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Abstract

This paper presents DFIT, an R package that implements the differential functioning
of items and tests framework as well as the Monte Carlo item parameter replication ap-
proach for producing cut-off points for differential item functioning indices. Furthermore,
it illustrates how to use the package to calculate power for the NCDIF index, both post
hoc, as has regularly been the case in differential item functioning empirical and simulation
studies, as well as a priori given certain item parameters. The version reviewed here im-
plements all DFIT indices and Raju’s area measures for tests comprised of items modeled
with the same parametric item response unidimensional model (1-, 2-, and 3-parameters,
generalized partial credit model or graded response model), the Mantel-Haenszel statistic
with an underlying dichotomous item response model, and the item parameter replication
method for any of the estimated indices with dichotomous item response models.

Keywords: DFIT framework, differential item functioning, type I error, power calculation,
analytical standard error.

1. Introduction

Differential item functioning (DIF) has long been recognized as a threat to the validity of test
scores and is an especially important issue to consider for fair comparisons between groups
(Holland and Thayer 2009). In the past decades many procedures for identifying items with
differential functioning have been envisioned and several of these methods have been imple-
mented in R (R Core Team 2016): The package difR (Magis, Beland, Tuerlinckx, and De
Boeck 2010) includes eleven different indices for dichotomous items; the package lordif (Choi,
Gibbons, and Crane 2011) implements a modified logistic regression algorithm that allows for
both dichotomous and polytomous items using estimated sum scores or item response theory
(IRT) abilities as the matching criterion; packages like mirt (Chalmers 2012), ltm (Rizopoulos
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2006), lme4 (Bates, Mächler, Bolker, and Walker 2015), and eRm (Mair, Hatzinger, and Maier
2016; Mair and Hatzinger 2007) allow to test DIF using the likelihood ratio test through com-
parisons of multiple models; while packages like psychomix (Frick, Strobl, Leisch, and Zeileis
2012; Frick, Strobl, and Zeileis 2015), mRm (Preinerstorfer 2016), and psychotree (Komboz,
Strobl, and Zeileis 2017; Strobl, Kopf, and Zeileis 2015), enable modeling and testing for test
invariance using mixture Rasch models or through trees. A recent IRT parametric frame-
work for detecting DIF that allows for detection for both dichotomous and polytomous items
with unidimensional or multidimensional IRT models, known as the differential functioning
of items and tests (DFIT) framework (Raju, Van der Linden, and Fleer 1995), was yet to be
implemented.
This paper presents the R package DFIT (Cervantes 2017) which implements the framework
indices for dichotomous and polytomous indices with several unidimensional models. It also
implements the Monte Carlo item parameter replication (IPR) approach for hypothesis test-
ing for the noncompensatory differential item functioning (NCDIF) index with dichotomous
unidimensional IRT models. Section 2 presents a short overview of the DFIT framework and
of the IPR approach, including an improvement of this approach to give correct NCDIF sam-
pling distributions in the presence of group sample size differences. Section 3 illustrates the
main functions in the package; they include functions for calculating Raju’s area measures
(Raju 1988), and the Mantel-Haenszel DIF statistic under IRT models assumptions (Roussos,
Schnipke, and Pashley 1999). Section 4 presents how to use the package to calculate power
for the NCDIF index. Finally, Section 5 concludes on the capabilities of the package and
presents the future directions for its development.

2. The DFIT framework
The DFIT framework was proposed by Raju et al. (1995) as an improvement to the internal
measures developed by Raju (1988) to detect items for which examinees from different groups
responding to a test or a scale do not perform the same way (Holland and Thayer 2009). Orig-
inally proposed to identify DIF in dichotomous items and to be able to analyze differential
functioning at the test level, it has subsequently been expanded to be used with bundles of
items (Oshima, Raju, Flowers, and Slinde 1998), polytomous data (Raju, Fortmann-Johnson,
Kim, Morris, Nering, and Oshima 2009), multidimensional models (Oshima, Raju, and Flow-
ers 1997), and calculation of conditional DIF statistics (Oshima and Morris 2008). Within
the DFIT framework differential functioning is analyzed between two groups of respondents:
the reference group, and the focal group. It is generally considered that the reference group
is the majority group and the focal group is the minority group or the group that might be
at a disadvantage.
This framework proposes three indices for analyzing the differential functioning of items and
tests:

DTF: The differential test functioning index.

CDIF: The compensatory DIF index.

NCDIF: The noncompensatory DIF index.

In order to define these indices for arbitrary IRT models and regardless of item responses being
dichotomous or polytomous, let Si(θj) be the expected score for examinee j with trait vector



Journal of Statistical Software 3

θj on item i. The function Si can stand for the expected score under either a one-, two-, or
three-parameter model for dichotomous items (i.e., the probability of a correct response), or
a rating scale, partial credit (PCM), or graded response model (GRM) for polytomous items,
in their unidimensional or multidimensional expressions (Raju et al. 1995; Oshima et al. 1997;
Oshima and Morris 2008). For a given examinee, the expected score on a test T (θj) (known
as the “true” score in classical test theory) is equal to the sum of the expected scores for said
examinee on the n items in the test. Note that different Si do not need to have the same
functional form for different items i and i′. Also, let Si,g and Tg represent these functions
based on the true item parameters for group g.
The three indices are defined on the differences in the values of S and of T between the focal
and the reference groups. Thus, di(θj) = Si,F (θj)− Si,R(θj) is the difference on the expected
score for item i and examinee j, while D(θj) = TF (θj) − TR(θj) is the difference on the
expected test scores. The square of these differences is taken as a measure of differential item
or test functioning at the examinee level (Raju et al. 1995). The test level statistic (DTF) is,
then, defined as the expected value over the focal group of the squared differences of expected
test scores. That is:

DTF := EF (D2(θj)), j ∈ F. (1)

And the basic item level statistic (NCDIF) is the expected value over the focal group of the
difference of expected item scores, i.e.,

NCDIFi := EF (d2
i (θj)), j ∈ F. (2)

This index, as most DIF statistics, does not consider DIF from other items (or assumes that
the other items are DIF free; Raju et al. 1995) and does not sum to the test level statistic.
The third index within this framework seeks to define a DIF index such that its sum is equal
to the test level statistic. To do so, DTF is decomposed in the following manner:

DTF = EF

( n∑
i=1

di(θj)
)2


=
n∑

i=1
(COVF (di(θj), D(θj)) + EF (di(θj))EF (D(θj)))

=
n∑

i=1
EF (di(θj)D(θj))

=
n∑

i=1
CDIFi (3)

and, thus, the item index is defined as

CDIFi := EF (di(θj)D(θj)), j ∈ F. (4)

It should be noted that the CDIF index is additive by definition and includes information
from DIFs on the other items.
An important characteristic of the indices in the DFIT framework is that their definition
is based directly on the IRT interpretation of DIF rather than, for instance, differences on
item parameters. Although differences on item parameters imply differences on the expected
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scores both at the item and the test levels, it should be noted that different sets of item
parameters may produce very similar item characteristic curves (ICC), and thus, very similar
expected scores. Also, what best distinguishes this framework from other approximations is
that it explicitly states that the focus of bias and fairness research is how the minority group’s
results are affected and incorporates that into the procedure. This latter characteristic also
enables DIF to be calculated for the three parameters IRT model from the perspective of the
differences on expected scores where the original area measures were infinite when pseudo-
guessing parameters differed between both groups as demonstrated by Raju (1988).

2.1. The IPR approach

Currently, hypothesis testing for NCDIF, the main index within the framework, is done using
the item parameter replication (IPR) approach which was proposed by Oshima, Raju, and
Nanda (2006) to overcome the limitations of the χ2 tests originally developed by Raju et al.
(1995). This approach “us[es] the focal group’s item parameters for a test item, [and] a
large number of pairs (e.g., 1000) of these parameters are reproduced. NCIDF for each of
these pairs is calculated. These replicated pairs represent the ‘No DIF’ condition, and hence,
any extreme differences observed would be considered beyond chance. [. . . ] The NCDIF
values [. . . ] [are] used to determine statistical significance (Wright and Oshima 2015, p. 6)”.
Algorithmically, the procedure may be described as follows:

1. Define the item parameter vector for the null hypothesis (µ) to be equal to the item
parameter estimates from the focal group.

2. Take the estimated variance-covariance matrix of those estimates (Σ).

3. Use these item parameters and covariance matrix to simulate as many item parameter
vectors as desired1. They are obtained from the multivariate normal distribution with
mean vector µ from Step 1 and covariance matrix Σ from Step 2.

4. Obtain the NCDIF values for each pair of item parameter replications.

5. Calculate the cut-off point as the (1− α) percentile of the NCDIF values.

6. Repeat Steps 1 to 5 for each item.

This approach basically implements a Monte Carlo algorithm to generate chains of parame-
ter vectors from their sampling distribution. However, as specified in Oshima et al. (2006)
and implemented by Oshima, Kushubar, Scott, and Raju (2009), the sampling distribution
required to generate these chains uses only the estimates for item parameters and the covari-
ance matrices of these estimates obtained with data from the focal group only. However, as it
stands, the procedure is analogous to finding the degrees of freedom for a two sample t-test by
always choosing twice the number of observations of one of the groups minus two, regardless
of the effective sample sizes in each of them. Recently, Clark and LaHuis (2012) examined
the effect on type I error for the current algorithm under unequal and small sample sizes (500
or 250 examinees in the focal group and 500 examinees in the reference group) and found it
increased when the sample size for the focal group reduced from 500 to 250 (from 0.05 to

1Oshima et al. (2006) recommend 1000 as a minimum number of replications.
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0.15). This effect is due to the different sampling distributions for the parameter estimates
of each group2. These effects on type I error and power will be shown in detail in Section 4,
where full power calculations for the NCDIF index will be presented.
Taking these considerations into account, Cervantes (2012) proposed a modification to the
algorithm presented by Oshima et al. (2006) for obtaining cut-off points based only on sample
estimates. The modified algorithm comprises the following steps:

1. Define the item parameter vector for the null hypothesis to be equal to the item param-
eter estimates from the focal group.

2. Take the variance-covariance matrix of those estimates given the respective sample sizes
and ability distributions of the focal and the reference group.

3. Obtain as many pairs of item parameter vectors as desired from the multivariate normal
distribution for each group.

4. Obtain the NCDIF values for each pair of item parameter replications.

5. Calculate the cut-off point as the (1− α) percentile of the NCDIF values.

6. Repeat Steps 1 to 5 for each item.

The previous algorithm is easily adapted to be used with theoretical values for item parameters
and variance-covariance matrices. The effects of the change in the algorithm will be illustrated
in Section 4 in particular with respect to expected differences for type I error and power.

3. The DFIT package
The DFIT package is able to calculate all indices from the DFIT framework for logistic and
normal ogive unidimensional one-, two-, and three-parameters IRT models for dichotomous
items, as well as for the PCM and GRM for polytomous items. It is freely available for
download via the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=DFIT. The main functions in package DFIT are the following: (a) Cdif(),
Ncdif(), and Dtf() for calculating the statistics from the DFIT framework; (b) PlotNcdif
for illustrating NCDIF; (c) SignedArea(), UnsignedArea(), and IrtMh() for calculating
Raju’s area measures and the Mantel-Haenszel DIF statistic; and (d) Ipr() and CutoffIpr()
for obtaining the cut-off points for any of the DIF statistics by using the IPR approach. This
section shows how to use the functions implemented in the DFIT package. Section 3.1 presents
the functions devoted to calculating DIF and DTF, while Section 3.2 presents the functions
to obtain cut-off values by means of the IPR approach.
The following code loads the package and the data used in the examples.

R> library("DFIT")
R> data("dichotomousItemParameters", package = "DFIT")
R> data("polytomousItemParameters", package = "DFIT")

2For the analytical variance-covariance matrices, it may be shown that all entries are inversely proportional
to sample size (see for example equation A3 in Li and Lissitz 2004 that shows the form of the elements of the
information matrix), and as such the difference in these matrices will be proportional to the sample size ratio
of both groups when the ability distributions are equal.

https://CRAN.R-project.org/package=DFIT
https://CRAN.R-project.org/package=DFIT
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Item parameters from data("dichotomousItemParameters", package = "DFIT") are based
on those used by Wright (2011), while those from data("polytomousItemParameters",
package = "DFIT") are based on those used by Raju et al. (2009). In the following code,
the subsets of data that will be used to illustrate DIF with Rasch models and with the
three-parameter logistic model are selected.

R> raschParameters <- lapply(dichotomousItemParameters, function(x)
+ x[, 2, drop = FALSE])
R> raschParameters <- as.list(unique(as.data.frame(raschParameters)))
R> raschParameters <- lapply(raschParameters, function(x)
+ matrix(x, ncol = 1))
R> items3Pl <- c(2, 20, 22, 8, 10, 28, 46, 32)
R> threePlParameters <- lapply(dichotomousItemParameters, function(x)
+ x[items3Pl, ])

The format expected by all functions that use item parameters is a list with two named
elements: focal and reference, each a matrix with a row for each item and columns according
to the IRT model. Discrimination parameters (except for one-parameter IRT models for
dichotomous items), must be included in the first column and pseudo-guessing parameters
for three-parameters IRT models, in the third column. In the case of the polytomous models
currently supported: generalized partial credit model (GPCM) or graded response model
(GRM), the first column includes the discrimination parameters and the other columns the
item categories difficulty parameters, that is the models should be parametrized as ai(θ− bik)
rather than ai(θ− bi + dk). The formatting is illustrated next by the headings of parameters
for the three-parameter model and for polytomous models.

R> lapply(threePlParameters, head, 5)

$focal
[,1] [,2] [,3]

[1,] 1.0 -3.0 0.00
[2,] 1.0 -2.7 0.05
[3,] 0.5 -2.4 0.00
[4,] 1.0 -2.2 0.00
[5,] 0.5 0.0 0.00

$reference
[,1] [,2] [,3]

[1,] 1 -3 0.00
[2,] 1 -3 0.05
[3,] 1 -3 0.05
[4,] 1 -3 0.00
[5,] 1 0 0.00

R> lapply(polytomousItemParameters, head, 5)

$focal
[,1] [,2] [,3] [,4] [,5]
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[1,] 0.7300 -0.80 0.40 1.60 2.80
[2,] 1.2425 -0.80 0.40 1.60 2.80
[3,] 0.4289 -0.80 0.40 1.60 2.80
[4,] 0.5000 -1.82 -0.62 0.58 1.78
[5,] 0.8510 -1.82 -0.62 0.58 1.78

$reference
[,1] [,2] [,3] [,4] [,5]

[1,] 0.7300 -1.80 -0.60 0.60 1.80
[2,] 1.2425 -1.80 -0.60 0.60 1.80
[3,] 0.4289 -1.80 -0.60 0.60 1.80
[4,] 1.0000 -2.32 -1.12 0.08 1.28
[5,] 1.7020 -2.32 -1.12 0.08 1.28

3.1. DIF functions

Using this package, the DFIT statistics may be estimated either as the means, given a vector of
abilities from a sample of examinees from the focal group, of the values within the expectations
in expressions (1), (2), and (4) – this is the method used for estimation by Raju et al. (1995)
and Oshima et al. (2009), or by integrating over the specified ability distribution (standard
normal by default). The following code shows the use of Ncdif and Cdif functions to obtain
DFIT’s item indices for the one-parameter logistic IRT model using the normal ogive metric
(i.e., D = 1.702). It also shows how to use the Dtf() function to estimate the differential test
functioning index.

R> ncdif1pl <- Ncdif(itemParameters = raschParameters, irtModel = "1pl",
+ focalAbilities = NULL, focalDistribution = "norm",
+ subdivisions = 5000, logistic = FALSE)
R> cdif1pl <- Cdif(itemParameters = raschParameters, irtModel = "1pl",
+ focalAbilities = NULL, focalDistribution = "norm",
+ subdivisions = 5000, logistic = FALSE)
R> dtf1plWithCdif <- Dtf(cdif = cdif1pl)
R> dtf1plWithoutCdif <- Dtf(cdif = NULL, itemParameters = raschParameters,
+ irtModel = "1pl", focalAbilities = NULL, focalDistribution = "norm",
+ subdivisions = 5000, logistic = FALSE)

Functions to calculate Raju’s area measures for logistic and normal ogive IRT models are also
included in the package. These measures may be calculated for dichotomous models and for
polytomous models (based on the expected scores for the GRM as proposed by Cohen, Kim,
and Baker 1993). Also, through the function IrtMh, it is possible to estimate the Mantel-
Haenszel DIF parameter when the given item parameters are assumed to hold with the one-,
two-, or three-parameters IRT models for dichotomous responses. The function DeltaMhIrt
transforms the Mantel-Haenszel statistic into the ETS delta metric that has long been used
as the standard for DIF effect size assessment.

R> sam1pl <- SignedArea(itemParameters = raschParameters, irtModel = "1pl",
+ subdivisions = 5000, logistic = FALSE)
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Item Reference b Focal b MH ETS ∆ SA UA NCDIF CDIF
1 −3.0 −3.0 1.000 −0.00 0.00 0.00 0.00000 0.00000
2 −3.0 −2.7 1.666 −1.20 −0.30 0.30 0.00051 0.00604
3 −3.0 −2.4 2.777 −2.40 −0.60 0.60 0.00273 0.01471
4 −3.0 −2.2 3.902 −3.20 −0.80 0.80 0.00582 0.02235
5 0.0 0.0 1.000 −0.00 0.00 0.00 0.00000 0.00000
6 0.0 0.3 1.666 −1.20 −0.30 0.30 0.00841 0.05019
7 0.0 0.6 2.777 −2.40 −0.60 0.60 0.03228 0.09803
8 0.0 0.8 3.902 −3.20 −0.80 0.80 0.05503 0.12725

Table 1: DIF statistics for example items under the 1PL model.
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Figure 1: Plot of an item with no DIF using PlotNcdif showing the density.

R> uam1pl <- UnsignedArea(itemParameters = raschParameters, irtModel = "1pl",
+ subdivisions = 5000, logistic = FALSE)
R> mh1pl <- IrtMh(itemParameters = raschParameters, irtModel = "1pl",
+ focalDistribution = "norm", referenceDistribution = "norm",
+ focalDistrExtra = list(mean = 0, sd = 1),
+ referenceDistrExtra = list(mean = 0.5, sd = 1), groupRatio = 1,
+ logistic = FALSE)
R> delta1pl <- DeltaMhIrt(mh1pl)

Table 1 presents the DIF statistics for the selected items, assuming a standard normal distri-
bution for the abilities of examinees from the focal group. Item difficulties for both groups
are presented in columns “Reference b” and “Focal b.” Next to the Mantel-Haenszel (MH)
statistic, appears the associated effect size measure (ETS ∆). The signed (SA) and unsigned
(UA) area measures are shown along with the DFIT item statistics. The DTF statistic for a
test composed of this set of items would be 0.3186. It should be noted that Items 1 and 5 do
not present any differential functioning, while all other items show some amount that would
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Figure 2: DIF plots of items with DIF and difficulty close (up) and far (down) the focal group
mean.

be categorized as moderate (or B, Items 2 and 6) or large (or C, all other items) given their
ETS ∆ measure.
The use of the PlotNcdif function is illustrated below. Figure 1 presents an item with no
DIF (Item 5) for which the normal density is plotted. Figure 2 presents the plots for two
items with DIF, one with item difficulties for both groups close to the mean of the focal group
ability, and one for which they are far. This figure also shows an alternative representation
of the weighting given by the density of the abilities of examinees from the focal group, as
obtained by setting plotDensity = FALSE.

R> it5PlotD <- PlotNcdif(iiItem = 5, itemParameters = raschParameters,
+ irtModel = "1pl", plotDensity = TRUE, logistic = FALSE,
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Item Reference Focal MH ETS ∆ SA UA NCDIF CDIF
2 (1, −3, 0) (1, −3, 0) 1.00 −0.000 0.000 0.000 0.0000 0.000

20 (1, −3, 0.05) (1, −2.7, 0.05) 1.66 −1.190 −0.285 0.285 0.0005 0.004
22 (1, −3, 0.05) (0.5, −2.4, 0) 10.08 −5.430 Inf Inf 0.0193 0.054
8 (1, −3, 0) (1, −2.2, 0) 3.90 −3.200 −0.800 0.800 0.0058 0.016

10 (1, 0, 0) (0.5, 0, 0) 1.00 0.000 0.000 0.815 0.0121 0.018
28 (1, 0, 0.05) (1, 0.3, 0.05) 1.58 −1.075 −0.285 0.285 0.0076 0.046
46 (1, 0, 0.1) (0.5, 0.6, 0.15) 1.38 −0.753 Inf Inf 0.0179 0.055
32 (1, 0, 0.05) (1, 0.8, 0.05) 3.25 −2.771 −0.760 0.760 0.0497 0.122

Table 2: DIF statistics for example items under the 3PL model.
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Figure 3: Plot of an item with nonuniform DIF and different pseudo-guessing parameter
between groups.

+ focalDensityText = "Focal group density (theoretical)",
+ main = "Item 5. NO DIF. 1PL model")
R> it7PlotS <- PlotNcdif(iiItem = 7, itemParameters = raschParameters,
+ irtModel = "1pl", plotDensity = FALSE, logistic = FALSE,
+ main = "Item 7. Uniform DIF. 1PL model")

All these measures may also be obtained for items under the two- and three-parameters
IRT models. The argument irtModel should be, respectively, "2pl" and "3pl". Table 2
presents the statistics for the items selected above under a three-parameters model. For a
test composed of this set of items, the DTF statistic would be 0.3151. Also, Figure 3 shows
the plot for an item with nonuniform DIF where the guessing parameters for the focal and
the reference groups are also different
For polytomous IRT models, the DIF statistics (except for the Mantel-Haenszel and the
associated delta measure) may be calculated by setting irtModel = "grm" or "pcm". Table 3
presents the DIF statistics assuming that a GRM holds. For a test composed of this set of
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Item Reference Focal SA UA NCDIF CDIF
1 (0.73, −1.8, −0.6, 0.6, 1.8) (0.73, −0.8, 0.4, 1.6, 2.8) −4.0 4.00 0.477 2.938
2 (1.24, −1.8, −0.6, 0.6, 1.8) (1.24, −0.8, 0.4, 1.6, 2.8) −4.0 4.00 0.595 3.282
3 (0.43, −1.8, −0.6, 0.6, 1.8) (0.43, −0.8, 0.4, 1.6, 2.8) −4.0 4.00 0.298 2.314
4 (1, −2.32, −1.12, 0.08, 1.28) (0.5, −1.82, −0.62, 0.58, 1.78) −2.0 2.98 0.166 1.756
5 (1.7, −2.32, −1.12, 0.08, 1.28) (0.85, −1.82, −0.62, 0.58, 1.78) −2.0 2.22 0.166 1.749
6 (0.59, −2.32, −1.12, 0.08, 1.28) (0.29, −1.82, −0.62, 0.58, 1.78) −2.0 5.11 0.150 1.605
7 (1, −1.28, −0.08, 1.12, 2.32) (1, −0.78, 0.42, 1.62, 2.82) −2.0 2.00 0.134 1.571
8 (1.7, −1.28, −0.08, 1.12, 2.32) (1.7, −0.78, 0.42, 1.62, 2.82) −2.0 2.00 0.154 1.674
9 (0.59, −1.28, −0.08, 1.12, 2.32) (0.59, −0.78, 0.42, 1.62, 2.82) −2.0 2.00 0.098 1.342
10 (1, −1.8, −0.6, 0.6, 1.8) (0.5, −1.8, −0.6, 0.6, 1.8) 0.0 2.30 0.025 0.179
11 (1.7, −1.8, −0.6, 0.6, 1.8) (0.85, −1.8, −0.6, 0.6, 1.8) 0.0 0.93 0.005 0.082
12 (0.59, −1.8, −0.6, 0.6, 1.8) (0.29, −1.8, −0.6, 0.6, 1.8) −0.0 4.80 0.048 0.249

Table 3: DIF statistics for example items under the GRM model.
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Figure 4: Plot of an item with mixed DIF under the GRM model parameter between groups.

items, the DTF statistic would be 18.7411. Figure 4 shows the plot for one of these items
which exhibits mixed DIF.

3.2. IPR cut-off points

The DFIT package is able to perform the IPR Monte Carlo procedure as described in Sec-
tion 2.1 under any unidimensional IRT model if the item parameters and their variance-
covariance matrices are provided; it is also able to calculate the NCDIF index, the SA and
UA measures, and the Mantel-Haenszel DIF statistic with the generated item parameter pairs
with the same models as shown in Section 3.1. Currently (version 1.0-3), the DFIT package
is able to calculate the asymptotic variance-covariance matrices for item parameter estimates
under the three logistic IRT models for dichotomous responses (1PL, 2PL, and 3PL) via
the function AseIrt. The main function to perform the IPR algorithm in order to obtain
cut-off points is CutoffIpr; however, the function Ipr will be presented too since it allows
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greater flexibility. The following code illustrates their use to obtain the cut-off values under
the Rasch model (i.e., D = 1.0 under the one-parameter model) and the different ways the
function CutoffIpr may be used.
Firstly, it is shown how to directly obtain the cut-off values from only the information on the
estimated item parameters and sample sizes for each group. This is done by letting CutoffIpr
calculate the asymptotic variance-covariance matrices for the models. For this, and the next
examples, it is assumed that the reference group has a mean ability of 0.5 logits greater than
the focal group.

R> set.seed(89334828)
R> cutoffRaschNcdif1 <- CutoffIpr(quantiles = 0.95,
+ itemParameters = raschParameters, itemCovariances = "asymptotic",
+ nullGroup = "focal", irtModel = "1pl", focalSampleSize = 500,
+ referenceSampleSize = 1500,
+ referenceDistrExtra = list(mean = 0.5, sd = 1),
+ logistic = TRUE, statistic = "ncdif", nReplicates = 1000)

The following illustrates how to calculate the asymptotic matrices manually for the items
under the Rasch model. Keeping on with current practice, the parameters from the focal
group will be used as the expected item difficulties for both groups, but as pointed out in
Section 2.1, the asymptotic covariance matrices will be calculated for each group according
to their sample size and ability distribution.

R> nullParameters <- list()
R> nullParameters[["focal"]] <- raschParameters[["focal"]]
R> nullParameters[["reference"]] <- raschParameters[["focal"]]
R> raschAse <- list()
R> raschAse[["focal"]] <- AseIrt(itemParameters = nullParameters[["focal"]],
+ distribution = "norm", sampleSize = 500, irtModel = "1pl",
+ distributionParameters = list(mean = 0, sd = 1),
+ logistic = TRUE)
R> raschAse[["reference"]] <- AseIrt(
+ itemParameters = nullParameters[["reference"]],
+ distribution = "norm", sampleSize = 1500, irtModel = "1pl",
+ distributionParameters = list(mean = 0.5, sd = 1),
+ logistic = TRUE)

With these asymptotic variances, it is then possible to obtain the cut-off values by setting
the itemCovariances to those obtained manually, as shown next. Also, a different random
seed is used in order to assess the stability of the estimated cut-off values.

R> set.seed(29834328)
R> cutoffRaschNcdif2 <- CutoffIpr(quantiles = 0.95,
+ itemParameters = nullParameters, itemCovariances = raschAse,
+ irtModel = "1pl", logistic = TRUE, statistic = "ncdif",
+ nReplicates = 1000)

Additionally, obtaining the variance-covariance matrices independently from the cut-off func-
tion (whether calculating the asymptotic ones as presented or the estimated ones, if available),
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allows further flexibility to the algorithm, as well as reducing simulation time when the re-
searcher is interested in calculating several indices and cut-off values. The following code
shows how to apply the IPR algorithm to the other indices.

R> set.seed(29833326)
R> raschIpr <- Ipr(itemParameters = nullParameters,
+ itemCovariances = raschAse, nReplicates = 1000)
R> raschNcdifIpr <- IprNcdif(itemParameterList = raschIpr, irtModel = "1pl",
+ logistic = TRUE)
R> raschUamIpr <- IprUam(itemParameterList = raschIpr, irtModel = "1pl",
+ logistic = TRUE)
R> raschSamIpr <- IprSam(itemParameterList = raschIpr, irtModel = "1pl",
+ logistic = TRUE)
R> raschMhIpr <- IprMh(itemParameterList = raschIpr, irtModel = "1pl",
+ logistic = TRUE)

Given these chains of estimated statistics, the cut-off values may be obtained by providing the
iprStatistics argument with the corresponding chain. Note that when itemCovariances,
itemParameterList, or iprStatistics are directly provided to the CutoffIpr function,
one must check that the desired null condition is the one being specified. The following code
obtains the cut-off values for NCDIF (statistic = "ncdif"), Raju’s signed (statistic =
"sam") and unsigned (statistic = "uam") area measures, and Mantel-Haenszel (statistic
= "mh").

R> cutoffRaschNcdif3 <- CutoffIpr(quantiles = 0.95,
+ iprStatistics = raschNcdifIpr, itemParameterList = raschIpr,
+ itemParameters = nullParameters, itemCovariances = raschAse,
+ irtModel = "1pl", statistic = "ncdif")
R> cutoffRaschUam <- CutoffIpr(quantiles = 0.95, iprStatistics = raschUamIpr,
+ itemParameterList = raschIpr, itemParameters = nullParameters,
+ itemCovariances = raschAse, irtModel = "1pl", statistic = "uam")
R> cutoffRaschSam <- CutoffIpr(quantiles = c(0.025, 0.95),
+ iprStatistics = raschSamIpr,itemParameterList = raschIpr,
+ itemParameters = nullParameters, itemCovariances = raschAse,
+ irtModel = "1pl", statistic = "sam")
R> cutoffRaschMh <- CutoffIpr(quantiles = c(0.025, 0.975),
+ iprStatistics = raschMhIpr, itemParameterList = raschIpr,
+ itemParameters = nullParameters, itemCovariances = raschAse,
+ irtModel = "1pl", statistic = "mh")

Table 4 shows the different cut-off points obtained for the 8 items with the calls to the
CutoffIpr function. It may be appreciated that, although differences between different sim-
ulations are very small, given the magnitude the NCDIF index may take, the variations occur
even on the second significant digit. This suggests that more than 1000 replications might be
desirable when obtaining cut-off points through this approach.
Table 5 presents the cut-off points obtained for the other DIF statistics along with their
true values given the item parameters and the defined distributions for each group (standard
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Item Reference b Focal b True NCDIF Cut-off 1 Cut-off 2 Cut-off 3
1 −3 −3.0 0.00000 0.00125 0.00113 0.00116
2 −3 −2.7 0.00065 0.00129 0.00128 0.00135
3 −3 −2.4 0.00310 0.00153 0.00155 0.00161
4 −3 −2.2 0.00619 0.00152 0.00149 0.00162
5 0 0.0 0.00000 0.00200 0.00213 0.00218
6 0 0.3 0.00400 0.00229 0.00228 0.00217
7 0 0.6 0.01565 0.00210 0.00209 0.00216
8 0 0.8 0.02716 0.00221 0.00212 0.00193

Table 4: NCDIF cut-off points under the Rasch model through the IPR approach.

Item MH lower True MH MH upper SA lower True SA SA upper True UA UA
1 0.662 1.000 1.573 −0.4533 0.0 0.3437 0.0 0.4404
2 0.671 1.350 1.478 −0.3907 −0.3 0.3372 0.3 0.3967
3 0.696 1.822 1.424 −0.3532 −0.6 0.3090 0.6 0.3603
4 0.729 2.226 1.378 −0.3208 −0.8 0.2746 0.8 0.3200
5 0.803 1.000 1.251 −0.2240 0.0 0.1887 0.0 0.2207
6 0.804 1.350 1.256 −0.2280 −0.3 0.1910 0.3 0.2224
7 0.803 1.822 1.268 −0.2375 −0.6 0.1933 0.6 0.2314
8 0.796 2.226 1.248 −0.2215 −0.8 0.1972 0.8 0.2241

Table 5: Cut-off points for different DIF statistics under the Rasch model through the IPR
approach.

normal for the focal group, and normal with mean 0.5 and standard deviation 1 for the
reference group). Given the cut-off values, for all DIF indices, none of the items without
DIF would be identified. Also Item 2 which presents moderate DIF, according to the usual
effect size (after correcting for the difference in the constant D), is not detected by any index,
although for all measures (except NCDIF) the true value for Item 2 is the same than that for
Item 7. This difference is directly related to the distance between the item difficulties and
the mean ability for the focal group; these differences are part of DIF definition in the DFIT
framework.

4. Power calculation
This section illustrates how to use the functions in package DFIT to calculate power for
the NCDIF index; the procedure may be used to obtain power for the other DIF measures;
however, due to the interaction between the CDIF index with parameters of other items and
DIF presence on the test level, the procedure is not recommended for this index. Section 4.1
presents how to obtain power curves, given both the cut-off points obtained by the current
IPR procedure (as implemented in Oshima et al. 2009 and presented by Oshima et al. 2006,
and under the modification presented in Section 2.1. These curves are useful during the
planning of DIF analyses to avoid underpowered studies, and may help in defining effect sizes
for the DFIT statistics.
Section 4.2 shows how to calculate power for a given set of item parameters using the items
presented in Table 1 under the 1PL model. The shown procedure may be used to perform
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post-hoc power analyses, or a priori power calculations against a given difference of item
parameters, as those presented by Wright and Oshima (2015). For all these examples, it is
assumed that the ability for the focal and the reference groups is distributed as a standard
normal (i.e., without impact).
The examples in this section will further illustrate the effects on power of the selected al-
gorithm to obtain the cut-off points for the NCDIF statistic. Thus, in each case, both the
results using the current algorithm as presented by Oshima et al. (2006) and the modified
proposal are calculated and plotted.

4.1. Power curves

The power curves for uniform DIF and nonuniform DIF for an item under the two-parameters
logistic IRT model with difficulty 0 and discrimination 1 are presented; these curves were
originally presented by Cervantes (2012). In order to show how the proposed modified IPR
algorithm compares to the current one, different sample sizes are used for each group. The
general conditions for both uniform and nonuniform DIF power curves examples are set as
follows,

R> nReplicates <- 3000
R> nFocal <- 800
R> nReference <- 2500
R> kRatio <- nReference / nFocal
R> focalParam <- list(mean = 0, sd = 1)
R> referenceParam <- list(mean = 0, sd = 1)

First, the code to obtain power curves for uniform DIF is presented. The item parameters
for the null and alternative hypotheses are generated for a number of equally spaced item
difficulties lesser and greater to 0 for the focal group, while the difficulty remains constant
for the reference group.

R> itemParameters <- list(focal = cbind(rep(1, 51),
+ seq(-0.5, 0.5, length = 51)), reference = cbind(rep(1, 51), rep(0, 51)))
R> nullFocal <- which(itemParameters[["focal"]][, 2] ==
+ itemParameters[["reference"]][, 2])
R> itemParametersNull <- lapply(itemParameters, function(x)
+ x[nullFocal, , drop = FALSE])
R> names(itemParametersNull) <- c("focal", "reference")

Also, for each of these parameter vectors, we obtain the actual value of the NCDIF statistic.
These will serve to compare power as a function of the true item parameters as well as as a
function of the true NCDIF statistic.

R> twoPlUniNcdifTrue <- Ncdif(itemParameters, irtModel = "2pl",
+ focalDistribution = "norm", focalDistrExtra = focalParam,
+ logistic = FALSE)

Next, we obtain the asymptotic variance-covariance matrices of parameter estimates given
the known item parameters for each group.
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R> twoPlUniAse <- list()
R> twoPlUniAse[["focal"]] <- AseIrt(
+ itemParameters = itemParameters[["focal"]],
+ distribution = "norm", distributionParameters = focalParam,
+ sampleSize = nFocal, irtModel = "2pl", logistic = FALSE)
R> twoPlUniAse[["reference"]] <- AseIrt(
+ itemParameters = itemParameters[["reference"]],
+ distribution = "norm", distributionParameters = referenceParam,
+ sampleSize = nReference, irtModel = "2pl", logistic = FALSE)

Using the IPR Monte Carlo approach, the simulated item parameters are obtained for the
null and the alternative hypotheses with the asymptotic covariance matrices calculated in the
previous step. Then, the NCDIF statistic on each pair of parameter vectors is calculated.

R> set.seed(29834328)
R> twoPlUniIpr <- Ipr(itemParameters = itemParameters,
+ itemCovariances = twoPlUniAse, nReplicates = nReplicates)
R> twoPlUniNcdif <- IprNcdif(itemParameterList = twoPlUniIpr,
+ irtModel = "2pl", logistic = FALSE, subdivisions = 1000)

The corresponding cut-off point for the proposed algorithm is obtained from the 95th quantile
of the NCDIF statistics from the generated item parameters.

R> cutoffPointEachSZUni <- CutoffIpr(quantiles = 0.95,
+ iprStatistics = twoPlUniNcdif[nullFocal, , drop = FALSE])

We will also obtain the cut-off point under the current algorithm. For that, we follow the
same steps changing the covariance matrices to be equal for both groups. Since both groups
were assumed to have the same distribution, obtaining the asymptotic variance-covariance
matrix is possible directly from the ones from each group because they are proportional in
this case. The following code obtains the matrices, the replicated parameters, the NCDIF
statistics, and the cut-off point under the current approach.

R> set.seed(29834328)
R> twoPlUniAseCurrent <- twoPlUniAse
R> twoPlUniAseCurrent[["focal"]] <- twoPlUniAseCurrent[["focal"]][nullFocal]
R> twoPlUniAseCurrent[["reference"]] <- lapply(
+ twoPlUniAseCurrent[["reference"]][nullFocal], "*", kRatio)
R> twoPlUniIprCurrent <- Ipr(itemParameters = itemParametersNull,
+ itemCovariances = twoPlUniAseCurrent, nReplicates = nReplicates)
R> twoPlUniNcdifCurrent <- IprNcdif(itemParameterList = twoPlUniIprCurrent,
+ irtModel = "2pl", logistic = FALSE, subdivisions = 1000)
R> cutoffPointUni <- CutoffIpr(quantiles = 0.95,
+ iprStatistics = matrix(twoPlUniNcdifCurrent, nrow = length(nullFocal)))

Power for each alternative is estimated as the proportion of the replicated NCDIF indexes
that is greater than the cut-off value. Figures 5 and 6 show how power varies as a function of
item difficulty and NCDIF index, respectively. The figures indicate the value for which power
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Figure 5: Power curves for uniform DIF as a function of focal item difficulty.
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is approximately 0.8 (0.831). It may be seen that low type I error rates as those reported by
Oshima et al. (2006) are expected for the current IPR algorithm because the actual type I
error is well below the nominal value. It may also be seen that power is affected by this.
Power with the current algorithm only reaches 0.6663 for the same item difficulty, about 0.16
less than with the proposed algorithm.
The code to obtain the power curves for nonuniform DIF is similar to the one presented for
uniform DIF; thus, it is not shown. Figures 7 and 8 show how power varies as a function
of item discrimination and NCDIF index, respectively. The figures indicate the value for
which power is 0.8177 with the proposed modification, power with the current algorithm only
reaches 0.633. Furthermore, although the power curves are not symmetrical with respect to
the discrimination value, they are as a function of the NCDIF index value. It is also apparent
that power varies for uniform and nonuniform DIF; power is about 0.8 for a value of 0.0031
where DIF is uniform, while to achieve the same power for nonuniform DIF (with equal sample
sizes, no impact and item difficulty equal to both groups ability mean), the NCDIF index
needs to reach only 0.0025.

4.2. Power calculation
This section presents how to calculate power for particular item difficulties for both the
reference and the focal group using the 1PL model. The difficulties shown in Table 4 are
used, and the null hypothesis assumed is that item difficulties are the ones from the focal
group; additionally, equal standard normal distributions for the abilities from both groups
with unequal sample sizes are assumed. A similar procedure may be used for other IRT
models.
The following code sets the sample size conditions for both groups, the distribution parameters
and the number of IPR replications that will be used. First, we set the global variables,

R> nFocal <- 500
R> nReference <- 1500

The variances of item difficulties are obtained for each group according to the item parameters
for the focal group and their respective sample size and common distribution.

R> nullParameters <- list()
R> nullParameters[["focal"]] <- raschParameters[["focal"]]
R> nullParameters[["reference"]] <- raschParameters[["focal"]]
R> nullAse <- list()
R> nullAse[["focal"]] <- AseIrt(itemParameters = nullParameters[["focal"]],
+ distribution = "norm", sampleSize = nFocal,
+ distributionParameters = distriParam, irtModel = "1pl",
+ logistic = FALSE)
R> nullAse[["reference"]] <- AseIrt(itemParameters =
+ nullParameters[["reference"]], distribution = "norm",
+ sampleSize = nReference, distributionParameters = distriParam,
+ irtModel = "1pl", logistic = FALSE)

With these variances for the parameter estimates, the cut-off point for each item using the
IPR approach is obtained for the null hypothesis of each item.
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Item Reference b Focal b True NCDIF Cut-off Power
1 −3 −3.0 0.00000 0.00084 0.05
2 −3 −2.7 0.00051 0.00091 0.31
3 −3 −2.4 0.00273 0.00116 0.88
4 −3 −2.2 0.00582 0.00121 0.99
5 0 0.0 0.00000 0.00199 0.05
6 0 0.3 0.00841 0.00200 0.98
7 0 0.6 0.03228 0.00191 1.00
8 0 0.8 0.05503 0.00194 1.00

Table 6: NCDIF power calculated for particular item difficulties under the 1PL model using
the IPR approach.

R> set.seed(29834528)
R> cutoffPoints <- CutoffIpr(quantiles = 0.95,
+ itemParameters = nullParameters, itemCovariances = nullAse,
+ irtModel = "1pl", logistic = FALSE, statistic = "ncdif",
+ nReplicates = nReplicates)

Next, the respective variances of item difficulties under the alternative hypothesis for each item
are obtained, and the Monte Carlo chains of NCDIF indexes under the specified differences
are obtained through the IPR approach.

R> altAse <- list()
R> altAse[["focal"]] <- AseIrt(itemParameters = raschParameters[["focal"]],
+ distribution = "norm", sampleSize = nFocal,
+ distributionParameters = distriParam, irtModel = "1pl",
+ logistic = FALSE)
R> altAse[["reference"]] <- AseIrt(itemParameters =
+ raschParameters[["reference"]], distribution = "norm",
+ sampleSize = nReference, distributionParameters = distriParam,
+ irtModel = "1pl", logistic = FALSE)
R> altIPR <- Ipr(itemParameters = raschParameters, itemCovariances = altAse,
+ nReplicates = nReplicates)
R> altNcdif <- IprNcdif(itemParameterList = altIPR, irtModel = "1pl",
+ logistic = FALSE)

Table 6 shows the calculated power for each item given the sample sizes and ability distri-
butions. The column “Cut-off” presents the IPR cut-off points with the modified algorithm
and 3000 replications. The column “Power” contains the calculated power to detect the true
NCDIF with sample sizes of 500 and 1500 for the focal and reference groups, respectively.

5. Final remarks
The differential functioning of items and tests (DFIT) framework has been proposed as a
parametric IRT alternative for DIF detection (Raju et al. 1995). Recent work has focused
on the development of a Monte Carlo approach to obtain appropriate cut-off points for the
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NCDIF index in this framework (Oshima et al. 2006; Raju et al. 2009), on the type I error
and power of this approach (Clark and LaHuis 2012), and on the establishment of effect sizes
for that index (Wright 2011; Wright and Oshima 2015).
This paper presented the package DFIT which implements the framework for R. The package
is capable of obtaining the DIF and DTF indices from the framework for the main unidi-
mensional IRT models. It is able to calculate Monte Carlo cut-off points based on the IPR
approach for dichotomous and polytomous models as currently available software given the
same input from the user; that is, item parameters for both groups and variance-covariance
matrices for item estimates for one or both groups.
It should be noted that the package is recommended based on its capabilities and on its accu-
racy with regards to the theoretical framework. Comparisons with the program DFIT8 (Os-
hima et al. 2009) and with the SAS (SAS Institute Inc. 2013) macro DIFCUT (Nanda, Os-
hima, and Gagné 2006), which implement the current approach, have been conducted by
taking published item parameters (Raju et al. 1995, 2009; Oshima et al. 1998, 2009; Wright
and Oshima 2015) and verifying against the results for all three DFIT indices; the same
testing procedure was employed for Raju’s area measures (Raju 1988), the Mantel-Haenszel
statistic (Wright 2011), and the implementation of asymptotic variance-covariance matrices
calculations (Li and Lissitz 2004); additionally, the simulation procedure relies on the package
mvtnorm (Genz, Bretz, Miwa, Mi, and Hothorn 2016), whose accuracy was studied by Mi,
Miwa, and Hothorn (2009). Although the accuracy for the IPR algorithms follows from the
previous, cut-off points for NCDIF were also compared with published results; differences
were consistent with differences between repeated runs of the algorithm such as those shown
in Table 4.
The package DFIT is also able to use either version of the IPR approach without empirical
estimates of the variance-covariance matrices by using the asymptotic ones for dichotomous
models. Additionally, the package is flexible and allows obtaining the cut-off points under
the null hypothesis and sampling conditions specified by the user. Finally, the package com-
plements the DFIT framework by making it the first DIF approach for which power may be
calculated a priori, and thus be used in the planning of DIF studies, rather than post-hoc
under limited simulation conditions as has been the case until now.
There are several features yet to be implemented in the package DFIT from the eponymous
framework. Future work on the package will focus on acquiring item parameter estimates
and their covariances from different estimation packages to be used for the calculations;
calculating the asymptotic variance-covariance matrices for polytomous models; implementing
Differential Bundle statistics; calculating cut-off points at the test level (DTF); allowing each
item on a set to be modeled by a different IRT model; and implementing the indices for
multivariate IRT models.
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