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Abstract

The purpose of this paper is to list the recent updates of the R package catR. This
package allows for generating response patterns under a computerized adaptive testing
(CAT) framework with underlying item response theory (IRT) models. Among the most
important updates, well-known polytomous IRT models are now supported by catR; sev-
eral item selection rules have been added; and it is now possible to perform post-hoc
simulations. Some functions were also rewritten or withdrawn to improve the usefulness
and performances of the package.
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1. Introduction
In the field of psychometrics, computerized adaptive testing (CAT) is an important area
of current research and practical implementations have shown a huge increment in the last
decade. Unlike traditional linear testing wherein all respondents receive the same set of items,
the main purpose of CAT is to perform iterative and adaptive administration of the items.
The items are selected and administered one by one, and the selection of the next item is
conditional upon the previously administered items, the responses of the respondent and the
provisional estimate of ability level. CAT has several advantages with respect to linear testing:
Among others, it requires less items to reach the same level of precision for ability estimation,
leading thus to shorter tests for the respondents, and ability estimates are available directly
after the test administration for immediate feedback to the test takers.
Although the CAT literature has increased in the past two decades (e.g., van der Linden
and Glas 2010; Wainer 2000), there is still a lack of open-source and flexible software to run
CATs and to perform intensive simulation studies in this framework. The R (R Core Team
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2016) package catR (Magis and Raîche 2012) was originally developed for this purpose. The
package is available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=catR. It offers a variety of options to generate response patterns
in a CAT environment, by providing first a pre-calibrated item bank, then by selecting all
options related to CAT assessments (such as ad-interim and final ability estimators, a method
for next item selection and a stopping rule). Its general architecture makes catR flexible, easy
to update, and several of its components can be used even outside the CAT framework (for
instance, the ability estimation and related standard error computation routines). Though
basically developed as a working routine for CAT studies, catR can also be used as the core
computing for real CAT assessment platforms, such as the web-based platform Concerto
(Kosinski et al. 2013).
Since its very first version 1.0, released in June 2010, the package was updated with minor
yet important updates to fix programming errors and enhance general improvement, leading
to version 2.6 (released in March 2013). Recently, catR received a major update, due to
both an increasing interest for the package and the need for further developments to match
more realistic situations. One major update was to incorporate most common polytomous
item response theory (IRT) models into catR. This mandatory extension was motivated by
the fact that most questionnaires contain polytomous (e.g. multiple-choice) items for which
specific models exist but were not yet available in catR.
The purpose of this note is to briefly review the major changes and improvements of catR from
version 2.6 to its most recent version 3.12 (released in January 2017). Sections 2 to 4 present
the three main updates of catR: the inclusion of polytomous IRT models, the implementation
of additional item selection rules, and the option to run post-hoc simulations. Several technical
details are also included in Appendix A. The package itself will not be described again, so we
refer the interested reader to Magis and Raîche (2012) for more details.

2. Polytomous IRT models

As already mentioned, the main update of catR involves the inclusion of the most common
polytomous IRT models: the graded response model (GRM; Samejima 1969, 1996), the mod-
ified graded response model (MGRM; Muraki 1990), the partial credit model (PCM; Masters
1982), the generalized partial credit model (GPCM; Muraki 1992), the rating scale model
(RSM; Andrich 1978a,b) and the nominal response model (NRM; Bock 1972). These models
were integrated into the package with the following requirements and guidelines: (a) catR
function names were not modified; (b) by default, all functions remain operational with di-
chotomous IRT models; (c) all functions support polytomous IRT models and return similar
yet appropriate output. These choices were made to prevent a deep modification of the current
use of catR, especially for researchers who are currently using the package with dichotomous
IRT models.
The specification of a polytomous IRT model is composed of two elements: an appropriately
defined matrix of item parameters and the new argument model added to almost all existing
functions. By default, model takes the NULL value and refers to dichotomous models (for
which the item bank format is left unchanged from previous versions of catR). Other possible
values are the polytomous model acronyms, for instance "GRM" for the graded response model,
"PCM" for the partial credit model and so on.

https://CRAN.R-project.org/package=catR
https://CRAN.R-project.org/package=catR
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The format of a bank of item parameters under polytomous IRT models requires some expla-
nation. First, the “one-row-per-item" structure was preserved in this framework. Second, all
models being different in terms of number of parameters per item, the number of columns in
this bank will vary from one item bank and one model to another. A complete description
therefore requires a detailed presentation of the polytomous IRT models.

2.1. Parametrization of polytomous models
For a given item j, let the response categories be coded as 0, 1, . . . , gj so that gj + 1 response
categories are available. Let Xj be the item response and θ the ability level of the respondent.
Set also Pjk(θ) = P(Xj = k|θ) as the response category probability, that is, the probability
that response category k (k = 0, 1, . . . , gj) is picked up for item j.
The GRM and MGRM belong to the class of so-called difference models (Thissen and Stein-
berg 1986) and are defined by means of cumulative response probabilities P ∗jk(θ) = P(Xj ≥
k|θ), that is, the probability of selecting a response category in {k, k+1, . . . , gj}, and with the
convention that P ∗j0(θ) = 1 and P ∗jk(θ) = 0 for any k > gj . Response category probabilities
are then computed as Pjk(θ) = P ∗jk(θ)− P ∗j,k+1(θ).
Using the notations given in Embretson and Reise (2000), the cumulative probability of the
GRM takes the following form:

P ∗jk(θ) = exp [αj (θ − βjk)]
1 + exp [αj (θ − βjk)] , (1)

while the cumulative probability of the MGRM is written as:

P ∗jk(θ) = exp [αj (θ − bj + ck)]
1 + exp [αj (θ − bj + ck)] . (2)

The GRM allows thus for category threshold parameters βjk that vary across items, while
the MGRM assumes the same number of response categories for all items (i.e., gj = g for all
items) and identical threshold parameters ck across items.
The PCM, GPCM, RSM and NRM, on the other hand, belong to the class of divide-by-total
models (Thissen and Steinberg 1986). The respective response category probabilities are set
as follows:

P ∗jk(θ) = exp ∑k
t=0 αj (θ − δjt)∑gj

r=0 exp ∑r
t=0 αj (θ − δjt)

with
0∑

t=0
αj (θ − δjt) = 0 (3)

for the GPCM,

P ∗jk(θ) = exp ∑k
t=0[θ − (λj + δt)]∑gj

r=0 exp ∑r
t=0[θ − (λj + δt)]

with
0∑

t=0
[θ − (λj + δt)] = 0 (4)

for the RSM, and

P ∗jk(θ) = exp(αjk θ + cjk)∑gj

r=0 exp(αjr θ + cjr)
with αj0 θ + cj0 = 0 (5)

for the NRM. The PCM is a particular case of the GPCM (3) with the restriction αj = 1.
The RSM assumes all items have an equal number of response categories (i.e., gj = g for all
j), while other models allow for different numbers of response categories across items.
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2.2. Specification of the item bank

In order to correctly specify the polytomous item bank in catR, it is first mandatory that the
items be calibrated using the same parametrization of the models (1) to (5) above. Then,
since each item will be coded as one row of the item bank, the ordering of the item parameters
is central. It was decided to make use of the following ordering for any item j:

• for the GRM: (αj , βj1, . . . , βj,gj )

• for the MGRM: (αj , bj , c1, . . . , cg)

• for the PCM: (δj1, . . . , δj,gj))

• for the GPCM: (αj , δj1, . . . , δj,gj))

• for the RSM: (λj , δ1, . . . , δg)

• for the NRM: (αj1, cj1, αj2, cj2, . . . , αj,gj , cj,gj )

In other words, the number of columns in the item bank will vary from one model to another.
If gmax stands for the maximum number of response categories across all items (gmax = g in
case of MGRM and RSM), then the number of columns in the item bank (without the possible
subgroup membership indicators) is gmax + 1 for the GRM, MGRM, GPCM and RSM, gmax
for the PCM and 2 × gmax for the NRM. If an item has less than the maximal number of
response categories, the corresponding row of the item bank is completed by NA values for the
missing response categories.

3. Additional item selection rules
The former version of the package included seven item selection rules, listed in Magis and
Raîche (2012, p. 9). Now, catR holds five additional item selection rules that are briefly
described below.

1. The thOpt procedure (Li and Schafer 2005; Magis 2013). In the thOpt rule, the item
selected is the one belonging to the subset of administrable items of the bank (B) with
minimum distance between the currently estimated trait level θ̂ and the value where
the item achieves its maximum in the Fisher information function θmax

i :

j = arg min
i∈B

∣∣∣θ̂ − θmax
i

∣∣∣ . (6)

The computation of θmax
i is done with the equations provided in Magis (2013).

2. The Kullback-Leibler divergency criterion weighted by the posterior distribution (KLP;
Chang and Ying 1996). The Kullback-Leibler (KL) information function evaluates the
item discrimination capacity between any possible pairs of trait levels. This means that
KL is a global information measure. Chang and Ying (1996) proposed to weight the
KL measure with the posterior trait level distribution:

j = arg min
i∈B

∫ +∞

−∞
KLi(θ‖θ̂) f(θ)L(θ) dθ, (7)
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where f(θ) is the prior distribution of ability, L(θ) is the likelihood function and
KLi(θ‖θ̂) is calculated as follows (see also van der Linden and Pashley 2010):

KLi(θ‖θ̂) = E
[
log L(θ̂|Xi)

L(θ|Xi)

]
=

gi∑
k=0

Pik(θ̂) log
[
Pik(θ̂)
Pik(θ)

]
, (8)

with L(θ|Xi) being the contribution term of item i to the full likelihood L(θ).

3. The Kullback-Leibler divergency criterion weighted by the likelihood function (KL; Bar-
rada, Olea, Ponsoda, and Abad 2009b). In this version of the KL selection rule, no
prior distribution is considered, so the item selected is:

j = arg min
i∈B

∫ +∞

−∞
KLi(θ‖θ̂)L(θ) dθ. (9)

4. The progressive method (Revuelta and Ponsoda 1998). In the progressive method the
selected item is the one for which the weighted sum of a random component and the
Fisher information is highest. At the beginning of the test, when the trait estimation
error is high, the weight of the random component is maximum and the weight of the
Fisher information is minimum. As the number of administered items increases (in
fixed length CATs) or when the estimated standard error approaches the standard error
threshold (when the "precision" rule is applied), the weight of the random component
decreases and the weight of the Fisher information increases. The progressive method
can be described as follows:

j = arg max
i∈B
b(1−W )Ri +W Ii(θ̂)c, (10)

where Ri is a random number belonging to the interval
[
0,maxi∈B Ii(θ̂)

]
and Ii(θ̂) is

the Fisher information function computed at the θ̂ value.
For fixed length CATs, Barrada, Olea, Ponsoda, and Abad (2008) proposed the following
equation to relate W to the number of item positions in the test (ranging from 1 to Q):

W =


0 if q = 1,∑q

f=1(f−1)t∑Q

f=1(f−1)t
if q 6= 1. (11)

The t parameter marks the speed at which the weight of the random component is
reduced, and thus the speed at which the importance of item information increases.
Higher values imply a higher relevance of the random component in the item selection.
When the stopping rule surpasses a predefined standard error value, the W value is
computed with an adaptation of the method proposed by McClarty, Sperling, and Dodd
(2006):

W = max
[
I(θ̂)
Istop

,
q

M − 1

]t

, (12)

where Istop is the Fisher information required for reaching the standard error threshold
and M is the maximum test length.
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5. The proportional method (Barrada et al. 2008; Segall 2004). While the rest of the
selection methods implemented in catR are deterministic, the proportional method is
stochastic. The probability of selecting the item is given by:

P(Si) = zi Ii(θ̂)H∑n
k=1 zk Ik(θ̂)H

, (13)

where n is the size of the item bank and zi indicates whether the item belongs (1) or not
(0) to B. Once the probabilities of each item being selected are computed, a cumulative
distribution of probabilities is derived. Then, a random number drawn from the uniform
interval (0,1) is used to identify the item to be selected.
For fixed length CATs, Barrada et al. (2008) have proposed defining H as follows:

H =


0 if q = 1,

Q
∑q

f=1(f−1)s∑Q

f=1(f−1)s
if q 6= 1. (14)

The s parameter has the same role as the t parameter in the progressive rule.
For the "precision" stopping rule, the computation of H is:

H = Istop max
[
I(θ̂)
Istop

,
q

M − 1

]s

. (15)

Note that for clarity the formerly called Urry’s method (Urry 1970) has been renamed as
the bOpt criterion. Moreover, all item selection rules are available for both dichotomous and
polytomous IRT models, except the thOpt and the bOpt methods (which are restricted to
dichotomous models). Also, the progressive and proportional methods are not available for
classification CATs.

4. Post-hoc simulations
The generation of a CAT response pattern is done by random draws from the Bernoulli dis-
tribution for each item response. More precisely, once the next item to administer is selected,
the probability of answering this item correctly, say Pj(θ), is computed with the estimate
of ability θ and the item response Xj is drawn from the Bernoulli distribution with success
probability Pj(θ). Note that by including polytomous IRT models, this random sampling
scheme was updated by considering draws from the appropriate multinomial distribution.
The package catR now allows for post-hoc simulations, that is, item responses that are not
randomly drawn but picked from a given response pattern. This response pattern is directly
provided in the randomCAT() or simulateRespondents() functions with the newly added
arguments responses and responsesMatrix, respectively (see Appendix A). By default,
these arguments take the NULL value, so that item responses are randomly drawn from the
appropriate (Bernoulli or multinomial) distribution. Otherwise, responses must be a vector
and responsesMatrix a matrix of item responses (either dichotomous or polytomous) of the
same length of the number of items in the bank, and with the same ordering (i.e., first item
response to the first item in the bank etc.).
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In the case of post-hoc simulations, the true ability level may not be provided (as it will be
unknown in practical cases). The randomCAT() function nevertheless returns its value through
the trueTheta argument, with a by-default value of zero (for compatibility with traditional
random CAT generation).
In post-hoc simulations, when real examinees (not simulees) have responded to the full item
bank, it is common to treat the estimated ability with the full vector of responses as the best
guess of the true ability level. In those cases, the best trueTheta estimate could be obtained
with the thetaEst function. Otherwise, trueTheta in the context of post-hoc simulations
could be fixed to any arbitrary value. In any case, the trueTheta argument is not used for
the generation of item responses.
The post-hoc simulation feature can be applied to at least two different situations. First,
the responses of examinees to the full item bank are available and the user wants to evaluate
the effects of switching from a linear test to an adaptive test (see, e.g., Fischer et al. 2014;
Gibbons et al. 2008). Second, the responses to the items come from a previous phase of
the simulation process and must remain constant in the adaptive phase. For instance, with
post-hoc simulations it is possible to simulate the effects of item parameter calibration error
in adaptive testing (Olea, Barrada, Abad, Ponsoda, and Cuevas 2012; van der Linden and
Glas 2000). An example is also provided in the next section.

5. Illustration
Let us now illustrate briefly the main updates of catR by displaying the full code to generate
CAT patterns. The main steps have been described in Magis and Raîche (2012) and will not
be detailed here, emphasis being put on new topics instead.
Throughout this section the following options will be selected and kept identical across ex-
amples for sake of clarity (they can obviously be modified according to the user’s interests).

1. An item bank of 500 items is randomly generated with the PCM as the IRT model.
Moreover, each item has between two and five response categories.

2. Each CAT starts by selecting from the item bank, the item that is most informative for
the true ability level of zero. This means, among others, that each CAT will start with
the same item (this restriction can nevertheless be relaxed by using another approach;
the current one, however, is commonly used in real CAT assessments).

3. Ad-interim ability is estimated with the maximum a posteriori (or Bayes modal) method,
with the standard normal prior distribution of ability.

4. The next item to administer is selected by making use of the Kullback-Leibler (KL)
divergency criterion.

5. The stopping rule is set as a precision criterion: Adaptive administration ends when
the standard error of the ad-interim ability estimate becomes smaller than 0.3.

6. The final ability estimator is the traditional maximum likelihood (ML) estimator.

7. The examples do not contain any option for content balancing nor for item exposure
control.
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These baseline options can be implemented in R with the following code (see Magis and Raîche
2012, for further details):

R> library("catR")
R> bank <- genPolyMatrix(items = 500, model = "PCM", nrCat = 5)
R> start <- list(nrItems = 1, theta = 0)
R> test <- list(itemSelect = "KL", method = "BM")
R> stop <- list(rule = "precision", thr = 0.3)
R> final <- list(method = "ML")

Note that the item bank stored in bank is generated through the new function genPolyMatrix()
that is further described in Appendix A.
The first rows of the generated item bank (stored into the R object bank) can be looked at
for information:

R> head(bank)

leading to:

deltaj1 deltaj2 deltaj3 deltaj4
1 0.136 0.407 -0.070 NA
2 -0.248 0.696 1.146 NA
3 -2.403 0.573 0.375 -0.425
4 0.951 -0.389 -0.284 0.857
5 1.720 0.270 NA NA
6 -0.422 -1.189 -0.331 -0.940

According to the PCM parametrization in (3), items 1 and 2 hold four responses categories,
items 3, 4 and 6 have five response categories and item 5 has only three response categories.

5.1. Example 1

In the first example, a single CAT pattern will be generated from the usual random response
generation process, with a true ability level of one and all aforementioned CAT options. The
corresponding R code is given below:

R> res <- randomCAT(trueTheta = 1, itemBank = bank, model = "PCM",
+ start = start, test = test, stop = stop, final = final)

The corresponding output is returned as follows:

Random generation of a CAT response pattern
with random seed equal to 1

Item bank calibrated under Partial Credit Model

True ability level: 1
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Starting parameters:
Number of early items: 1
Early item selection: maximum informative item for starting ability
Starting ability: 0

Adaptive test parameters:
Next item selection method: Kullback-Leibler (KL) information
Provisional ability estimator: Bayes modal (MAP) estimator

Provisional prior ability distribution: N(0,1) prior
Ability estimation adjustment for constant pattern: none

Stopping rule:
Stopping criterion: precision of ability estimate
Maximum SE value: 0.3

Randomesque method:
Number of 'randomesque' starting items: 1
Number of 'randomesque' test items: 1

Content balancing control:
No control for content balancing

Adaptive test details:

Nr 1 2 3 4 5 6
Item 439 363 321 200 492 100
Resp. 4 3 3 3 1 3
Est. 0.49 1.015 1.195 1.355 1.24 1.3
SE 0.668 0.488 0.387 0.352 0.308 0.281

Satisfied stopping rule:
Precision of ability estimate

Final results:
Length of adaptive test: 6 items
Final ability estimator: Maximum likelihood estimator
Final range of ability values: [-4,4]
Final ability estimate (SE): 1.415 (0.305)
95% confidence interval: [0.817,2.013]

Output was not captured!

The CAT required only six item responses to reach the pre-specified level of precision in the
ability estimation process. Note that the final SE value (0.305) is larger than the requested
threshold (0.3), which is due to the change in ability estimator between the test and final
steps. Moreover, the final ability estimate equals 1.415, not far from the true underlying
ability level of one.
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5.2. Example 2
In the second example, an illustration of post-hoc simulation is performed. First, for the sake
of such analysis, some response patterns must be provided. Here we make use of the new
genPattern() function to create this pattern (see Appendix A for further details), though in
practical situations it is often provided from real test assessments.

R> x <- genPattern(th = 1, it = bank, model = "PCM")

Then, the CAT pattern is obtained using the following code. Note that in this context of
post-hoc simulation, the true ability level may not be provided anymore (as it is only used to
generate the item responses).

R> res2 <- randomCAT(itemBank = bank, responses = x, model = "PCM",
+ start = start, test = test, stop = stop, final = final)
R> res2

The output is very similar to the one for res1 in the previous section, so only the specific
parts are displayed below

Post-hoc simulation of a full bank provided response pattern

[SKIPPED OUTPUT]

Adaptive test details:

Nr 1 2 3 4 5 6
Item 439 363 200 492 71 321
Resp. 4 4 2 4 0 0
Est. 0.49 1.272 1.306 1.577 1.401 1.161
SE 0.668 0.535 0.421 0.395 0.335 0.288

[SKIPPED OUTPUT]

Here also only six items are required to fulfill the CAT stopping rule. In this case, it is worth
checking that the item responses returned by the CAT process

R> res2$pattern

are actually equal to the item responses from the input response pattern

R> x[res2$testItems]

both returning (in this example) the same response pattern (4, 4, 2, 4, 0, 0).

5.3. Example 3
In this final example, the new function simulateRespondents(), described in Appendix A,
will be illustrated. An artificial set of 20 respondents is considered, with true ability levels
being equally spaced between −2 and 2. All other CAT options remain unchanged. The full
R code is displayed below.
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R> thetas <- seq(from = -2, to = 2, length = 20)
R> res3 <- simulateRespondents(thetas = thetas, itemBank = bank,
+ model = "PCM", start = start, test = test, stop = stop, final = final)
R> res3

The output of this function is displayed in a somewhat different setting than the output from
randomCAT(). That is, summary statistics on the whole set of simulated patterns are returned
instead (though all individual results can be retrieved from the elements of the output list
res3, for instance by calling str(res3)). This output is reproduced below.

** Simulation of multiple examinees **

Random seed was fixed (see argument 'genSeed')

Simulation time: 3.7835 minutes

Number of simulees: 20
Item bank size: 500 items
IRT model: PCM

Item selection criterion: KL
Stopping rule:

Stopping criterion: precision of ability estimate
Maximum SE value: 0.3

rmax: 1

Mean test length: 7.1 items
Correlation(true thetas,estimated thetas): 0.9222
RMSE: 0.5081
Bias: 0.0728
Proportion of simulees that satisfy the stop criterion: 1

Maximum exposure rate: 1
Number of item(s) with maximum exposure rate: 1
Minimum exposure rate: 0
Number of item(s) with minimum exposure rate: 445
Item overlap rate: 0.3141

Conditional results
Measure D1 D2 D3 D4 D5 D6 D7

Mean Theta -1.895 -1.474 -1.053 -0.632 -0.211 0.211 0.632
RMSE 0.026 0.286 0.671 0.833 0.358 0.34 0.433

Mean bias 0.025 0.235 -0.557 0.647 0.342 -0.203 0.139
Mean test length 9 5.5 7 5 6 4.5 5.5

Mean standard error 0.322 0.323 0.327 0.287 0.28 0.292 0.286
Proportion stop rule satisfied 1 1 1 1 1 1 1

Number of simulees 2 2 2 2 2 2 2
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D8 D9 D10
1.053 1.474 1.895
0.182 0.47 0.818
0.124 -0.43 0.406

5.5 5 18
0.3 0.312 0.341

1 1 1
2 2 2

These results can be saved by setting 'save.output' to TRUE
in the 'simulateRespondents' function

Note that the long computational time (about four minutes) is due to the use of the KL
rule as method for next item selection, which is a very computationally intensive one. Other
methods such as MFI for instance would reduce this computational effort to a few seconds
instead.

6. Final comments
The R package catR offers a flexible routine to generate response patterns under a CAT
scenario. It has many options for ability estimation, next item selection, item exposure and
content balancing control, as well as several rules for selecting the first items and stopping
the CAT. Both dichotomous and polytomous IRT models are now supported by catR, and
post-hoc simulations can also be considered as an alternative to usual random response draws.
Practical applications of catR are numerous. First, it was originally developed as a research
tool to perform intensive and comparative simulation studies. Up to now, a common dynamic
in the research area of CAT has been that each researcher has developed his/her own code
to perform the simulations. However, making use of a common package like catR would
alleviate some related problems: (a) it reduces the time to implement CAT routines; (b) it
provides more consistency in research and allows replication studies; and (c) it facilitates the
use of more complex IRT models that are available in catR. Moreover, the modularity of its
architecture and its open-source access implies that any researcher can use it, as it stands or
by modifying some functions. The inclusion of polytomous IRT models and additional item
selection rules will allow studies to broaden this area of research, for instance by comparing
several items selection rules or ability estimators with various models and test situations.
The package catR can also be useful with real or simulated data. We can foresee several
scenarios for which a free accessible alternative as catR can reduce costs.

1. Pre-operational analysis, to simulate the adequate protocol (item selection rule or trait
level estimator) when considering to start a CAT implementation with real item banks.

2. Empirical evaluation of the gain in switching from linear to adaptive administration
of previously developed and calibrated items using post-hoc simulations (e.g., Fischer
et al. 2014; Gibbons et al. 2008).

3. Operational purposes, as the support for the platform of CAT administration. One
example is the web-based platform Concerto (Kosinski et al. 2013) that requires catR
as underlying computational routine for CAT administrations.
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Note that catR is not the only R package devoted to adaptive testing. Among others, mirtCAT
(Chalmers 2016) seems to be a valuable alternative. Its main asset is to allow the creation
of graphical user interfaces for administering CATs in real time. catR, on the other hand,
is more complete in terms of CAT options for selecting the first item(s), next item selection
and stopping rules. In addition, mirtCAT package supports several multidimensional IRT
models, which is currently not the case with catR.
Future updates of catR will focus on several modern aspects of CAT assessment. Some
possible future extensions are: the inclusion of multidimensional IRT models (Reckase 2009);
cognitive diagnosis CAT models (Cheng 2009; Kaplan, de la Torre, and Barrada 2015); new
or other methods for item exposure and content balancing control; and testlet IRT models
(Wainer, Bradlow, and Wang 2009).
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A. Additional updates and modifications
Together with previously described updates of the package, several technical modifications
and improvements were performed. They are briefly listed below for completeness.

A.1. What remains unchanged

The general architecture of catR is such that some elements can be modified, updated or
removed without needing to rewrite the whole package. Therefore, despite important im-
provements, the general structure of the package was left unchanged. That is, to generate a
response pattern, one must provide a calibrated item bank in an appropriate format, a true
ability level (or a full response pattern for post-hoc simulations), and four lists of options for
the starting, testing, stopping and final steps of a CAT (see Figure 1 of Magis and Raîche
2012, p. 7 for further details). Hence, previous code developed for catR version 2.6 or before
will remain valid with the most recent version of the package.

A.2. Removed or replaced features

The main modification in catR is the removal of the createItemBank() function and its
replacement with a simpler function called breakBank(). The purpose of createItemBank()
was to produce an item information matrix to quickly pick-up Fisher information for a given
item and ability level. This structure was however not very user-friendly and required the
creation and storage of an information matrix, and on-the-fly computation of information
functions is very fast and straightforward with modern computers.
Another feature of createItemBank(), however, was to break down the item bank into two
pieces (whenever supplied): the item parameters on the one hand and the subgroup mem-
bership of the items on the other hand (for content balancing purposes). This feature had to
be preserved for proper functioning of catR, and this was achieved by creating the simpler
function breakBank() instead. This new function takes as input the original matrix with
both item parameters and subgroup membership and returns as output a list with the two el-
ements. Note that breakBank() is used internally in the main function randomCAT() of catR,
so now only the original, full matrix of item parameters (plus perhaps subgroup membership)
must be supplied as input information in randomCAT().
Note also that, in order to remove the former dependency of catR to the package sfsmisc
(Maechler et al. 2016) for numerical integration, the updated package contains its own internal
function for numerical integration, called integrate.catR().

A.3. Item bank and response pattern generation

Two functions were created to automatically generate item banks according to a pre-selected
IRT model. These functions are called genDichoMatrix() and genPolyMatrix() for dichoto-
mous and polytomous IRT models, respectively. Both share four identical arguments: items
to specify the requested number of items in the bank; model to determine the IRT model;
seed to set the random seed; and cbControl to specify the options for content balancing
control. In addition, genDichoMatrix() also allows specification of the parent distribution
of each of the four parameters. genPolyMatrix(), on the other hand, requires the maximum
number of item categories and can force the items to have exactly the same number of cat-
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egories. The parent distributions, however, are currently set to default distributions. The
interested reader can find more details about these functions in the catR help files.
Another useful function, called genPattern(), was created. As its name suggests, it per-
forms random generation of a response pattern given a set of item parameters (argument
it), a targeted ability level (argument th) and a pre-specified model, either dichotomous or
polytomous IRT model (argument model). As already previously mentioned, this random
generation is made by an appropriate call to the function rbinom() for dichotomous items
and to rmultinom() for polytomous IRT models. The function returns a vector of random
item responses with the same length of the number of rows in the item bank. Note that a
single item can be specified by a vector of parameters (in the appropriate order according
to the IRT model), and genPattern() converts it into an appropriate matrix for random
response generation.

A.4. Multiple pattern generation

Finally, because the randomCAT() function can only produce one adaptive test at each call,
an additional function was added to generate several response patterns simultaneously. This
function, called simulateRespondents(), allows easy simulation of a large number CAT
administrations and provides both statistical summaries and plots regarding accuracy and
item exposure control. The results and plots are for the overall sample of examinees and is
conditional on the deciles of the trait level distribution. Ten different plots can be displayed
and saved. The availability of the plots depends on the stopping rule used. The details can
be checked in the help files of the simulateRespondents() function.
The function simulateRespondents() makes use of most of the arguments of randomCAT(),
with three main exceptions. First, the argument trueTheta is replaced by thetas and can
hold a vector of true ability levels: Each value will be used to generate one response pattern
with successive calls of randomCAT(). Second, in case of post-hoc simulations, the argument
responsesMatrix contains a matrix of response patterns (one pattern per row) from which
the item responses will be drawn. Third, two methods for controlling the maximum exposure
rate that no item should surpass (rmax) are available, the restrictive method (Revuelta and
Ponsoda 1998) and the item-eligibility method (van der Linden and Veldkamp 2004). In
both the restrictive and the item-eligibility methods, exposure control parameters ki are used
to define the subset B of the bank which is available for administration for each examinee
and these parameters are computed on-the-fly, with each new examinee (Barrada, Abad, and
Veldkamp 2009a).
In the restricted method, the control parameters can adopt just two values, 0 and 1. The ki

parameter will be set at 0 if the exposure rate of the item from the first CAT administra-
tion until the gth examinee er (1...g)

i is greater than or equal to rmax; otherwise, the control
parameter will be set at 1:

k
(g+1)
i =

{
1 if er (1...g)

i < rmax,

0 if er (1...g)
i ≥ rmax.

(16)

In the item-eligibility method, the parameters for the (g + 1)th examinee are calculated
considering rmax, er (1...g)

i , and the exposure control parameters for the previous examinee k(g)
i :
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k
(g+1)
i =


1 if er (1...g)

i /k
(g)
i ≤ rmax,

rmax k
(g)
i

er(1...g)
i

if er (1...g)
i /k

(g)
i > rmax.

(17)

The k parameters determine the probability that each item is eligible for administration. For
each item and with each new examinee, a random number from the interval (0, 1) is generated
and the item is marked as eligible only if that random number is lower than the k parameter.
Although the restrictive and item-eligibility methods do not exhaust all the possible methods
for controlling the maximum exposure rate, those two options can be considered among the
best available ones (Barrada et al. 2009a).
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