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Abstract

The BUGS language offers a very flexible way of specifying complex statistical models
for the purposes of Gibbs sampling, while its JAGS variant offers very convenient R inte-
gration via the rjags package. However, including smoothers in JAGS models can involve
some quite tedious coding, especially for multivariate or adaptive smoothers. Further,
if an additive smooth structure is required then some care is needed, in order to centre
smooths appropriately, and to find appropriate starting values. R package mgcv imple-
ments a wide range of smoothers, all in a manner appropriate for inclusion in JAGS code,
and automates centring and other smooth setup tasks. The purpose of this note is to
describe an interface between mgcv and JAGS, based around an R function, jagam, which
takes a generalized additive model (GAM) as specified in mgcv and automatically gen-
erates the JAGS model code and data required for inference about the model via Gibbs
sampling. Although the auto-generated JAGS code can be run as is, the expectation is
that the user would wish to modify it in order to add complex stochastic model compo-
nents readily specified in JAGS. A simple interface is also provided for visualisation and
further inference about the estimated smooth components using standard mgcv function-
ality. The methods described here will be un-necessarily inefficient if all that is required is
fully Bayesian inference about a standard GAM, rather than the full flexibility of JAGS.
In that case the BayesX package would be more efficient.

Keywords: R, BUGS, JAGS, additive model, spline, smooth, generalized additive mixed model.

1. Introduction

This paper is about automatically and reliably generating JAGS (Plummer 2003) model
specification code and data implementing any generalized additive model (GAM, Hastie and
Tibshirani 1990) that can be specified in the R (R Core Team 2016) package mgcv (Wood 2006,
2016). The purpose of this is to allow models with the complex smooth structure permitted
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Figure 1: Some of the rich variety of smooths available in the mgcv package. From top
right: A simple one-dimensional adaptive smooth; multidimensional thin-plate splines; mul-
tidimensional tensor product smooths; Gaussian Markov random fields; soap film finite area
smoothers; splines on the sphere.

by mgcv (exemplified by Figure 1) combined with the complex random structure permitted
by JAGS to be produced more easily than has hitherto been the case. As the paper’s title
makes clear, there is nothing new about using Markov chain Monte Carlo (MCMC) in general,
or Gibbs sampling in particular, for smooth modeling. The paper’s purpose is simply to make
this easier and more automatic and hence less susceptible to implementation error, and to
document the methods used to achieve this.

In principle, the JAGS package and language allows Bayesian inference about a very wide
range of models that can be written as directed acyclic graphs (DAG). This class includes
GAMs as one special case. The Bayesian view of spline smoothing and additive models is
almost as old as splines and additive models themselves (Kimeldorf and Wahba 1970; Wahba
1983; Silverman 1985; Hastie and Tibshirani 2000; Fahrmeir and Lang 2001), and several
authors have exploited this to use JAGS or BUGS (Spiegelhalter, Thomas, Best, and Gilks
1995) for generalized additive modeling, notably Crainiceanu, Ruppert, and Wand (2005)
based on Ruppert, Wand, and Carroll (2003) and Zuur, Saveliev, and Ieno (2014).

In principle the mgcv package already included all the code required to set up smoothers for
use with JAGS. This is because what is required is essentially the same as what is required
to use any standard mixed modeling software for GAM inference: for example mgcv function
gamm based on the appendix of Wood (2004) uses the nlme package (Pinheiro, Bates, DebRoy,
Sarkar, and R Core Team 2016) in this way. However, a considerable degree of user expertise
is required to implement this reliably in practice.
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A particular area where difficulty can arise is in the use of centring constraints on model
smooth components. Usually additive smooth model structures only make statistical sense if
such constraints are applied (see e.g., Hastie and Tibshirani 1990), otherwise there is a global
intercept associated with each smooth. However the JAGS requirement for all priors to be
proper, means that failing to implement such constraints will not cause complete failure of
Gibbs sampling. Instead one may see very wide credible intervals and poor mixing, but not
realize that this is a model formulation problem rather than a statistical inevitability.

2. The jagam function
The new mgcv function jagam is designed to be called in the same way that the modeling
function gam would be called. That is, a model formula and family object specify the required
model structure, while the required data are supplied in a data frame or list or on the search
path. However, unlike gam, jagam does no model fitting. Rather it writes JAGS code to
specify the model as a Bayesian graphical model for simulation with JAGS, and produces a
list containing the data objects referred to in the JAGS code, suitable for passing to JAGS
via the rjags (Plummer 2016) function jags.model.
A simple model, with two univariate smooths and one tensor product smooth, exemplifies the
approach. Suppose that we have a data frame, dat, containing the response and predictor
variables, have loaded the mgcv package and have used setwd to set the working directory
to something appropriate. The code

R> jd <- jagam(y ~ s(x0) + te(x1, x2) + s(x3), data = dat,
+ family = Gamma(link = log), file = "test.jags")

would specify a simple log gamma additive model structure,

log(µi) = f1(x0i) + f2(x1i, x2i) + f3(x3i), yi ∼ Γ(µi, φ),

where f2 is a scale invariant tensor product smoother, appropriate for representing smooth
interaction terms. jagam returns a list containing standard mgcv GAM setup information
(pregam) and a list, jags.data, containing the objects required by JAGS for model simula-
tion. The function also writes a JAGS model specification in the file test.jags, as follows.

model {
eta <- X %*% b
for (i in 1:n) { mu[i] <- exp(eta[i]) }
for (i in 1:n) { y[i] ~ dgamma(r, r / mu[i]) }
r ~ dgamma(.05, .005)
scale <- 1 / r
for (i in 1:1) { b[i] ~ dnorm(0, 0.00068) }
K1 <- S1[1:9, 1:9] * lambda[1] + S1[1:9, 10:18] * lambda[2]
b[2:10] ~ dmnorm(zero[2:10], K1)
K2 <- S2[1:24, 1:24] * lambda[3] + S2[1:24, 25:48] * lambda[4] +

S2[1:24, 49:72] * lambda[5]
b[11:34] ~ dmnorm(zero[11:34], K2)
K3 <- S3[1:9, 1:9] * lambda[6] + S3[1:9, 10:18] * lambda[7]
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b[35:43] ~ dmnorm(zero[35:43], K3)
for (i in 1:7) {

lambda[i] ~ dgamma(.05, .005)
rho[i] <- log(lambda[i])

}
}

In fact code comments are also auto-generated, but have been removed from the above in
accordance with journal requirements. They are designed to make it easy to locate the code
relating to particular model components, and to draw attention to parts that the user might
wish to modify.
In normal use the file would be edited to include the more complex stochastic components
likely to have been the motivation for taking a Gibbs sampling approach. It can of course be
used un-modified to simply simulate from the posterior of the model parameters, as in the
following example code.

R> library("rjags")
R> jm <- jags.model("test.jags", data = jd$jags.data,
+ inits = jd$jags.ini, n.adapt = 2000, n.chains = 1)
R> sam <- jags.samples(jm, c("b", "rho", "scale"), n.iter = 10000, thin = 10)

The chains should then be checked for convergence and reasonable mixing in the standard
ways. R package coda facilitates this (Plummer, Best, Cowles, and Vines 2006).
If all is in order, then many users would want to use the simulation output directly, but the
utility function sim2gam can also be used to convert the simulation output into a reduced
version of a fitted gam object, suitable for further use with standard mgcv functions. For
example

R> jam <- sim2jam(sam, jd$pregam)
R> par(mfrow = c(1,3))
R> plot(jam)

yields Figure 2.
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Figure 2: Plots of JAGS estimated smooth components of a log gamma additive model.
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3. The underlying theory

3.1. Smoothers in JAGS
In mgcv, smooth functions are represented using spline like basis expansions, with quadratic
penalties on the basis coefficients being used to avoid overfit. Generically a function f(x)
may be represented as

f(x) =
K∑
j=1

βjbj(x)

where the βj are unknown model parameters/coefficients, and the bj(x) are spline like basis
functions. K is chosen to be large enough to avoid oversmoothing, but small enough to avoid
excessive computational cost. The fitted flexibility of f is controlled less by K than by the
imposition, during fitting, of a quadratic smoothing penalty of the form∑

j

λjβ
>Sjβ,

where the Sj are matrices of known coefficients and the λj are smoothing parameters to be
estimated. Often there is only a single component in the penalty, but the general summation
form is necessary in order to implement adaptive and tensor product smooths, for example,
and will also be used below to ensure the propriety of priors required for Gibbs sampling with
JAGS. See Chapter 4 of Wood (2006) for more detail.
Kimeldorf and Wahba (1970), Wahba (1983) and Silverman (1985) provide the basis for view-
ing such smoothers in a Bayesian way, with the penalties induced by improper multivariate
Gaussian priors, having precision matrices proportional to

∑
j λjSj . Adopting this viewpoint

it is obvious that we can make inferences about smooths using Bayesian methods.
For practical Gibbs sampling in JAGS there are two cases to distinguish:

1. Those in which the prior precision matrix can be represented as a weighted sum of
matrices that are all zero, apart from some unit entries on the leading diagonal, where
no component matrices of the sum have unit entries in the same place.

2. Those in which the precision matrix can not be written in the above form.

Case 1 results in i.i.d. Gaussian priors on separate subsets of the parameters. For single
smoothing parameter smooths it is possible to re-parameterize to achieve this case. Case 2
results in non-independent multivariate normal priors. In both cases the prior implied by
the smoothing penalty is usually improper, as the penalty usually leaves some subspace of
functions unpenalized. For Gibbs sampling with JAGS we require proper priors, but this is
easily arranged.

Independent Gaussian prior smooths

Some smooths, such as the tensor product smoothers constructed by Wood, Scheipl, and
Faraway (2013) or the truncated power basis P-splines advocated by Ruppert et al. (2003),
automatically have penalties in which the Sj are identity matrices with some unit entries
set to zero (and no unit entries in common between different Sj). Let βj denote the set
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of coefficients for which the corresponding diagonal elements of Sj are 1 rather than zero.
Then the prior on each element of βj is N(0, 1/λj) and the elements are independent a
priori. A vague prior would typically be placed on λj . If β0 denotes the coefficients that are
unpenalized, we can impose a prior N(0, 1/λ0) on these, where λ0 is so small as to force the
prior to be very vague, or λ0 itself has a vague prior.
Any smooth that only has a single Sj and single λj can be re-parameterized to have a partial
identity matrix prior precision matrix following Wood (2004). Dropping the index j, we
find the symmetric eigen-decomposition S = UΛU>. Suppose that the final M eigenvalues
on the leading diagonal of Λ are zero (the remainder being positive). Define D to be the
diagonal matrix with diagonal elements consisting of the square roots of the positive eigen-
values from Λ, followed by M unit entries. If we now adopt the re-parameterization β′ =
DU>β then the penalty matrix S becomes the identity matrix, with the last M leading
diagonal elements set to zero. The corresponding model matrix is then XUD−1. The last
M elements of β′ are now un-penalized, and, as above, this can be handled by imposing
independent N(0, 1/λ0) priors on these. The same result could be achieved somewhat more
efficiently with a pivoted Cholesky decomposition. mgcv contains functions to perform this
reparameterization automatically. Note that the preceding re-parameterization is slightly
different to that employed in Crainiceanu et al. (2005), which starts from an indefinite S, so
that the reparameterization step also involves an element of approximation.

General Gaussian prior smooths

For a Gaussian likelihood, independent prior smooths can result in quite fast computation,
because JAGS is then able to employ conjugate samplers. Similarly in generalized linear
model settings, the samplers from the JAGS glm module can also lead to efficient computation.
However outside these settings the independent prior approach is slow and block updates are
preferable. In any case there are several important smoother classes that are not susceptible
to writing in independent prior form, notably adaptive smooths and several types of tensor
product smooth.
In fact implementing any quadratically penalized smoother in JAGS is straightforward, us-
ing dmnorm, the JAGS multivariate normal density. dmnorm is parameterized in terms of a
precision matrix, for which

∑
j λjSj can be used directly.

The only potential difficulty is that
∑
j λjSj itself is usually rank deficient, implying an

improper prior for the smooth. Again we must construct a prior for the null space of the
smoothing penalty, but again it is possible to re-use existing mgcv facilities. Specifically, in
the context of model selection, Marra and Wood (2011) propose a simple construction of
a penalty on the null space related to the re-parameterization used in the previous section.
Again use a symmetric eigen-decomposition

∑
j Sj = UΛU>. Now let U0 denote the columns

of U (eigenvectors) corresponding to zero eigenvalues. Let S0 = U0U>0 . λ0β
>S0β can be

used to penalize the null space of the smoother by adding λ0S0 to the precision matrix, hence
making the prior on β proper. mgcv can generate such null space penalties automatically.

Smoothing parameter priors

jagam automates two possibilities for smoothing parameter priors: vague gamma priors on
the λj , or bounded uniform priors on ρj = log λj . The former will be conjugate in a fully
Gaussian setting, but the latter may be considered more interpretable for the user used to
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thinking about log smoothing parameters.

3.2. Centring the smoothers

As constructed so far, each smooth in an additive model would include its own global inter-
cept. The data provides no information to identify these multiple intercepts, so they are only
formally identifiable because of the priors put on them, which are vague priors of convenience.
This lack of statistically meaningful identifiability will serve to substantially inflate credible
intervals and promote slow mixing, so it is preferable to remove the redundant intercepts from
the model. In an additive model context this is usually done by centring the smooths (Hastie
and Tibshirani 1986, 1990; Chambers and Hastie 1991; Wood 2006). That is we impose the
condition that each smooth should sum to zero over the observed values its covariates. i.e.,∑n
i=1 f(xi) = 0. Other constraints are possible, but generally give wider credible intervals

for the constrained smooths (see Section 4 of Wood et al. 2013, for a discussion). mgcv has
facilities to simply absorb centring constraints into the basis by reparameterization, as de-
scribed in section 4.2 of Wood (2006). This absorption is done before any reparameterization
or construction of priors on the null space.

3.3. Initial values

In the Gaussian likelihood case, with gamma priors for the smoothing parameters, the initial
values of the model coefficients and smoothing parameters are rather unimportant. In this
situation conjugate samplers are used and, although poor starting values may prolong burn-in,
eventually good results will be obtained.
Beyond the simple Gaussian context, more care is needed, since poor starting values can
lead to poor tuning of non-conjugate samplers, and a consequent failure to properly explore
the region of high posterior probability (along then with high sensitivity to the parameters
of the smoothing parameter priors). jagam adopts the mgcv default smoothing parameter
initializations and then performs one step of the penalized iteratively re-weighted least squares
method for GAM fitting, in order to obtain starting values for the coefficients which are
compatible with the initial smoothing parameters. The initial coefficients and corresponding
standard errors are also used to set the scale of any required uninformative priors on the
model coefficients: the prior standard deviation is set to 10 times the sum of the absolute
value of the initial coefficient estimate and its standard error.

3.4. Further inference

Having setup a GAM for use in JAGS and simulated from it, the user will typically want to
visualize the smooths and predict from them. In addition some notion of the effective degrees
of freedom of the smooth is useful.
An obvious way to visualize the smooths is to draw curves from the posterior, and either
compute appropriate pointwise quantiles in order to produce credible intervals, or to simply
plot the curves. Examples are given below. Alternatively, smooths may be plotted with ‘two
standard error bands’, in the manner introduced in Hastie and Tibshirani (1990). To this
end it is only necessary to compute the mean coefficients from the simulation, to use in place
of coefficient estimates, β̂, and to compute the observed covariance matrix of the simulated
coefficients, Vβ, from which the standard error bands are readily computed. In fact β̂ and
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Vβ also complete the preliminary gam object produced by jagam sufficiently for prediction
using predict.gam.
Finally some notion of the effective degrees of freedom of the model and its component smooths
is useful. In a simple Gaussian additive model context a measure of the model effective degrees
of freedom is tr(F) where F = (X>X +

∑
j λjSj)−1X>X. In the generalized additive model

context F = (X>WX +
∑
j λjSj)−1X>WX, where W is the diagonal matrix of iteratively

re-weighted least squares weights used in fitting. In the presence of random effects it is better
to use F = VβX>WX/φ, in which W is the diagonal IRLS weight matrix with the random
effects set to their posterior expectations and φ is the scale parameter or its estimate. When
Vβ is computed by simulation then this latter definition has the advantage of including a
component for smoothing parameter uncertainty, however to compute it in practice requires
that the expected value of the response, mu, be monitored during simulation. See chapter 4
of Wood (2006) for further discussion.
Given F, then the effective degrees of freedom of component smooths are obtained by summing
the leading diagonal elements of F corresponding to the coefficients of the smooth concerned.
Notice that under substantial modification of the jagam template model (involving modifi-
cation of the response distribution, for example), the weighted versions of F may make no
sense. It may then be better to fall back on the effective degrees of freedom that would have
been computed if the model were a simple Gaussian additive model, or to use the estimate
proposed by Plummer (2002).

4. Examples
As two simple examples consider the union wages example and the Sitka growth example
from Crainiceanu et al. (2005). Both datasets are available in the SemiPar R package (Wand
2014). Loading the JAGS glm module, via load.module("glm") improves the efficiency of
both examples in this section.

4.1. The union wages data

The data frame trade.union contains a binary indicator of whether or not a worker is a
trade union member, along with their hourly wage in US dollars. Consider the simple logistic
regression model

logit(pi) = f(wagei), union.memberi ∼ Bernoulli(pi)

where smooth function f is represented by a rank 20 thin plate regression spline. A jagam
call sets the model up

R> jd <- jagam(union.member ~ s(wage, k = 20), data = trade.union,
+ family = binomial, file = "union.jags")

resulting in the following JAGS model specification file (again the auto-generated comments
have been removed to comply with journal requirements).

model {
eta <- X %*% b
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Figure 3: Results for the Union Wages model.

for (i in 1:n) { mu[i] <- ilogit(eta[i]) }
for (i in 1:n) { y[i] ~ dbin(mu[i], w[i]) }
for (i in 1:1) { b[i] ~ dnorm(0, 0.018) }
K1 <- S1[1:19, 1:19] * lambda[1] + S1[1:19, 20:38] * lambda[2]
b[2:20] ~ dmnorm(zero[2:20], K1)
for (i in 1:2) {

lambda[i] ~ dgamma(.05, .005)
rho[i] <- log(lambda[i])

}
}

The following commands then compile and simulate from the model.

R> library("rjags")
R> load.module("glm")
R> jm <- jags.model("union.jags", data = jd$jags.data,
+ inits = jd$jags.ini, n.chains = 1)
R> sam <- jags.samples(jm, c("b", "rho", "mu"), n.iter = 10000, thin = 10)

On a 3GHz mid range laptop computer, simulation took 18 seconds, yielding effective sam-
ple sizes averaging around 400 for rho and 800 for b and mu, for the 1000 samples stored.
Crainiceanu et al. (2005) report around 9 minutes for this model (albeit with a slightly differ-
ent smoothing penalty) for the same simulation length, on a 3.6GHz PC, although they do not
report effective sample sizes, so the comparison is not completely straightforward. Note that
failing to supply starting values greatly increases the adaptation and burn in time required
to achieve reliable results for this example.
Finally a partial gam object can be created for convenient plotting and prediction. The
following then produces a plot of the modeled probability of union membership against wages
with a credible interval, along with a visualization of the union membership data. The interval
is wide at high wages, failing to provide a very useful indication of the range of smooth shapes
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compatible with the data, so the following code also adds a sample of 20 curves from the
posterior.

R> jam <- sim2jam(sam, jd$pregam)
R> plot(jam, shade = TRUE, shift = coef(jam)[1], trans = binomial()$linkinv,
+ rug = FALSE, ylim = c(-100, -coef(jam)[1]), seWithMean = TRUE,
+ xlim = c(0, 30), lwd = 3)

Given the basic plot, now add the original union membership data.

R> nu <- trade.union$union.member == 0
R> with(trade.union, points(wage[nu], 0 * wage[nu], pch = 3, cex = .5))
R> with(trade.union, points(wage[!nu], 0 * wage[!nu] + .5, pch = 3, cex = .5))

And now add 20 smooth curves drawn from the posterior, to examine variability in the smooth
shape.

R> ii <- 1:20 * 50
R> pd <- data.frame(wage = 0:300 / 10)
R> Xp <- predict(jam, type = "lpmatrix", newdata = pd)
R> for (i in ii) {
+ p <- binomial()$linkinv(Xp %*% sam$b[, i, 1])
+ lines(pd$wage, p, lty = 2)
+ }

The result is shown in Figure 3, indicating that the peak in the probability curve is not a
very robust feature, and it would be difficult to rule out a monotonic relationship between
wages and probability of union membership.

4.2. The Sitka growth data

This example illustrates the modification of an auto-generated JAGS model file to implement
random effects. The ‘sitka’ data contain repeated measurements over time of log size for Sitka
spruce saplings grown under conditions of enhanced ozone, or control conditions. A simple
model has a smooth effect for time, a random intercept for each tree and an ozone effect,

log(sizei) = α+ f(daysi) + βozonei + bj(i) + εi

where εi ∼ N(0, σ2), bj ∼ N(0, σ2
b ), and j(i) is the index of the tree from which the ith

measurement is taken. Everything is Gaussian, so a fully conjugate setup can be employed,
and it is worth diagonalizing the smoothing penalties.

R> jd <- jagam(log.size ~ s(days) + ozone, data = sitka,
+ file = "sitka0.jags", diagonalize = TRUE)

creates a default JAGS model file which can be modified to include the random effect as
follows, where the gray italic code has been added to the non-italic auto-generated JAGS code
(and again to meet journal requirements the auto-generated comments have been removed).
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Figure 4: Results for the Sitka growth model.

model {
mu0 <- X %*% b
for (i in 1:n) { mu[i] <- mu0[i] + d[id[i]] }

for (i in 1:n) { y[i] ~ dnorm(mu[i], tau) }
scale <- 1 / tau
tau ~ dgamma(.05, .005)

for (i in 1:nd) { d[i] ~ dnorm(0, taud) }
taud ~ dgamma(.05, .005)

for (i in 1:2) { b[i] ~ dnorm(0, 3e-04) }
for (i in 3:10) { b[i] ~ dnorm(0, lambda[1]) }
for (i in 11:11) { b[i] ~ dnorm(0, lambda[2]) }
for (i in 1:2) {

lambda[i] ~ dgamma(.05, .005)
rho[i] <- log(lambda[i])

}
}

The modification involves adding a tree specific random effect, d, to the linear predictor.
Notice the need to add id, the vector attributing measurements to trees, and nd, the number
of trees, to the JAGS data. The following code compiles and simulates from the model,
produces a default plot of the smooth effect of time (given the sum to zero identifiability
constraint), a histogram of draws from the posterior for β and illustration of 25 curves,
α+ f(days), drawn from the posterior.

R> jd$jags.data$id <- sitka$id.num
R> jd$jags.data$nd <- length(unique(sitka$id.num))
R> jm <- jags.model("sitka.jags", data = jd$jags.data,
+ inits = jd$jags.ini, n.chains = 1)
R> sam <- jags.samples(jm, c("b", "rho", "scale", "mu"),
+ n.iter = 10000, thin = 10)
R> jam <- sim2jam(sam, jd$pregam)
R> plot(jam, pages = 1)
R> hist(sam$b[2, , 1])
R> days <- 152:674
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R> pd <- data.frame(days = days, ozone = days * 0)
R> Xp <- predict(jam, newdata = pd, type = "lpmatrix")
R> ii <- 1:25 * 20 + 500
R> for (i in 1:25) {
+ fv <- Xp %*% sam$b[, ii[i], 1]
+ if (i == 1) {
+ plot(days, fv, type = "l", ylim = c(4, 7))
+ } else {
+ lines(days, fv)
+ }
+ }

The results are shown in Figure 4. Notice how the left hand plot, which shows the credible
interval for f subject to constraint, suggests a very limited range of shapes for f . This is born
out by the right hand plot, in which most of the variability in the curves is in their level,
rather than their shape.

5. Conclusion

The JAGS software offers enormous flexibility in the specification of complex random effects
structures. Incorporating spline type smoothers into such models is routine, but somewhat
tedious to code on a case by case basis, as well as being prone to error, especially for smooths of
several variables. The jagam function offers a useful automation of the process of incorporating
any smooth built into mgcv into a JAGS model, while dealing seamlessly with initialization
and centring constraints and allowing straightforward posterior prediction.

The main disadvantage of the approach is computational speed. Gibbs sampling for these
models can be slow, especially if covariates are correlated. Indeed if only simple random
effects are required then the random effects already available in mgcv may be much faster
computationally. Similarly BayesX (see e.g., Fahrmeir and Lang 2001; Fahrmeir, Kneib, and
Lang 2004; Umlauf, Adler, Kneib, Lang, and Zeileis 2015) is a substantially more efficient
route to fully Bayesian inference with GAMs if the flexibility of JAGS is not required, while
Stan (Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and
Riddell 2017) offers another alternative likely to offer efficiency advantages. In these correlated
settings it is also likely that Hamiltonian Monte Carlo methods (e.g., Girolami and Calderhead
2011) would enhance efficiency.
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