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Abstract

After its introduction by Koenker and Basset (1978), quantile regression has become
an important and popular tool to investigate the conditional response distribution in re-
gression. The R package bayesQR contains a number of routines to estimate quantile
regression parameters using a Bayesian approach based on the asymmetric Laplace distri-
bution. The package contains functions for the typical quantile regression with continuous
dependent variable, but also supports quantile regression for binary dependent variables.
For both types of dependent variables, an approach to variable selection using the adap-
tive lasso approach is provided. For the binary quantile regression model, the package also
contains a routine that calculates the fitted probabilities for each vector of predictors. In
addition, functions for summarizing the results, creating traceplots, posterior histograms
and drawing quantile plots are included. This paper starts with a brief overview of the
theoretical background of the models used in the bayesQR package. The main part of
this paper discusses the computational problems that arise in the implementation of the
procedure and illustrates the usefulness of the package through selected examples.

Keywords: quantile regression, asymmetric Laplace distribution, Bayesian approach, logistic
regression, probit, R, Fortran.

1. Introduction

Regression analysis helps us to understand how the typical value of a variable of interest
changes when any of the independent variables is varied, while the other independent variables
are held fixed. The earliest attempt to estimate regression type of models was performed by
Boscovich who investigated the ellipticity of the earth in the 1750’s (Stigler 1984). It is
interesting to see that his attempt was closely tied to the notion of median (as opposed to
mean) regression. However, subsequent developments in regression models mainly used least-
squares (OLS), i.e., conditional mean models, as the preferred approach. The computational
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simplicity together with the optimality when the observed deviation from the regression line
is normal, made OLS the workhorse model of regression analysis for many years.

Yet, conditional mean models give only partial information on the effect of the covariate
on the dependent variable. As Mosteller and Tukey (1977) point out, just as the mean
often gives a rather incomplete picture of a single distribution, so does the regression curve
give an incomplete picture for a set of distributions. In their seminal paper, Koenker and
Basset (1978) introduced quantile regression to estimate the conditional quantile function of
the response. As such, the method makes it possible to get a more complete view of the
statistical relations among stochastic variables. It allows the user to examine the relationship
between a set of covariates and the different parts of the response distribution.

Next to the motivation in terms of “richer” view, quantile regression can also be motivated
from a robustness point of view. Rare but very large deviations from the regression line can
strongly influence the fit of OLS. Median estimators and more general quantile estimators are
less influenced by outlying observations in the response variable conditional on the covariates.
In addition, it is important to recognize that covariates can exert an effect on the dispersion
of the response variable as well as its location. When this so called heteroskedasticity is
present, quantile regression in contrast to mean regression, offers some expanded flexibility of
covariate effects.

Ever since the important overview book about the state-of-the-art in quantile regression
of Koenker (2005), the number of research papers on quantile regression increased rapidly.
Applications of quantile regression arose in many research areas, ranging from ecology over
genetics to economics. One of the more recent research areas of quantile regression investigates
Bayesian estimation of model parameters (e.g., Yu and Moyeed 2001).

This paper presents the bayesQR package (Benoit, Al-Hamzawi, Yu, and Van den Poel 2017).
It is a free extension to the R system for statistical computing (R Core Team 2016). The
package contains a set of functions that estimate different types of quantile regression models
using a Bayesian approach. This is in contrast to the quantreg package (Koenker 2016) that
uses the frequentist methodology to estimate quantile regressions. Note that this paper does
not intend to compare or value Bayesian versus frequentist methods. The goal of bayesQR
and this paper is simply to offer a Bayesian flavor to quantile regression to those who have
practical or philosophical motivations to do so.

The bayesQR package is not the only R package that is focused on Bayesian estimation of
quantile regression estimates. The Brq package (Al-Hamzawi 2012) contains a function for
quantile regression for continuous dependent variables, as well as tobit quantile regression, but
is not under active development anymore. Also, there exists one routine, i.e., MCMCquantreg,
in the package MCMCpack (Martin, Quinn, and Park 2011) that has similar functionality
as the bayesQR function in the bayesQR package. The downside of the above packages or
functions is that the implementation is written in pure R which slows computations down
considerably. This might cause problems when trying to tackle moderate to large problems. In
contrast, because the bayesQR package has its computational core written in modern Fortran,
the implementation is very fast. Moreover, bayesQR provides functionalities (e.g., support for
binary dependent variables, variable selection, plotting, ...) that are not contained in other
packages. The package bayesQR is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=bayesQR.

After a brief summary of the general quantile regression theory (Section 2), the Bayesian
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approach to quantile regression used in the bayesQR package will be discussed (Section 3).
Section 4 contains a detailed description of the functionalities of bayesQR, while its application
to real datasets is illustrated in Section 5. The paper ends with final remarks and a discussion
about possible future developments in Section 7.

2. Quantile regression

The classical way to derive quantile regression is to start from the well-known regression
model. Consider the standard linear model where z; € R* and 5 € R* are column vectors of
size k and y; € R is a scalar variable:

yi =, B+ e (1)

If we assume that E(e|z) = 0, then we obtain the conditional mean model, while if Med(e|z) =
0 then we get the conditional median model. In the conditional mean model, we can find the
regression coefficients by solving:

B = argmin 3 (y; — = B)°. (2)

oIS

In median regression, we proceed in exactly the same way, but here, we try to find an estimate
of 8 that minimizes the sum of the absolute deviations:

B =argmin Y |y; — z B|. (3)

peRt 4

Quantile regression proceeds by extending the median case to all other quantiles of interest:
5, — axgmin 3" pr i - a7 9) @)

where pr(z) = z(r — I(x < 0)) and where I(-) denotes the indicator function. For any
7 € (0,1), the loss function p, assigns a weight of 7 to positive residuals and a weight of
(1 — 7) to negative residuals. The quantity ﬁT is called the 7th regression quantile. Note
that the case where 7 equals 0.5 corresponds to minimizing the sum of absolute residuals, i.e.,
median regression.

The method of Barrodale and Roberts (1973) has been widely used to minimize the objective
function in Equation 4. For example, in both the quantreg R package as well as the SAS PROC
QUANTREG procedure it is the default method. However, this variant of the simplex algorithm
is computationally demanding in large statistical applications. Both the quantreg R package
and SAS propose an interior point approach for larger problems. The confidence intervals are
generally computed by inverting the rank score test using the simplex algorithm. For large
problems, the resampling method can be a solution.
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3. Bayesian quantile regression

3.1. Continuous dependent variables

Koenker and Machado (1999) were the first to show that likelihood-based inference using
independently distributed asymmetric Laplace densities (ALD) is directly related to the min-
imization problem in Equation 4. Yu and Moyeed (2001) elaborated the ALD approach and
provided an approach that initiated the take-off of Bayesian quantile regression. However,
it should be emphasized that there exist multiple Bayesian approaches to quantile regres-
sion. For example, Kottas and Gelfand (2001) develop Bayesian quantile regression based on
Dirichlet process priors, Dunson, Watson, and Taylor (2003) developed an approach based on
substitution likelihoods and more recently, Lancaster and Jun (2010) and Yang and He (2012)
proposed a method based on the empirical likelihood. These approaches avoid the parametric
likelihood of the ALD approach. Sriram, Ramamoorthi, and Ghosh (2013) recently showed
that the misspecified likelihood in the ALD approach still leads to consistent results (see Sec-
tion 3.4). We believe that the ALD approach is a valuable and relatively simple alternative
to these other methods that does not need complex choices of prior distributions and prior
(hyper-)parameters (Yu and Stander 2007).

Yu and Zhang (2005) propose a three-parameter ALD with a skewness parameter that can
be used directly to model the quantile of interest:

Falmo,7) = T(lg_T)eXp{—pT (")} (5)

where again p-(x) = z(7—I(z < 0)) and where I(-) denotes the indicator function. Minimizing
Equation 4 is equivalent to maximizing a regression likelihood (see Equation 5) using ALD

errors with p = x;r B.

Bayesian implementation of quantile regression begins by forming a likelihood comprised of
independent asymmetric Laplace densities with p = azz—ﬁ. Next, the quantile of interest, 7,
has to be specified and priors should be put on the model parameters 5 and o. The resulting
posterior distribution can be represented as follows:

n
Y(B,0ly,x,7) < 7(B,0) | [ ALD(yil] B, 0, 7), (6)
i=1
where 7((,0) is the joint prior on the regression parameters. Inference about model param-

eters then follows conventional Bayesian procedures (see Section 4 for details).

3.2. Binary dependent variables

Consider the standard binary regression model:
yi=1(y; 2 0) = B +e;, (7)

where y; is the indicator of the ¢th individual’s response determined by the underlying variable
y*, x; is a k x 1 vector of explanatory variables, 5 is a k x 1 vector of regression coefficients,
€; is a random error term and i = 1,...,n.
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Manski’s maximum score estimator is considered the first attempt in econometrics to deal
with binary quantile regression (Manski 1975, 1985). The original maximum score estimator
focused on the median case, but was extended to the more general quantiles later:

B, = argmax nt Z pr(2y; — 1)(2y; — 1) sgn (fﬁg—ﬁ) (8)
BeR i=1

for any quantile 7 € (0,1). sgn(-) is the signum function and again p,(-) is the loss function.
Scale normalization is necessary because the parameter [ is only identified up to a scale (e.g.,
set [|B]] = 1).

Benoit and Van den Poel (2012) discuss a number of problems that arise with the maximum
score estimator. These difficulties are related to the difficult optimization of the multidimen-
sional step function. As a result, calculating a consistent estimator is challenging. Moreover,
because of the complicated asymptotic distribution of the estimator, making inference is
daunting.

At the cost of accepting additional distributional assumptions on the error terms, the Bayesian
ALD approach sets the problem in a parametric framework in which these problems are
avoided (Benoit and Van den Poel 2012). Let

P(yi = 1lzi, 8) = 1 — Fy-(—2 ), (9)

where Fy+(-) is the cumulative distribution function of the asymmetric Laplace variable y*.
The joint posterior distribution, (+), of the unobservables 8 and y* given the data x and the
quantile of interest 7, is then given by:

DB, y* |y, x,7) oc m(B) [ [ (wF > 0)I(yi = 1) + I(y} < 0)I(y; = 0)}
i=1
x ALD(y} |z 8,0 =1,7) (10)

where () is the prior on the regression coefficients and I(-) is the indicator function. Note
that ¢ = 1 because of identification issues similar as in Equation 8. Inference about model
parameters then follows conventional Bayesian procedures (see Section 4 for details).

3.3. Variable selection using the adaptive lasso

Variable selection plays an important role in the model-building process. Many practical
applications have a large number of potential covariates to include in the model. However,
it is undesirable to keep irrelevant predictors in the final model since this makes it difficult
to interpret the resultant model and may decrease its predictive ability (Wu and Liu 2009).
One way to achieve sparseness in the covariate space is to add a penalty term to the objective
function. One well-known approach is the [; penalty used in the lasso proposed by Tibshirani
(1996). Zou (2006) extended the lasso by using adaptive weights for penalizing different
coeflicients in the penalty and demonstrated its oracle properties.

The first use of regularization in quantile regression is made by Koenker (2004). The author
developed an [-regularization quantile regression method to shrink individual effects towards
a common value. Wang, Li, and Jiang (2007) introduced median regression with the adaptive
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lasso penalty, while Wu and Liu (2009) extended the approach to general quantile regres-
sion. Al-Hamzawi, Yu, and Benoit (2012) provide a Bayesian framework to estimate quantile
regression models with the adaptive lasso that is based on the work of Li, Xi, and Lin (2010).

A Bayesian approach to the adaptive lasso for quantile regression models can be achieved
by employing a symmetric Laplace prior for every regression parameter ;. Consider again
Equation 6. Instead of placing the usual normal or uniform prior (see Yu and Moyeed 2001)
on 7(f3), a Laplace prior, with zero mean and scale o/, is put on every element j of . The
resulting posterior for 3 is then given by:

1< Ao
w(mya%@)\ﬂ')O(eXP _EZPT(yl_xIﬁ)_;]Z‘/BA . (11)
=1 j=1

Note how the second term in the exponent acts as a penalty on the usual quantile regression
likelihood in the same way as Koenker’s lasso penalty (see Li et al. 2010). In contrast to
the normal lasso procedure where there is one regularization parameter for all regression
estimates, the adaptive lasso has such a parameter for every regressor, i.e., A;. The A; are
not treated as known, but estimated from the data. As a result, a prior distribution is put on
every element j of A. Section 4.3 gives more details on the choice of prior distributions and
the method of estimating the posterior distribution of the model parameters for the adaptive
lasso approach.

3.4. Controversies with the ALD approach

The motivation for quantile regression is usually that there is some departure from the as-
sumption of independent and identically distributed (IID) error terms, e.g., in the case of
error heteroskedasticity. In this case, the OLS assumptions do not hold and quantile regres-
sion can offer additional flexibility. Yet the Bayesian ALD approach does assume 11D errors
and this contrasts with the main motivation for quantile regression. The motivation for the
approach follows from the fact that the maximum likelihood estimate from the ALD likelihood
is equivalent to solving the problem in Equation 4.

Often, the assumption of ALD errors is difficult to maintain and the likelihood becomes
misspecified. As such, the ALD approach cannot be considered a truly Bayesian procedure
when the errors are not distributed according the ALD. Nevertheless, based on empirical
studies, Yu and Moyeed (2001) argued that the results are satisfactory even if the ALD is
a misspecification. A more formal justification was given by Sriram et al. (2013). They
show the posterior consistency based on the misspecified ALD likelihood under fairly general
conditions.

However, the posterior consistency results do not imply that the interval estimates constructed
from the posterior are automatically valid. This issue is investigated by Sriram, Ramamoorthi,
and Ghosh (2012). They argue that it is desirable that, asymptotically, a 95% Bayesian
credible interval contains the true parameter value 95% of the time, just like the frequentist
confidence interval. These authors find that with increasing sample size, coverage improves
and the length of the credible intervals decreases. However, while the credible intervals can
be indicative of the true parameter values, they potentially end up over-covering or under-
covering the true parameter value.

Recently, both Yang, Wang, and He (2015) and Sriram (2015) proposed a correction to the
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MCMC iterations to construct asymptotically valid intervals. Their method builds on the
work of Chernozhukov and Hong (2003) and Yang and He (2012). In these papers, it is
shown that the MCMC iterations provide a valid piece of the usual sandwich formula (see
e.g., Koenker 2005) that can be used to construct a valid estimate of the limiting covariance
matrix of the Gaussian approximation. The correction can be accomplished as follows (Yang

et al. 2015):

A nt(l —7) 4 A

Vi = T 5 (0) DeS(or), (12)
T

where (o) is the posterior variance-covariance matrix and Dy =n~! >0 | zz/.

g

4. Computational details of the bayesQR package

We have implemented the methodology described above in an R package, called bayesQR. The
package contains one main function, i.e., bayesQR, that can estimate different types of quantile
regression models. That is, both continuous as well as binary dependent variable models can
be estimated with or without adaptive lasso variable selection. The core computational part
of the estimation procedures is written in Fortran to speed up the calculations as much as
possible. The R function bayesQR is mainly a wrapper function that does some error handling
and passes the arguments to the Fortran core. When the computation is finished, the Fortran
core will pass the output to an R S3 object of class ‘bayesQR’ for post processing in R. As
such, the more applied R user should not notice, nor care, that Fortran was called from R.

The main routine is supplemented with other routines that help to summarize, plot or print
the results of the bayesQR routine. Two functions are provided that do post processing of
the MCMC chains, i.e., the S3 methods summary and plot. The first function, summarizes
the draws of the regression parameters by returning the posterior credible interval and Bayes
estimate. The latter function creates quantile plots based on the estimates obtained by
estimating a series of quantile regressions. This function also has the option to graphically
summarize the MCMC chain by producing the traceplot or posterior histogram of the draws.
Finally, the S3 method predict will calculate the predicted probabilities of binary quantile
regression models.

In this section, we will discuss the computational details of the functions in the bayesQR
package. The focus will be on the implementation of the setup of the MCMC chains for the
different quantile regression models. To some extent, Fortran-specific computational issues
will be discussed too.

Function bayesQR is the main function for estimating Bayesian quantile regression models. A
simple function call is as follows:

R> bayes(R(formula = y ~ X, quantile = 0.1, alasso = TRUE)

This code will estimate the first decile quantile regression of y on X using adaptive lasso
variable selection. Since prior information is omitted, the default vague prior (e.g., a normal
and gamma prior with high variance on 5 and A respectively) will be used (see Section 4.4)
and, in case of a continuous dependent variable, by default the normal approximation of
the posterior distribution will be alculated (see Section 3.4). The bayesQR function decides
which MCMC algorithm to use, based on its input values. The method detects whether the
dependent variable is binary or continuous and the logical alasso value indicates if adaptive
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lasso is desired. The logical normal.approx indicates whether the MCMC iterations should
be used to calculate the normal approximation of the posterior. Below, the computational
details of each of the four different MCMC algorithms are discussed.

4.1. MCMC for continuous quantile regression without adaptive lasso

Consider again Equation 6. In this equation the likelihood is well defined. However, to be
able to calculate the posterior distribution (5, oly, z,7), we have to make a decision about
the prior on the model parameters 5 and o. A straightforward prior for 5 is the multivariate
normal distribution, Normal(mean = fy, varcov = Vj). It should be noted that other priors
for 8 are possible too. For example, Yu and Moyeed (2001) show that even a uniform prior on
B would result in a proper posterior distribution. For the prior on o, we propose the inverse
gamma distribution invGamma(shape = ng, scale = sg), with density:

no
0

I'(no)

7" L exp (—S—0> . (13)

x

f(z[no, s0) =

As we will show in the next paragraphs, the choice for these prior distributions will make the
calculation of the posterior distribution a lot more efficient.

The initial approach to Bayesian quantile regression using the ALD proposed the Metropolis-
Hastings algorithm to estimate the model parameters (Yu and Moyeed 2001). This results
from the fact that multiplying the priors defined above with the likelihood defined in Equa-
tion 6 does not lead to a posterior distribution of known form. All versions before version
2.0 of the bayesQR package use this algorithm to estimate the model parameters. However,
previous work has shown that exploiting the location-scale mixture of normals representation
of the ALD leads to a more efficient Gibbs sampling algorithm to estimate the posterior (see
Tsionas 2003). In the bayesQR package, however, we implemented the Gibbs sampler pro-
posed by Kozumi and Kobayashi (2011). The advantage of their approach is that g can be
updated in one draw, while in Tsionas (2003) each element of 8 has to be updated separately.
From version 2.0 of the bayesQR package on, this efficient Gibbs sampler is used to estimate
the model parameters.

Consider again the error term e in Equation 1. In this Bayesian approach to quantile re-
gression, the error term is assumed to follow the asymmetric Laplace distribution. It can be
shown that the ALD can be represented as a location scale mixture of normal distributions
where the mixing distribution follows an exponential distribution (for a proof see Kozumi and
Kobayashi 2011). This implies that Equation 1 can equivalently be rewritten as:

Yi = x;'—ﬁ + Ov; + w\/ov;u;, (14)
where 1_9 9
— 27
T M rero}

and z; is a standard exponential and u; is a standard normal variate. This leads to the
following likelihood function:

Flyile] B,vi,0,7) o exp (_Z (yi — ;] —9%)2) H 1 (15)

‘ 2wloy;
=1
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Now, using data augmentation (Tanner and Wong 1987), a Gibbs sampling algorithm can be
set up by drawing 3, o and z from their full conditional distributions. The usual Bayesian
computations show that the full conditional density of 3 is given by:

Y(Blo,v,y,z,7) ~ N(B,V), (16)

where

e zn: 93:961 +yl d B 7 zn: i (y; — O0v;)
= an = — .
L~ wloy; 0 — w2ov;
The algorithm to sample from the multivariate normal distribution that was implemented in
the Fortran code of the bayesQR package, is based on the well-known method of Cholesky
decomposition of the variance-covariance matrix. The draws from the one dimensional normal
distribution are obtained by using the Box-Muller transform (Box and Muller 1958).

From Equation 15 together with a standard exponential density, the full conditional distribu-

tion of v; is proportional to:
_1
v, ? exp{— (52 +7; V1>} . (17)

This is the kernel of a generalized inverse Gaussian distribution GIG(3, &,’%), with 53 =

-
% and 42 + WQ By recognizing the fact that GIG(p,a,b) = W and that

GIG(—Q, b,a) equals the inverse Gaussian distribution, we can sample from the conditional
posterior of z; by drawing from the inverse Gaussian distribution and inverting this draw
(Jorgensen 1982). The algorithm to sample from the inverse Gaussian distribution that was
implemented in the Fortran code of the bayesQR package, is the method proposed by Michael,
Schucany, and Haas (1976).

Finally, knowing that v; ~ Exponential(c), the full conditional posterior of ¢ is proportional

to:
n0+%n+1 —z U
(i) exp [— {so + Z Vi + Z 2w§ i) }] : (18)

This is the kernel of an inverse gamma distribution with parameters shape = {2ny + 3n}/2
and scale = {2s0+2 > " vi+> 1, (yi—x] B—0v;)? /w?v;}/2. Random draws from the inverse
gamma distribution, z ~ invGamma(shape, scale), can easily be obtained by sampling from
x ~ 1/gamma(shape, 1/scale). The algorithm to sample from the gamma distribution that
was implemented in the Fortran code of the bayesQR package, is the method proposed by
Marsaglia and Tsang (2000).

This Gibbs sampler is fairly straightforward to implement in Fortran. However, two code sec-
tions might need some additional explanation. First, when estimating the variance-covariance
matrix for the posterior of 3, the tensor product of a vector of length k, i.e., x;, with itself
has to be calculated. We followed the code proposed by Press, Teukolsky, Vetterling, and
Flannery (1996). That is:

spread(vectorl, dim = 2, ncopies = k) * spread(vectorl, dim = 1, ncopies = k)

Second, simulating from the multivariate normal distribution requires to calculate the Cholesky
root of a variance-covariance matrix. The Cholesky decomposition of a positive definite matrix
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is efficiently implemented in the function dpotrf of the Fortran library LAPACK (Anderson
et al. 1999). When installing the bayesQR package in R, the source code will automatically
be compiled against the LAPACK library (that is available through R).

Note that by default, the MCMC iterations are used to construct the normal approximation
of the posterior distribution. That is, the bayesQR option normal .approx is set to TRUE by
default. Following the suggestion of Yang et al. (2015), o2 is then set to a fixed value (i.e.,
02 = 1) which simplifies the Gibbs sampler.

4.2. MCMC for binary quantile regression without adaptive lasso

The first paper that proposes a Bayesian approach to binary quantile regression (i.e., Benoit
and Van den Poel 2012) makes use of the Metropolis-Hastings algorithm to estimate the
model parameters. Versions of the bayesQR package prior to version 2.0 used this method.
However, by exploiting the location-scale mixture of normals representation of the asymmetric
Laplace distribution, we can again set up a much more efficient Gibbs sampler to calculate
the posterior. In addition, the Gibbs sampler is much more user friendly as it does not require
to tweak parameters in the MCMC chain (e.g., step sizes). Therefore, from version 2.0 on,
this is the approach that is implemented in the package. Note that the Gibbs sampler for
binary quantile regression was also proposed by Ji, Lin, and Zhang (2012).

The MCMC sampler for binary quantile regression is very similar to the Gibbs sampler for
quantile regression for continuous dependent variables. In this section, we will only discuss
the difference with the calculations of Section 4.1.

The standard Bayesian approach for categorical dependent variable models is to assume an
unobserved variable that determines the outcome. This can be seen from Equation 7 and
Equation 10. If the latent y* would be available to the researcher, the MCMC chain would be
identical to the continuous quantile regression setting as discussed in Section 4.1. But since
y* is unknown, we will estimate this quantity from the data.

Consider again the posterior of the Bayesian binary quantile regression in Equation 10. Split-
ting up this complicated posterior of unknown form in the conditional posterior of 5 given y*,
and in the posterior distribution of y* conditional on [ facilitates sampling the joint posterior.
From Equation 10 we find that the fully conditional distribution of 7 is given by:

O(yr|B, 7, zi, yi) ~ ALD(z; 8,0 = 1,7) truncated at the left by 0, if y; = 1, (19)
V(yF|B, 7,z i) ~ ALD(x] 3,0 = 1,7) truncated at the right by 0, if y; = 0.

Drawing random samples from the ALD is fairly easy. One could, for example, implement
the inverse transformation method (Devroye 1986). However, due to the truncation, for some
observations the latent y* might be in the extreme tails of the distribution. Consequently, the
inverse transformation method can be unstable in some situations. Prior to version 2.0 of the
bayesQR package, the truncated ALD was sampled by exploiting the fact that each tail of this
distribution is an exponential distribution. This algorithm is quite efficient and has not been
described elsewhere. The algorithm exploits the fact that both tails of the ALD distribution
are exponential distributions with possibly different rate parameters. Thus, drawing from the
extreme tails can be done easily by drawing from the suitable exponential distribution. An R
implementation is given below:
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R> truncALD <- function(y, mu, sigma, tau) {
trunc <- -mu/sigma
if ((y == 0) & (trunc <= 0)) {
u <- runif(n = 1)
fn_val <- -(abs(trunc) - log(u)) / (1 - tau)
} else if ((y == 1) & (trunc >= 0)) {
u <- runif(n = 1)
fn_val <- trunc - log(u) / p

} else {
g <- pALD(q = trunc, mu = 0, sigma = 1, tau = tau)
if (y == 1) {
min <- g
max <- 1
} else {
min = 0
max = g
}

u <- runif(n = 1)

u <- min + (max - min) * u

fn_val <- qALD(p = u, mu = 0, sigma = 1, tau = tau)
}

fn_val <- mu + fn_val * sigma

+ + + + + + + ++F A+ A+t + o+

-

where pALD and gALD are the distribution function and the cumulative distribution function
of the ALD respectively (see Yu and Zhang 2005).

However, from version 2.0 of the bayesQR package on, a Gibbs sampling algorithm is used
to estimate the model parameters. As shown in Section 4.1, this algorithm relies on the
location-scale mixture of normals. For the simulation of the truncated ALD, we also can rely
on this representation. That is, conditional on the mixing parameter v, the problem simplifies
to simulating from the truncated univariate normal distribution.

V(i lwiB, i vi, 0,w) = {I(y; > 0)I(yi = 1) + I(y; < 0)I(y; =0)}
x N(mean = ;] 8 + 0v;, sd = wy/m;) (20)

We implemented the algorithm of Geweke (1989) in Fortran to generate draws from the trun-
cated normal distribution.

Once the latent y* are sampled, we can condition on these values. Consequently, for the
parameters v and S we can use the same sampler as explained in Section 4.1. Because of
identification issues explained in Section 3.2, we set ¢ = 1 and thus this parameter is not
sampled. Also note that the sampler requires to invert a variance-covariance matrix. We
efficiently implemented this in the Fortran code by linking to the LAPACK library (Anderson
et al. 1999). The inverse of a positive definite matrix can be accomplished by first calling
dpotrf, i.e., calculating the Cholesky root of that matrix. Next, the subroutine dpotri
calculates the inverse of a positive definite matrix where the Cholesky factorization is given.

11
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4.3. MCMC for adaptive lasso variable selection

Al-Hamzawi et al. (2012) describe how particular prior distributions lead to a very efficient
Gibbs sampling algorithm for the Bayesian adaptive lasso model. Their choice of prior dis-
tributions is again motivated by the location-scale mixture of normals representation of the
asymmetric Laplace, both in the likelihood as in the prior. The penalty term in Equation 11,
that is the Laplace prior on §, can be rewritten as:

k
$(Blo N = [ 5 expf-ni} 1} (21)

with n = \/o.

If we put an inverse gamma prior on o and gamma priors on 77]2-, we get the following posterior
distributions (see Al-Hamzawi et al. 2012 and Kozumi and Kobayashi 2011 for more details
on the derivations of the posterior distributions).

The full conditional posterior for 3; is:

n

1 i — w8 — Ovy)* ;
¢</3j|u,sj,a,n>o<exp{—2z(y S }xp{—f]} (22)

i=1

Define gip = y; — Ov; — Z§=1,j¢p xi;f; and 63-_2 = (ow?)71Y0" a;?jui_l + s,;l and fi; =
2

07 (ow?) ™I Gijwiju; . The full conditional posterior for B now is the normal distribution

N(f;, 7).
The full conditional posterior for s; is:

sl x esn {0, + 21 . 23)

This is again a Generalized Inverse Gaussian distribution. In Section 4.1 it was discussed how

we can simulate from this distribution.

The full conditional posterior for n? is:
Zkﬂ Sj
D (17 [s5) ocn%exp{— <32+d U (24)

This is a gamma distribution with shape parameter (14 ¢) and rate parameter 25:1 55/24+d.

Finally, the full conditional posteriors v; and ¢ are identical to the posteriors of v; and o in
Section 4.1 and thus need no further explanation.

Note that these conditional distributions are the same in the context of binary quantile re-
gression with adaptive lasso. The only difference is that in this case, we have to work with
the simulated latent y* and for identification issues o is set to unity (see Section 4.2). Apart
from that, the above conditional posterior distributions are unchanged. Also, implementing
this adaptive lasso extension in Fortran causes no difficulties that are not yet described above.
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Also note that all MCMC samplers of the quantile regression models that can be invoked with
bayesQR, call a Fortran subroutine intprint that is used to print some information about the
current status of the sampler to the screen. The subroutine intprint does not come with
the bayesQR package, but is available trough R. It is the preferred way to print from within
a Fortran subroutine to the console. The behavior of this subroutine can vary depending on
the operating system and the IDE that is used to run R. Normally, every 500 iterations the
iteration number is printed to the screen. However, it is possible that some users only see the
information printed to the screen once the MCMC estimation is finished.

4.4. The prior function for creating informative priors

The prior function creates an S3 object of class ‘bayesQR.prior’ that contains all necessary
prior information to estimate a Bayesian quantile regression model. If this object is omitted
in the bayesQR call, then a standard vague prior will be used. However, in some situations the
researcher might have relevant prior information that he/she wants to include in the model.
The prior function makes sure this information is passed in a correct way to the MCMC
algorithm.

The function basically creates a list of prior parameters, checking if the specified parameter
names make sense for the given problem and making sure that each parameter has the correct
dimensions. If a prior parameter is omitted from the function call, then this parameter will
get a default value.

For example, the following prior states that the researcher’s uncertainty about § in a quan-
tile regression model with continuous dependent variable and without adaptive lasso can be
expressed as a normal distribution with g = —5 and o2 = 4:

R> prior(y ~ X, alasso = FALSE, beta0O = rep(-5, ncol(X) + 1),
+ VO = 4 * diag(ncol(X) + 1))

4.5. Functions for post-processing of ‘bayesQR’ objects

The core of the bayesQR package consists of the four quantile regression routines that can be
called through bayesQR as discussed above. However, the package also contains some functions
that perform recurring tasks in the context of quantile regression, such as estimating a series
of quantile regressions, doing some checks on the MCMC output, create quantile plots, etc.
All these functions are written in pure R.

Estimating a series of quantile regressions

One of the advantages of quantile regression is that a more complete view of the response
distribution can be obtained. To get this more complete view, one has to estimate several
quantile regressions with varying quantile of interest. Also, to calculate the predicted proba-
bilities in the context of binary quantile regression the results of a sequence of binary quantile
regressions is required. By specifying a vector of quantiles in the bayesQR function, an S3
object of class ‘bayesQR’ will be created containing all relevant information of all estimated
quantiles. The results are then saved in list format and can then be processed further with
other functions such as summary, plot and print.

13
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For example, the following code would save the results of three quantile regressions (first
quartile, median and third quartile) in the object out.

R> out <- bayes{R(y ~ X, quantile = c(0.25, 0.5, 0.75), alasso = FALSE)

It is important to understand that in this process, no convergence checks are performed. As
always, it is the user who should evaluate the convergence of the MCMC chain. Note that,
when estimating a series of quantile regressions, the number of MCMC chains that have to
be evaluated can grow fast. Nevertheless, it is important to always make sure that enough
MCMC iterations were performed. A visual convergence check can be done, for example, with
the traceplots available trough the plot function.

Summarize the results of bayesQR with summary

summary is an S3 method that summarizes the output object of the bayesQR function. The
output of the function is an S3 object of class ‘bayesQR.summary’. Basically, it is a list con-
taining information about the MCMC algorithm, the quantile(s) that was (were) estimated,
the names of the variables in the model and the number of burn-in draws that were discarded.
Also, for every estimated parameter, the Bayes estimate (i.e., the posterior mean) and the 95%
posterior credible interval is calculated. When normal.approx = TRUE, the summary function
will also provide the adjusted 95% credible interval based on the normal approximation of
the posterior (see Section 4.1). The user has the option to discard a number of burn-in draws
or to change the width of the credible interval. When the input object contains information
about more than one quantile, the user also can choose which quantiles to summarize. By
default all quantiles will be summarized. The S3 method print can than be used to output a
nicely formatted output of the ‘bayesQR.summary’ object. A simple function call is as follows:

R> summary(bayes@R.object)

The R code underneath the function contains no real difficulties. The code starts with some
checks on the input arguments. Then, the code loops through the input object and calculates
the summary statistics. The results are then passed to the output object.

Produce traceplots, quantile plots or posterior histograms with plot

plot is an S3 method that produces traceplots, quantile plots or posterior histograms based
on the estimates obtained by the bayesQR function. A traceplot shows the evolution of the
MCMC draws over the iterations and is often used as a first visual check of the convergence
of the MCMC chains. A posterior histogram gives a graphical representation of the marginal
posterior distribution of the model parameter based on the MCMC draws. When the normal
approximation was requested, the posterior histogram will be overlaid with the density of the
normal approximation of the posterior. A quantile plot shows how the value of the regression
parameter changes over a range of quantiles. In quantile plots, also the associated credible
interval is plotted for every quantile. Again, when the normal approximation was requested,
the quantile plot will use the adjusted 95% credible interval for visualizing the uncertainty.
Obviously, the more quantiles are estimated, the more precise the resulting plot will be.

The function leaves the option to change some default parameters. For example, the number
of burn-in draws that have to be discarded can be adjusted, as well as the width of the credible
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intervals. That is, the main title, labels of the axes and limits of the horizontal axis can be
adjusted. A simple function call for a traceplot and quantile plot respectively, is as follows:

R> plot(bayesQR.object, plottype = "trace", burnin = 1000)
R> plot(bayesQR.object, plottype = "quantile", burnin = 1000)

The R code underneath the function works as follows. As always, the code starts with some
checks on the input arguments. The main input argument is an output object of the bayesQR
function. Then, the code loops through the input object, that is an S3 object of class
‘bayesQR’. For every estimated quantile and for the desired element of 3, the Bayes esti-
mate and the corresponding credible interval is calculated and saved in a temporary matrix.
Next, these numbers are plotted and linked by straight lines. Finally, some aesthetic opera-
tions are performed, such as representing the credible intervals with a light gray band. The
latter is done by considering the credible intervals together with the z-axis as the edges of a
polygon. The R function polygon is then used to fill the surface of the polygon.

Calculate predicted probabilities with predict

To obtain the predicted probabilities of the binary quantile regression model the approach of
Kordas (2006) is used. This approach also was applied in Miguéis, Benoit, and Van den Poel
(2013) in the context of credit scoring. From the definition of the 7th quantile model we have
that P(y* > x/ 8) = 1 — 7. The following equation then gives the predicted probability:

1
Plys = 1], B,7) = /0 I(e] B, > 0)dr. (25)

Kordas (2006) proposes to approximate this conditional probability of a grid of quantile
estimates, e.g., # = {0.05,0.1,...,0.95}. Now, the element | of © has to be found where
©; < 0 and ®l+1 > 0:
# = argmin{7 : ; B > 0}. (26)
TEO

Then, an interval estimate of the conditional probability of success is given by:
P(yl = 1|xla577ﬁz) = [1_72171 _727;,71)7 (27)

where 7; _1 denotes the element in © immediately preceding 7;.

For example, if the following grid of quantiles is estimated, § = {0.05,0.1,...,0.95}, one
should calculate the value of .%‘ZT B for every quantile in ©. Then, if this value for observation
1 is negative for quantiles less than or equal to 0.6 and positive for quantiles 0.65 and above,
then 7 = 0.65 and prediction interval is [0.35,0.70). If the value x; 3 is negative for all
estimated quantiles, then the predicted interval is (0,0.05). Similarly, the predicted interval
is [0.95,1) if the value z, 3 is positive for all estimated quantiles.

The S3 method predict implements this methodology. The function takes the output argu-
ment of the bayesQR function as input. Again, the code starts with some checks on the input
arguments. Obviously, predict will only calculate predicted probabilities for binary quantile
regression models. Note that the more estimated quantiles are present in the ‘bayesQR’ ob-
ject, the smaller the predicted interval in Equation 27 will be. However, the predict function
will not return the interval as such, but the middle value of the interval. It is again possible

15
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to discard a number of burn-in draws in the input object. Finally, a matrix of predictor
variables has to be provided. It is clear that this matrix should contain the same variables as
the matrix used to estimate the parameters. The output is a vector containing the predicted
probabilities.

5. Data illustrations

In this section, it will be shown how to apply the methods and functions contained in the
bayesQR package to real life data. Two datasets are included in the package, that is one
dataset with a continuous dependent variable (i.e., prostate cancer data) and one dataset with
a binary dependent variable (i.e., customer churn data). This section is organized as follows:
First, the quantile regression models for continuous dependent variables are demonstrated
on the prostate cancer dataset. Next, the quantile regression models for binary dependent
variables are applied to the customer churn dataset. In both examples, it will be shown how to
use the “support functions”, for example, summarizing and plotting the results or calculating
the predicted probabilities.

5.1. Example 1: The prostate cancer dataset

The prostate cancer dataset was first reported by Stamey et al. (1989) and was analyzed
in many subsequent studies, for example Tibshirani (1996), Al-Hamzawi et al. (2012), etc.
This dataset consists of the medical records of 97 male patients who were to receive a radical
prostatectomy. The response variable is the level of prostate antigen (1psa) and the dataset
contains eight predictor variables. These predictor variables include: log of cancer volume
(1cavol), log of prostate weight (lweight), age, log of the amount of benign prostatic hy-
perplasia (1bph), seminal vesicle invasion (svi), log of capsular penetration (1cp), Gleason
score and percentage of Gleason scores 4 or 5 (pggé5).

We start by analyzing this dataset with the bayesQR function without adaptive lasso. For
numerical stability it is better to first standardize the predictors as well as the dependent
variable. An intercept is desired, and will automatically be included using the formula
notation. In the current example, the median is modeled. Note that the “median” is the
default quantile and that by default “adaptive lasso” is not used, so specifying those parameters
is not necessary. Also, since the “normal approximation” of the posterior is the default, this is
automatically calculated without explicitly requesting it. The prior is not specified here and
this will result in the default dispersed prior on the model parameters. The number of MCMC
iterations is set to 5000. Posterior convergence checks will show whether this is enough to find
convergence in the MCMC chain. If not, this value has to be increased. Finally, all arguments
have to be passed to the bayesQR function.

R> library("bayesQR")
R> data("Prostate", package = "bayes@R")
R> str(Prostate)

'data.frame': 97 obs. of 9 variables:
$ lcavol : num -0.58 -0.994 -0.511 -1.204 0.751
$ lweight: num 2.77 3.32 2.69 3.28 3.43 ...
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Figure 1: Traceplots of the MCMC chains for intercept (left panel) and log of the cancer
volume (1lcavol, right panel) for quantile regression without adaptive lasso.

$ age : num 50 58 74 58 62 50 64 58 47 63 ...

$ 1bph : num -1.39 -1.39 -1.39 -1.39 -1.39 ...

$ svi :num 0000000000 ...

$ lcp :num -1.39 -1.39 -1.39 -1.39 -1.39 ...

$ gleason: num 6 6 76 6 6 6 6 6 6 ...

$ pggd5 :num 00200000000 ...

$ lpsa : num -0.431 -0.163 -0.163 -0.163 0.372 ...

R> y <- Prostate$lpsa

R> y <- scale(y)

R> X <- Prostatel[, 1:8]

R> X <- scale(X)

R> out <- bayes@R(formula = y ~ X, quantile = 0.5, alasso = FALSE,
+ ndraw = 5000)

On a recent computer, this code executes in less than a second. During execution, information
is plotted to the console about the status of the current iteration. This can be useful in large
scale applications that take a long time to estimate. Note again that on some operating
systems or IDE’s this information will only be displayed when execution has finished. In that
case, this feature is otiose.

A visual check about the MCMC convergence can be done by inspecting the traceplots. The
plot routine provides this functionality with a single command. To see the next traceplot

Uy

the user has to type “y” and press return. Typing “n” will bring the user back to the console.
R> plot(out, plottype = "trace")

Figure 1 gives the traceplots of the intercept and the log of the cancer volume. The traceplots
of the other variables are very similar, so we do not show the other six traceplots here. The
plots show that the MCMC sampler quickly moves to the stationary distribution and mixes
very well. Many formal checks are developed to formally check the convergence of MCMC
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Figure 2: Posterior histograms for log of the weight (lweight, left panel) and age (age, right
panel) for quantile regression without adaptive lasso. The histograms are overlaid with the
density of the normal approximation of the posterior distribution.

chains. However, these tools are outside the range of the bayesQR package. The well-known
R package coda (Plummer, Best, Cowles, Vines, Sarkar, and Almond 2016; Plummer, Best,
Cowles, and Vines 2006) serves this goal very well.

The marginal posterior distributions can be visualized by plotting the histograms of the
simulated draws. The plot routine provides this functionality with a single command. As
was the case for the traceplots, to see the next histogram the user has to type “y” and press

return. Typing “n” will bring the user back to the console.
R> plot(out, plottype = "hist", burnin = 1000)

As an example, Figure 2 gives the posterior histograms of the log of the weight and age. To
make sure only draws from the stationary posterior distribution are plotted, one thousand
draws were excluded as burn-in draws.

Often, the posterior distribution has to be summarized in a limited number of key statistics.
The following command gives us the Bayes estimate of the posterior and the posterior 80%
credible intervals. Nevertheless the traceplots showed that the effect of the initial values of
the MCMC chains wears off very fast, we decide to reject the first 1000 draws as burn-in
draws.

R> results <- summary(out, burnin = 1000, credint = c(0.1, 0.9))
R> results

The above function call prints the following information to the screen:

Type of dependent variable: continuous
Lasso variable selection: no

Normal approximation of posterior: yes
Estimated quantile: 0.5
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Lower credible bound: 0.1
Upper credible bound: 0.8
Number of burnin draws: 1000
Number of retained draws: 4000

Summary of the estimated beta:

Bayes Estimate lower upper adj.lower adj.upper
(Intercept) -0.00798 -0.16890 0.0993 -0.354 0.220
Xlcavol 0.57760 0.34529 0.7333 0.083 0.902
Xlweight 0.22568 0.00718 0.3756 -0.313 0.579
Xage -0.14612 -0.33120 -0.0236 -0.541 0.114
X1bph 0.16455 -0.03626 0.2978 -0.289 0.462
Xsvi 0.28937 0.04305 0.4470 -0.264 0.653
Xlcp -0.17041 -0.47730 0.0318 -0.824 0.259
Xgleason 0.03414 -0.23443 0.2013 -0.524 0.401
Xpggdb 0.14994 -0.13566 0.3417 -0.467 0.555

Printing a ‘bayesQR.summary’ object first gives some general information about the model
that was estimated. Then, the estimated parameters are summarized. The first column sum-
marizes the posterior distribution in one point estimate, i.e., the Bayes estimate or posterior
mean. The second and third column give the 80% credible interval and can be interpreted
as “the probability is 80% that the true value of the parameter is in this interval”. When the
“normal approximation” is requested (which is the default option), then the last two columns
give the adjusted credible intervals based on the normal approximation of the posterior dis-
tribution. The user can change the width of this credible interval, for example, by default the
function would return the conventional 95% credible interval.

Next, we will estimate a quantile regression model with adaptive lasso penalty on the same
dataset. The only thing that has to be changed is set the logical indicator for the adaptive
lasso to TRUE. Note that the quantile should not be specified because we are interested in the
(default) median regression. Again no prior object is passed to the bayesQR function, and
this implies that the researcher agrees on the default vague prior. As always, the first thing
to do after invoking one of the quantile regression routines is to check convergence.

R> out2 <- bayes@R(formula = y ~ X, alasso = TRUE, ndraw = 5000)
R> plot(out2, plottype = "trace")

Again only the first two traceplots are shown here because these are representative for the rest
of the plots (see Figure 3). Also the MCMC output for the median regression with adaptive
lasso variable selection function shows good convergence and mixing. The initial values wear
off very fast and quickly the chain stabilizes on the stationary distribution.

The real strength of quantile regression is that it makes it possible to investigate the entire
response distribution and not only the expected mean (as OLS does). The entire response
distribution can be analyzed by estimating a whole family of quantile regressions. This can
easily be done by supplying a vector of quantiles to the bayesQR function. In the current
example, the following sequence of quantiles will be estimated: 7 = {0.05,0.1,...,0.95}.
Also, a prior object is again not specified and thus the standard vague prior will be used.
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Figure 3: Traceplots of the MCMC chains for intercept (left panel) and log of the cancer
volume (1lcavol, right panel) for median regression with adaptive lasso.
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Figure 4: Traceplots of the MCMC chains for Gleason score (left panel) and percentage
Gleason scores 4 or 5 (pgg4a5, right panel) for quantile 7 = 0.05 using adaptive lasso.

R> quantvec <- seq(0.05, 0.95, 0.05)
R> out3 <- bayes@R(formula = y ~ X, quantile = quantvec, alasso = TRUE,
+ ndraw = 5000)

Executing this code will estimate 19 quantile regressions. Again, information is printed to
the console about the current status of the procedure. We have now estimated 19 times 9 3
coefficients. It might be tempting to skip the investigation of the MCMC output, but it is
very important not to do so.

R> plot(out3, plottype = "trace")

In the more extreme quantiles, that is the very low or very high quantiles, it is possible
that the MCMC chain converges slower than in the middle quantiles. This can be seen from
Figure 4.
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Clearly, the MCMC chains in Figure 4 are less thick or dense compared to the ones in Figure 1
or Figure 3. This means that the chains suffer more from autocorrelation and that more draws
are needed to fully cover the posterior distribution. In this case the situation does not seem
very problematic, but the user should always assess if there is a problem or not. Usually,
increasing the number of MCMC draws resolves the issue. Again, note that the coda R
package contains more formal checks for MCMC output (Plummer et al. 2016).

Now that we have assessed the quality of our MCMC chains, we can use the output object of
the bayesQR procedure to create the quantile plots. The plot procedure makes this relatively
straightforward. It simply takes the output object of the bayesQR procedure as input and
requires the index of 8 of interest to be specified. Additional parameters that can be passed
to the routine are the number of burn-in draws to discard, the labels of the horizontal of
vertical axis or the width of the credible interval. The following code generates the plot for
the intercept (the first element of j3):

R> plot(out3, var = 1, plottype = "quantile", burnin = 1000,
+ ylab = "intercept")

Often, it is interesting to compare the quantile regression results with the results of OLS. The
following code calculates and prints the OLS estimate of the prostate cancer dataset.

R> out4 <- Im(y ~ X)
R> coef(out4)

Once the quantile graph is plotted, some simple statements allow to add additional informa-
tion to the plot. For example, here we will add a full line to indicate zero and a dotted line
to indicate the OLS estimate. The following code does this for the first quantile plot.

R> abline(h = 0, 1ty = 1)
R> abline(h = coef(out4)[1], 1ty = 3)

Figure 5 presents the quantile plots of four variables in the model. To save space, not all
nine plots are printed here. The following code generates the quantile plots for four selected
variables:

R> oldpar <- par(mfrow = c(2, 2))

R> for (i in c(1, 3, 4, 6)) {

+ plot(out3, var = i, plottype = "quantile", burnin = 1000)
+ abline(h = 0, 1ty = 1)

+ abline(h = coef(out4)[i], 1ty = 3)

+ }

R> par(oldpar)

The intercept in Figure 5 takes on very different values for the different quantiles. For the
lower quantiles the intercept is negative, while for the higher quantiles it is positive. As a
result, both the OLS estimate as well as the median estimate are close to zero. This means
that for average values of the predictors, the expected value of the log of prostate-specific
antigen for the lower quantiles is clearly below average (and vice versa). This is very typical
behavior of the intercept in quantile regression. According to the OLS estimate, the predictor
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Figure 5: Quantile plots for the intercept (upper left panel), age (upper right panel), log of the
weight (lower left panel) and seminal vesicle invasion (lower right panel) for quantile regression
with adaptive lasso. Dotted lines represent the OLS estimate. The shaded area gives the
adjusted credible intervals as the parameters were estimated with the default normal . approx
= TRUE option.

age has a negative effect on the dependent variable. This is also true for the median regression
estimate. However, the full quantile plot indicates that this variable is not distinguishable
from zero for almost the entire quantile range. This is also true for the other two variables in
the plot. Clearly, the added value of using quantile regression for these predictors is rather
limited.

5.2. Example 2: The customer churn dataset

For this example, the dataset Churn contained in the bayesQR package is used. This dataset is
a stratified random sample from all active customers, at the end of June 2006, of a FKuropean
financial services company. The dataset is a small subset of 400 observations of the dataset
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analyzed in Benoit and Van den Poel (2013). The dependent variable in this dataset is
the churn behavior of the customers in the period from 2006-07-01 until 2006-12-31. Here
a churned customer is defined as someone who closed all his/her bank accounts with the
company.

The dataset contains a small set of four predictor variables. That is, gender with male
coded as one (gender), social class score where a higher score means a higher social class
(Social_Class_Score), length of relationship denoting the number of days since first pur-
chase (lor) and recency defined as the number of days since last purchase (recency). Note
that all predictor variables are standardized both for numerical stability as well as confiden-
tiality considerations.

The following code loads the customer churn dataset into memory and displays its contents.
The code for estimating a binary quantile regression model is very similar as in the previous
example. The bayesQR function automatically detects whether the dependent variable is
binary or continuous and chooses the correct algorithm. Again, we will not specify any prior
values so that the default vague priors will be used. Note that the dot in the formula means
“all variables except the specified dependent variable” and the “0 +” means that the model
should not have an intercept.

R> data("Churn", package = "bayes{R")
R> str(Churn)

'data.frame': 400 obs. of b5 variables:

$ churn :int 0000000000 ...

$ gender :int 1011101101 ...

$ Social_Class_Score: num -0.116 -0.313 -1.325 1.967 1.455 ...

$ lor :num -1.0892 1.183 -0.8462 0.0869 -1.1666 ...
$ recency :num -0.721 3.634 -0.428 -0.536 -0.673 ...

R> outb5 <- bayes@R(churn ~ 0 + ., data = Churn, quantile = 0.05,
+ ndraw = 5000)
R> plot(outb5, plottype = "trace")

As with the other quantile regression functions, during execution of the algorithm, information
is printed to the console about the progress of the routine. As always, it is important to check
the convergence of the MCMC chains. The left panel of Figure 6 gives the traceplot of
the variable gender using 5000 iterations and estimating the fifth percentile. Although, the
MCMC chain finds the stationary distribution very fast, the MCMC chain is rather thin.
This indicates that the chain suffers from autocorrelation, as often happens in latent variable
models and even more when estimating extreme quantiles. Again, the coda R package contains
some more formal checks for MCMC chains (Plummer et al. 2016). This can be solved by
increasing the number of MCMC iterations. The right panel of Figure 6 gives the traceplot of
the same variable, but now using 50000 iterations and keeping every tenth draw. This shows
how increasing the number of MCMC draws increases the quality of the chain.

R> outb5 <- bayes@QR(churn ~ 0 + ., data = Churn, quantile = 0.05,
+ ndraw = 50000, keep = 10)
R> plot(out5, plottype = "trace")
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Figure 6: Traceplots of MCMC chain for gender using 5000 iterations (left panel) and gender
using 50000 iterations (keeping every 10th draw, right panel) for binary quantile regression
with 7 = 0.05 and no adaptive lasso.

Default vague prior Informative prior
Bayes est. Lower  Upper Bayes est. Lower Upper
gender —0.1734 —-0.507 0.170 7.29 6.75 7.82
Social_Class_Score 0.0184 —0.204 0.238 5.63 5.15 6.17
lor —0.7961 —1.165 —0.452 4.03 3.51 4.54
recency 0.6525 0.375 0.962 6.70 6.12 7.32

Table 1: Output of summary: Bayes estimate and 95% credible interval of binary median
regression with a vague versus an informative prior on the Churn dataset.

The following code estimates median binary regressions on the churn dataset. Two output
objects are created, one with the default vague prior on § and one with an (unrealistic) infor-
mative prior on 5. For the unrealistic prior, we will assume that the researcher’s uncertainty
about 3 can be represented as a normal distribution with = 10 and variance o2 = 0.1.

R> myprior <- prior(churn ~ 0 + ., data = Churn, alasso = FALSE,
+ beta0 = rep(10, 4), VO = diag(4) * 0.1)

R> out6 <- bayesQR(churn ~ 0 + ., data = Churn, ndraw = 5000)
R> out7 <- bayes@QR(churn ~ 0 + ., data = Churn, prior = myprior,
+ ndraw = 5000)

The plot function can be used to first check the MCMC chains and the summary function to
print the Bayes estimates and the posterior credible intervals.

R> plot(out6, plottype = "trace")
R> plot(out7, plottype = "trace")
R> summary (out6)
R> summary (out7)

Table 1 gives the output of printing the summary objects of both models. It reveals large
differences between both summary results. For the default vague prior, only lor and recency
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have most of their posterior mass away from zero. In contrast, for the unrealistic informative
prior the results show that the Bayes estimates are pulled strongly to the prior expectations.
This results from the fact that the prior has most of its mass around the value of 10. It is
clear that the researcher should always think about the prior that is used in the analysis to
avoid undesired effects. Also it often is a good practice to check the robustness of the results
over different (realistic) prior values.

According to the Bayesian paradigm, everything one can know about the parameters of in-
terest is contained in the posterior distribution. This means that if a researcher is interested
in certain hypotheses about the parameters, he/she has to investigate the posterior distribu-
tion. If, for example, one is interested in the probability that the regression parameter for
Social Class Score is greater than zero, P(fsocial Class Score > 0), then this probability can be
approximated by calculating the relative number of posterior draws for Bsocial Class Score that
are larger than zero.

R> mean(out6[[1]]$betadraw[, 2] > 0)
[1] 0.5704

In a similar way the probability that one parameter is larger than another can be calculated.
For example, if one is interested in the probability that the regression parameter for gender
is greater than the regression parameter for Social Class Score, P(Bgender > Bsocial Class Score)
then this probability can be approximated by calculating the relative number of posterior
draws for Bgender that are larger than the posterior draws for Ssocial Class Score-

R> mean(out6[[1]]$betadraw[, 1] > out6[[1]]$betadraw[, 2])
[1] 0.1678

Following the same reasoning, the posterior distributions of the parameters for different quan-
tiles can be compared. That is, one can approximate the probability that the regression pa-
rameter for length of relationship estimated for the first quartile is larger than that for the
third quartile by calculating the relative number of posterior draws for S (7 = 0.25) that
are larger than the posterior draws for S, (7 = 0.75).

R> out8 <- bayes@R(formula = y ~ X, quantile = c(0.25, 0.75), ndraw = 5000)
R> mean(out8[[1]]$betadraw[, 3] > out8[[2]]$betadraw[, 3])

(1] 0.61

It is important to note, however, that due to the specific nature of the Bayesian ALD approach
these calculations should be interpreted with caution. The discussion in Section 6 treats this
issue in more detail.

The full advantage of quantile regression becomes clear when estimating a whole family of
quantile regressions. Again, this can simply be done by specifying a vector of quantiles in the
bayesQR function. Again, the quantiles are estimated over the range 7 = {0.05,0.1,...,0.95}.
As always, the first thing to do after running the bayesQR procedure is to check the quality
of the MCMC output. If the chains converged as expected, we can have a closer look at the
quantile plots.
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Figure 7: Quantile plots for age (upper left panel), length of relationship (upper right panel),
social class score (lower left panel) and recency (lower right panel) for binary quantile regres-
sion without adaptive lasso.

R> out9 <- bayes@R(churn ~ 0 +
+ ndraw = 5000)

R> plot(out9, plottype = "trace")

R> oldpar <- par(mfrow = c(2, 2))

R> for (i in 1:4) {

+ plot(out9, var = i, plottype = "quantile")
+ }

R> par(oldpar)

., data = Churn, quantile = quantvec,

Figure 7 shows the quantile plots for the variables in the Churn dataset. The variable age
is insignificant for the expected median response, but the quantile plots show that is has a
negative effect for the lower quantiles and a positive effect for the higher quantiles. This shows
that age is a variable that should not be neglected, a conclusion that is totally missed when
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Binary QR Logit
Predicted False True False True
Actual False 102 98 102 98
True 49 151 48 152

Table 2: Confusion matrices for binary quantile regression without adaptive lasso versus
logistic regression on the Churn dataset.

focusing on the expected value of the response. The social class score of the customer turns
out not to be different from zero for the entire quantile range. The length of relationship has
a negative effect on the entire quantile range, however, the effect becomes more pronounced
for the higher quantiles. The same is true for recency, but with opposite sign. This variable
has a positive effect on churn and becomes more and more important for higher quantiles.

Finally, the bayesQR package also contains a function to calculate the predicted probabilities
for binary quantile regression methods, i.e., the S3 method predict. This function takes
the output object of the bayesQR function as input, that is an S3 object of class ‘bayesQR’,
together with a matrix of predictor variables. Note that for a meaningful interpretation of
the predicted probabilities, the results of at least 9 quantiles should be used (see Section 4.5).
Also, it is clear that the interpretation of the predictor matrix should be the same as the
matrix used to estimate the model parameters. Finally, it is possible to discard a number of
burn-in draws when calculating predicted probabilities.

The following code calculates the predicted probabilities on the customer churn dataset using
the series of quantile regressions that were estimated above. In addition, a simple logit re-
gression is estimated and the predicted probabilities are also saved in a vector. The predictive
performance of both models is then compared using the confusion matrices.

R> pred <- predict(out9, X = Churn[, 2:5], burnin = 1000)
R> table(Churn$churn, as.numeric(pred > 0.5))

0 1
0 102 98
1 48 152

R> mylogit <- glm(churn ~ 0 + ., data = Churn, family = binomial(logit))
R> table(Churn$churn, as.numeric(mylogit$fit > 0.5))

o 1
0 102 98
1 48 152

Table 2 compares the confusion matrices of both approaches. The performance of both meth-
ods is very similar on this dataset. The logit model and the binary quantile regression method
lead to exactly the same confusion matrix. It should be noted that it is not necessarily the
case that the predictive performance of both methods is similar in other applications (see
Miguéis et al. 2013).
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6. Discussion

As the literature study showed, Bayesian quantile regression based on the ALD has been
investigated intensively. Nevertheless, a number of shortcomings are worthwhile discussing.
Most notably is the discussion of the deliberate misspecification of the likelihood on the
implications for posterior consistency and the coverage probabilities of the resulting posterior
distributions. This issue has been discussed in detail in Section 3.4.

Another drawback of the described approaches is that, as quantiles are fitted separately, the
conditional quantile curves are not smooth and the fitted regression lines may cross, which
violates the basic probabilistic rule and causes problems for inference in practice. The usual
approach to deal with this problem is to simultaneously fit several quantiles (e.g., Taddy
and Kottas 2010). These approaches are not implemented in the package as many of these
methods give raise to new problems in terms of computation or data requirements (Sriram
et al. 2012). However, the applied researcher will typically be interested in well separated
quantiles and then quantile crossing is less likely to occur.

Finally, it should be noted that in making inferences about the relation between 3(7) and
B(12) (e.g., P(B(m1) > B(72))) the methods presented in this manuscript assume independence
of B(7) and S(12). Whenever this assumption is hard to justify, the proposed methods are
not well suited to conduct inference about the relation between §(71) and B(72). However,
it remains unclear how problematic a possibly incorrect assumption of independence is. An
interesting path for further research is to investigate to what extent this leads to biased
inferences of the type P(8(71) > B(m2)).

The goal of the bayesQR package is to provide a fast and high-quality implementation of the
Bayesian ALD approach to quantile regression. Still, it is important that researchers using
the bayesQR package are aware of these limitations when using this software and drawing
conclusions from it.

7. Conclusions

This paper presents the R package bayesQR for Bayesian estimation of quantile regression.
The package contains methods for both continuous as well as binary dependent variables.
For both types of dependent variables, the user can choose between normal estimation and
estimation with adaptive lasso penalty. The MCMC estimation makes use of an efficient
Gibbs sampling algorithm. In addition, the MCMC part of the procedures is programmed in
Fortran to speed up the computational time. The latter can be regarded as one of the main
advantages of this implementation.

Next to the core algorithms of the package, also some support functions are provided. That
is, functions to analyze the MCMC chains, summarize the results, estimate a whole family of
quantile regressions, plot the quantile processes or plot the MCMC trace or marginal posterior
histograms. For the binary dependent variables, also a function is provided that calculates
the predicted probabilities.

In data examples it was shown that the bayesQR package is a convenient way to estimate
quantile regressions using the Bayesian framework. Future versions of the package will focus
on computational efficiency and possibly other types of data will be supported too (e.g.,
Poisson, etc.).
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