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Abstract

We introduce the R package npmv that performs nonparametric inference for the
comparison of multivariate data samples and provides the results in easy-to-understand,
but statistically correct, language. Unlike in classical multivariate analysis of variance,
multivariate normality is not required for the data. In fact, the different response variables
may even be measured on different scales (binary, ordinal, quantitative). p values are
calculated for overall tests (permutation tests and F approximations), and, using multiple
testing algorithms which control the familywise error rate, significant subsets of response
variables and factor levels are identified. The package may be used for low- or high-
dimensional data with small or with large sample sizes and many or few factor levels.

Keywords: MANOVA, multiple testing, closed testing procedure, rank test, permutation test,
randomization test, familywise error rate.

1. Introduction
The paper introduces the R (R Core Team 2016) package npmv (Burchett and Ellis 2017) that
provides valid inference procedures for samples of multivariate observations. The package is
available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.
org/package=npmv, and the underlying methodology is based on the nonparametric approach
to multivariate inference presented in Bathke and Harrar (2008), Harrar and Bathke (2008a),
Harrar and Bathke (2008b), Bathke, Harrar, and Madden (2008), Bathke, Harrar, and Ahmad
(2009), and Liu, Bathke, and Harrar (2011). One major achievement in the recent method-
ology development is that no parametric assumptions such as multivariate normality have to
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Sample 1 Sample 2 . . . Sample a
X

(1)
11 X

(1)
12 . . . X

(1)
1n1 X

(1)
21 X

(1)
22 . . . X

(1)
2n2 . . . X

(1)
a1 X

(1)
a2 . . . X

(1)
a,na

X
(2)
11 X

(2)
12 . . . X

(2)
1n1 X

(2)
21 X

(2)
22 . . . X

(2)
2n2 . . . X

(2)
a1 X

(2)
a2 . . . X

(2)
a,na

. . . . . . . . . . . .

X
(p)
11 X

(p)
12 . . . X

(p)
1n1 X

(p)
21 X

(p)
22 . . . X

(p)
2n2 . . . X

(p)
a1 X

(p)
a2 . . . X

(p)
a,na

Table 1: General schematic layout for multivariate observations from several samples.

be made. Such assumptions, which are required for the classical parametric MANOVA (mul-
tivariate analysis of variance), itself available through the standard R package stats (manova
function), are rather restrictive and hard to verify. In fact, they are arguably one of the main
reasons why classical MANOVA is rarely used: It is almost impossible to justify its prereq-
uisites. Another limitation of the classical MANOVA is that even when the assumptions of
multivariate normality are met, MANOVA tests typically provide answers that are not useful
in practice: They only make a global statement about significance. Classical MANOVA pro-
cedures do not provide coherent information about which sub-groups of response variables or
factor levels are responsible for the global significance. The R package npmv solves both prob-
lems by (a) providing a fully nonparametric approach and (b) supplementing the global test
with a comprehensive procedure identifying significant response variables and factor levels –
while at the same time controlling the familywise error rate.

1.1. Nonparametric multivariate model

Consider the situation involving a samples (factor levels) of p-variate observation vectors
(i.e., p response variables), with individual sample sizes n1, . . . , na, respectively, and total
sample size N = ∑a

i=1 ni. The nonparametric model underlying the R package npmv simply
states that the multivariate observation vectors Xij = (X(1)

ij , . . . , X
(p)
ij )> are independent,

and within the same factor level i, they follow the same p-variate distribution: Xij ∼ Fi.
Here and in the following, the different variables are denoted by k = 1, . . . , p, the different
conditions (treatments, sub-populations, factor levels) are indexed by i = 1, . . . , a, and within
each condition, the ni subjects (experimental units), on which the p-variate observations are
made, are indexed by j = 1, . . . , ni, We assume implicitly, that the same p response variables
are observed at each of the a factor levels, and these p variables may be dependent. The
dependence structure does not have to be specified. Also, the marginal distributions may of
course be different for the different response variables.
Typical global statistical hypotheses in this context are the following. “Are the a samples
from the same population (multivariate distribution)?” or “Do the a treatments have the
same effect?” These can be formulated as H0 : F1 = . . . = Fa. Further, if a global hypothesis
is rejected, investigators would like to know which variables or treatments contributed to the
significant overall effect. The R package npmv provides a comprehensive way to answer these
questions and to summarize the results.
Table 1 shows a schematic layout for the type of data considered in the package. Different
rows correspond to the p different variables, different treatment groups are indicated by the
blocks titled Sample i, and each column represents one experimental unit (subject, person).
For the special case of univariate responses (or, e.g., variable-wise inference for the different
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Treatment Replication Weight Botrytis Fungi Rating
3 1 6.90 4.0956 17.2355 1.0
3 2 8.30 5.1348 5.6482 1.0
3 3 8.40 6.0698 8.8012 1.5
3 4 7.95 2.7174 9.5109 1.5
6 1 8.60 1.1945 17.0649 1.0
6 2 8.50 0.5533 12.8631 1.0
6 3 8.20 0.7353 6.7647 0.5
6 4 9.50 0.9929 1.8440 1.0
8 1 6.20 4.2857 4.6428 1.0
8 2 9.00 1.5640 3.0303 3.0
8 3 6.80 0.8757 5.6042 0.0
8 4 8.50 2.4249 8.6605 2.0
9 1 7.50 15.5975 13.0817 1.0
9 2 6.70 10.2819 14.4279 1.0
9 3 8.70 13.2895 10.9211 2.5
9 4 7.40 18.3824 16.0295 3.0

Table 2: Strawberry data.

response variables), modern nonparametric inference methods have been implemented re-
cently in the R package nparcomp (Konietschke, Placzek, Schaarschmidt, and Hothorn 2015).
Also, an R implementation exists for a nonparametric analysis in the special case of repeated
measurements, i.e., for the case where the p different variables constitute repeated observa-
tions of the same characteristic on the same subject, and are measured in the same units. In
such a situation, the R package nparLD (Noguchi, Gel, Brunner, and Konietschke 2012) can
be used. However, these tools available in the packages nparcomp and nparLD are not in
general applicable to multivariate data which usually involve different, typically dependent
characteristics measured in rather different units.

1.2. Examples

Strawberry data

The strawberry data set is a multivariate response data set that gives the measurements
of weight, the percentage of Botrytis, percentage of other fungal species, and a rating of
symptoms from Phomopsis leaf blight, for four plots of strawberries each treated with one of
four treatments. Three of the treatments were different fungicides, and one was a control.
The full data is listed in Table 2. Detailed descriptions of the data set are provided by Horst,
Locke, Krause, McMahon, Madden, and Hoitink (2005) and Bathke et al. (2008).

The R package npmv includes the dataframe sberry, which provides the data from Table 2.
Researchers were interested in finding out whether there was a difference between treatments,
and, if so, on which response variables and particularly between which treatments. Note that
the data contains one ordinal variable (rating) and three quantitative variables.
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Anderson and Fisher’s iris data

This classical data set contains the measurements of four quantitative variables, sepal length
and width, as well as petal length and width, respectively, for 50 flowers from each of the
three iris species Iris setosa, Iris versicolor, and Iris virginica. It is referred to as “Fisher’s iris
data” or “Anderson’s iris data” (Fisher 1936; Anderson 1935), and available in the R package
datasets as dataframe iris. Thus, these well-known data are easily accessible to every R
user, and as a naturally multivariate data set, they provide a convenient and fitting example
for the application of the R package npmv. The data set has become famous as an example
for discriminant analysis (including the case where the species allocation of the observations
is not given and needs to be estimated), thus natural questions to be answered in the context
of multivariate inference are whether the different species can at all be differentiated through
the four variables, which of the species differ from each other, and with respect to which of
the variables.

1.3. Global multivariate test statistics

In order to test the overall null hypothesis that the multivariate distributions Fi, i = 1, . . . , a,
do not differ across the factor levels, test statistics using sums of squares and cross-products
based on ranks are employed. Here, the ranks are taken variable-wise. As a consequence, the
resulting test statistics are invariant under strictly monotone transformations of individual
response variables. This is an important and desirable property, as, for example, changing
the scale of one variable from percentage to proportion or from metric to imperial units, or
using a different number set for an ordinal characteristic, should not change the results of
the test. Details regarding the underlying theory can be found in Bathke et al. (2008) and
Liu et al. (2011), and the references cited therein. Roughly speaking, in the underlying the-
oretical articles, rank-based analogs to classical multivariate tests have been defined, their
asymptotic distributions derived, small sample approximations developed, and the compar-
ative performance of different approximations has been investigated by means of extensive
simulation studies. In Appendix A, we briefly summarize how the four rank-based test statis-
tics of ANOVA type, Wilks’ Lambda type, Lawley Hotelling type, and Bartlett Nanda Pillai
type are constructed.
In addition to the F -distribution approximations that are provided (see Appendix A), each of
the four test statistics is also used as the basis for a multivariate permutation or randomiza-
tion test. To this end, the N data vectors are permuted, and the multivariate test statistics
recalculated each time. For each of the four tests, these resulting values form the respective
distribution whose quantiles are used to determine the p value of the corresponding permu-
tation test (if all N ! permutations are performed) or randomization test (if a predetermined
number of random permutations is performed). For the latter, the user can specify the num-
ber of permutations in the R package. Default is 10,000 permutations. The four test statistics
mentioned above are also used in the subset algorithm explained in the next section.
Alternative methods for inference on multivariate data are available, for example, through the
function manova in the standard R package stats. This function calculates classical normal
theory MANOVA test statistics and the corresponding p values. It relies on the assumptions
of equal covariance matrices for the different groups, and multivariate normality, and due
to these restrictions, its use is very limited. Permutation and randomization tests are also
implemented in other R packages, such as coin (Hothorn, Hornik, Van de Wiel, and Zeileis
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2008), energy (Rizzo and Szekely 2016), lmPerm (Wheeler 2016), and vegan (Oksanen et al.
2016).
The first two packages can also be used to calculate global permutation test statistics for
multivariate data (see also Hothorn, Hornik, Van de Wiel, and Zeileis 2006; Székely and
Rizzo 2004). In comparison, npmv provides more detailed information than just the result
from a global test: It also includes an algorithm to detect the sub-groups of response variables
or factor levels that are responsible for the global significance.
Published applications of the package npmv can be found, for example, in Nardone et al.
(2014, 2015), and Grabcanovic-Musija et al. (2015).

1.4. Which test to use?

Altogether, there are eight tests (four types, each with F approximation and as permutation
test). None of these is uniformly better than the others. On the bright side, all of them
will also typically be in good agreement. However, there will certainly be situations where
the results differ slightly. We are providing the following advice, based on several simulation
studies (cf. also the articles mentioned at the beginning of this section). This recommendation
is the default setting in the R package npmv. See Section 3 on how to change those default
settings.

1. For all situations where it can be used, Wilks’ Lambda is used.

2. For high-dimensional data, the only test that can always be used, is the ANOVA-type
statistic. Therefore, it is used whenever Wilks’ Lambda is not available.

3. Currently, for N < 10, the permutation test is performed. For 10 ≤ N < 30, the
randomization test is performed with 10,000 randomly chosen permutations. For N ≥
30, the F approximation is used.

2. Subset algorithm
After a rejection of the global hypothesis, researchers typically ask the following questions.

1. Which of the p variables displayed significant differences?

2. Which of the a factor levels contributed to the significant result?

In order to answer those questions, package npmv performs an all-subsets algorithm regarding
variables and regarding factor levels, whenever computing time allows (i.e., whenever p and
a are not too large).

2.1. Illustration of the procedure

The algorithm maintains control of the familywise error rate (default in the R package npmv:
α = 0.05). To this end, for factor level comparisons, the closed multiple testing principle
(Marcus, Peritz, and Gabriel 1976; Sonnemann 2008) is used. For comparisons using different
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sets of variables, the closed multiple testing principle cannot be applied, and thus the multi-
ple testing procedure adjusts the α-levels appropriately to ensure that strong control of the
familywise error rate is guaranteed.
As an illustration of the closed testing procedure for factor levels, consider an example with
four treatments. The closed multiple testing principle demands that the hypothesis stating
equality of treatments 1 and 2, H(1,2)

0 : F1 = F2, may only be rejected if, in addition to this
hypothesis, all other subset hypotheses are rejected that involve at least these two groups.
That is, in addition to H(1,2)

0 , also the following hypotheses have to be rejected: H(1,2,3)
0 :

F1 = F2 = F3, H(1,2,4)
0 : F1 = F2 = F4, and H

(1,2,3,4)
0 : F1 = F2 = F3 = F4, as well as

H
(1,2)(3,4)
0 : (F1 = F2) ∧ (F3 = F4).

Based on this principle, it is clear that the algorithm starts with the global multivariate test
(all p variables, all a factor levels) at level α. Default setting for the algorithm is to use the
ANOVA-type test with F approximation for each subset, but the user can choose any one
from the eight available tests. Note that once this choice is made, the same test will be used
for all subset tests.
If the global test rejects, the two-stage subset procedure starts. Otherwise, no further testing
will be performed. By default, if p ≤ a, the algorithm uses subsets of the variables, otherwise
subsets of the factor levels. The user can specify to perform both. Assuming p ≤ a, the
multivariate test is now performed for all subsets with p− 1 variables, next for those subsets
with p− 2 variables that satisfy further testing under the principle of logical coherence, and
so forth. At the end of this stage, the user obtains the output of the procedure in the least
redundant form. In case of testing subsets of the a factor levels, the algorithm stops after
calculating the test for all pairs, as it does not make sense to consider single factor levels in
order to formulate a meaningful hypothesis. However, it does make sense to consider single
variables. The latter simply corresponds to a univariate analysis.
The last hypothesis mentioned in the illustration above is one of the partition hypotheses,
which need to be accounted for when testing subsets of factor levels and when a > 3. These
hypotheses are typically not tested explicitly because their number, which can be calculated
using the Stirling numbers of the second kind, grows at a much faster rate than that of all
other hypotheses combined. Indeed, for a = 10, the number of partition hypotheses is greater
than 1.1 × 105, and for a = 13, it is already greater than 2.7 × 107. We have implemented
a Bonferronization method sometimes referred to as Ryan adjustment to account for the
partition hypotheses, while still maintaining strong control of the familywise error rate (see,
e.g., Hommel 1985). Its use is illustrated in the following example.

Example

Assume that a = 4, p = 6. The notationH i1,...,ik
0 stands in the following for the null hypothesis

involving the factor levels i1, . . . , ik and all p = 6 variables. Consider the following situation.

• H
(1,2,3,4)
0 rejected at level α.

• H
(1,2,3)
0 , H(1,2,4)

0 , H(1,3,4)
0 rejected at level 3

4α, H
(2,3,4)
0 not rejected at level 3

4α.
The factor 3

4 in this step reflects the adjustment that is necessary when testing subsets
of factor levels for a ≥ 4, and it stems from the fact that in this step, sets of three
samples are considered, while the total consists of four samples.
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• H
(1,2)
0 , H(1,3)

0 rejected at level 2
4α,

• H
(1,4)
0 not rejected at level 2

4α,

• H
(2,3)
0 , H(2,4)

0 , H(3,4)
0 not tested due to closed multiple testing principle.

The output being returned to the user by npmv states the significant subsets of factor levels
as {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}. Due to the logic of the procedure,
this summary contains the complete information about all individual tests that have (and
have not) been performed. However, the package developers find it important to phrase the
output in such a way that it can be understood and used by a wider range of researchers with
basic statistical understanding. Thus, the results are not rendered as formulas, but instead
using statistically correct standard language that can even be inserted directly into research
papers. For details, see the examples in Section 3.
The maximum number of tests that could be performed in this procedure is 2min(a,p)−1. This
should be kept in mind when using the procedure in case of large number of factor levels a
and variables p.

3. How to use the R package npmv
The package npmv provides the R functions nonpartest and ssnonpartest, both used to
compute nonparametric test statistics. The function nonpartest computes the global non-
parametric test statistics, their permutation (randomization) test analogs, and calculates
nonparametric relative effects, in addition to providing appropriate data visualization. The
function ssnonpartest identifies significant subsets of variables and factor levels using a
multiple testing algorithm that controls the familywise error rate. Below, we discuss the two
functions, nonpartest and ssnonpartest, separately.

3.1. nonpartest function

Function nonpartest is used to perform global inference for several multivariate samples,
along with providing appropriate descriptive statistics. In order to analyze the strawberry
data described in Section 1.2 (and included with the package npmv), the following R code
can be executed, after installing and loading the package npmv, which will import package
Formula (Zeileis and Croissant 2010) that is being used in npmv.

R> data("sberry", package = "npmv"))
R> nonpartest(weight | bot | fungi | rating ~ treatment, data = sberry,
+ permreps = 1000)

Note that npmv facilitates model equation input using the class ‘formula’, with multiple
response variables, followed after the tilde (~) by a single explanatory variable. The response
variables may be metric, ordinal, or even binary. The following is a generic function call with
default arguments, followed by an explanation of each of the arguments of the function.

R> nonpartest(formula, data, permtest = TRUE, permreps = 10000,
+ plots = TRUE, tests = c(1, 1, 1, 1), releffects = TRUE)
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1. formula is an object of class ‘formula’, with a single explanatory variable and multiple
response variables (or an object that can be coerced to that class).

2. data is an object of class ‘data.frame’, containing the variables in the formula.

3. permtest controls whether p values for the permutation (randomization) test are re-
turned (default TRUE).

4. permreps specifies the number of replications in the randomization version of the per-
mutation test (default 10,000).

5. plots allows the user to decide whether plots of the data shall be produced. If TRUE,
then box-plots (maxi ni > 10) or dot-plots (maxi ni ≤ 10) are generated, separately for
each response variable (default TRUE). Standard graphical parameters to be passed on
to the plot can simply be added as function arguments. As an example, adding , col
= "blue", las = 2 after releffects = TRUE specifies the plot color to be blue, and
labels to be perpendicular to the axes.

6. tests is a vector of zeros and ones specifying which test statistics are to be calculated.
A one corresponds to the respective test statistics to be returned. Default is for all four
types of test statistics to be computed. The entries of this vector refer to the types in
the following order: ANOVA type, Lawley-Hotelling type, Bartlett-Nanda-Pillai type,
and Wilks’ Lambda type.

7. releffects controls whether nonparametric relative treatments effects (see below) are
to be calculated as an appropriate numerical descriptive measure complementing the
inferential analysis (default TRUE).

In a first step, the function nonpartest checks to ensure that the data set does not have
missing values, since the current state of the art of the nonparametric methods implemented
in the code requires complete data with no missing values. Then, data visualizations are
produced by default (they can be turned off, see above), in order for the user to have a visual
comparison between the treatments for the different response variables. As an example, Fig-
ure 1 displays the dot-plot for the variable “Botrytis” in the strawberry data set. The package
developers consider visual inspection of the data a high priority for every data analysis, and
thus the function nonpartest provides the plots by default before any numerical descriptive
and inferential results are shown.
Next, the function computes the chosen nonparametric test statistics and returns a list of test
statistic values, as well as numerator and denominator degrees of freedom, and the p values for
each statistic using both F approximation and permutation (randomization) method. The
output for the strawberry data is as follows. It should be noted that the package output
displays “Permutation Test p-value” instead of “P.T. p-value” in the last column, as well as
“McKeon approx. for the Lawley Hotelling Test” and “Muller approx. for the Bartlett-Nanda-
Pillai Test” instead of “LH Test” and “BNP Test”, respectively. We have shortened these
here to fit the output onto the page.

$results
Test Statistic df1 df2 P-value P.T. p-value

ANOVA type test 2.984 6.836 27.343 0.019 0.006
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Figure 1: Dot-plot of “Botrytis” (vertical) vs. treatment (horizontal) in strawberry data.

LH Test 5.769 12.000 12.000 0.002 0.001
BNP Test 2.501 15.967 41.164 0.009 0.005
Wilks Lambda 4.166 12.000 24.103 0.001 0.002

Clearly, in this example, the treatment effect is highly significant, and there is good agreement
between all eight tests that are provided with the package npmv. Finally, as a numerical de-
scription fitting the nonparametric paradigm, the empirical nonparametric relative treatment
effects are listed for each variable.

$releffects
weight bot fungi rating

3 0.4375 0.5938 0.5625 0.5313
6 0.7266 0.1563 0.4843 0.3047
8 0.4453 0.3750 0.2188 0.5313
9 0.3906 0.8750 0.7344 0.6328

The relative effects quantify the tendencies observed in the data in terms of probabilities. For
example, the plants in treatment group 9 tend to larger values compared to other treatment
groups. The probability that a randomly chosen plant from group 9 exhibits a larger per-
centage of Botrytis than a randomly chosen plant from the full trial (including group 9) is
0.875. This is the maximum possible relative effect for this configuration (see, e.g., Brunner,
Domhof, and Langer 2002; Acion, Peterson, Temple, and Arndt 2006, or Kieser, Friede, and
Gondan 2013 for a detailed explanation of nonparametric relative treatment effects and their
interpretation), which is in accordance with the display in Figure 1. Generally, the relative
treatment effect (RTE) of treatment “k” is defined as the probability that a randomly chosen
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subject from treatment “k" displays a higher response than a subject that is randomly chosen
from any of the treatment groups, including treatment “k”.
Anderson and Fisher’s iris data described also in Section 1.2 is available in the R package
datasets as dataframe iris. Global nonparametric multivariate inference can be carried out
using the following line of code, which selects all four response variables in the data set as
dependent variables for the analysis, while the factor “Species” is selected as explanatory
variable.

R> data("iris", package = "datasets")
R> nonpartest(Sepal.Length | Sepal.Width | Petal.Length | Petal.Width ~
+ Species, data = iris, permreps = 1000)

For a larger data set, such as iris (50 observations in each of the three groups), the function
nonpartest automatically chooses box-plots in lieu of dot-plots to display the data (for
brevity not rendered in this manuscript). In a next step, the inferential results are provided.

$results
Test Statistic df1 df2 P-value P.T. p-value

ANOVA type test 178.511 3.826 281.234 0 0
LH Test 316.457 8.000 203.402 0 0
BNP Test 67.965 8.162 293.891 0 0
Wilks Lambda 155.763 8.000 288.000 0 0

Clearly, the difference between the three multivariate distributions is highly significant, ac-
cording to each of the four test criteria. The relative effects provided in the next part of the
output show that the differences between the three species are indeed quite pronounced, with
regard to each variable. For example, the probability that a randomly chosen measurement of
“Petal length” or “Petal width” from species Iris setosa is larger than a randomly chosen ob-
servation from the full trial (including Iris setosa) is 1/6, which is the minimum possible effect
for this configuration. In general, the minimum and maximum possible effects for group i are
ni/(2N) and 1−ni/(2N), respectively. Thus, in this case, the minimum and maximum values
are 50/300 = 1/6 and 5/6, respectively. In other words, each of the variables “Petal length”
and “Petal width” perfectly discriminates Iris setosa from the other two species. Those two
in turn also exhibit rather strong differences between them, so that the extreme inferential
results become quite comprehensible.

$releffects
Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 0.19427 0.75307 0.16667 0.16667
versicolor 0.54767 0.30387 0.50593 0.50653
virginica 0.75807 0.44307 0.82740 0.82680

3.2. ssnonpartest function

The function ssnonpartest provides a more detailed comparison of the different multivariate
samples using a subset algorithm that determines which of the variables or factor levels,
respectively, contribute to the significant differences. For the strawberry data example, the
function can be evoked using the following code.
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R> data("sberry", package = "npmv")
R> ssnonpartest(weight | bot | fungi | rating ~ treatment, data = sberry,
+ test = c(1, 0, 0, 0), alpha = 0.05, factors.and.variables = TRUE)

Again, model equation input is based on the class ‘formula’. Multiple response variables
can be entered, followed by one single explanatory variable. Response variables may again
be metric, ordinal, or even binary, as in the function nonpartest. A generic call with all
arguments and, where applicable, their defaults, looks as follows.

R> ssnonpartest(formula, data, test = c(1, 0, 0, 0), alpha = 0.05,
+ factors.and.variables = FALSE)

1. formula is an object of class ‘formula’, with a single explanatory variable and multiple
response variables (or an object that can be coerced to that class).

2. data is an object of class ‘data.frame’, containing the variables in the formula.

3. test is a vector of zeros and exactly one one specifying which test statistic is to be
calculated for each of the subset tests. A one corresponds to the respective test statistic
to be used throughout the subset testing procedure. The order of the test statistics
is: ANOVA type, Lawley Hotelling type (McKeon’s F approximation), Bartlett-Nanda-
Pillai type (Muller’s F approximation), and Wilks’ Lambda type. Default is for the F
approximation of Wilks’ Lambda to be calculated wherever possible.

4. alpha (numerical) is the familywise level of significance at which hypothesis tests are
to be performed (default 0.05).

5. If factors.and.variables is TRUE, then the subset algorithm is run both by factor
levels and by variables (default FALSE).

In the same way as the nonpartest function, the ssnonpartest function also checks to
ensure that there are no missing data. The function outputs all those subsets that turned
out significant. For the strawberry data, the following output is produced by the function
ssnonpartest.

The ANOVA type statistic will be used in the following test
The Global Hypothesis is significant, subset algorithm will continue

~Performing the Subset Algorithm based on Factor levels~
The Hypothesis of equality between factor levels 3 6 8 9 is rejected
The Hypothesis of equality between factor levels 6 8 9 is rejected
The Hypothesis of equality between factor levels 3 6 9 is rejected
All appropriate subsets using factor levels have been checked using a closed

multiple testing procedure, which controls the maximum overall type I
error rate at alpha= 0.05

~Performing the Subset Algorithm based on Response Variables~
The Hypothesis of equality using response variables
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weight bot fungi rating is rejected
The Hypothesis of equality using response variables

bot fungi rating is rejected
The Hypothesis of equality using response variables

weight bot fungi is rejected
The Hypothesis of equality using response variables bot fungi is rejected
All appropriate subsets using response variables have been checked using a

multiple testing procedure, which controls the maximum overall type I
error rate at alpha= 0.05

Here, the first line of the output indicates that the global hypothesis test has shown a sig-
nificant result using all variables and all factor levels. This test serves as a “gatekeeper” –
only when it is significant, any further subset testing will be done. Consequently, if the global
hypothesis had not been significant, the output would have indicated so, and the subsets
would not have been tested.
By our specification in the function call, for this global test, as well as for all the subset
tests, Wilks’ Lambda is chosen as the test statistic. Only one of the four available test
types can be chosen for the procedure, and once chosen, this type is used for all subsets to
keep the results comparable. In order to keep runtime low, the F approximation is used
to approximate the sampling distribution, rather than the computationally more intensive
permutation (randomization) method. The default for the function is to only consider subsets
comprised of either factor levels or variables based on the conditions previously mentioned
(basically whichever leads to the smaller number of subset tests).
For illustrative purposes, and since for this data example it is resonable to do so, we have
chosen the option to perform subset testing for both types of subsets in the strawberry data.
Here, the first set of tests is based on factor levels. Only the significant subsets are listed,
and for factor levels the smallest subsets considered are those of size two. In this example,
a significant result is obtained between every set of three factor levels, as well as between
the two treatments “3” and “6”’. Thus, the procedure has provided a comprehensive list of
significances between treatments, while maintaining the familywise error rate at the (default)
α-level of 5%. Namely, only the difference between factor levels “3” and “6”’ is significant.
The last portion of the output shows the results of testing the subsets based on response
variables. Similar to the factor levels only the signifanct subsets are listed. However, for
response variables it makes sense to look at subsets comprised of only one variable. In this
example, the variable “Botrytis” turns out significant all by itself, as well as in combination
with every other variable. Among the four response variables considered, only “Botrytis”
has been shown to exhibit results differing significantly between the treatments. Note that
the wording provided in the output can be understood immediately by researchers with basic
statistical knowlegde, and it could even be inserted verbatim into a research paper.
Now considering the iris data example, the descriptive output provided by the nonpartest
function above suggests that there are marked differences between all three species, visible in
all four variables. We investigate this using the subset testing procedure which can be evoked
with the following code.

R> data("iris", package = "datasets")
R> ssnonpartest(Sepal.Length | Sepal.Width | Petal.Length | Petal.Width ~
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+ Species, data = iris, test = c(1, 0, 0, 0), alpha = 0.05,
+ factors.and.variables = TRUE)

It provides the following output.

The ANOVA type statistic will be used in the following test
The Global Hypothesis is significant, subset algorithm will continue

~Performing the Subset Algorithm based on Factor levels~
The Hypothesis of equality between factor levels

setosa versicolor virginica is rejected
The Hypothesis of equality between factor levels

versicolor virginica is rejected
The Hypothesis of equality between factor levels

setosa virginica is rejected
The Hypothesis of equality between factor levels

setosa versicolor is rejected
All appropriate subsets using factor levels have been checked using a closed

multiple testing procedure, which controls the maximum overall type I
error rate at alpha= 0.05

~Performing the Subset Algorithm based on Response Variables~
The Hypothesis of equality using response variables

Sepal.Length Sepal.Width Petal.Length Petal.Width is rejected
The Hypothesis of equality using response variables

Sepal.Width Petal.Length Petal.Width is rejected
The Hypothesis of equality using response variables

Sepal.Length Petal.Length Petal.Width is rejected
The Hypothesis of equality using response variables

Sepal.Length Sepal.Width Petal.Width is rejected
The Hypothesis of equality using response variables

Sepal.Length Sepal.Width Petal.Length is rejected
The Hypothesis of equality using response variables

Petal.Length Petal.Width is rejected
The Hypothesis of equality using response variables

Sepal.Width Petal.Width is rejected
The Hypothesis of equality using response variables

Sepal.Width Petal.Length is rejected
The Hypothesis of equality using response variables

Sepal.Length Petal.Width is rejected
The Hypothesis of equality using response variables

Sepal.Length Petal.Length is rejected
The Hypothesis of equality using response variables

Sepal.Length Sepal.Width is rejected
The Hypothesis of equality using response variables Petal.Width is rejected
The Hypothesis of equality using response variables Petal.Length is rejected
The Hypothesis of equality using response variables Sepal.Width is rejected
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The Hypothesis of equality using response variables Sepal.Length is rejected
All appropriate subsets using response variables have been checked using a

multiple testing procedure, which controls the maximum overall type I
error rate at alpha= 0.05

The results are not surprising: Regarding the species (factor levels), all pairwise comparisons
are significant. Regarding the variables, every one of the four variables alone shows a signifi-
cant difference between the species, and so does every combination of variables. The output
thus also illustrates the maximum number of tests being performed that are possible for the
given design configuration (here: number of factor levels a = 3, number of variables p = 4).
Namely, 2a−a−1 = 4 tests are being performed for factor level combinations, and 2p−1 = 15
tests for sets of response variables.

4. Conclusion
In the preceding sections, we have presented the R package npmv that enables researchers
to make sense of multivariate data samples. The package performs valid nonparametric in-
ference for the comparison of the samples and supplements it by appropriate graphical and
numerical descriptive information. The package npmv has two main functions, nonpartest
and ssnonpartest. The function nonpartest tests the global hypothesis and provides box-
plots (for smaller data sets: dot-plots), as well as estimators of the nonparametric relative
treatment effects. In case of overall significant results, the ssnonpartest function can be
used to perform an all subset testing algorithm which maintains the familywise error rate
and determines which variables or factor levels caused the significance. The results are com-
prehensively summarized in standard language that can be used directly in research papers
applying the statistical methodology.
Future versions of the package will extend the methods presented to missing data and factorial
designs. For both situations, the theory is still being developed.
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A. Mathematical formulae

Define R
(k)
ij as the rank (i.e., midrank) of X(k)

ij among all N =
a∑
i=1

ni random variables

X
(k)
11 , . . . , X

(k)
a,na . Here, X(k)

ij is the observation on variable k at subject j in group i, and
N is the total number of subjects (experimental units) in the study. We define the vectors
Rij = (R(1)

ij , . . . , R
(p)
ij )> containing all the ranks of one multivariate observation, and the p×N

matrix R = (R11, . . . ,R1n1 ,R21, . . . ,Rana) containing the ranks for all variables and all ob-
servations. Here, a variable corresponds to a row, and a multivariate observation corresponds
to a column of the matrix R, as illustrated in Table 1 for the matrix of original observations.
Formally, define the sums of squares and cross-products

H1 = 1
a− 1R

(
a⊕
i=1

1
ni
Jni −

1
N
JN

)
R> , G1 = 1

N − a
R
(

a⊕
i=1

Pni

)
R> ,

H2 = 1
a− 1R

[(
a⊕
i=1

1
ni

1ni

)
Pa

(
a⊕
i=1

1
ni

1>ni

)]
R> , G2 = 1

a
R
(

a⊕
i=1

1
ni(ni − 1)Pni

)
R> .

In this notation, the pair (H1,G1) corresponds to a weighted means analysis, while the pair
(H2,G2) uses unweighted means. In a balanced design with ni ≡ n, i = 1, . . . , a, H1 = n ·H2
and G1 = n ·G2. Therefore, in a balanced design, both pairs lead to the same test statistic.
Extensive simulation studies (see, e.g., Bathke et al. 2008) have not shown any systematic
advantages of one pair over the other. Considering also that well-planned studies typically
strive for experimental designs that are close to balanced, the difference between using the
matrix pair (H1,G1) or (H2,G2) appears to be negligible in most practical applications.
Historically, many multivariate test statistics have been defined using (H1,G1), while the
ANOVA-type statistic was first introduced using (H2,G2) (see, e.g., Munzel and Brunner
2000a,b, 2001).
We consider four types of test statistics: ANOVA type, Wilks’ Lambda type, Lawley Hotelling
type, and Bartlett Nanda Pillai type. For each of the four, a moment-based finite sample
approximation based on quantiles of the F -distribution is derived. Additionally, the package
calculates permutation (randomization) p values.

ANOVA type statistic

The ANOVA type statistic is defined as TA = tr(H2)/tr(G2). The distribution of TA is
approximated by an F -distribution with estimated degrees of freedom f̂1 and f̂2, where

f̂1 = tr(G2)2

tr(G2
2)

and f̂2 = a2

(a− 1)∑a
i=1

1
ni−1

· f̂1.

Wilks’ Lambda type

Wilks’ Lambda type statistic is defined as

λ = det[(N − a) ·G1]
det[(N − a) ·G1 + (a− 1) ·H1] .
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The sampling distribution of

Fλ = [(1− λ1/t)/(λ1/t)](df2/df1)

is approximated by an F -distribution where df1 = p(a− 1), df2 = rt− (p(a− 1)− 2)/2, and
r = (N − a)− (p− (a− 1) + 1)/2. If p(a− 1) = 2, then t = 1, else t =

√
p2(a−1)2−4
p2+(a−1)2−5 .

Lawley Hotelling type

The Lawley Hotelling type statistic is calculated as

U = tr[(a− 1)H1((N − a)G1)−1] .

The distribution of U is approximated by g×FK,D, a “stretched” F -distribution with degrees
of freedom K and D, where K = p(a − 1), D = 4 + K+2

B−1 , B = (N−p−2)(N−a−1)
(N−a−p)(N−a−p−3) , and

g = p(a−1)(D−2)
(N−a−p−1)D .

Bartlett Nanda Pillai type

The Bartlett Nanda Pillai type statistic is defined as

V = tr{(a− 1)H1[(a− 1)H1 + (N − a)G1]−1} .

The distribution of (V/γ)/ν1
(1−V/γ)/ν2

is approximated using an F -distribution with degrees of freedom
ν1 and ν2, where

γ = min(a− 1, p)

ν1 = p(a− 1)
γ(N − 1)

[γ(N − a+ γ − p)(N + 2)(N − 1)
(N − a)(N − p) − 2

]
ν2 = N − a+ γ − p

N

[γ(N − a+ γ − p)(N − 1)
(N − a)(N − p) − 2

]
.

See Bathke and Harrar (2008); Harrar and Bathke (2008a,b); Bathke et al. (2008, 2009); Liu
et al. (2011) for the derivations of asymptotic results and small sample approximations for
each of the test statistics presented above.
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