
JSS Journal of Statistical Software
April 2017, Volume 77, Code Snippet 1. doi: 10.18637/jss.v077.c01

A SAS Macro for Covariate-Constrained
Randomization of General Cluster-Randomized and

Unstratified Designs

Erich J. Greene
Yale University

Abstract

Ivers et al. (2012) have recently stressed the importance to both statistical power
and face validity of balancing allocations to study arms on relevant covariates. While
several techniques exist (e.g., minimization, pair-matching, stratification), the covariate-
constrained randomization (CCR) approach proposed by Moulton (2004) is favored when
clusters can be recruited prior to randomization. CCRA V1.0, a macro published by
Chaudhary and Moulton (2006), provides a SAS implementation of CCR for a particular
subset of possible designs (those with two arms, small numbers of strata and clusters,
an equal number of clusters within each stratum, and constraints that can be expressed
as absolute mean differences between arms). This paper presents a more comprehensive
macro, CCR, that is applicable across a wider variety of designs and provides statistics de-
scribing the range of possible allocations meeting the constraints in addition to performing
the actual random assignment.

Keywords: constrained randomization, restricted randomization, balanced allocation, covari-
ate balance, cluster-randomized trials, stratified group-randomized trials, SAS.

1. Introduction
In a recent methodological review of allocation techniques for cluster-randomized trials,1 Ivers
et al. (2012) stressed the importance to both statistical power and face validity of balanc-
ing allocations to study arms on relevant Covariates. While several techniques exist (e.g.,
minimization, pair-matching, stratification), their review favored the covariate-constrained

1Some authors, e.g., Ivers et al. (2012), prefer the term cluster while others, e.g., Moulton (2004), prefer
the term group. While this paper uses cluster, either a cluster or a group is essentially a unit to be randomized,
so the two terms can be used interchangeably in the context of this macro.

http://dx.doi.org/10.18637/jss.v077.c01

2 A General Covariate-Constrained Randomization Macro for SAS

randomization (CCR) approach proposed by Moulton (2004) in situations where clusters can
be recruited prior to randomization and the research team has sufficient statistical support.
To date, the only published program for performing CCR is CCRA V1.0 by Chaudhary and
Moulton (2006). This macro can perform CCR under the following conditions: two study
arms, small numbers of strata and clusters per stratum (their macro attempts to produce
and test every possible allocation, which can quickly become a prohibitively large set), equal
numbers of clusters per stratum (assumed by their algorithm for calculating differences at the
overall level), and constraints that can be expressed as absolute differences between means of
continuous variables. However, many practical clinical trials where CCR might be desirable
may involve unequal-sized strata, differences in counts rather than means (e.g., balancing
clusters on binary or categorical variables) or expressed as a proportion of the overall or
stratum mean (rather than a fixed number), more than a few clusters and strata, and/or
more than two arms. The macro presented here, CCR, allows for all these possibilities, as
well as running more quickly and flexibly than CCRA V1.0 in large designs and providing
statistics describing the range of allowed allocations (as well as performing the actual random
assignment).
While the following discussion will generally be in terms of stratified cluster-randomized
designs, CCR can be used to randomize an unstratified design by coding each cluster to a
single, common stratum. It can also be used to randomize individuals rather than clusters;
from the macro’s perspective, a cluster is simply a unit to be randomized.

2. Algorithm
CCR’s program flow largely follows that of CCRA V1.0, with additional capabilities, checks,
and displays built in.

Step 0: Check macro arguments for validity and consistency.

Step 1: Generate ways of allocating clusters across study arms within each stratum, either
splitting clusters as evenly as possible across arms (the default) or using fixed user-
provided arm sizes. For small to moderate-sized clusters, complete sets can feasibly be
generated and checked, but in designs where strata contain large numbers of clusters,
random subsets (100,000 by default) of possible allocations are generated and checked
for each stratum. (The idea of employing random sampling to make CCR more tractable
has previously been proposed by Nietert, Jenkins, Nemeth, and Ornstein 2009.)

Step 2: Compute the sums and means of each covariate for each arm of every within-stratum
allocation under consideration. (Though some of these calculations are not necessary
for the stratum-level constraints – any one constraint is based on either the sum or the
mean – they also feed into calculating the overall constraints, which CCR allows to be
of a different type.)

Step 3: Eliminate allocations that fail to meet the stratum-level constraints and display the
distribution of between-arm differences in each stratum for each covariate. If the con-
straints cannot be met in one or more strata, exit gracefully.

Step 4: Generate a list of overall allocations to check. In a brute force approach (such as
CCRA V1.0’s implementation), stratum-level allocations would be combined factorially

Journal of Statistical Software – Code Snippets 3

to create a complete listing, but since the number of possible overall allocations grows
exponentially with the number of strata, the running time and memory requirements
can quickly grow infeasible in multi-stratum studies. Instead, CCR generates a random
subset (100,000 by default) of the possible overall allocations and then works with every
allocation in that sample; however, if the number of possible overall allocations is smaller
than the requested sample, CCR will fall back to brute force.

Step 5: Compute the sums and means of each covariate for each arm of every overall allocation
under consideration.

Step 6: Eliminate allocations that fail to meet the overall constraints or unbalance the total
number of clusters in each arm (unless unbalanced arm sizes were specified by the user)
and report the proportion of satisfactory allocations. If no overall allocations meet the
constraints, exit gracefully; otherwise display the distribution of overall differences for
each covariate.

Step 7: Count the number of times each pair of clusters appears together in the same arm.
Display descriptive statistics for how frequently clusters are constrained to the same
arm and list pairs of clusters that always, never, often (by default, in 75% or more
of satisfactory allocations), or rarely (by default, in at most 1

2·[# of arms] of satisfactory
allocations, i.e., half chance or below) appear in the same arm.

Step 8: Select one final satisfactory allocation, merge the arm assignments into the original
data set, and display the absolute and relative differences of each covariate between
each arm (calculated directly from the original data).

3. Using CCR
The syntax for a call to CCR is

%ccr(dataset, stratid, clustid,
covariates,
variable types,
stratum constraints,
overall constraints,
option1 = val1, ..., optionN = valN);

where dataset contains the input data, stratid names the variable identifying strata,
clustid names the variable identifying clusters, and covariates are the names of the covari-
ate variables. The items in any list argument (i.e., covariates, variable types, stratum
constraints, overall constraints, and certain optional parameter values) should be sep-
arated by spaces.

4 A General Covariate-Constrained Randomization Macro for SAS

This specifies that . . .
s1 arm totals must differ by no more than one (i.e., split as evenly as possible).
s98.6 arm totals must differ by no more than 98.6.
sf.5 arm totals must differ by no more than half the mean arm total.
m15 arm means must differ by no more than 15.
mf.2 arm means must differ by no more than 20% of the overall mean.
any any arm means or totals are acceptable.

Table 1: Examples of constraint syntax.

3.1. Choosing variable types

CCR recognizes two broad categories of variables, named d (mnemonic for dichotomous,
dummy, or discrete; intended for variables with few enough values for frequency tables to
be useful) and c (mnemonic for continuous but also appropriate for discrete, many-valued
interval measures; intended for variables where reporting descriptive statistics would be more
useful than listing every possibility). The choice does not affect the randomization process but
allows the user to choose how the distributions of differences are presented for each covariate.
Sample output for d covariates is presented in Tables 5 and 7 in Section 4.1; for c covariates,
see Tables 12 and 13 in Section 4.2.

3.2. Setting constraints

Each list of constraints in the CCR call must contain one constraint per covariate. Constraints
can vary on two dimensions: mean/sum and absolute/fractional. A mean constraint compares
covariates based on their averages in each arm, while a sum constraint compares covariates
based on their totals. In an absolute constraint, the difference (in means or sums) must be
less than the value specified, while in a fractional constraint, the difference must be less than a
specified fraction of the overall mean. In any case, the constraint always acts on the absolute
value of the difference.
A constraint’s type is specified by its leading characters. If the first character is m, the
constraint acts on means, while if the first character is s, the constraint acts on sums. If
the second character is f, the constraint is treated as fractional, otherwise it is treated as
absolute. The numeric constraint comes after the type.
See Table 1 for examples of constraints. Note that there is also a special constraint, any,
which places no restrictions whatsoever.
Stratum-level and overall constraints can be chosen independently, so it is possible to constrain
a covariate only at the stratum or overall level by setting the other level’s constraint to any;
in particular, an unstratified design can be randomized by assigning each cluster to a single
stratum and setting every stratum constraint to any.2 Difference distributions for a covariate
are not displayed for a level where that covariate is unconstrained.

3.3. Optional parameters

While testing every stratum-level allocation and every combination of viable stratum-level
2As a convenience, if the stratid argument is left empty, CCR will create a special stratum id variable

called _sid that is always equal to 1 and change the stratum constraints to any.

Journal of Statistical Software – Code Snippets 5

allocations as CCRA V1.0 does is feasible for small design spaces, larger designs require
restricting attention to a random subset of possible allocations. The numbers of allocations
to test are set with ssample (for sampling possible stratum-level allocations within strata)
and osample (for sampling overall allocations); the defaults are 100,000, and settings of 0
force CCR to test every possible allocation. (Every possible allocation will also be tested if
there are fewer than ssample/osample of them; for example, using the default settings in a
two-arm study, there would be no sampling within a stratum with 18 clusters, since

(18
9

)
=

92,378 < 100,000.)
By default, CCR assigns clusters across two arms, but this can be increased by setting arms
to the desired number of arms.
For some designs, it may not be desirable to divide clusters into arms as evenly as possible.
By setting armsize to a list of variables, the number of clusters from each stratum to be
allocated to each arm can be fixed. The first variable should contain the number of clusters
(which can vary by stratum) to be allocated to arm 1, the second variable should contain the
number for arm 2, and so forth through arm n − 1. (The size of the last arm is fixed by the
others and does not need to be specified.)
The complete set of optional parameters is described in Appendix A.

3.4. Caveats

Though the input dataset and variables can have any names, names beginning with under-
scores should be avoided, as CCR names all its data sets and variables with leading under-
scores. In particular, data sets in the work library whose names start with underscores are
deleted when CCR starts to prevent data sets from previous runs from lingering; otherwise, if
the macro fails to complete, results from a previous run could be mistaken for current output.
The stratum identifier, cluster identifier, and covariates must be numeric (though covariates
can be dummy-coded and id codes need not be consecutive), and cluster id codes should be
unique across the entire design (not repeated across strata).
With CCR, it is generally necessary to code for and explicitly constrain all levels of a multilevel
variable (rather than code for every level but one as one might in multiple regression). For
example, in attempting to assign 10 clusters across two arms as evenly as possible with respect
to a three-level covariate, if three clusters are in level 1, three are in level 2, and four are
in level 3, coding for and constraining only levels 1 and 2 would allow assigning two level 1
clusters and two level 2 clusters to the same arm, leaving one level 3 cluster in that arm and
the other three in the opposite arm (splitting them 1-3 rather than 2-2 while maintaining an
overall 5-5 split between arms).
CCR calculates the numbers of possible within-stratum and overall allocations and checks
them exhaustively if there are fewer than the requested samples. However, these calculations
will cause an overflow on current computers if there are 21024 (≈ 1.798 × 10308) or more
possible allocations.3 Though a design space that large seems unlikely in practice, the checks
can be disabled by setting sizecheck to 0 if the issue arises.
To reduce execution time, allocations are sampled with replacement. For large designs, the

3Currently, the maximum length of a numeric SAS variable is 8 bytes, or 64 bits (see SAS Institute Inc.
2014a, p. 273), and 21024 −1 is the largest number that can be stored with standard 64-bit encoding (see IEEE
Computer Society, Microprocessor Standards Committee and Engineers 2008, p. 8).

6 A General Covariate-Constrained Randomization Macro for SAS

probability of duplicating allocations is vanishingly small, but if the number of possible al-
locations is not substantially greater than the square of the desired sample size, testing the
entire space is generally the safest strategy.4 However, if sampling is employed both within
strata and overall, a too-small number of possible overall allocations can instead be addressed
by increasing the within-stratum sample size.
Some amount of trial and error may be needed to balance running time and memory usage
with obtaining enough acceptable allocations to get a sense of their rarity and distribution
(i.e., how restrictive the constraints actually are). The number of possible allocations to be
sampled from is printed to the log before the allocations are generated (unless size checks have
been disabled), so if macro execution bogs down, this information may provide some guidance
on how many generated and tested allocations are too many for the computer being used.
While sampling from the within-stratum and overall allocations greatly reduces the overall
execution time, CCR does not employ a shortcut for assessing whether pairs of clusters are
always, often, rarely, or never assigned to the same arm. The running time for this process
scales as the square of the number of clusters and can be the majority of the total execution
time for designs with many tens or hundreds of clusters.5

4. Example output
CCR has been used to perform the randomization in the STrategies to Reduce Injuries and
Develop confidence in Elders (STRIDE) trial, for which the author is a member of the bio-
statistics working group. Patients are being recruited for this trial from 86 clinical practices
across 10 participating healthcare systems, with each system providing between 5 and 12
participating practices. The intervention being tested is a practice change, so randomization
was performed at the practice level, with practices acting as the clusters and healthcare sys-
tems acting as the strata. (See the STRIDE website, http://stride-study.org/, for more
information about the trial.)
The practice-level data used in the randomization are provided in the file v77c01.sas. The
actual randomization was performed balancing urban vs. rural, majority English-speaking
vs. majority non-English-speaking, majority white vs. majority non-white, and small vs. medium
vs. large practices; actual practice sizes are also presented to illustrate the use of continuous
covariates in a hypothetical, follow-up example. The meaning of each variable is given in
Table 2, and the distribution of the discrete covariates in each healthcare system is presented
in Table 3.
The complete code to run these examples is provided in the file v77c01.sas, and the full,
default printed output from these examples (using a seed parameter, seed = 22571, for
reproducibility6) is provided in the file code.pdf in the supplementary material. Additional

4In sampling k of n possible allocations with replacement, the probability of any two sampled allocations
being duplicates is 1/n, and there are

(
k
2

)
pairs of sampled allocations, so the expected number of duplications

is k(k − 1)/2n, which is negligible when k2 � n. When sampling is employed, this expected number of
duplications is printed to the log, and keeping it well below 1 is recommended.

5Using a dataset provided by a reviewer with 223 clusters in two strata, CCR ran in about 7 minutes on
the author’s computer (with an 8-core 2.40 GHz processor and 32 GB of RAM); over 6 minutes of that time
was spent evaluating the restrictions on cluster coincidence.

6Note that since the trial is ongoing and many study personnel must remain blinded to condition assign-
ments, this is not the seed used for actual study randomization.

http://stride-study.org/

Journal of Statistical Software – Code Snippets 7

Variable Meaning
practice Practice identifier.
site Healthcare system (site) identifier.
rur 1 if practice is rural, otherwise 0.
urb 1 if practice is urban, otherwise 0.
eng 1 if practice is majority English-speaking, otherwise 0.
neng 1 if practice is majority non-English-speaking, otherwise 0.
wht 1 if practice is majority white, otherwise 0.
nwht 1 if practice is majority non-white, otherwise 0.
size Number of eligible patients in practice.
tert1 1 if practice is in the lowest tertile by size, otherwise 0.
tert2 1 if practice is in the middle tertile by size, otherwise 0.
tert3 1 if practice is in the highest tertile by size, otherwise 0.

Table 2: Variables in the example dataset.

site practices rur urb eng neng wht nwht tert1 tert2 tert3
1 8 7 1 8 0 8 0 1 5 2
2 8 0 8 2 6 2 6 2 5 1
3 11 0 11 11 0 10 1 5 4 2
4 9 0 9 9 0 0 9 5 1 3
5 12 0 12 12 0 12 0 1 1 10
6 8 0 8 8 0 8 0 1 2 5
7 8 1 7 8 0 8 0 7 1 0
8 5 0 5 5 0 5 0 0 1 4
9 8 0 8 8 0 8 0 2 5 1
10 9 0 9 9 0 9 0 4 4 1

Table 3: Distribution of practices and discrete covariates in the example dataset.

output can be printed by setting the verbose and binomsig parameters; see Appendix A for
details.

4.1. Example 1: Actual STRIDE randomization

The STRIDE randomization was constrained to assign practices to two arms, intervention
and control, such that the numbers of practices at each level of each discrete variable were
as even as possible at both the within-healthcare-system and overall levels. However, we can
see from the data that balancing majority English-speaking against majority non-English-
speaking will provide no additional constraints beyond those from balancing majority white
against majority non-white and intervention against control,7 so the process can be simplified

7In nine of the ten healthcare systems, all of the practices are majority English-speaking, so for them,
balance on language is guaranteed. In the tenth, site 2, the two majority non-English-speaking practices are
also majority non-white and the six majority English-speaking practices are also majority white, so enforcing
the race constraint will balance language as well.

8 A General Covariate-Constrained Randomization Macro for SAS

by dropping this variable. The ultimate macro call to perform this randomization is:

%ccr(stride, site, practice,
rur urb wht nwht tert1 tert2 tert3,
d d d d d d d,
s1 s1 s1 s1 s1 s1 s1,
s1 s1 s1 s1 s1 s1 s1);

Summary variables

The summary variables CCR displays follow this nomenclature:

Arm summaries are named _l#covar, where l is s for a stratum-level summary (mean
or sum) or o for an overall summary, # is an arm, and covar is the covariate being
summarized.

Differences are named _dlI_Jcovar, where I and J are the arms being compared and l
and covar are as above. Differences are computed as [arm I] − [arm J] (and will be
negative if the value in arm J is larger), scaled by the sum or mean across all arms if the
constraint is fractional. (For example, a fractional difference of means between arms 1
and 2 would be calculated as [arm 1 mean]−[arm 2 mean]

[mean across all arms] .)

Absolute differences are named _adlI_Jcovar and are the absolute values of the differ-
ences just described.

Stratum-level allocation summaries

The first table in the output presents the number and frequency of acceptable allocations in
each stratum, as illustrated in Table 4. We see that although fewer than one tenth of one
percent of possible allocations met the stratum-level constraints, there are still more than
1018 potential allocations. The constraints had markedly more impact on some strata than
others: Nearly seven eighths of the possible allocations within site 3 were eliminated, while
every possible allocation within site 7 met the constraints.
The remaining tables for the stratum-level allocations present the distribution of allocations
with respect to covariates, as shown in Table 5. If constraints cannot be met in one or more
strata, distributions for the remaining strata are still presented.
Table 5 shows how the mid-sized practices can be allocated within their healthcare systems.
(Similar tables are produced for urb, rur, wht, nwht, tert1, and tert3.) Site 1 has five
mid-sized practices that are required to be split as evenly as possible; half the satisfactory
allocations (20 of the 40 noted in Table 4) place two practices in arm 1 and three in arm 2
while the other half do the reverse, and the difference is always ±1. Site 10 has four mid-sized
practices that are always split with two in each arm and a difference of 0.
If no allocations satisfy the within-stratum constraints, the output ends here.

Journal of Statistical Software – Code Snippets 9

%
Possible Checked Fraction Acceptable acceptable

site allocations allocations checked allocations of checked
--

1 70 70 1 40 57.143%
2 70 70 1 24 34.286%
3 924 924 1 120 12.987%
4 252 252 1 180 71.429%
5 924 924 1 504 54.545%
6 70 70 1 40 57.143%
7 70 70 1 70 100.000%
8 20 20 1 12 60.000%
9 70 70 1 40 57.143%

10 252 252 1 72 28.571%
1.8225E21 1.8225E21 1 1.0113E18 0.055%

Table 4: Summary of acceptable within-stratum allocations.

site _s1tert2 _s2tert2 _sd1_2tert2 Frequency
--

1 2 3 -1 20
1 3 2 1 20
2 2 3 -1 12
2 3 2 1 12
3 2 2 0 120
4 0 1 -1 90
4 1 0 1 90
5 0 1 -1 252
5 1 0 1 252
6 1 1 0 40
7 0 1 -1 35
7 1 0 1 35
8 0 1 -1 6
8 1 0 1 6
9 2 3 -1 20
9 3 2 1 20

10 2 2 0 72

Table 5: Stratum-level summary of a d covariate.

Overall allocation summaries

Table 6 shows how many overall allocations were tested and how many met the overall con-
straints. (The last column, giving the overall percentage of acceptable allocations, is the
product of the acceptable-of-checked percentages from this table and Table 4.)
If any satisfactory allocations are found, their distributions are then presented as shown in

10 A General Covariate-Constrained Randomization Macro for SAS

Stratum- %
balanced Checked Fraction Acceptable acceptable Overall %

allocations allocations checked allocations of checked acceptable
--

1.0113E18 100000 9.888E-14 2639 2.639% 0.001%

Table 6: Frequency of acceptable overall allocations.

_o1tert2 _o2tert2 _od1_2tert2 Frequency
--

14 15 -1 1331
15 14 1 1308

Table 7: Overall summary of a d covariate.

Table 7. Table 7 is quite similar to Table 5 but summarizes overall rather than within-stratum
allocations. Of the 2,639 viable allocations found, 1,331 have 14 mid-sized practices in arm 1
and 15 in arm 2, while the other 1,308 have the reverse.

Restrictions on cluster coincidence

Covariate constraints may force a given pair of clusters to always or never be in the same
arm; they may also yield a space of allocations where two clusters appear in the same arm
quite often or quite rarely. Since this can indicate confounds between the arm assignments
and one or more covariates (see below for a specific example), with possible implications for
the design validity of the final randomization, CCR provides output to assess this possibility.
(See Bailey and Rowley 1987, for a discussion of design validity in randomization schemes.)
The tables discussed in this section are based on the dataset work._PAIRSTATS, where each
observation is a pair of clusters and the variables of interest are the number and proportion
of satisfactory allocations in which the pair are in the same or different arms. (Appendix B
contains descriptions of all the data sets created by CCR.)
Table 8 describes the range of how often practices (clusters) are together or apart across all
possible pairs of practices. For a given pair of practices, _samecount is the number of alloca-
tions in which both practices are in the same arm, _samefrac is the proportion of allocations
in which both practices are in the same arm, and _diffcount and _diffrac are analogous for
allocations where the practices are in different arms. The table presents descriptive statistics
for these variables across every pair of practices, and cases of full constraint, where _samefrac
equals 0 or 1, are omitted to give a better sense of the range of partial constraints across the
practices.
If the allocations were unconstrained, by chance we would expect the mean of _samefrac to
be about 1/[# of arms]. Here, the distribution is quite close to that, with a given pair of
practices appearing slightly more likely to be in different arms (in about 1,332 allocations, or
50.48%, on average) than in the same arm (in about 1,307 allocations, or 49.52%, on average).
Next, practices that are always constrained to the same or different arms are displayed. In
this example, one pair of practices is always assigned to the same arm (see Table 9), and nine

Journal of Statistical Software – Code Snippets 11

Variable Mean Std Dev Minimum 25th Pctl
--
_samecount 1306.8299 74.0494 854.0000 1295.0000
_samefrac 0.4952 0.0281 0.3236 0.4907
_diffcount 1332.1701 74.0494 947.0000 1302.0000
_difffrac 0.5048 0.0281 0.3588 0.4934
--

Variable Median 75th Pctl Maximum
--
_samecount 1317.0000 1337.0000 1692.0000
_samefrac 0.4991 0.5066 0.6412
_diffcount 1322.0000 1344.0000 1785.0000
_difffrac 0.5009 0.5093 0.6764
--

Table 8: Cluster coincidence descriptives.

%
allocs

in same
cluster pair arm

104 and 703 100.0%

Table 9: Pairs of clusters always allocated to the same arm.

%
allocs

in same
cluster pair arm

102 and 104 0.00%
102 and 703 0.00%
201 and 207 0.00%
204 and 206 0.00%
301 and 305 0.00%
503 and 504 0.00%
605 and 606 0.00%
802 and 1006 0.00%
907 and 908 0.00%

Table 10: Pairs of clusters always allocated to different arms.

12 A General Covariate-Constrained Randomization Macro for SAS

pairs are always in different arms (see Table 10). If we were to examine the input data, we
would find that in five of the ten strata (sites 1, 2, 3, 6, and 9), only two practices are in
one level of a discrete covariate (for example, practices 102 and 104 are the only small site 1
practices, while practices 204 and 206 are the only majority-white site 2 practices), so those
practices are forced into opposite arms to meet the constraint. Similarly, site 1 has one urban
practice (104) and seven rural ones, site 7 has the reverse (703 is lone rural practice), and
the other eight sites are all urban, so overall rural/urban balance forces practices 104 and 703
into the same arm.
Of potentially more concern, at site 5, ten of the 12 practices are large, while one (503) is
small and one (504) is medium. In this stratum, evenly dividing both the large practices
and the overall set of practices between arms forces the site’s small and medium clusters
into opposite arms, introducing a small confound between the size covariate (specifically the
contrast between small and medium practices) and the study arms. Practice 802, the only
medium practice at site 8, and practice 1006, the only large practice at site 10, are similarly
forced into opposite arms by the overall balance constraints.
The potential impact of these confounds on the validity of the randomization should be
considered, though the likely impact of confounds arising from isolated clusters lessens as the
overall number of clusters increases. In STRIDE, it was decided that accepting these two slight
confounds was preferable to the imbalances that would result from loosening or removing
constraints. (In some studies, it might also be possible to address potential confounds by
delaying randomization and adding additional clusters; this was not an option in STRIDE.)
Clusters can also appear together surprisingly often or rarely, with some arbitrariness in
how we define “surprising.” By default, CCR displays clusters appearing together less than
half as often as one would expect by chance or more than 75% of the time, though these
thresholds can be tuned with the samearmlo and samearmhi parameters.8 Again, flagged
pairs should be examined with an eye toward their impact on overall validity. No pairings in
this randomization met either criterion (though some will in the next example).
If there are a small number of acceptable allocations and this section of output flags many
pairs of clusters, it may be worth increasing the osample and/or ssample parameters to check
whether the cluster pairs are generally constrained or the flags are artifacts of a small sample.

Final check

Once one acceptable allocation has been randomly selected, summary statistics are computed
directly from the original data. Overall and in each stratum, the sums and means in each arm,
and their differences and fractional differences, are displayed. Table 11 shows a section of the
full table containing the checks on the total numbers of clusters and the sums for rur. The
full table presents considerably more information than is needed to verify that the selected
randomization satisfies the provided constraints, but since there is often some trial-and-error
involved in selecting suitable constraints, the additional information may prove helpful in
comparing the effects of different constraints or choosing constraints for a next iteration of
testing.

8If the binomsig parameter is set, all pairs assigned to the same arm significantly more or less often
than chance are also displayed. This option is turned off by default because with a large set of acceptable
allocations, it produces long lists of small though statistically significant deviations from chance expectations.
Probabilities are computed from the binomial distribution with p = 1/[# of arms], and significance is tested
with a two-tailed alpha of binomsig, Bonferroni-corrected for the number of pairs of clusters.

Journal of Statistical Software – Code Snippets 13

___________________rur______________________
__________________total_____________________

_____# clusters_____ fractional
________arm_________ ________arm_________ difference difference

stratum 1 2 1 2 1-2 1-2

1 4 4 3 4 -1 -0.142857
2 4 4 0 0 0 0
3 5 6 0 0 0 0
4 5 4 0 0 0 0
5 6 6 0 0 0 0
6 4 4 0 0 0 0
7 4 4 1 0 1 1
8 3 2 0 0 0 0
9 4 4 0 0 0 0

10 4 5 0 0 0 0
--------- --------- --------- --------- ---------- ----------

43 43 4 4 0 0

Table 11: Part of the final check table.

In addition to the displayed output, the dataset work._FINAL_RANDOMIZATION_1 contains the
merge of the input dataset and the arm assignments.

4.2. Example 2: Hypothetical randomization with a continuous covariate
Since the actual randomization of the STRIDE trial involved only discrete covariates, we
turn to a hypothetical example to illustrate how CCR reports acceptable allocations involving
continuous covariates.
Suppose that in the STRIDE trial, we had chosen to balance on actual practice sizes rather
than tertiles, requiring that within each healthcare system, the mean practice size in each
arm should be within 15% of the mean across the entire system, while overall, the difference
between the means of each arm should be no more than 200. The macro call to do this would
be:

%ccr(stride, site, practice,
rur urb wht nwht size,
d d d d c,
s1 s1 s1 s1 mf.15,
s1 s1 s1 s1 m200);

The full output for this example comprises the second half of code.pdf in the supplementary
material. Since much of the output for this example is similar to that for the previous one,
our discussion will only touch on the portions of the output that are qualitatively new.

Stratum-level allocation summaries
Table 12 describes the differences in size, the number of eligible patients at each practice,

14 A General Covariate-Constrained Randomization Macro for SAS

Analysis Variable : _sad1_2size
N

site Obs Minimum 25th Pctl Median 75th Pctl Maximum
--

1 32 0.0062943 0.0322581 0.0555993 0.0923158 0.1201154
2 30 0.0242551 0.0577931 0.0961222 0.1272646 0.1482258
3 254 0.000042616 0.0295754 0.0618356 0.1022354 0.1485588
4 76 0.0028997 0.0362465 0.0823701 0.1123641 0.1422674
5 158 0.0020544 0.0388549 0.0752981 0.1117413 0.1463981
6 24 0.0094662 0.0407265 0.0675839 0.1014860 0.1459549
7 48 0.0091912 0.0386029 0.0606618 0.1047794 0.1305147
8 12 0.0386786 0.0453364 0.0737112 0.1385454 0.1452032
9 32 0.0099128 0.0567424 0.0875064 0.1172449 0.1384379

10 124 0.0035104 0.0404813 0.0687510 0.1164398 0.1493776

Table 12: Stratum-level summary of a c covariate.

Analysis Variable : _oad1_2size
Minimum 25th Pctl Median 75th Pctl Maximum

--
0.0232558 10.4883721 22.4418605 37.3720930 103.4186047

--

Table 13: Overall summary of a c covariate.

between arms of the study. The presented distributions are based on the absolute values of
the differences, and since the stratum constraint in this example is fractional, the differences
in the table are expressed as fractions of the overall mean. For instance, the mean differences
at site 8 range from 3.87% to 14.52% of the overall mean, with a median difference of 7.37%.
Note that at sites 1, 7, and 9, the maximum differences do not approach the limit of 15%, so
the size constraint does not particularly restrict allocations in those strata.

Overall allocation summaries

Since the overall constraint on size is absolute rather than fractional, Table 13 simply shows
the distribution of the difference in overall means between arms. Some allocations are very
close to balanced overall (the minimum difference is about .02), while the maximum difference
of about 103.4 is well below the acceptable limit of 200.

Restrictions on cluster coincidence

As one might expect, the absolute constraints arising from the size tertiles in the actual
STRIDE randomization are replaced by an assortment of absolute and partial constraints.
Tables 14 and 15 show practices that are often (in at least 75% of acceptable randomizations)
or rarely (in at most 25% of acceptable randomizations) randomized to the same arm.

Journal of Statistical Software – Code Snippets 15

% # allocs
allocs # allocs in

in same in same different
cluster pair arm arm arms

404 and 409 76.64% 9635 2936
601 and 602 75.13% 9444 3127
902 and 908 80.90% 10170 2401

Table 14: Pairs of clusters randomized to the same arm at least 75% of the time.

% # allocs
allocs # allocs in

in same in same different
cluster pair arm arm arms

301 and 305 9.79% 1231 11340
402 and 404 7.84% 986 11585
402 and 409 15.51% 1950 10621
602 and 603 24.87% 3127 9444
802 and 804 16.51% 2075 10496
803 and 805 17.18% 2160 10411
902 and 903 24.86% 3125 9446
902 and 904 18.39% 2312 10259
1002 and 1006 19.27% 2423 10148

Table 15: Pairs of clusters randomized to the same arm at most 25% of the time.

5. Discussion
CCR allows investigators to perform covariate-constrained randomization across a wide vari-
ety of possible designs, including those with more than two arms, with unequal numbers of
clusters within strata, with constraints on counts or totals rather than means of covariates,
and with allocation spaces too large to search exhaustively. However, as Ivers et al. (2012)
note, covariate-constrained randomization requires more statistical know-how than some other
randomization techniques, and CCR does not alleviate this situation; rather, its purpose is
to allow a skilled practitioner to apply the technique to a greater assortment of studies. As
discussed in Sections 3 and 4, there are a number of judgment calls that a user must make in
the course of using the macro and evaluating its output (and perhaps some amount of trial
and error in tuning the tightness of the covariate constraints to produce viable allocations
while minimizing the potential for confounding the study arms with the covariates), but before
running CCR at all, a prospective user must decide that covariate-constrained randomization
is the best approach and decide how loose each constraint can be before it no longer serves
the needs of the study. These decisions must be made in the context of a particular study,
may not be simple, and are beyond the scope of this paper.
CCR is released under the terms of the GNU Lesser General Public License (included with

16 A General Covariate-Constrained Randomization Macro for SAS

the distribution). The author’s most recent version can be found at https://github.com/
ejgreene/ccr-sas.

Acknowledgments
This publication was made possible by CTSA Grant Number UL1 RR024139 from the Na-
tional Center for Research Resources (NCRR) and the National Center for Advancing Trans-
lational Science (NCATS), components of the National Institutes of Health (NIH), and NIH
Roadmap for Medical Research; and Grant Number U01 AG048270 from the Patient-Centered
Outcomes Research Institute (PCORI) and the National Institute on Aging (NIA) at NIH.
Its contents are solely the responsibility of the author and do not necessarily represent the
official view of NIA, NIH, or PCORI.
The author wishes to thank Denise Esserman, Peter Peduzzi, and three anonymous reviewers
for helpful feedback on earlier drafts of this paper.
Example output for this paper was generated using SAS/STAT software, Version 13.2 for Win-
dows (SAS Institute Inc. 2014b). SAS, SAS/STAT, and all other SAS Institute Inc. product
or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA
and other countries.

References

Bailey RA, Rowley CA (1987). “Valid Randomization.” Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 410(1838), 105–124. doi:10.1098/
rspa.1987.0030.

Chaudhary MA, Moulton LH (2006). “A SAS Macro for Constrained Randomization of
Group-Randomized Designs.” Computer Methods and Programs in Biomedicine, 83(3),
205–210. doi:10.1016/j.cmpb.2006.04.011.

IEEE Computer Society, Microprocessor Standards Committee, Engineers IE (2008). IEEE
Standard for Floating-Point Arithmetic. Institute of Electrical and Electronics Engineers,
New York.

Ivers NM, Halperin IJ, Barnsley J, Grimshaw JM, Shah BR, Tu K, Upshur R, Zwarenstein
M (2012). “Allocation Techniques for Balance at Baseline in Cluster Randomized Trials:
A Methodological Review.” Trials, 13(1), 120. doi:10.1186/1745-6215-13-120.

Moulton LH (2004). “Covariate-Based Constrained Randomization of Group-Randomized
Trials.” Clinical Trials, 1(3), 297–305. doi:10.1191/1740774504cn024oa.

Nietert PJ, Jenkins RG, Nemeth LS, Ornstein SM (2009). “An Application of a Modi-
fied Constrained Randomization Process to a Practice-Based Cluster Randomized Trial
to Improve Colorectal Cancer Screening.” Contemporary Clinical Trials, 30(2), 129–132.
doi:10.1016/j.cct.2008.10.002.

SAS Institute Inc (2014a). SAS 9.4 Statements: Reference. 3rd edition. SAS Institute Inc.,
Cary.

SAS Institute Inc (2014b). SAS/STAT Software, Version 13.2. Cary. URL http://www.sas.
com/.

https://github.com/ejgreene/ccr-sas
https://github.com/ejgreene/ccr-sas
http://dx.doi.org/10.1098/rspa.1987.0030
http://dx.doi.org/10.1098/rspa.1987.0030
http://dx.doi.org/10.1016/j.cmpb.2006.04.011
http://dx.doi.org/10.1186/1745-6215-13-120
http://dx.doi.org/10.1191/1740774504cn024oa
http://dx.doi.org/10.1016/j.cct.2008.10.002
http://www.sas.com/
http://www.sas.com/

Journal of Statistical Software – Code Snippets 17

A. List of optional macro parameters
Note that the SAS macro language treats 0 as false and other numbers as true when evaluating
logical expressions.

Parameter Default value Meaning
arms 2 Number of study arms.
ssample 100,000 – If nonzero, the maximum number of within-stratum al-

locations to test in each stratum.
– If zero, all within-stratum allocations are tested.

osample 100,000 – If nonzero, the maximum number of overall allocations
to test.
– If zero, all overall allocations are tested.

sizecheck 1 (true) – If true (not zero), the numbers of possible within-
stratum and overall allocations are calculated, and all al-
locations are tested if the number possible is smaller than
ssample (for within-stratum allocations) or osample (for
overall allocations).
– If false (zero), the numbers of possible allocations are not
calculated, and sampling occurs per the values of ssample
and osample.

select 1 How many final randomizations to generate.
seed undefined – If defined, the seed to use when sampling allocations

and choosing the final randomization; if multiple random-
izations are to be generated, the seed is incremented by 1
for each call to proc surveyselect.
– If undefined, a seed is generated from the system clock
(the rand function’s and proc surveyselect’s default be-
havior).

armsize undefined – If defined, the variable(s) specifying how many clusters
in a stratum to allocate to each arm; the first variable will
specify the number of clusters to allocate to arm 1, the
second arm 2, and so forth; [# of arms] − 1 variables are
needed.
– If undefined, clusters are split as evenly as possible
across arms at both the within-stratum and overall lev-
els.

samearmhi 75 Clusters assigned to the same arm as least this often
(taken as a percentage) are displayed.

samearmlo undefined
(use half chance)

– If defined, clusters assigned to the same arm at most
this often (taken as a percentage) are displayed.
– If undefined, the display threshold is set to half chance
(100

2·[# of arms]).

18 A General Covariate-Constrained Randomization Macro for SAS

Parameter Default value Meaning
binomsig 0 (false) – If true (not zero), pairs of clusters assigned to the same

arm significantly more or less often than chance (with a
two-tailed alpha of binomsig, Bonferroni-corrected for the
number of cluster pairs) are displayed (in addition to the
default checks).
– If false (zero), only the default checks (always together,
never together, together above samearmhi, and together
below samearmlo) are displayed.

verbose 0 – If 0, only the summaries and checks described in Sec-
tions 2 and 4 are displayed.
– If 1, the allocations that satisfy the constraints and the
final randomization are also listed.
– If 2, all possible/sampled within-stratum allocations are
also listed.
– If 3, all possible/sampled overall allocations are also
listed (as in CCRA V1.0).

debug 0 (false) If true (not zero), assorted macro variables are printed to
the log as they are defined.

B. List of intermediate and output data sets
These data sets (listed in order of their creation) are available in the work library after
execution.

_D is the original data set, with extraneous variables removed.

_SCLUSTLIST lists the clusters within each stratum.

_SALLOCLIST contains the number of possible and checked allocations within each stratum.

_DSs contains the stratum-level allocations to be checked for stratum s.

_PARTIAL_Ss _An contains stratum-level allocations for the first n arms of stratum s if all
possible allocations were generated (or all arms, if n = [# of arms] − 1).

_ASSIGN contains all the stratum-level allocations to be checked.

_ARMSIZES contains the number of clusters in each arm of each stratum-level allocation.

_ALLGROUPS contains the stratum-level allocations with covariates merged in.

_STATS_n contains the sums and means of each covariate in arm n in each stratum-level
allocation.

_STATS_ALL contains the overall sums and means of each covariate in each stratum-level
allocation.

Journal of Statistical Software – Code Snippets 19

_STATS contains the full stratum-level statistics (covariate in-arm and overall sums and means
and between-arm differences) for allocations meeting the stratum-level constraints.

_STRATUM_SURVIVORS contains the number of satisfactory stratum-level allocations for each
stratum.

_CANDIDATES contains the space of overall allocations (combinations of stratum-level alloca-
tions) that will be checked.

_RSAMPLE merges the stratum-level allocation stats with the overall allocation list.

_RSAMP4STATS also contains the number of clusters in each arm from each stratum.

_DSTATS contains overall sums and means of each covariate in each overall allocation.

_OK contains the full overall statistics (covariate in-arm and overall sums and means and
between-arm differences) for allocations meeting the overall constraints.

_VETTED also contains the stratum-level statistics.

_OSAMPLEPROPS is a condensed version of _OK, containing only the sums, means, and differ-
ences needed to report on the overall distribution of covariates across the acceptable
overall allocations (with one observation per allocation rather than one per alloca-
tion/stratum combination).

_NVALALLOC contains the number of overall allocations checked and the number and percent-
age that are satisfactory.

_GROUPSARMn contains every cluster ever allocated to arm n (along with which stratum it’s
in).

_ALLOCSARMn contains the same information, but transposed with one observation per stra-
tum.

_ARMn contains every pair of clusters appearing together in arm n (with one observation per
appearance).

_OUTGROUPn contains every pair of clusters appearing together in arm n and the number of
allocations they appear together in.

_ALLOUTGROUP is the concatenation of all _OUTGROUPn datasets.

_ALLPAIRS contains all possible pairs of clusters.

_SEENPAIRS contains all possible pairs of clusters and the number of allocations (possibly 0)
in which they appear together in any arm.

_PAIRSTATS contains the number and proportion of allocations in which each pair of clus-
ters appear in the same or in different arms and the probability (based on a binomial
distribution) that difference between 1/[# of arms] and the actual proportion is due to
chance.

_FINALSAMPLE_n contains the arm assignments for the nth selected allocation.

20 A General Covariate-Constrained Randomization Macro for SAS

_FINAL_RANDOMIZATION_n contains the original data plus the arm assignments from the nth
selected allocation.

Affiliation:
Erich J. Greene
Yale Center for Analytical Sciences
Yale School of Public Health
Yale University
300 George St., Suite 555
New Haven, CT 06511, United States of America
E-mail: erich.greene@yale.edu
URL: http://ycas.yale.edu/working/people/erich_greene.profile

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

April 2017, Volume 77, Code Snippet 1 Submitted: 2015-06-23
doi:10.18637/jss.v077.c01 Accepted: 2016-01-11

mailto:erich.greene@yale.edu
http://ycas.yale.edu/working/people/erich_greene.profile
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v077.c01

	Introduction
	Algorithm
	Using CCR
	Choosing variable types
	Setting constraints
	Optional parameters
	Caveats

	Example output
	Example 1: Actual STRIDE randomization
	Summary variables
	Stratum-level allocation summaries
	Overall allocation summaries
	Restrictions on cluster coincidence
	Final check

	Example 2: Hypothetical randomization with a continuous covariate
	Stratum-level allocation summaries
	Overall allocation summaries
	Restrictions on cluster coincidence

	Discussion
	List of optional macro parameters
	List of intermediate and output data sets

