achieved using the functions run.tfr.mcmc.extra and tfr.predict.extra
from bayesTFR for TFR, and functions run.e0.mcmc.extra and e0.predict.extra
from bayesLife for life expectancy.

In practice we have found that, when projecting aggregates of countries whose de-
mographic histories are not well aligned, the regional method tends to overestimate
uncertainty, often giving predictive intervals that are too wide.

Here is an example of aggregating over continents and over the whole world using the country-
based method:

R> pop.aggr <- pop.aggregate(pop.pred, input.type = "country",
+ regions = c(900, 903, 908, 905, 935, 904))
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Figure 10: Population trajectories for aggregated regions obtained via the country-based
method.

The region codes must correspond to the column “area_code” of the UNlocations dataset in
the wpp package from which the corresponding names are extracted and kept in the countries
table of the resulting object:

R> pop.aggr$countries

code name
1 900 WORLD
2 903 AFRICA
3 908 EUROPE
4 905 NORTHERN AMERICA
5 935 ASIA
6 904 LATIN AMERICA AND THE CARIBBEAN

Alternatively, user-defined aggregations are also supported (see the function help file for more
information).
The function pop.aggregate accepts an optional argument input.type which defaults to
the method name and is used for labeling the aggregation. Thus one can create several
aggregations for the same prediction object. They are stored in the main simulation directory,
here sim.dir.pop from Section 3.2, under the given name. In later R sessions, the object can
be retrieved using

R> pop.aggr <- get.pop.aggregation(sim.dir.pop, name = "country")
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Figure 11: Visualizing results of aggregation. Left panel: Population pyramid for the world
in 2010 and 2100. Right panel: Number of Europeans as a proportion of world population
for each age group in 2100 and the same indicator in 2010, expressed as "P908{} / P900{}".

The stored data have the same structure as in the case of the prediction object, as described
in Section 3.1. Indeed, the object that results from the two calls above is again of class
bayesPop.prediction and thus can be used in any of the summarizing and plotting function
described in the previous sections, including in combination with expressions:

R> par(mfrow = c(2, 2))
R> for(country in c(903, 908, 905, 935))
+ pop.trajectories.plot(pop.aggr, country, sum.over.ages = TRUE)

R> pop.pyramid(pop.aggr, 900, year = c(2100, 2015), proportion = TRUE)

R> pop.byage.plot(pop.aggr, expression = "P908{} / P900{}", year = 2100,
+ main = "Proportion of Europeans to world population",
+ pi = 80, ylim = c(0,0.35), show.legend = FALSE)
R> pop.byage.plot(pop.aggr, expression = "P908{} / P900{}", year = 2015,
+ add = TRUE, show.legend = FALSE, col = "blue")
R> legend("topleft", legend = c(2100, 2015), col = c("red", "blue"), lty = 1)

The resulting graphs are shown in Figures 10 and 11. Note that the regions are aggregated
only from countries that are available in the underlying pop.pred object. These do not yet
include a large part of Africa, because we do not yet have probabilistic projections of life
expectancy for the countries with generalized HIV/AIDS epidemics, many of which are in
Africa. Thus the African projections are only illustrative.
The expression used in the last call of pop.byage.plot (right graph of Figure 11) combines
indicators from two regions. It is also possible to combine non-aggregated indicators with
aggregated ones:

R> pop.trajectories.plot(pop.pred, expression = "PIND / P900",
+ main = "Proportion of population of India to the world population")
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In such a call, the original (non-aggregated) prediction object, here pop.pred, should be
passed as the first argument. The function then tries to find the aggregated object automat-
ically by iterating over the available aggregation objects until the region’s code is found. In
this process, an aggregation called “country” has priority above objects with other names.

7. Discussion
We have described an R package called bayesPop to produce and display probabilistic popula-
tion projections, using a methodology which is being used by the United Nations Population
Division as part of the process for producing its official population projections for all countries.
The package produces a sample from a joint posterior predictive distribution of population
quantities.
It allows the user to visualize the probabilistic projections in various ways, including different
kinds of probabilistic population pyramids. It also includes an expression language that
yields probabilistic projections of arbitrary user-defined derived future population quantities,
such as the median age of the population, the potential support ratio or the ratio of the
population of one country to that of another. Finally, it gives probabilistic projections of
population quantities that are aggregated over an arbitrary set of countries, such as UN
regions or trading blocs.
bayesPop is a command line package. However, there is also a graphical user interface, imple-
mented in the bayesDem R package, for controlling all three packages bayesPop, bayesTFR
and bayesLife, and visualizing their results. The UN’s most recent official historical popu-
lation estimates and population projections at the time of writing are contained in the data
package wpp2015. The previous revisions of the UN’s official World Population Prospects are
available in the data packages wpp2012 and wpp2010. Data in all three wpp packages can be
visualized in a browser using the R package wppExplorer (Ševčíková 2016b), or viewed online
at https://rstudio.stat.washington.edu/shiny/wppExplorer/.
There is now a wealth of R packages that do demographic analysis in some form, but relatively
few oriented to human populations. Apart from bayesPop, the only one that we know of that
does probabilistic projections of human populations is demography (Hyndman 2014), which
does stochastic population forecasting using the functional data approach of Hyndman and
Ullah (2007).
Several packages use statistical models to estimate and forecast age-specific mortality rates.
The YourCast package is based on the methods of Girosi and King (2008). MortalityS-
mooth (Camarda 2012) uses P-splines to smooth and forecast age-specific mortality rates.
The HPbayes package (Sharrow 2012; Sharrow, Clark, Collison, Kahn, and Tollman 2013)
estimates the Heligman-Pollard model for age-specific mortality from mortality data using
Bayesian Melding with incremental mixture importance sampling (IMIS; Raftery and Bao
(2010)). The LifeTables package (Sharrow 2015; Clark and Sharrow 2011) produces model
life tables by applying model-based clustering (Fraley and Raftery 2002) to the Human Mor-
tality Database.
The popReconstruct package (Wheldon 2014) does probabilistic reconstruction of past popu-
lation quantities rather than forecasting of the future; it is based on the methods of Wheldon,
Raftery, Clark, and Gerland (2013). Giza (Striessnig 2012) is a graphics package that con-
structs panels of population pyramid plots.

https://rstudio.stat.washington.edu/shiny/wppExplorer/
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There are several packages that provide tools for the construction and analysis of determin-
istic matrix population models, often oriented more to animal than to human populations.
These include popbio (Stubben, Milligan, and Nantel 2016), based on the work of Caswell
(2001), popdemo (Stott, Hodgson, and Townley 2016), and primer (Stevens 2012). The IPM-
pack package (Metcalf, McMahon, Salguero-Gomez, Jongelans, and Merow 2014) builds and
analyzes integral projection models; these are also deterministic and take demographic rates
as fixed inputs.
There are also several packages that provide tools for analyzing the interaction between
demography and population genetics, again typically in the context of animal populations.
These also usually treat demographic rates as fixed inputs. These include AlleleRetain (Welser,
Grueber, and Jamieson 2012), which analyzes the effect of demography on allele retention,
and Biodem (Boattini and Calboli 2015), which provides biodemographic functions, with an
emphasis on kinship and inbreeding. Another such package is lmf (Kvaines 2013), which pro-
vides methods for inference about genetic selection in age-structured populations; it is based
on the methods of Engen, Saether, Kvaines, and Jensen (2012).
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