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Abstract

We describe a parallel implementation in R of the weighted subspace random forest
algorithm (Xu, Huang, Williams, Wang, and Ye 2012) available as the wsrf package. A
novel variable weighting method is used for variable subspace selection in place of the tra-
ditional approach of random variable sampling. This new approach is particularly useful
in building models for high dimensional data – often consisting of thousands of vari-
ables. Parallel computation is used to take advantage of multi-core machines and clusters
of machines to build random forest models from high dimensional data in considerably
shorter times. A series of experiments presented in this paper demonstrates that wsrf is
faster than existing packages whilst retaining and often improving on the classification
performance, particularly for high dimensional data.
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1. Introduction

The random forest algorithm (Breiman 2001) is an ensemble method based on building an
ensemble of decision trees. In many situations it is unsurpassed in accuracy compared to many
other classification algorithms (Caruana and Niculescu-Mizil 2006) and is widely used in data
mining (Díaz-Uriarte and De Andres 2006; Bosch, Zisserman, and Muoz 2007; Cutler et al.
2007; Williams 2011; Kandaswamy et al. 2011; Rodriguez-Galiano, Ghimire, Rogan, Chica-
Olmo, and Rigol-Sanchez 2012; Touw et al. 2013). However, when facing high-dimensional
data, and especially sparse data, the method of randomly selecting variables for splitting nodes
(i.e., subspace selection) requires attention. Using a purely random selection from among
very many variables (features), as in the traditional random forest algorithm, can mean that
informative variables have too little opportunity for being selected from amongst the large
number of less informative variables available. This will result in weak trees constituting the
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forest and consequently the classification performance of the random forest will be adversely
affected.
Amaratunga, Cabrera, and Lee (2008) proposed a variable weighting method for subspace
sampling, where the weight of a variable is computed from the correlation between the variable
and the class using a t-test for the analysis of variance. This weight is treated as the probability
of that variable being chosen for inclusion in a subspace. Consequently, informative variables
are more likely to be selected when growing trees for a random forest, resulting in an increase
in the average strength of the trees making up the forest. Xu et al. (2012) generalized
Amaratunga’s method using information gain ratio for calculating the variable weights, so as
to be applicable to multi-class problems.
The R software environment for statistical computing and graphics (R Core Team 2016b)
provides several packages for building random forests among which randomForest (Liaw and
Wiener 2002) and party (Hothorn, Bühlmann, Dudoit, Molinaro, and Van Der Laan 2006a;
Strobl, Boulesteix, Zeileis, and Hothorn 2007; Strobl, Boulesteix, Kneib, Augustin, and Zeileis
2008) are the more commonly referenced. randomForest is derived from the original Fortran
code implementing the algorithm described by Breiman (2001). party includes cforest as
an implementation of Breiman’s random forest based on conditional inference trees (Hothorn,
Hornik, and Zeileis 2006b).
Extensive experience in using these packages for building classification models from high
dimensional data with tens of thousands of variables and hundreds of thousands or millions
of observations has demonstrated both computation time and memory issues. Yet, such big
data continues to become increasingly common with our growing ability to collect and store
data. Neither supports any variation to variable selection, nor methods for improving on their
computational requirements for building random forests.
In this paper we present the implementation of wsrf – a random forest algorithm based on
the weighted subspace random forest algorithm for classifying very high-dimensional data
(Xu et al. 2012). As well as being applicable to multi-class problems this algorithm will build
models comparable in accuracy to Breiman’s random forest when using a fixed subspace size
of blog2(M)+1c where M is the total number of variables (Breiman 2001). However the time
taken to build random forests using these sequential algorithms can be excessive.
In order to minimize the time taken for model building and to fully make use of the potential
of modern computers to provide a scalable, high performance, random forest package in R,
wsrf adopts several strategies. Taking advantage of R’s capabilities for parallel computation
we make use of multiple cores on a single machine as well as multiple nodes across a clus-
ter of machines. Experimental comparisons presented in this paper demonstrate significant
performance gains using wsrf.
During the development of wsrf similar packages with support for parallel execution have
become available, including bigrf (Lim 2014), ParallelForest (Ieong 2014) and Rborist (Selig-
man 2016). Whilst these developments provide useful additions to the landscape we identify
time and memory issues with them as we note later in the paper.
The paper is organized as follows: In Section 2 we briefly introduce Breiman’s random forest
algorithm and provide a detailed description of the weighted subspace random forest algo-
rithm. Section 3 describes our parallel implementation of the algorithm. In Section 4 various
experiments are carried out on several datasets used by Xu et al. (2012) to verify our imple-
mentation’s validity and scalability. The usage of wsrf is presented in Section 5 with a simple
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example providing a template for users to quickly begin using wsrf. Comments on installation
options are provided in Section 6. We conclude with a short review and identify future work
in Section 7.

2. Weighted subspace random forest
In this section we briefly introduce Breiman’s original random forest algorithm. The weighted
subspace random forest algorithm is then described and presented in comparison to the orig-
inal random forest algorithm. We assume a basic knowledge of decision tree building and
related terminology (see Williams 2011, Chapter 11).

2.1. The random forest algorithm
The original random forest algorithm (Breiman 2001) is based on building an ensemble (i.e.,
a collection) of decision tree models. The concept of building multiple decision trees and
combining them into a single model originates from the research of Williams (1988) in multiple
inductive learning and the MIL algorithm. When combining decision trees into an ensemble
to be deployed as a classification model the class assigned to a new observation is the class
that the majority of trees assign to the observation.
The key development of the random forest algorithm is the random selection of both obser-
vations and variables throughout the tree building process. For each tree we slightly vary the
training dataset and quite dramatically vary the variables used:

• The training dataset for constructing each tree in the forest is obtained as a random
sample with replacement of the original dataset;

• Instead of using all M variables as candidates when selecting the best split for any
node during tree building, a subset (i.e., a subspace) m�M is chosen at random. An
empirical value for m, used by Breiman (2001), is blog2(M) + 1c;

• There is no pruning in the process of tree building and so the resulting trees will,
individually, over-fit the training dataset.

We see that the random forest algorithm samples both observations and variables from the
entire training data. Therefore, all trees within the forest are potentially quite different and
each tree potentially models the training dataset from quite different points of view, resulting
in high diversity across the trees. Diversity works to our advantage in increasing the overall
accuracy of the resulting ensemble model.

2.2. Variable weighting for subspace selection
When presented with very high dimensional data where typically only a small number of
variables are informative of the class, the random subspace sampling method of random forests
will randomly select those informative variables relatively rarely. Consequently a variable
subspace of size larger than blog2(M)+1c is often needed and chosen. This has computational
implications on the algorithm and potentially reduces the variety in the resulting trees.
In order to build decision tress with improved performance Xu et al. (2012) proposed a variable
weighting method for subspace selection. In the method the informativeness of a variable with
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respect to the class is measured by an information gain ratio. The measure is used as the
probability of that variable being selected for inclusion in the variable subspace when splitting
a specific node during the tree building process. Therefore, variables with higher values by the
measure are more likely to be chosen as candidates during variable selection and a stronger
tree can be built.
Specifically, given a dataset D with val observations, let Y be the target variable with distinct
class labels yj for j = 1, . . . , q. Consider a categorical variable A in the dataset D with p
distinct values ai for i = 1, . . . , p. The number of observations in D satisfying the condition
that A = ai and Y = yj is denoted valij . Then, a contingency table of A against Y can be
obtained, where we denote the marginal totals for A by vali. = ∑q

j=1 valij for i = 1, . . . , p,
and the marginal totals for Y by val.j = ∑p

i=1 valij for j = 1, . . . , q.
The information measure of dataset D, which measures the class purity in D, is defined as:

Info(D) = −
q∑

j=1

val.j
val

log2
val.j
val

(1)

while the information measure of a subset DA=ai is defined as:

Info(DA=ai) = −
q∑

j=1

valij
vali.

log2
valij
vali.

(2)

and the weighted sum of the information entropy for all subsets based on A is:

InfoA(D) = −
p∑

i=1

vali.
val

Info(DA=ai) (3)

The information gain ratio is then defined as:

IGR(A, Y ) = Gain(A)
SplitInfo(A) (4)

where
Gain(A) = Info(D)− InfoA(D) (5)

and
SplitInfo(A) = −

p∑
i=1

vali.
val

log2
vali.
val

(6)

Assume dataset D has M variables A1, A2, . . . , AM . The weighted subspace random forest
method uses IGR(A, Y ) (Equation 4) to measure the informativeness of these variables and
considers them as variable weights. These are normalized to become the probability of a
variable being selected:

wi =
√
IGR(Ai, Y )∑M

i=1
√
IGR(Ai, Y )

(7)

Compared with Breiman’s method we again note that the difference here is the way in which
the variable subspace is selected at each node. Breiman’s method selects m�M variables at
random from which a variable is then chosen for splitting the node. The weighted subspace
random forest method extracts the same size subspace but using wi (Equation 7) as the



Journal of Statistical Software 5

probabilities for the inclusion of each of the variables. Also for the implementation of wsrf
the trees are based on C4.5 (Quinlan 1993) rather than CART (Breiman, Friedman, Olshen,
and Stone 1984) and so binary splits are applied to continuous variables while categorical
variables are k-way split.

3. A parallel implementation
Today’s computers are equipped with CPUs with multiple cores. To fully utilize the poten-
tial for high performance computing wsrf has adapted existing mature multi-threaded and
distributed computing techniques to implement the weighted subspace random forest algo-
rithm. This can significantly reduce the time for creating a random forest model from high
dimensional large datasets.
There are many packages offering high performance computing solutions in R. These include
multicore (Urbanek 2011)1 for running parallel computations on machines with multiple cores
or CPUs; snow (Tierney, Rossini, Li, and Sevcikova 2016) that can use PVM, MPI, and NWS
as well as direct networking sockets to distribute computation across several nodes; and
RHadoop (Piccolboni 2013), a collection of three R packages that allow users to manage and
analyze data with Hadoop. A list of similar packages is collected by Eddelbuettel (2017).
The random forest algorithm inherently lends itself to being implemented in parallel, in that
all trees can be built independently of each other. Our implementation of wsrf provides two
opportunities for parallelism: multi-threaded and distributed. When run on a single machine
with multiple cores the multi-threaded version of wsrf is the default for model building. In
a cluster of servers the distributed version can be used to distribute the tree building tasks
across the multiple nodes. Below we provide a detailed description of the options.
We also note that our algorithm for building one tree in wsrf is implemented in C++ with
a focus on the effective use of time and space. This ensures we can optimize computational
time compared to an implementation directly in R.

3.1. Multi-threaded

The traditional random forest method grows one tree at a time, sequentially. However, whilst
the trees within a single random forest are built independently of each other, on machines
with multiple cores only one core is allocated while others are idle. If we can use multiple
cores, building one tree at a time on each core, then multiple trees can be built simultaneously.
This can significantly reduce the model building time.
For a multi-threaded implementation two questions need to be answered: how to engage
multiple cores and how to ensure each tree building process is independent. For the first
question we use multiple threads and for the second we find that we need to deal with the
issue of independent random number generation.
By default, the multi-threaded version of wsrf creates the same number of threads as available
cores to build trees. When there is only one core it degrades to a sequential random forest
algorithm. All but one of the threads are used to build one tree at a time in parallel. The
remaining thread is reserved as the master thread tasked with distributing the tree building,

1multicore is removed from CRAN during the review process of this paper, and now part of R via the
parallel package (R Core Team 2016b).
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Figure 1: Multi-threaded wsrf will dispatch each tree build to an available core on a single
machine/node. The resulting trees are accumulated by the master into the final forest.

generating training sets, providing random seeds, as well as handling exceptions and user
interruptions. Once a tree build is finished the tree building thread returns that tree to the
master and fetches another available training set to build the next tree, until all required trees
are built. Figure 1 visualizes this process.
Many contributed R packages use multiple threads at the C programming language level
via OpenMP (The OpenMP Architecture Review Board 2016) or Pthreads (IEEE and The
Open Group 2004). Either approach requires additional installation setup for the users of
the packages and present issues around portability. Modern C++ compilers supporting the
C++11 standard with multi-threaded functionality are now available2.
We use the Rcpp package (Eddelbuettel and François 2011; Eddelbuettel 2013) to access the
multi-thread functionality of C++ and to ensure the functionality is easily portable without
user intervention. Rcpp provides R functions as well as C++ library access which facilitates
the integration of R and C++. The C++11 standard library provides a set of classes and
functions for multi-threaded synchronization and error handling, of which wsrf uses async
for creating threads, future for querying thread status, and mutex for dealing with race
conditions.
When compiling wsrf newer versions of the C++ standard library are required. Unlike
GNU/Linux, on Microsoft Windows the build environment and toolchain do not come stan-
dard with the operating system. The Rtools package (R Core Team 2016a) is the only tool
that is supported and recommended by R Core Team (2016b) to build R packages from
source. Unfortunately there is no support for multi-threading in the version of g++ provided
by Rtools3 and so the multi-threading functionality of wsrf is not readily available on Win-
dows4. For older versions of g++ (before 4.8.1) wsrf provides an option for multi-threading

2See the Internet news items: GCC 4.8.1 released, C++11 feature complete (https://isocpp.org/blog/
2013/05/gcc-4.8.1-released-c11-feature-complete) and LLVM 3.3 is released (https://isocpp.org/
blog/2013/06/llvm-3.3-is-released).

3Because GCC 4.6.x is used on Windows as mentioned in Writing R Extensions – Using C++11 code
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#Using-C_002b_002b11-code

4Support for compiling C++11 code in packages is experimental in R-devel but not yet finished, see
Daily News about R-devel on 2013-12-02 (https://developer.R-project.org/blosxom.cgi/R-devel/NEWS/
2013/12/02#n2013-12-02) and MinGW-w64 Notes by Duncan Murdoch (https://rawgit.com/kevinushey/
RToolsToolchainUpdate/master/mingwnotes.html).

https://isocpp.org/blog/2013/05/gcc-4.8.1-released-c11-feature-complete
https://isocpp.org/blog/2013/05/gcc-4.8.1-released-c11-feature-complete
https://isocpp.org/blog/2013/06/llvm-3.3-is-released
https://isocpp.org/blog/2013/06/llvm-3.3-is-released
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#Using-C_002b_002b11-code
https://developer.R-project.org/blosxom.cgi/R-devel/NEWS/2013/12/02#n2013-12-02
https://developer.R-project.org/blosxom.cgi/R-devel/NEWS/2013/12/02#n2013-12-02
https://rawgit.com/kevinushey/RToolsToolchainUpdate/master/mingwnotes.html
https://rawgit.com/kevinushey/RToolsToolchainUpdate/master/mingwnotes.html
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using the Boost C++ library (Boost Community 2016).
Another issue is random number generation (RNG) in C++ when there are multiple threads
running in parallel. Functions such as rand from C++ <cstdlib> behave differently in
different operating systems. In wsrf the random library in C++11 or Boost is used to obtain
independent pseudo-random number sequences. The task of making sure different trees have
different initial RNG seeds is handled in R. When invoked with a specification of the number
of trees wsrf generates the same number of random different seeds – the tree seeds. The
tree building procedures then use their own seed as passed from the master in R in order to
generate their own random number sequences. Thus, as desired, for a specific initial seed,
initialized in R using set.seed(), the same model will always be built.

3.2. Distributed computation

We implement a distributed version of wsrf by building trees on different machines (nodes)
across a cluster. The multi-threaded version of wsrf is employed on each node, thus increasing
the level of parallelism.
In a distributed environment the interaction between nodes becomes a problem and there
are many ways for dealing with it: through a direct connection using sockets; indirect com-
munication using MPI; or through using Hadoop for data-intensive computations. As for
our multi-threaded version of wsrf we implement a simple and robust approach to deploying
distributed computation using R’s parallel package.
The parallel package (R Core Team 2016b) provides parallelism at many different levels. It is
adopted by wsrf for distributed computing in R. The crucial point when using parallel is that
every chunk of computation should be independent and should not communicate with each
other. Noting that each tree-building task is independent of any other tree-building task the
natural chunk of computation is one tree-building task.
The main steps for the distributed version of wsrf are then:

1. According to the parameters passed by the user the master node calculates the number
of trees to be built on each worker node of the identified cluster;

2. The related data, parameters and number of trees is communicated to the corresponding
node to initiate the tree-building procedure on each node of the cluster;

3. The master node collects the results from all worker nodes to reduce the result into a
single random forest model.

The process is illustrated in Figure 2.
There are two alternatives to controlling the number of threads to be used on each node in
the cluster. By default, as in Section 3.1, the user only needs to specify which nodes of a
cluster to use and wsrf will use as many threads as there are available cores to build the
model. Alternatively, the number of threads on each node can be specified as a named vector
as in c(hostname1 = 10, hostname2 = 15) which requests 10 threads on host hostname1
and 15 threads on hostname2.
Once again the generation of random numbers is an issue across distributed nodes. The same
approach as presented for the multi-threaded version is used except that now the seeds are
passed to the nodes.
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Figure 2: Distributed wsrf.

4. Experimental comparisons
We now present various experiments with three purposes in mind – to ascertain accuracy,
elapsed-time performance and memory usage. We first determine that similar results are ob-
tained from our scalable version of wsrf, confirming the validity of our scalable wsrf. We then
compare the elapsed-time performance of wsrf to related packages, and explore its scalability.

4.1. Datasets

The datasets for the experiments are the same as used by Xu et al. (2012). All are high
dimensional datasets from image recognition, bioinformatics and text analysis. Table 1 pro-
vides an overview of the datasets with the size for the corresponding CSV (comma-separated
values) file of each dataset and ordered by the proportion of observations to variables.
The datasets gisette (Guyon 2013) and mnist (Roweis 2013) are an encoding of handwritten

Dataset Observations Variables
√
Vars blog2(Vars) + 1c Obs/Vars (train) Classes Size (MB)Train Test

wap 1,104 456 8,460 91 14 0.13 20 18.0
la1s 1,963 887 13,195 114 14 0.15 5 50.0
la2s 1,855 845 12,432 111 14 0.15 5 45.0
re1 1,147 510 3,758 61 12 0.31 25 8.3
fbis 1,711 752 2,000 44 11 0.86 17 6.6
gisette 5,000 999 5,000 70 13 1.00 2 54.0
newsgroups 11,268 7,504 5,000 70 13 2.25 20 108.0
tis 5,200 6,875 927 30 10 5.61 2 9.3
mnist 48,000 10,000 780 27 10 61.54 2 84.0

Table 1: Summary of the datasets used in the experiments.
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Package Version Published date Model building function
wsrf 1.5.14 2014-06-09 wsrf
rpart 4.1.8 2014-03-28 rpart
randomForest 4.6.10 2014-07-17 randomForest
party 1.0.19 2014-12-18 cforest
bigrf 0.1.11 2014-05-16 bigrfc
doParallel 1.0.8 2014-02-28 —
bigmemory 4.4.6 2013-11-18 —

Table 2: Summary of R packages.

digit images. Each observation of gisette describes either the handwritten digit “4” or “9”.
All observations of mnist are grouped into two classes corresponding to the digits 0 to 4 and
5 to 9 respectively. The datasets fbis, la1s, la2s, re1, wap (Karypis 2013) and newsgroups
(Rennie 2013) are all text data that can be grouped into multiple categories. Dataset tis
(Li 2013) is biomedical data which records the translation initiation sites (TIS) at which the
translation from a messenger RNA to a protein sequence was initiated.
The original datasets can be obtain from the links provided in the references. Note that the
datasets fbis, la1s, la2s, re1 and wap are available as a single archive file download. The
actual datasets used here are subsets of the originals and can be downloaded from Xu (2015).
All datasets are split into two parts, one for training the model and the other for testing and
from which the classification error rates are derived.

4.2. Experimental setting

Experiments are conducted to compare wsrf with the other common random forest packages
in R: randomForest and party. Comparisons with one of the parallel random forests package
bigrf are also included5. Table 2 lists the corresponding versions of these packages with their
dependant packages which may have influence over the performance, plus the functions for
building models in the experiments. Specifically, two extra packages are included, doParallel
(Analytics and Weston 2015) and bigmemory (Kane, Emerson, and Weston 2013), on which
bigrf depends. As a base comparison, the results of a single decision tree built from the R
package rpart (Therneau, Atkinson, and Ripley 2015) will also be provided.
The experiments were carried out on servers having an Intel Xeon CPU (E5620) with 16
cores running at 2.40 GHz, with 32GB RAM, running Ubuntu 12.04 LTS, GCC 4.9.2 and R
3.1.2. The distributed experiments were performed on a cluster of 10 nodes with the same
configuration for each node.

5The other two packages mentioned in Section 1 cannot fulfil the needs of our experiments. ParallelFor-
est (Version 1.1.0) can only be used for binary classification, and fails on tis – the smallest two-class
dataset in our experiments; Rborist (Version 0.1.0) fails even on the small example of ParallelForest at
Introduction to the ParallelForest Package (https://CRAN.R-project.org/web/packages/ParallelForest/
vignettes/ParallelForest-intro.html). We should also note that bigrf (Version 0.1.11) does not pass all
the experiments as mentioned in Section 4.3, and during the review process of this paper bigrf was removed
from CRAN due to check problems on 2015-11-21.

https://CRAN.R-project.org/web/packages/ParallelForest/vignettes/ParallelForest-intro.html
https://CRAN.R-project.org/web/packages/ParallelForest/vignettes/ParallelForest-intro.html
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The experiments are separated into 4 parts:

1. Build a single decision tree to benchmark basic tree building performance for each
package;

2. Build forests varying the numbers of trees from 30 to 300 with a step of 30 and so 10
trials in total;

3. Build forests of 100 trees but varying the size of the subspace (i.e., number of variables)
from 10 to 100 with a step of 10 and so 10 trials in total;

4. Using wsrf build a forest of 100 trees whilst varying the number of threads from 1 to
19 and so 10 trials in total and then the number of computer nodes from 1 to 10 and
so 10 trials in total.

All parameters use the default values of the corresponding model building functions in those
packages unless otherwise stated. The size of the subspace is controlled by the parameter
mtry in randomForest and bigrfc (mtry=

√
M by default in the packages where M is the

number of variables within the data) and cforest (mtry= 5 by default in the package), with
nvars as a synonym available in wsrf (which is mtry= blog2(M)+1c by default). For bigrfc
we use the recommended doParallel as the back end for its parallelism and big.matrix is
used by default. The number of cores used in parallel computing by wsrf is the number of
available cores minus 2 (which is 14 in our experiments) so we set the same on bigrfc for
comparison.
In presenting the results, wsrf_t represents wsrf running on a single machine with multi-
threading and wsrf_c represents wsrf distributed over a cluster of 10 nodes. For a more
reasonable comparison with randomForest and bigrfc we include the results for wsrf_nw
and wsrf_seq_nw which represent wsrf without weighting and wsrf without weighting and
computed serially rather than in parallel, respectively. Both are with mtry=

√
M . Unless

otherwise stated wsrf represents our weighted subspace random forests running on a single
machine with multi-threading.
All experiments for rpart, wsrf and bigrf over the datasets fbis, mnist and tis were repeated
10 times with different random seeds to improve the stability of the estimates of performance.
The rest were carried out only once because of the time taken to complete a single run. As
Table 5 shows cforest from party was taking over 2 days to build one tree on dataset la1s
compared to less than 1 minute for wsrf. Hence, the curves corresponding to these particular
experiments exhibit more variance.

4.3. Experimental results

Extensive experimentation has been carried out and in this section we report on three mea-
sures: classification accuracy, elapsed time and memory consumption. We briefly overview
the results first and then drill down into the details for each of the three measures.

Overview

Table 5 presents the results for the comparative single tree building mentioned in Section 4.2.
The purpose here is to compare the accuracy, run time and memory usage when building a
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cforest randomForest bigrf wsrf_t wsrf_c wsrf_nw wsrf_seq_nw
Accuracy
wap 22.1–22.1 78.3–84.2 78.3–81.6 77–79.6 — 74.9–77.9 —
la1s 32.2–32.2 84.8–86.1 84.2–85.6 85.9–86.8 — 81.4–83.4 —
la2s 31.7–31.7 85.1–88.2 86.8–87.9 87.2–88.2 — 84–85.4 —
re1 21.2–21.2 81.1–82.4 81.7–82.2 83.3–83.9 — 81.4–82 —
fbis 46.1–48.4 79.9–81.8 80.1–81.7 83.1–84.4 — 82.1–83.3 —
gisette 84.1–88.1 96.2–97 96.4–96.6 96–96.4 — 95.8–96.1 —
newsgroups 6.9–14.6 66.3–70.6 66.6–69 69.4–71.2 — 68.5–70.4 —
tis 75.5–75.5 89.2–90.3 89.1–90.2 90.2–90.4 — 84.8–85.9 —
mnist 79.2–83.4 97–97.5 96.9–97.2 97.1–97.5 — 96.8–97.4 —
Time
wap 8h–8h 8h–8h 15s–1m 42s–6m 29s–1m 2s–5s 4s–29s
la1s 2d–2d 2d–2d 35s–4m 57s–8m 48s–1m 5s–9s 8s–39s
la2s 1d–1d 1d–2d 30s–2m 50s–7m 44s–1m 4s–8s 7s–35s
re1 21m–23m 22m–26m 8s–2m 19s–3m 15s–28s 1s–3s 2s–19s
fbis 3m–3m 3m–5m 5s–2m 10s–1m 11s–18s 0s–2s 2s–15s
gisette 1h–1h 1h–2h 21s–19m 47s–7m 42s–1m 2s–7s 5s–48s
newsgroups 1h–1h 2h–6h 8m–2h 12m–2h 4m–14m 11s–1m 1m–12m
tis 27s–50s 43s–6m 5s–6m 8s–1m 12s–18s 0s–3s 2s–20s
mnist 5m–44m 6m–53m 38s–1m 3m–26m 1m–4m 5s–43s 34s–5m
Memory
wap 9G–20G 2G–2G 1015M–3G 254M–288M — 291M–326M 291M–326M
la1s 87G–390G 6G–7G 2G–4G 617M–665M — 595M–643M 597M–624M
la2s 76G–331G 4G–6G 2G–3G 544M–585M — 533M–582M 529M–606M
re1 712M–3G 263M–359M 493M–3G 44M–77M — 59M–84M 60M–83M
fbis 560M–3G 118M–181M 360M–2G 1M–26M — 20M–49M 19M–49M
gisette 16G–202G 1G–2G 2G–2G 10M–34M — 25M–56M 13M–54M
newsgroups 78G–334G 3G–4G 5G–6G 122M–259M — 108M–249M 104M–248M
tis 1014M–3G 148M–212M 347M–660M 1M–25M — 7M–38M 5M–38M
mnist 60G–251G 2G–3G 3G–3G 16M–154M — 19M–215M 8M–215M

Table 3: Minimum and maximum accuracy, elapsed time and memory used in building a
forest of trees whilst varying the number of trees (30, 60, 90, . . . , 300) to include in the forest.
The best results for each dataset are in boldface, the worst are underlined. Since with the
same set of random seeds the results on accuracy of wsrf_c and wsrf_t are the same, the
results for wsrf_c are not presented, so are wsrf_seq_nw.

single decision tree with any one of the algorithms. The original single decision tree algorithm
(rpart) generally performs the best in terms of accuracy. Note that this is compared to a
single un-pruned decision tree from the random forest algorithms – forests with many decision
trees are generally more accurate than a single decision tree. The primary comparison is for
time taken and memory used where we see the benefit of parallel model building and the
efficient use of memory, particularly with wsrf.
Table 3 provides a broad view of the three measures for each of the random forest algorithms
being compared as the number of trees built increases. The corresponding accuracy and
elapsed time are plotted in Figure 3. Note that memory usage for wsrf_c is not provided
in the table as it is not comparable to the others which only run on a single machine and
the results of wsrf_t are indicative. Due to the performance issues with cforest, as will be
mentioned in the following sub-sections, we do not report its results in the plots. The time
performance of randomForest is also significantly inferior to that of the others and so it is
not included in the plots for elapsed time. Since we use the same set of random seeds the
accuracy of wsrf_c and wsrf_t are identical and thus not repeated in the table and so for
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cforest randomForest bigrf wsrf_t wsrf_c wsrf_nw wsrf_seq_nw
Accuracy
wap 22.1–22.1 66.9–80.7 66.3–80.9 76.9–80.3 — 49.5–77.2 —
la1s 32.2–45.7 72.2–85.7 71.2–85.1 84.8–86.7 — 32.2–82.1 —
la2s 31.7–49.1 73.4–87.2 73.2–87.4 85.9–88.2 — 31.7–84.2 —
re1 21.2–28 62.1–84.1 60.9–83.7 82–83.7 — 45.3–82.5 —
fbis 48.8–50.2 75.6–83.2 76.1–82.9 79.9–84 — 75–84 —
gisette 90.9–93.2 95.8–96.9 95.8–96.8 96–96.5 — 95–96 —
newsgroups 11.3–24.2 68.1–70.6 68.4–68.4 68.3–71.2 — 52.9–70.3 —
tis 75.6–89.8 85.7–91.1 85.1–91.1 90.1–90.4 — 75.6–90.4 —
mnist 88.8–92.7 97–97.5 97–97 96.7–97.4 — 96.6–97.4 —
Time
wap 8h–8h 8h–8h 28s–31s 2m–2m 33s–35s 2s–3s 2s–12s
la1s 2d–2d 2d–2d 1m–1m 2m–3m 53s–55s 4s–6s 4s–14s
la2s 1d–1d 1d–1d 1m–1m 2m–2m 48s–49s 4s–5s 4s–13s
re1 22m–23m 23m–24m 14s–16s 45s–54s 16s–18s 0s–2s 1s–11s
fbis 3m–4m 3m–3m 11s–11s 28s–31s 12s–13s 0s–2s 1s–12s
gisette 1h–1h 1h–1h 48s–53s 2m–2m 47s–48s 1s–4s 3s–23s
newsgroups 1h–2h 3h–3h 5h–5h 37m–38m 5m–5m 3s–44s 17s–5m
tis 39s–2m 2m–2m 12s–13s 24s–25s 13s–13s 0s–3s 2s–22s
mnist 17m–1h 17m–25m 2m–2m 9m–11m 2m–2m 5s–1m 35s–9m
Memory
wap 9G–22G 1G–2G 2G–2G 260M–274M — 295M–301M 292M–301M
la1s 91G–386G 6G–7G 3G–3G 599M–632M — 598M–645M 596M–646M
la2s 72G–296G 4G–6G 3G–3G 532M–571M — 529M–554M 529M–549M
re1 805M–3G 252M–350M 1G–1G 58M–63M — 62M–67M 61M–67M
fbis 783M–1G 93M–153M 953M–1G 1M–5M — 26M–28M 26M–28M
gisette 18G–107G 1G–2G 2G–2G 9M–24M — 18M–36M 17M–49M
newsgroups 77G–321G 2G–3G 8G–8G 148M–166M — 108M–155M 111M–155M
tis 2G–2G 132M–178M 525M–556M 1M–6M — 8M–16M 7M–16M
mnist 93G–130G 2G–2G 3G–3G 43M–53M — 56M–84M 55M–84M

Table 4: Minimum and maximum accuracy, elapsed time and memory used in building a
forest of trees whilst varying the number of variables (10, 20, 30, . . . , 100) randomly selected
at each node. The best results for each dataset are in boldface, the worst are underlined.
Since with the same set of random seeds the results on accuracy of wsrf_c and wsrf_t are
the same, the results for wsrf_c are not presented, so are wsrf_seq_nw.

wsrf_nw and wsrf_seq_nw.
Table 4 and Figure 4 provide similar results but varying the number of variables to randomly
select at each node whilst building a decision tree.
Figure 5 considers just wsrf and plots the run-time performance using different number of
threads and nodes for model building as described in Section 4.2.
In order to highlight the best and the worst performing of the modellers over a specific
datasets the tabular results will emphasize the best performance (i.e., the minimum elapsed
time and memory used and the maximum accuracy) using a bold face. We also underline the
worst performances (i.e., the maximum elapsed time and memory usage, and the minimum
accuracy) for each specific dataset.

Classification accuracy

The results for building a single tree using rpart are included in Table 5 for comparison. Of
course, rpart is generally used to build a single tree model rather than multiple trees to be
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rpart cforest randomForest bigrf wsrf wsrf_nw
Accuracy
wap 63 22 48 51 56 53
la1s 75 32 63 63 71 59
la2s 78 33 63 64 73 62
re1 77 23 57 56 70 60
fbis 70 38 56 56 62 59
gisette 92 56 90 90 89 88
newsgroups 32 9 37 39 52 50
tis 89 76 79 79 85 78
mnist 79 81 88 88 90 88
Time
wap 48s 8h 8h 9s 12s 2s
la1s 2m 2d 2d 18s 16s 4s
la2s 2m 1d 1d 16s 14s 4s
re1 19s 23m 21m 4s 5s 0s
fbis 14s 3m 2m 3s 2s 0s
gisette 1m 1h 59m 10s 12s 1s
newsgroups 6m 1h 1h 30s 3m 3s
tis 15s 25s 12s 2s 2s 0s
mnist 2m 2m 54s 12s 41s 1s
Memory
wap 1G 10G 2G 867M 288M 288M
la1s 3G 97G 6G 2G 586M 605M
la2s 3G 77G 5G 2G 550M 549M
re1 157M 2G 253M 393M 43M 45M
fbis 53M 477M 112M 274M 17M 17M
gisette 1G 16G 1G 2G 32M 11M
newsgroups 2G 78G 3G 4G 102M 102M
tis 29M 697M 176M 309M 2M 3M
mnist 890M 33G 2G 3G 1M 1M

Table 5: Comparison of accuracy/time/memory for a single decision tree from the
tree/forest model building algorithms. The time is in seconds, minutes, hours, and days
while accuracy is a percentage. The best results for each dataset are in boldface, the worst
are underlined.

combined into an ensemble. It is important to note that, as mentioned in Section 2.1, no
pruning is performed in the process of tree building for random forests. Therefore, a single
tree built without pruning will usually suffer from over-fitting. Besides, all variables are
selected in the node-splitting process by rpart, so we observe that rpart generally produces
more accurate single tree models, with the exceptions for datasets newsgroups and mnist.
From Table 5 we also see that for a single tree from cforest the accuracy is quite poor, being
less than 50% on all datasets except for gisette, tis and mnist. We concede that there
may be opportunity for tuning the tree building parameters in cforest, but have not done
so. Also from the results of varying the number of variables in Table 4 similar conclusions
can be made.
The accuracy of a single decision tree from wsrf over all nine datasets is often quite comparable
to the best accuracy of the other single decision tree builders.
We observe that bigrf has similar classification accuracy to randomForest from Table 5,
Figure 3 and Figure 4. Both are based on Breiman’s original random forests algorithm.
From Table 3 and the top collection of plots in Figure 3 we can see that wsrf have slightly
better classification accuracy over all the datasets except wap as the number of trees changes.
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Figure 3: Comparison of accuracy and elapsed time across number of trees. Since with the
same set of random seeds the results on accuracy of wsrf_c and wsrf_t are the same, wsrf_c
and wsrf_t are collectively represented by wsrf in the legend of the top panel, so are wsrf_nw
and wsrf_seq_nw.



Journal of Statistical Software 15

●

●

●
● ● ● ● ● ● ●

● ●

●
● ● ● ● ● ● ● ●

●
●

●

●
● ● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●

● ●● ● ● ● ● ● ● ●●

●

●

●
● ● ● ● ● ● ● ●

●

wap la1s la2s

re1 fbis gisette

newsgroups tis mnist

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

25 50 75 100 25 50 75 100 25 50 75 100
Number of variables

A
cc

ur
ac

y
Modeller ● bigrf randomForest wsrf_nw (wsrf_nw = wsrf_seq_nw) wsrf (wsrf_c = wsrf_t)

● ●● ● ● ● ● ● ● ●●

● ●● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ●●

● ●● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●●

●

● ●● ● ● ● ● ● ● ●

●

wap la1s la2s

re1 fbis gisette

newsgroups tis mnist

10

100

10

100

10

100

1

10

1

10

1

10

100

100

10,000

1

10

10

100

25 50 75 100 25 50 75 100 25 50 75 100

25 50 75 100 25 50 75 100 25 50 75 100

25 50 75 100 25 50 75 100 25 50 75 100
Number of variables

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Modeller ● bigrf wsrf_c wsrf_nw wsrf_seq_nw wsrf_t

Figure 4: Comparison of accuracy and elapsed time across number of variables. Since with
the same set of random seeds the results on accuracy of wsrf_c and wsrf_t are the same,
wsrf_c and wsrf_t are collectively represented by wsrf in the legend of the top panel, so are
wsrf_nw and wsrf_seq_nw.
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Figure 4 and Table 4 similarly presents the experimental results based on varying the number
of randomly selected variables. In short we can again observe that wsrf obtains high accu-
racy with fewer variables (and hence reduced effort) compared to other packages. Note the
relatively poor performance results for randomForest and wsrf_nw when a smaller number
of variables are chosen. This supports the observation we made early in the paper relating
to the exclusion of informative variables when uniform random sampling is used. Informative
variables are not regularly being included in the sample of variables selected by randomFor-
est and wsrf_nw when we have a large number of variables to select from. The weighted
subspace approach delivers a performance gain with a reduced amount of effort.
The accuracy plots presented in Figures 3 and 4 present many further opportunities to be
explored in understanding the nature of building ensembles. The marginally, but consistently
better performance of randomForest over wsrf for wap could shed some light on where weighted
subspace selection may not offer any benefit. Most of the other datasets have more, and
sometimes many more, variables than observations. The interplay between the number of
observations and the number of variables has not been investigated here.

Elapsed time

In terms of elapsed time Table 5 demonstrates that wsrf_nw is the most efficient and wsrf gen-
erally takes less time than the other algorithms with the exceptions for mnist and newsgroups.
We note that wsrf re-calculates the weights for each candidate variable for every node while
growing a tree. As the number of observations increases the time taken will increase as the
re-calculation of the measure is taking more observations into the formula. As mentioned in
Section 3.1 the smallest parallel unit of wsrf is the single tree building process, so the timing
for wsrf for single tree building in Table 5 is the minimum for model building.
Tables 3 and 4 demonstrate that wsrf_nw consistently delivers models more quickly. Rather
than model building taking many minutes, hours or days, wsrf_nw takes only seconds in most
cases. Even wsrf_seq_nw primarily takes seconds. Whilst wsrf_t takes up to 2 hours for
newsgroups when building 300 trees (Table 3) the distributed version (wsrf_c) demonstrates
the scalability of wsrf. The cforest and randomForest algorithms generally take considerably
longer to build their models.
We can particularly compare the time taken for the la1s dataset. Here wsrf completes the
task within a few minutes compared to randomForest and cforest taking 2 days to complete.
Because a single tree build is the unit for parallel computation within wsrf we note that the
least time required for growing a forest is the time taken for building one tree, plus a small
overhead for distributing the work. The comparison between wsrf_t and wsrf_nw illustrates
the cost of calculating weights in wsrf.
The lower collection of plots in Figures 3 and 4 demonstrate the considerable time advantage
obtained by going parallel. Be aware that these plots have varying y-axis ranges and it should
be noted that the y-axis of each plot uses a log scale so as to differentiate the lower timings.
Hence time differences are even more dramatic than they may at first appear. Note also that
the plots for bigrf are truncated as bigrf appears to not terminate for larger number of trees.
The abrupt increases of elapsed time in the figures are also a testament to this. Its fail is also
at times due to memory limitations.
Figure 5 provides insights into the benefit of parallelism over multiple threads and multiple
nodes. A series of experiments were carried out by increasing the number of nodes (compute



Journal of Statistical Software 17

●

●

●
●

● ● ● ● ● ●

●

● ● ● ● ●

●

●
●

●

Number of nodes Number of threads

10

100

1,000

100

1,000

10,000

2 5 8 2 5 8 11 14 17

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Dataset

●

wap

la1s

la2s

re1

fbis

gisette

newsgroups

tis

mnist

Figure 5: A comparison of the elapsed time for building wsrf-based random forests of 100
trees for each of the 9 datasets. Note the log scale on the y-axis.

servers) deployed and separately by increasing the number of threads deployed on a single
node. Each point represents the time taken to build 100 decision trees for one forest averaged
over 10 random forests. We can see that as the number of threads or nodes increases the
running time of course reduces. We note again the log scale of the y-axis.

Memory consumption

Table 5 suggests that although rpart can be a good choice in terms of classification accuracy
and elapsed time, as we observed in Sections 4.3 and 4.3, the memory requirement for a single
tree is quite significant.
Tables 5, 3 and 4 record that cforest requires hundreds of gigabytes and is a significantly
higher requirement than other algorithms. This adversely impacts compute time of course as
once available memory is exhausted the server will begin swapping to virtual memory. This
underlies the significant elapsed compute time for cforest.
The measurements also record that the memory consumption of randomForest is an order of
magnitude lower than that of cforest. Nonetheless randomForest takes a similar amount of
time as cforest with no apparent virtual memory swapping. We observe that wsrf generally
uses the least amount of memory among the algorithms of our experiments. It peaks at
around 660MB across all 9 datasets and is well below the 32GB of RAM available on each
node.
In the experiments each dataset is loaded into R before being passed on to the modellers. The
memory recorded includes the memory required by the modeller and any additional copies of
the datasets made by the implementations. We have used R’s Rprof6 for memory profiling and
the sample timing interval will affect timings. A small interval provides more precise memory
summaries but at the cost of compute time whilst a larger interval has minimal affect on
elapsed time. Unfortunately the results suggest a smaller memory footprint than actually
consumed. We experimented to find appropriate timing intervals for the different datasets
and algorithms. Larger intervals were employed for the longer running algorithms and smaller

6See also Writing R Extensions – Memory statistics from Rprof (https://CRAN.R-project.org/doc/
manuals/r-release/R-exts.html#Memory-statistics-from-Rprof).

https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#Memory-statistics-from-Rprof
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#Memory-statistics-from-Rprof
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intervals for smaller datasets and quicker algorithms. We can see slight inconsistency in the
memory usage on smaller datasets as in the memory used by wsrf_nw (20M–49M) and
wsrf_t (1M–26M).

5. Package overview and usage
We now demonstrate the use of wsrf by illustrating the utilization of both a single node with
multiple cores and a cluster of machines each using multiple cores. We will use the small
weather dataset from rattle (Williams 2011) to ensure the examples are readily repeatable.
See the help page of rattle in R (?weather) for more details on the dataset.
We begin by loading the required packages into R, assuming they have been installed (using
install.packages()).

R> library("rattle")

The first step is then to set up the dataset, identifying the target variable. The approach we
use simplifies repeated running of any modelling experiments by recording general informa-
tion in variables (parameters) that we can change in one place. Experiments are repeated
by running the remainder of the code with minimal if any change. This streamlines both
interactive and iterative model development.

R> ds <- weather
R> target <- "RainTomorrow"
R> nobs <- nrow(ds)

Once we have established the dataset it is always advisable to summarize the basic dataset
information.

R> dim(ds)

[1] 366 24

R> names(ds)

[1] "Date" "Location" "MinTemp" "MaxTemp"
[5] "Rainfall" "Evaporation" "Sunshine" "WindGustDir"
[9] "WindGustSpeed" "WindDir9am" "WindDir3pm" "WindSpeed9am"

[13] "WindSpeed3pm" "Humidity9am" "Humidity3pm" "Pressure9am"
....

We would normally also review the summary(), head() and tail() and str() of the dataset,
but we skip that here for brevity.
Before building the model we need to prepare the training dataset, specifically identifying the
variables to ignore in the modelling. Identifiers and any output variables (RISK_MM is an
output variable) should not be used (as independent variables) for modelling.
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R> vars <- setdiff(names(ds), c("Date", "Location", "RISK_MM"))
R> dim(ds[vars])

[1] 366 21

Next we deal with missing values. Currently the C++ component of the implementation of
wsrf does not support data with missing values. We take care of this in the R component
of the implementation through the na.action= option of wsrf(). Alternatively we can take
care of them in some way, for example using na.roughfix() from randomForest to impute
values. We do so here for illustrative purposes but in general care needs to be taken in dealing
with missing data.

R> ds[vars] <- randomForest::na.roughfix(ds[vars])

It is useful to review the distribution of the target variable.

R> table(ds[target])

No Yes
300 66

We now construct the formula that describes the model to be built. The aim of the model is
to predict the target based on all other variables.

R> (form <- formula(paste(target, "~ .")))

RainTomorrow ~ .

Randomly selected training and test datasets are constructed, setting a seed so that the results
can be exactly replicated.

R> set.seed(49)
R> train <- sample(nobs, 0.7 * nobs)
R> test <- setdiff(1:nobs, train)
R> length(train)

[1] 256

R> length(test)

[1] 110

We are now ready to build the model.

R> library("wsrf")
R> system.time(model.wsrf <- wsrf(form, data = ds[train, vars]))
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user system elapsed
1.345 0.027 0.132

R> model <- model.wsrf

A single tree, or indeed all 500 trees, can be printed using the usual print() command, with
a summary on the first line providing the tree size and its specific error rate. Which tree(s)
to print is managed by the tree= parameter.

R> print(model, tree = 1)

Tree 1 has 20 tests (internal nodes), with OOB error rate 0.1458:

1) Temp9am <= 19.7
.. 2) Temp9am <= 11.1
.. .. 3) Humidity9am <= 88
.. .. .. 4) Temp3pm <= 17.4 [No] (1 0) *
.. .. .. 4) Temp3pm > 17.4
.. .. .. .. 5) Sunshine <= 8.7 [No] (0.5 0.5) *
.. .. .. .. 5) Sunshine > 8.7 [No] (1 0) *
.. .. 3) Humidity9am > 88
.. .. .. 6) Humidity3pm <= 72 [No] (1 0) *
.. .. .. 6) Humidity3pm > 72 [Yes] (0.33 0.67) *
.. 2) Temp9am > 11.1
.. .. 7) Temp9am <= 17.5
.. .. .. 8) WindGustSpeed <= 48

....

Compare this to the 500th decision tree.

R> print(model, tree = 500)

Tree 500 has 17 tests (internal nodes), with OOB error rate 0.2079:

1) Sunshine <= 2
.. 2) Cloud9am <= 7
.. .. 3) Pressure9am <= 1013.8 [No] (0.5 0.5) *
.. .. 3) Pressure9am > 1013.8 [No] (1 0) *
.. 2) Cloud9am > 7
.. .. 4) WindSpeed9am <= 6 [Yes] (0 1) *
.. .. 4) WindSpeed9am > 6 [Yes] (0.33 0.67) *
1) Sunshine > 2
.. 5) Pressure3pm <= 1016
.. .. 6) Sunshine <= 8.4
.. .. .. 7) Sunshine <= 4.7 [No] (1 0) *
.. .. .. 7) Sunshine > 4.7
.. .. .. .. 8) Sunshine <= 6.1 [Yes] (0 1) *

....
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Without the tree= parameter, an summary of the forest is presented.

R> print(model)

A Weighted Subspace Random Forest model with 500 trees.

No. of variables tried at each split: 5
Out-of-Bag Error Rate: 0.14

Strength: 0.59
Correlation: 0.18

Confusion matrix:
No Yes class.error

No 212 3 0.01
Yes 33 8 0.80

Notice how the error rate for the individual decision trees is higher than that for the overall
ensemble model which we see below. This is a general observation of the performance of
ensembles – the overall model is generally more accurate than any individual component
model.
The summary also include a measure of the Strength (Equation 9 below) and the Correlation
(Equation 10 below) as introduced by Breiman (2001) for evaluating a random forest model.
Strength measures the collective performance of individual trees in a random forest and
Correlation measures the diversity of the trees. A goal for ensemble model building is to
maximize the strength of the component models and to minimize the correlations between
the component models.
The Strength and Correlation are two measures we use to gain insight into the performance
of the modeller. For a particular random forest let hk be the kth tree classifier built from the
kth training dataset Dk. Each Dk is sampled from the full dataset D with replacement. The
random forest model contains K trees. The out-of-bag proportion of votes for predicted class
j for observation di ∈ D is then the number of trees (the hk) for which di is out-of-bag (i.e., di

is not in the training dataset Dk used to build the specific tree hk) and the tree predicts the
class to be j for that observation di, divided by the number of times di is out-of-bag across
the K decision trees. Essentially this is the out-of-bag score over the ensemble for predicting
class j for a specific observation di.

Q(di, j) =
∑K

k=1 I(hk(di) = j, di /∈ Dk)∑K
k=1 I(di /∈ Dk)

(8)

We then define Strength as the average difference between the out-of-bag score for di and the
true class yi, and the maximum out-of-bag score for all other classes predicted for di, over all
n observations in D.

Strength = 1
n

n∑
i=1

(Q(di, yi)−max
j 6=yi

Q(di, j)) (9)

Correlation is computed as:

Correlation =
1
n

∑n
i=1(Q(di, yi)−maxj 6=yi

Q(di, j))2 − Strength2

( 1
K

∑K
k=1

√
pk + p̄k + (pk − p̄k)2)2

(10)
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where
pk =

∑n
i=1 I(hk(di) = yi, di /∈ Dk)∑n

i=1 I(di /∈ Dk) (11)

and
p̄k =

∑n
i=1 I(hk(di) = ĵ(di), di /∈ Dk)∑n

i=1 I(di /∈ Dk) (12)

and
ĵ(di) = arg max

j 6=yi

Q(di, j) (13)

The values for Strength and Correlation are calculated and stored in the model object, and
are accessed with their respective accessor functions:

R> strength(model)

[1] 0.5938936

R> correlation(model)

[1] 0.1839344

The standard predict() function is also available to apply the model to new data. Here we
apply it to the holdout test dataset to obtain an expected measure of accuracy.

R> cl <- predict(model, newdata = ds[test, vars], type = "response")
R> actual <- ds[test, target]
R> (accuracy.wsrf <- sum(cl == actual) / length(actual))

[1] 0.8545455

We have a model that is close to 85% accurate on the unseen testing dataset.
As we have seen, other packages provide random forest models and we now compare the
accuracy of a resulting model to cforest and randomForest, out-of-the-box, so to speak.

R> library("randomForest")
R> system.time(model.rf <- randomForest(form, data = ds[train, vars]))

user system elapsed
0.270 0.008 0.278

R> model <- model.rf
R> model

Call:
randomForest(formula=form, data=ds[train, vars])

Type of random forest: classification
....
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R> cl <- predict(model, newdata = ds[test, vars], type = "response")
R> (accuracy.rf <- sum(cl == actual) / length(actual))

[1] 0.8727273

For this dataset we note that randomForest() has delivered better accuracy. This is not
necessarily unexpected as wsrf() is best suited to datasets with very many variables. And
with different random seeds, different results would be obtained. Also note that for small
dataset like weather, the user time of wsrf is larger than randomForest, which means running
wsrf without parallelism will be slower than randomForest.

R> library("party")
R> system.time(model.cf <- cforest(form, data = ds[train, vars]))

user system elapsed
0.698 0.000 0.697

R> model <- model.cf
R> cl <- predict(model, newdata = ds[test, vars], type = "response")
R> (accuracy.cf <- sum(cl == actual) / length(actual))

[1] 0.8363636

Next, we will specify building the model on a cluster of servers. By default, wsrf() has
parallel=TRUE and will use two less threads than the number of cores available on the host
node for building the collection of decision trees, one tree per thread/core at a time. We can
use detectCores() to identify the number of available cores on the host.

R> detectCores()

[1] 16

If we want to use all cores then we can specify the number as the value of parallel=. Using
all cores will, for example, leave no compute cycles spare and thus interactive usage of the
computer will be affected.

R> system.time(model.wsrf <- wsrf(form, data = ds[train, vars],
+ parallel = 4))

user system elapsed
1.008 0.032 0.275

R> print(model.wsrf)
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A Weighted Subspace Random Forest model with 500 trees.

No. of variables tried at each split: 5
Out-of-Bag Error Rate: 0.14

Strength: 0.60
Correlation: 0.18

Confusion matrix:
No Yes class.error

No 210 5 0.02
Yes 30 11 0.73

Notice that the elapsed time is increased because only 4 cores are allocated.
To run the process over a cluster of servers we can name the servers as the value of parallel=.
This can be a simple character vector naming the host, or it can be named integer vector,
whose integer values nominate the number of cores to use on each node. We illustrate the
simple example first.

R> servers <- c("node33", "node34", "node35", "node36")
R> system.time(model.wsrf.1 <- wsrf(form,
+ data = ds[train, vars], parallel = servers))

user system elapsed
0.041 0.045 2.256

R> print(model.wsrf.1)

A Weighted Subspace Random Forest model with 500 trees.

No. of variables tried at each split: 5
Out-of-Bag Error Rate: 0.14

Strength: 0.59
Correlation: 0.19

Confusion matrix:
No Yes class.error

No 210 5 0.02
Yes 30 11 0.73

Notice the timing here. There is an overhead in initiating an R session on each server and
in transferring the dataset to each server. For a small task this is a relatively high overhead.
For a larger task the overhead is marginal.
Now we specify the number of cores to use per node:

R> servers <- c(node33 = 2, node34 = 4, node35 = 8, node36 = 10)
R> system.time(model.wsrf.2 <- wsrf(form,
+ data = ds[train, vars], parallel = servers))
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user system elapsed
0.038 0.040 2.189

R> print(model.wsrf.2)

A Weighted Subspace Random Forest model with 500 trees.

No. of variables tried at each split: 5
Out-of-Bag Error Rate: 0.14

Strength: 0.60
Correlation: 0.18

Confusion matrix:
No Yes class.error

No 210 5 0.02
Yes 30 11 0.73

wsrf also provides subset.wsrf() for manipulating part of the forest and combine.wsrf()
for merging multiple models into a larger model.

R> model.subset <- subset.wsrf(model.wsrf, 1:200)
R> model.combine <- combine.wsrf(model.wsrf.1, model.wsrf.2)

In summary, the signature of the function to build a weighted random forest model in wsrf
is:

wsrf(formula, data, nvars = log2(n) + 1, ntrees = 500,
weights = TRUE, parallel = TRUE, na.action = na.fail)

In the simplest invocations we have demonstrated above, all parameters except formula= and
data= use their default values. The parameter nvars= (or mtry=) is the number of variables
to choose from for each node in each tree, with the default being the largest integer less than
the log base 2 of the number of variables being modelled, plus 1. For ntrees=, in common
with randomForest and party, the default number of trees to build is 500. The parameter
weights=, defaulting to TRUE, requests using weighted sub-spaces for random sampling, rather
than traditional un-weighted random sampling. The level of parallelism is controlled by
parallel, indicating whether to run sequentially, in parallel on a single node (multi-cores)
or parallel across a number of nodes, each possibly with multiple cores. Finally, we can use
na.action= to specify a function to deal with missing data. For example, we could have used
na.action=na.roughfix instead of fixing the missing values ourselves.

6. Installation options
The released version of the wsrf package is available from CRAN7 which by default is a
sequential only version. The type of parallel computing compiled into the package is reported

7CRAN is the Comprehensive R Archive Network from where R packages can be installed. See https:
//CRAN.R-project.org/.

https://CRAN.R-project.org/
https://CRAN.R-project.org/
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when the package is loaded (using library("wsrf")) to the current R session. The choice is
made when the source code is compiled and the available options depend on what is available
at the time of compilation.
To make use of parallel computations a source install is required together with a C++ compiler
with the C++11 standard support for threads or else version 1.54 or above of the Boost C++
library (Boost Community 2016). To install from source and include the preferred parallel
computation capability we run the following command within R:

R> install.packages("wsrf", type = "source",
+ configure.args = "--enable-c11=yes")

C++11 is not currently supported by CRAN8 and so we provide three options for installing
wsrf. The first and default is the implementation without parallelism where trees are built
sequentially. This is often the only way to install on a Windows platform.

R> install.packages("wsrf", type = "source",
+ configure.args = "--enable-c11=no")

The second and recommended install method uses the parallelism provided by the modern
C++11 compilers. This is suitable for GNU/Linux installations with recent versions of the
g++ compiler, as with Debian and Ubuntu.

R> install.packages("wsrf", type = "source",
+ configure.args = "--enable-c11=yes")

The third install method uses the older Boost library for multi-threading. This is useful when
the available version of C++ does not support C++11 but has the Boost libraries installed.

R> install.packages("wsrf", type = "source",
+ configure.args = "--with-boost-include=<Boost include path>
+ --with-boost-lib=<Boost lib path>")

For more details see the reference manual or the vignette for the wsrf package.
Our examples here work for any of the installations though run time performance is of course
dependent on use of the parallel options.

7. Summary and future work
The wsrf package is the result of integrating C++ and R with multi-threaded and distributed
functionality for our specific algorithm. It implements a scalable weighted random forest
algorithm which can be used on a single high performance server or a cluster of such servers
to offer very accurate models more quickly than the traditional random forest algorithms.
A significant remaining task for future work is to deal with memory usage, especially with
bigger data becoming available. Further work is required to deal with the in-memory and out-
of-memory requirements of the current implementation. Research is under way to consider
various big-data implementations, including the use of Hadoop type paradigms.

8This is likely to change in the future and the version of wsrf from CRAN will then directly support the
parallel implementation.
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