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Abstract

This article describes the R package gcmr for fitting Gaussian copula marginal re-
gression models. The Gaussian copula provides a mathematically convenient framework
to handle various forms of dependence in regression models arising, for example, in time
series, longitudinal studies or spatial data. The package gcmr implements maximum
likelihood inference for Gaussian copula marginal regression. The likelihood function is
approximated with a sequential importance sampling algorithm in the discrete case. The
package is designed to allow a flexible specification of the regression model and the depen-
dence structure. Illustrations include negative binomial modeling of longitudinal count
data, beta regression for time series of rates and logistic regression for spatially correlated
binomial data.
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1. Introduction
Copula models (Joe 2014) are often considered to extend univariate regression models as-
suming independent responses to more general frameworks (e.g., Frees and Valdez 1998; Song
2000; Parsa and Klugman 2011; Kolev and Paiva 2009). The principal merit of the approach
is that the specification of the regression model is separated from the dependence structure.
This paper focuses on Gaussian copula regression method where dependence is conveniently
expressed in the familiar form of the correlation matrix of a multivariate Gaussian distribu-
tion (Song 2000; Pitt, Chan, and Kohn 2006; Masarotto and Varin 2012). Gaussian copula
regression models have been successfully employed in several complex applications arising,
for example, in longitudinal data analysis (Frees and Valdez 2008; Sun, Frees, and Rosenberg
2008; Shi and Frees 2011; Song, Li, and Zhang 2013), genetics (Li, Boehnke, Abecasis, and
Song 2006; He, Li, Edmondson, Raderand, and Li 2012), mixed data (Song, Li, and Yuan
2009; de Leon and Wu 2011; Wu and de Leon 2014; Jiryaie, Withanage, Wu, and de Leon
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2016), spatial statistics (Kazianka and Pilz 2010; Bai, Kang, and Song 2014; Hughes 2015;
Nikoloulopoulos 2016), time series (Guolo and Varin 2014).
Various authors discussed likelihood inference for Gaussian copula models (e.g., Masarotto
and Varin 2012; Song et al. 2013; Nikoloulopoulos 2016). While likelihood computations for
continuous responses are straightforward, the discrete case is considerably more difficult be-
cause the likelihood function involves multidimensional Gaussian integrals. Simulation meth-
ods are often employed to approximate the likelihood of Gaussian copula models in presence
of high-dimensional discrete responses. Pitt et al. (2006) developed a Markov chain Monte
Carlo algorithm for Bayesian inference, Masarotto and Varin (2012) adopted a sequential im-
portance sampling algorithm, Nikoloulopoulos (2013) studied simulated maximum likelihood
based on randomized quasi-Monte Carlo integration, see also Nikoloulopoulos (2016). Alter-
natively, composite likelihood methods (Varin, Reid, and Firth 2011) have been used to reduce
the integral dimensionality and avoid inversion of high-dimensional covariance matrices (e.g.,
Zhao and Joe 2005; Bai et al. 2014; Hughes 2015).
Well-known limits of the Gaussian copula approach are the impossibility to deal with asym-
metric dependence and the lack of tail dependence. These limits may impact the use of
Gaussian copulas to model forms of dependence arising, for example, in extreme environmen-
tal events or in financial data. Conversely, this paper focuses on working Gaussian copulas
used to conveniently handle dependence in regression analysis as described in Masarotto and
Varin (2012). In other terms, the parameters of interest are the regression coefficients, while
the dependence structure identified by the Gaussian copula is a nuisance component.
The CRAN archive contains several R (R Core Team 2017) packages devoted to copula mod-
eling, but only a few consider copulas for regression modeling. The weightedScores package
(Nikoloulopoulos and Joe 2015) is designed for longitudinal modeling of discrete responses.
Regression parameters are estimated with optimal estimating equations, while dependence
parameters are estimated by maximum composite likelihood based on a working Gaussian
copula model. The principal merit of the approach is the robustness against misspecification
of the copula distribution. CopulaRegression (Kraemer, Brechmann, Silvestrini, and Czado
2013) uses various copula models to describe the joint distribution of a pair of continuous
and discrete random variables. The marginals are defined via generalized linear models and
various parametric copulas are fitted to the bivariate joint distribution with the method of
maximum likelihood. copCAR (Goren and Hughes 2017) implements a Gaussian copula re-
gression model for areal data. Model parameters are estimated with composite likelihood
and other types of likelihood approximation. The popular package copula (Hofert, Kojadi-
novic, Maechler, and Yan 2017) can also be used for multivariate regression with continuous
responses, although it does not contain functions directly designed for regression, see the
appendix of Yan (2007).
Package gcmr differs from the above packages in terms of the covered models, the fitting
method in the discrete case and the functionalities for evaluation of the fitted model. Available
marginal regression models include generalized linear models, negative binomial regression for
overdispersed counts and beta regression for rates and proportions. Implemented Gaussian
copula correlation matrices allow to handle various forms of dependence arising, for example,
in longitudinal data analysis, time series and geostatistics. Advanced users may expand
gcmr with additional marginal regression models and Gaussian copula correlation matrices
as explained in the appendix. Models are fitted with the method of maximum likelihood
in the continuous case and maximum simulated likelihood in the discrete case. Among the
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advantages of likelihood inference there are the possibility to select models using information
criteria such as AIC or BIC and the computation of the profile log-likelihood for inference
on a focus parameter. Given potential concerns about the assumed copula, various types of
robust sandwich standard errors are available. Moreover, gcmr implements residuals analysis
to evaluate departures from the model assumptions.
The article is organized as follows. Section 2 briefly summarizes the theory of Gaussian
copula regression with emphasis on model specification, likelihood inference, quantification of
estimation uncertainty and model validation through residuals analysis. Section 3 describes
the R implementation available within the gcmr package. Section 4 illustrates various gcmr
functionalities using longitudinal data, time series and spatial data. The appendix provides
some guidance to advanced users about how to extend the package capabilities by specification
of regression models and dependence structures not yet available in gcmr.

2. Gaussian copula regression
Consider a vector of n dependent variables Y1, . . . , Yn. The marginal cumulative distribution
of a single variable Yi is denoted by F (·|xi) and depends on a p-dimensional vector of covariates
xi. We assume that F (·|xi) is parameterized in terms of a location parameter µi, typically
corresponding to the expected value E(Yi|xi), that depends on xi through the relationship

g1(µi) = x>i β, (1)

for a suitable link function g1(·) and a p-dimensional vector of regression coefficients β. This
setting encompasses a variety of popular model classes such as, for example, generalized linear
models (McCullagh and Nelder 1989) or beta regression (Cribari-Neto and Zeileis 2010). If
the distribution of Yi includes a dispersion parameter, then the model can be extended to
allow for variable dispersion with a second regression model (Cribari-Neto and Zeileis 2010)

g2(ψi) = z>i γ, (2)

where g2(·) is the dispersion link function, ψi is the dispersion parameter associated to Yi, zi

is the q-dimensional vector of dispersion covariates and γ is the corresponding vector of re-
gression coefficients. For the sake of notational simplicity, thereafter the marginal cumulative
univariate distribution of Yi will be denoted as F (·|xi) even in the case of variable dispersion,
where indeed the model is F (·|xi, zi).
In Gaussian copula regression the dependence between the variables is modelled with a Gaus-
sian copula so that the joint data cumulative distribution function is given by

Pr(Y1 ≤ y1, . . . , Yn ≤ yn) = Φn(ε1, . . . , εn; P),

where εi = Φ−1{F (yi|xi)}, with Φ(·) denoting the univariate standard normal cumulative
distribution function and Φn(·; P) the n-dimensional multivariate standard normal cumulative
distribution function with correlation matrix P.
An equivalent formulation of the Gaussian copula model that emphasizes the regression setting
is described in Masarotto and Varin (2012). Consider a regression model that links each
variable Yi to a vector of covariates xi through the generic relationship

Yi = h(xi, εi),
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where εi is a stochastic error. Among many possible specifications of the function h(·) and
the error εi, the Gaussian copula regression model assumes that

h(xi, εi) = F−1{Φ(εi)|xi},

and the vector of error terms ε = (ε1, . . . , εn)> has a multivariate standard normal distribu-
tion with correlation matrix P. In other terms, the Gaussian copula identifies a regression
model constructed in way to (i) preserve the marginal univariate distributions and (ii) have
multivariate normal errors.
An attractive feature of the Gaussian copula approach is that various forms of dependence
can be expressed through suitable parametrization of the correlation matrix P. For exam-
ple, longitudinal data can be modelled with the working correlation matrices considered in
generalized estimating equations (Song 2007, § 6), serial dependence in time series with a cor-
relation matrix corresponding to an autoregressive and moving average process (Guolo and
Varin 2014), spatial dependence with a correlation matrix induced by a Gaussian random
field (Bai et al. 2014).

2.1. Likelihood inference

The gcmr package implements maximum likelihood inference for Gaussian copula regression
models. Let θ denote the vector of model parameters consisting of the parameters of the
univariate marginals and the parameters belonging to the Gaussian copula correlation matrix.
The likelihood function for θ in the continuous case has the closed-form (e.g., Song 2000)

L(θ) = φn(ε1, . . . , εn; P)
n∏

i=1

f(yi|xi)
φ(εi)

,

where φ(·) indicates the univariate standard normal density, φn(·; P) the n-dimensional stan-
dard normal density with correlation matrix P, f(·|xi) the density of Yi given xi and depen-
dence of the density functions on θ is kept implicit for notational simplicity. The discrete case
is considerably more involved because the likelihood is given by the n-dimensional normal
integral

L(θ) =
∫

D1
· · ·

∫
Dn

φn(ε1, . . . , εn; P)dε1 · · · dεn, (3)

where the integral domain is the Cartesian product of the intervals

Di = [Φ−1{F (yi − 1|xi)},Φ−1{F (yi|xi)}].

A remarkable amount of research has been addressed to the numerical approximation of
multivariate normal integrals. For example, quasi-Monte Carlo approximations are available
through the popular R package mvtnorm (Genz and Bretz 2009; Genz et al. 2017). We re-
fer to Nikoloulopoulos (2013, 2016) for numerical studies about the efficiency of simulated
maximum likelihood estimation based on mvtnorm in Gaussian copula models. Masarotto
and Varin (2012) suggest that efficient numerical approximations of Equation 3 can be ob-
tained by suitable generalizations of numerical methods for approximate likelihood inference
in multivariate probit models. The most popular of such methods is probably the Geweke-
Hajivassiliou-Keane (GHK) simulator (Keane 1994). The GHK simulator is a sequential
importance sampling algorithm extensively studied in the computational econometrics lit-
erature, where it is commonly considered the gold standard for likelihood computation in
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multivariate probit models, see, for example, Train (2003). The gcmr package implements
maximum simulated likelihood estimation based on a variant of the GHK algorithm described
in Masarotto and Varin (2012).
There are different options to evaluate the uncertainty of the maximum likelihood estimator.
First, the classical approach that evaluates the uncertainty with the inverse of the observed
Fisher information. Alternatively, the asymptotic variance of the maximum likelihood es-
timator can be estimated with the outer product of the scores derived from the predictive
decomposition of the likelihood. The above options are valid if the Gaussian copula model
is correctly specified. Given the potential concerns about the Gaussian copula assumption,
then it is advisable to compare model-based standard errors with robust sandwich estima-
tors. Significant divergences between model-based and robust standard errors provide indirect
indication of model misspecification.

2.2. Residuals

Masarotto and Varin (2012) suggest to validate Gaussian copula regression models for con-
tinuous responses with predictive quantile residuals

ri = Φ−1{F (yi|yi−1, . . . , y1; θ̂)}, (4)

where θ̂ denotes the maximum likelihood estimator of θ. Under model conditions, quantile
residuals ri are, approximately, realizations of uncorrelated standard normal variables and
they are unrelated to the covariates xi. The predictive quantile residuals for continuous
responses can be expressed in the familiar form of standardized residuals

ri = ε̂i − m̂i

ŝi
,

with ε̂i = Φ−1{F (yi|xi; θ̂)}, m̂i = E(εi|εi−1, . . . , ε1; θ̂) and ŝ2
i = VAR(εi|εi−1, . . . , ε1; θ̂).

In the discrete case, quantile residuals ri are defined as any arbitrary value in the interval
[Φ−1(ai),Φ−1(bi)], with ai = F (yi − 1|yi−1, . . . , y1; θ̂) and bi = F (yi|yi−1, . . . , y1; θ̂). Model
checking can be based on the randomized quantile residuals

rrnd
i (ui) = Φ−1{ai + ui(bi − ai)},

where ui is generated from a uniform random variable on the unit interval (Dunn and Smyth
1996). Randomized quantile residuals rrnd

i (ui) are realizations of uncorrelated standard nor-
mal variables under model conditions and they can be used as ordinary residuals for checking
model assumptions. Since rrnd

i (ui) are randomized, it is opportune to examine several sets of
residuals before draw conclusions about the quality of model fitting.
Zucchini and MacDonald (2009) suggest to avoid randomization with the mid-interval quantile
residuals rmid

i = Φ−1{(ai + bi)/2}, which are, however, neither normally distributed nor
uncorrelated.
Quantities ri, rrnd

i and rmid
i are examples of conditional quantile residuals, because they in-

volve the conditional distribution of Yi given the “previous” observations yi−1, . . . , y1. It
is also possible to consider “marginal versions” of these residuals based on the univariate
marginal distribution of Yi obtained in the continuous case with Equation 4 replaced by
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rmarg
i = Φ−1{F (yi|xi; θ̂)}. Differently from the conditional versions, marginal quantile resid-
uals are useful for checking the assumptions about the marginal component of the model, but
they are uninformative about the correctness of the Gaussian copula assumption.

3. Implementation in R
The main function of the gcmr package is gcmr() which allows to fit Gaussian copula models
by maximum likelihood in the continuous case and by maximum simulated likelihood in the
discrete case. The arguments of gcmr() are the following

gcmr(formula, data, subset, offset, marginal, cormat, start,
fixed, options = gcmr.options(...), model = TRUE, ...)

The function has standard arguments for model-frame specification (Chambers and Hastie
1993) such as a formula, the possibility to restrict the analysis to a subset of the data, to
set an offset, or to fix contrasts for factors. The specific arguments of gcmr() include
the two key arguments marginal and cormat, which specify the marginal part of the model
and the copula correlation matrix, respectively. Finally, there are three optional arguments
to supply starting values (start), fix the values of some parameters (fixed) and set the
fitting options (options). The rest of this section describes the components of gcmr() and
the related methods.

3.1. Two-part formulas

The basic formula allowed in gcmr is of type y ˜ x1 + x2 and it specifies the regression model
for the mean response of Equation 1 with the link function g1(·) defined in the argument
marginal as explained in Section 3.2 below. Following the implementation of beta regression
in package betareg (Cribari-Neto and Zeileis 2010), the gcmr package also allows to specify
a second regression model for the dispersion through a “two-part” formula of type y ˜ x1
+ x2 | z1 + z2 using functionalities inherited from package Formula (Zeileis and Croissant
2010). In the two-part formula case, the model has the same mean regression expression y ˜
x1 + x2, while the dispersion parameter is modelled as a function of the linear predictor ˜
z1 + z2. Package gcmr assumes a log-linear model g2(·) = log(·) for the dispersion regression
model of Equation 2.

3.2. Specification of the marginal model

The marginal model F (·|xi) is specified through an object of class marginal.gcmr set in the
argument marginal of function gcmr(). The marginal distributions available in gcmr version
1.0.0 are beta, binomial, gamma, Gaussian, negative binomial, Poisson and Weibull, see
Table 1. For each of these distributions, it is possible to choose a link function that relates the
mean of the response to the linear predictor as in traditional generalized linear models. All the
link functions available in the class link-glm are allowed. Gaussian marginals are included
in gcmr for completeness, but it is not recommended to use gcmr for fitting multivariate
normal models trivially arising from the combination of Gaussian marginals with a Gaussian
copula. In fact, the package gcmr is designed to work with Gaussian copula models with
generic univariate marginal distributions and thus it is not numerically efficient for inference
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marginal.gcmr Distribution Dispersion
beta.marg(link = "logit") beta yes
binomial.marg(link = "logit") binomial no
Gamma.marg(link = "inverse") gamma yes
gaussian.marg(link = "identity") Gaussian yes
negbin.marg(link = "log") negative binomial yes
poisson.marg(link = "log") Poisson no
weibull.marg(link = "log") Weibull yes

Table 1: Marginals models available in gcmr version 1.0.0 with the default link function. The
column “Dispersion” identifies the distributions with a dispersion parameter.

cormat.gcmr Correlation
arma.cormat(p, q) ARMA(p, q)
cluster.cormat(id, type) longitudinal/clustered data
ind.cormat() independence
matern.cormat(D, alpha) Matérn correlation

Table 2: Correlation models available in gcmr version 1.0.0.

in multivariate linear Gaussian models, where the availability of analytic results allows for a
significant speed-up of computations.
The user may also construct their own marginal model by specifying a new object of class
marginal.gcmr as explained in Appendix A.1.

3.3. Specification of the correlation structure

The correlation matrix P of the Gaussian copula is specified through an object of class
cormat.gcmr set in the argument cormat of function gcmr(). Version 1.0.0 of gcmr includes
four correlation structures of wide applicability, see Table 2. The working independence cor-
relation option is similar in spirit to that of generalized estimating equations. The other
three correlation structures allow to deal with time series, clustered or longitudinal data and
spatial data. Clustered and longitudinal data can be analyzed with cluster.cormat(id,
type) constructed upon functions inherited from package nlme (Pinheiro, Bates, DebRoy,
Sarkar, and R Core Team 2017). The inputs of cluster.cormat() are the vector of sub-
ject id and the type of correlation with possible options "independence", "ar1", "ma1",
"exchangeable" and "unstructured". Subject id is a vector of the same length as the
number of observations. Data are assumed to be sorted in such a way that observations
from the same subject (or cluster) are contiguous, otherwise gcmr stops and returns an error
message. Serial dependence in time series can be described with function arma.cormat(p,
q), which receives the orders p and q of the ARMA(p, q) process as input. Spatially corre-
lated data can be modelled by assuming a Mátern spatial correlation function set by function
matern.cormat(D, alpha), where D is the matrix of the distances between observations and
alpha is the shape parameter (Diggle and Ribeiro 2007). Function matern.cormat() is con-
structed upon function matern() of the geoR package (Ribeiro Jr and Diggle 2016). The
default value for parameter alpha is 0.5, and it corresponds to an exponential correlation
model.
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As for the marginals, the user is allowed to construct their own correlation matrix by specifying
a new object of class cormat.gcmr, see Appendix A.2.

3.4. Fitting options

The fitting options in gcmr() are set by argument options or by a direct call to function

gcmr.options(seed = round(runif(1, 1, 1e+05)), nrep = c(100, 1000),
no.se = FALSE, method = c("BFGS", "Nelder-Mead", "CG"), ...)

Available arguments are seed, for fixing the pseudo-random seed used in the GHK algorithm
to approximate the likelihood function with discrete responses, nrep, for setting the number of
the Monte Carlo replications in the GHK algorithm, no.se, for choosing whether computing
the standard errors or not, and method, for selection of the optimization method to be passed
to optim(). The default optimization algorithm is the quasi-Newton BFGS algorithm. It is
possible to provide a vector of Monte Carlo replications to nrep, so that the model is fitted
with a sequence of different Monte Carlo sizes. In this case, the starting values for likelihood
optimization are taken from the previous fitting. A reasonable strategy is to fit the model
with a small Monte Carlo size to obtain sensible starting values and then refit with a larger
Monte Carlo size. The default Monte Carlo size is 100 for the first optimization and 1,000 for
the second and definitive optimization. If the responses are continuous, then the likelihood
function has a closed-form expression and the values of seed and nrep are ignored.

3.5. Methods

The returned fitted-model object of class gcmr is a list that contains, among others, the
maximum likelihood estimates, the maximized log-likelihood and numerical estimates of the
Hessian and the Jacobian of the log-likelihood computed at the maximum likelihood estimate.
A set of standard methods is available to extract information from the fitted model, see
Table 3. Most of the functions and methods have standard syntax as in other R packages
oriented to regression analysis, see, for example, betareg (Cribari-Neto and Zeileis 2010).
The plot() method produces various diagnostic plots of the fitted gcmr object that include
scatterplots of the quantile residuals against the indices of the observations or against the lin-
ear predictor, the normal probability plot with confidence bands based on the implementation
in the car package (Fox and Weisberg 2011), the scatterplot of the predicted values against
the observed values, autocorrelation and partial autocorrelation plots of the residuals. The
default behavior of the plot() method adapts to the type of correlation matrix in way that,
for example, autocorrelation plots are automatically displayed for ARMA(p, q) correlation
specified with by function arma.cormat(p, q).
The quantile residuals are computed by method

residuals(object, type = c("conditional", "marginal"),
method = c("random", "mid"), ...)

where argument type allows to choose between "conditional" or "marginal" quantile resid-
uals, see Section 2.2. Argument method is active only in the discrete case to select between
"random" quantile residuals or "mid" interval quantile residuals.
The profile log-likelihood can be obtained with a call to method
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Function Description
print() simple printed display of coefficient estimates
summary() standard regression output
coef() coefficient estimates
vcov() covariance matrix of coefficient estimates
fitted() fitted means for observed data
residuals() quantile residuals
estfun() estimating functions for sandwich estimators (Zeileis 2006)
bread() “bread” matrix for sandwich estimators (Zeileis 2006)
terms() terms of model components
model.frame() model frame
model.matrix() model matrix
logLik() maximized log-likelihood
plot() diagnostic plots of quantile residuals
profile() profile likelihood for focus coefficients
coeftest() partial Wald tests of coefficients
waldtest() Wald tests of nested models
lrtest() likelihood ratio tests of nested models
AIC() information criteria

Table 3: Functions and methods available for objects of class gcmr.

profile(fitted, which, low, up, npoints = 10, display = TRUE,
alpha = 0.05, progress.bar = TRUE, ...)

where argument which is the index of the parameter to be profiled, low and up are the
lower and the upper limits used in the computation, npoints is the number of points used
in the computation of the profile likelihood, alpha is the significance level, display controls
whether the profile likelihood should be plotted or not and progress.bar sets a “progress
bar” to visualize the progression of the time-consuming profile likelihood computation. If
the values of limits low and up are not provided, then they are set equal to the estimated
parameter minus and plus three times the standard error, respectively.

4. Applications
The usage of gcmr is illustrated below with three different data sets covering various forms
of dependence frequently arising in real applications.

4.1. Longitudinal count data

The first example considers the well-known longitudinal study on epileptic seizures described
in Diggle, Heagerty, Liang, and Zeger (2002):

R> data("epilepsy", package = "gcmr")

The data comprise information about 59 individuals observed at five different occasions each.
The baseline observation consists of the number of epileptic seizures in a eight-week interval,
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followed by four measurements collected at subsequent visits every two weeks. Available vari-
ables are the patient identifier id, the patient age, the indicator trt whether the patient is
treated with progabide (trt = 1) or not (trt = 0), the number of epileptic seizures counts,
the observation period time in weeks, that is time = 8 for baseline and time = 2 for subse-
quent visits, and the indicator visit whether the observation corresponds to a visit (visit
= 1) or the baseline (visit = 0). Diggle et al. (2002) analyzed the seizure data with the
method of generalized estimating equations assuming a log-linear regression model for counts
with the logarithm of time used as offset and covariates trt, visit and their interaction.
Moreover, Diggle et al. (2002) suggested to omit an outlier patient – here corresponding to
patient id = 49 – with an extremely high seizure count at baseline (151 counts) that even
double after treatment (302 counts after 8 weeks of measurement). Indeed, estimated model
coefficients vary considerably if this patient is set aside.
The corresponding Gaussian copula analysis described below assumes a negative binomial
marginal distribution with mean specified as in Diggle et al. (2002). We start the analysis
assuming a working independence correlation matrix for the Gaussian copula:

R> mod.ind <- gcmr(counts ~ offset(log(time)) + visit + trt + visit:trt,
+ data = epilepsy, subset = (id != 49), marginal = negbin.marg,
+ cormat = cluster.cormat(id, type = "ind"))
R> summary(mod.ind)

Call:
gcmr(formula = counts ~ offset(log(time)) + visit + trt + visit:trt,

data = epilepsy, subset = (id != 49), marginal = negbin.marg,
cormat = cluster.cormat(id, type = "ind"))

Coefficients marginal model:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.34759 0.16649 8.094 5.77e-16 ***
visit 0.11187 0.18802 0.595 0.552
trt -0.10685 0.23057 -0.463 0.643
visit:trt -0.30237 0.26118 -1.158 0.247
dispersion 0.73421 0.07153 10.264 < 2e-16 ***

No coefficients in the Gaussian copula
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log likelihood = 948.06, AIC = 1906.1

The summary() method computes traditional standard errors derived from the inverse of the
observed Fisher information. A more appropriate choice for these longitudinal data is provided
by the sandwich estimator that can be computed with the sandwich package (Zeileis 2004,
2006) and conveniently visualized with function coeftest() from package lmtest (Zeileis and
Hothorn 2002):
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R> library("sandwich")
R> library("lmtest")
R> coeftest(mod.ind, vcov. = sandwich(mod.ind))

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.347586 0.157997 8.5292 < 2.2e-16 ***
visit 0.111869 0.115634 0.9674 0.3333
trt -0.106846 0.194159 -0.5503 0.5821
visit:trt -0.302373 0.169183 -1.7873 0.0739 .
dispersion 0.734208 0.095039 7.7253 1.116e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Robust sandwich standard errors essentially confirm the previous results. The strong signif-
icance of the dispersion parameter provides support to the choice of the negative binomial
marginal in place of the Poisson distribution.
However, a more accurate description of the data also accounts for the serial correlation of
the observations from the same subject. For example, the model can be re-estimated with
the AR(1) Gaussian copula correlation matrix:

R> mod.ar1 <- update(mod.ind, cormat = cluster.cormat(id, "ar1"),
+ seed = 12345, nrep = 100)

The previous command illustrates the use of the gcmr fitting options. The random number
generator seed is fixed to ensure reproducibility of the results, while the number of Monte
Carlo replications nrep is set to a number lower than the default, a possibility that it is useful
during the model specification phase.
Robust sandwich standard errors confirm the presence of substantial autocorrelation between
observations from the same patient. In fact, the estimated AR(1) coefficient is equal to 0.63
with standard error 0.05:

R> coeftest(mod.ar1, vcov. = sandwich(mod.ar1))

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.307160 0.162154 8.0612 7.553e-16 ***
visit 0.156902 0.108164 1.4506 0.14689
trt -0.010332 0.202333 -0.0511 0.95927
visit:trt -0.420571 0.164879 -2.5508 0.01075 *
dispersion 0.636966 0.077159 8.2552 < 2.2e-16 ***
ar1 0.628785 0.048897 12.8594 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Differently from the working independence model, the autoregressive model identifies a sig-
nificant effect of the interaction between visit and treatment that was undetected with the
working independence model. The result qualitatively agrees with that obtained with the
generalized estimating equation analysis by Diggle et al. (2002) that can be reproduced with
package geepack (Yan 2002; Højsgaard, Halekoh, and Yan 2006):

R> library("geepack")
R> gee.ar1 <- geeglm(counts ~ offset(log(time)) + visit + trt + visit:trt,
+ data = epilepsy, id = id, subset = (id != 49), family = poisson,
+ corstr = "ar1")
R> summary(gee.ar1)

Call:
geeglm(formula = counts ~ offset(log(time)) + visit + trt + visit:trt,

family = poisson, data = epilepsy, subset = (id != 49), id = id,
corstr = "ar1")

Coefficients:
Estimate Std.err Wald Pr(>|W|)

(Intercept) 1.31383 0.16159 66.103 4.44e-16 ***
visit 0.15094 0.11077 1.857 0.1730
trt -0.07973 0.19831 0.162 0.6877
visit:trt -0.39872 0.17454 5.218 0.0223 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
Estimate Std.err

(Intercept) 10.61 2.35

Correlation: Structure = ar1 Link = identity

Estimated Correlation Parameters:
Estimate Std.err

alpha 0.7831 0.05192
Number of clusters: 58 Maximum cluster size: 5

Among the advantages of the likelihood analysis implemented in gcmr with respect to non-
likelihood methods such as generalized estimating equations, there is the possibility to com-
pute profile log-likelihoods. Consider, for example, the profile log-likelihood for the interaction
effect of visit with treatment that can be obtained with a call to the profile() method:

R> profile(mod.ar1, which = 4)

where argument which is equal to 4 because the interaction effect corresponds to the fourth
model parameter. The profile log-likelihood reported in Figure 1 illustrates the significant
negative coefficient associated to the interaction of visit with treatment.
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Figure 1: Seizure data. Profile log-likelihood for the interaction between visit and treatment.

4.2. Time series of rates

The second example regards the time series of the hidden unemployment rate (HUR) in São
Paulo, Brazil, obtained from the database of the Applied Economic Research Institute (IPEA)
of the Brazilian Federal Government (http://www.ipea.gov.br/):

R> data("HUR", package = "gcmr")
R> plot(HUR, ylab = "rate", xlab = "time")

The data, displayed in Figure 2, were analyzed by Roca and Cribari-Neto (2009) with an
observation-driven beta autoregressive and moving average model. As an alternative to the
analysis made by Roca and Cribari-Neto (2009), we consider a Gaussian copula model with
marginal beta distribution and ARMA(p, q) copula correlation. The mean and precision of
the beta marginals are assumed both to depend on a linear trend. In order to avoid numerical
instabilities, the trend is centered and scaled:

R> trend <- scale(time(HUR))

Below we illustrate the model with ARMA(1, 3) errors. This model was selected because it
has the minimum AIC value among the sixteen ARMA(p, q) models obtained with orders p
and q ranging from 0 to 3:

R> mod <- gcmr(HUR ~ trend | trend, marginal = beta.marg,
+ cormat = arma.cormat(1, 3))

The previous command illustrates the use of the extended formula HUR ~ trend | trend to
specify that both the mean and the dispersion depend on the (scaled) trend. The summary
of the fitted model confirms the presence of a statistically significant trend:

R> summary(mod)

http://www.ipea.gov.br/
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Figure 2: Hidden unemployment rate data in São Paulo, Brazil.

Call:
gcmr(formula = HUR ~ trend | trend, marginal = beta.marg,

cormat = arma.cormat(1, 3))

Coefficients marginal model:
Estimate Std. Error z value Pr(>|z|)

mean.(Intercept) -3.10775 0.04612 -67.385 < 2e-16 ***
mean.trend 0.11509 0.03944 2.918 0.00352 **
precision.(Intercept) 7.24869 0.37195 19.488 < 2e-16 ***
precision.trend 0.36108 0.11366 3.177 0.00149 **

Coefficients Gaussian copula:
Estimate Std. Error z value Pr(>|z|)

ar1 0.91032 0.04589 19.836 < 2e-16 ***
ma1 0.34152 0.09467 3.608 0.000309 ***
ma2 0.47147 0.08574 5.499 3.83e-08 ***
ma3 -0.42904 0.10300 -4.165 3.11e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log likelihood = -895.06, AIC = -1774.1

Evidence that the assumptions of the above model are met is provided by graphical inspection
of quantile residuals reported in Figure 3:

R> par(mfrow = c(2, 2))
R> plot(mod)
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Figure 3: Hidden unemployment rate data. Standard diagnostic plots for time series data
produced by the plot method.

4.3. Spatially correlated binomial data

The last example regards the malaria prevalence in children recorded at 65 villages in Gambia.
Differently from the original data presented in Thomson, Connor, D’Alessandro, Rowlingson,
Diggle, and Cresswell (1999) and available in the geoR package (Ribeiro Jr and Diggle 2016),
here we consider aggregated data at village level available through gcmr with the data frame
malaria:

R> data("malaria", package = "gcmr")

The data contain information about the village coordinates (x, y), the number of sampled
children (size) with malaria (cases) in each village, the mean age of the sampled children in
each village (age), the frequency of sampled children who regularly sleep under a bed-net in
each village (netuse), the frequency of sampled children whose bed-net is treated (treated),
a satellite-derived measure of the greenness of vegetation in the immediate proximity of the
village (green), the indicator variable denoting the presence (1) or absence (0) of a health
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center in the village (pch) and an indicator of geographical regions characterized by potentially
different malaria risk (area). We refer to Diggle and Ribeiro (2007) for more details. The aim
is to model the relationship between the number of cases and the various covariates, while
accounting for the potential presence of spatial dependence of malaria spread between the
villages.
The first step of the data analysis is the construction of the matrix of the distances between
the villages using, for example, the function spDists() from package sp (Pebesma and Bivand
2005; Bivand, Pebesma, and Gomez-Rubio 2013):

R> library("sp")
R> D <- spDists(cbind(malaria$x, malaria$y)) / 1000

The distances are expressed in kilometers through scaling by factor 1,000. Scaling is help-
ful for avoiding potential numerical instabilities in the estimation of the spatial dependence
parameter.
The first model describes the cases of malaria with a spatial Gaussian copula logistic regression
model. The covariates are netuse, pch and green scaled by factor 100. Spatial dependence
is modelled with an exponential correlation matrix corresponding to the default value of the
shape parameter (alpha = 0.5) in matern.cormat(D, alpha):

R> mod <- gcmr(cbind(cases, size-cases) ~ netuse + I(green / 100) + phc,
+ data = malaria, marginal = binomial.marg, cormat = matern.cormat(D),
+ seed = 12345)
R> summary(mod)

Call:
gcmr(formula = cbind(cases, size - cases) ~ netuse + I(green/100) +

phc, data = malaria, marginal = binomial.marg, cormat =
matern.cormat(D), seed = 12345)

Coefficients marginal model:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8276 0.4065 -2.036 0.0418 *
netuse -1.1758 0.1605 -7.325 2.40e-13 ***
I(green/100) 2.9487 0.7498 3.933 8.39e-05 ***
phc -0.4052 0.1019 -3.978 6.95e-05 ***

Coefficients Gaussian copula:
Estimate Std. Error z value Pr(>|z|)

tau 1.5086 0.3771 4 6.33e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log likelihood = 252.68, AIC = 515.36

Covariates netuse and phc are associated to a significant reduction of the malaria cases while
green is associated to a higher risk of disease. The maximum simulated likelihood estimate
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of the dependence parameter tau is 1.51 km, a value that indicates the presence of significant
but weak spatial dependence.
The second model includes an additional effect due to covariate area:

R> mod.area <- update(mod, . ~ . + area)
R> summary(mod.area)

Call:
gcmr(formula = cbind(cases, size - cases) ~ netuse + I(green/100) +

phc + area, data = malaria, marginal = binomial.marg,
cormat = matern.cormat(D), seed = 12345)

Coefficients marginal model:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.2046 0.6398 0.320 0.749072
netuse -0.6387 0.1789 -3.570 0.000357 ***
I(green/100) -0.0611 1.4057 -0.043 0.965327
phc -0.4081 0.1073 -3.802 0.000143 ***
area2 -0.6133 0.1792 -3.422 0.000621 ***
area3 -0.7515 0.1945 -3.864 0.000112 ***
area4 0.3441 0.2432 1.415 0.157121
area5 0.6840 0.2316 2.953 0.003142 **

Coefficients Gaussian copula:
Estimate Std. Error z value Pr(>|z|)

tau 0.6816 0.3621 1.882 0.0598 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log likelihood = 222.29, AIC = 462.57

The inclusion of area in the model yields a large drop in the AIC statistics:

R> AIC(mod, mod.area)

df AIC
mod 5 515.4
mod.area 9 462.3

The summary confirms that covariate area contains relevant information about the geographic
variation of malaria risk in the study region. Indeed, the estimate of the spatial dependence
parameter tau in model mod.area shows that the residual spatial dependence is essentially
negligible.
Finally, graphical diagnostics reported in Figure 4 suggest that the model conditions are met:

R> par(mfrow = c(2, 2))
R> plot(mod.area)
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Figure 4: Malaria data. Standard diagnostic plots produced by the plot method.

5. Conclusions
This article presented the R implementation of Gaussian copula marginal regression available
in the gcmr package. The discussed examples illustrate the capability of the package to
handle various types of data and dependence structures. Models are fitted with the method of
maximum (simulated) likelihood that requires repeated Cholesky factorization of the Gaussian
copula correlation matrix. In the current version of gcmr, the order of computations needed
for likelihood evaluation is O(n3), with n denoting the number of observations. In case of large
data sets, consisting, for example, of several thousands of observations, the computational cost
may prevent routine use of gcmr. However, the Cholesky factorization can be implemented
more efficiently for some specific dependence structures. For example, autoregressive and
moving average correlation matrices can be factorized in a linear number of computations
exploiting the Kalman filter through the state space representation.
Future research will focus on implementation of computationally convenient methods to
handle specific dependence forms within the general framework of Gaussian copula regres-
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sion. Promising approaches include composite likelihoods to reduce the computational ef-
fort through convenient likelihood factorizations (Varin et al. 2011) and sparse methods
designed to approximate the Gaussian copula correlation matrix with a more manageable
block-diagonal matrix.
Several authors exploited Gaussian and t copulas to construct joint regression models for
multiple responses, also of mixed type (e.g., Frees and Valdez 2008; Song et al. 2009; Wu and
de Leon 2014; Jiryaie et al. 2016). Methods for handling multiple responses are planned to
be included in future versions of gcmr.
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A. Specifying new models and correlations
This appendix is addressed to users interested in the possibility of specifying marginals and
Gaussian copula correlation matrices not yet available in package gcmr.

A.1. Specify a new marginal model

The simpler way to specify a new object of class marginal.gcmr is to use one of the available
marginal distributions in gcmr as prototype, such as, for example, the Poisson marginal:

R> poisson.marg

function (link = "log")
{

fm <- poisson(substitute(link))
ans <- list()
ans$start <- function(y, x, z, offset) {

lambda <- coef(glm.fit(x, y, offset = offset$mean, family = fm))
names(lambda) <- dimnames(as.matrix(x))[[2L]]
lambda

}
ans$npar <- function(x, z) NCOL(x)
ans$dp <- function(y, x, z, offset, lambda) {

mu <- fm$linkinv(x %*% lambda + offset$mean)
cbind(dpois(y, mu), ppois(y, mu))

}
ans$q <- function(p, x, z, offset, lambda) {

mu <- fm$linkinv(x %*% lambda + offset$mean)
qpois(p, mu)

}
ans$fitted.val <- function(x, z, offset, lambda) {

fm$linkinv(x %*% lambda + offset$mean)
}
ans$type <- "integer"
class(ans) <- c("marginal.gcmr")
ans

}
<environment: namespace:gcmr>

Function poisson.marg() receives as input the link function as in glm() and produces as
output a list with several components described below.

start() is a function of the vector of responses y, the design matrix x and the offset. Among
the inputs, there is also the design matrix z for the dispersion, although this argument
is superfluous for the Poisson model because it assumes a constant dispersion. The
output of start() is the vector of starting values for the marginal parameters lambda.
The starting values are typically computed as if the observations were independent. In
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the specific case of Poisson marginals, the starting values are obtained with a call to
glm.fit(x, y, family = Poisson);

npar() is a function of the design matrix that returns the number of marginal parameters
lambda. In the special case of the Poisson model, the number of parameters corresponds
to the number of mean regression coefficients. If the model includes also a dispersion
component, as, for example, in the case of the negative binomial distribution, then the
number of dispersion parameters have to be added to the number of mean regression
coefficients;

dp() is a function of the vector of responses y, the design matrix x, the offset and the vector
of marginal parameters lambda. The output is a n× 2 matrix whose two columns cor-
respond to the marginal density (d) and the marginal cumulative distribution function
(p) of the n observations;

q() is a function of the vector of probability values p, the design matrix x, the offset and
the vector of marginal parameters lambda. The output is the vector of the quantiles
corresponding to p;

fitted.val() is a function of the design matrix x, the offset and the vector of marginal
parameters lambda that computes the vector of fitted values;

type is a string that indicates whether the response is continuous ("numeric") or discrete
("integer"), as in the Poisson case.

Marginal models that allow for variable dispersion are similarly specified with the complication
to supply the above listed components also for the dispersion part. See, for example, the
negative binomial model specified by function negbin.marg().

A.2. Specify a new correlation structure

The Matérn spatial correlation is considered below as a prototype of the Gaussian copula
correlation:

R> matern.cormat

function (D, alpha = 0.5)
{

ans <- list()
ans$npar <- 1
ans$start <- function() {

tau <- median(D)
names(tau) <- c("tau")
attr(tau, "lower") <- sqrt(.Machine$double.eps)
tau

}
ans$chol <- function(tau, not.na) {

S <- geoR::matern(D, tau, alpha)
q <- try(chol(S[not.na, not.na]), silent = TRUE)
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if (inherits(q, "try-error"))
NULL

else q
}
class(ans) <- "cormat.gcmr"
ans

}
<environment: namespace:gcmr>

Function matern.cormat(D, alpha) receives as input the matrix D of the distances between
the observations and the shape parameter alpha of the Matérn correlation model. The output
is a list with three components:

npar returns the number of dependence parameters in the Gaussian copula correlation ma-
trix. In the specific case of the Matérn correlation model, there is a single dependence
parameter tau that describes the degree of spatial dependence;

start() is a function that returns the vector of starting values for the dependence parameters
tau. In the specific case of the Matérn correlation model with given shape parameter
alpha, the spatial dependence parameter tau is set, arbitrarily, equal to the median
distance observed in the data;

chol() is a function of the vector of dependence parameters tau in the Gaussian copula cor-
relation matrix and the vector of indices of the observed data not.na. The output is the
Cholesky factor of the Gaussian copula correlation matrix. If the Cholesky factorization
fails, then chol returns NULL.

Affiliation:
Guido Masarotto
Department of Statistical Sciences
University of Padua
Via Cesare Battisti, 241
35121 Padova, Italy
E-mail: guido.masarotto@unipd.it
URL: http://sirio.stat.unipd.it

mailto:guido.masarotto@unipd.it
http://sirio.stat.unipd.it


26 Gaussian Copula Regression in R

Cristiano Varin
Department of Environmental Sciences, Informatics and Statistics
Ca’ Foscari University of Venice
Via Torino, 150
30170 Venezia Mestre, Italy
E-mail: cristiano.varin@unive.it
URL: http://cristianovarin.weebly.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
April 2017, Volume 77, Issue 8 Submitted: 2015-06-16
doi:10.18637/jss.v077.i08 Accepted: 2016-01-18

mailto:cristiano.varin@unive.it
http://cristianovarin.weebly.com
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v077.i08

	Introduction
	Gaussian copula regression
	Likelihood inference
	Residuals

	Implementation in R
	Two-part formulas
	Specification of the marginal model
	Specification of the correlation structure
	Fitting options
	Methods

	Applications
	Longitudinal count data
	Time series of rates
	Spatially correlated binomial data

	Conclusions
	Specifying new models and correlations
	Specify a new marginal model
	Specify a new correlation structure


