
JSS Journal of Statistical Software
April 2017, Volume 77, Issue 9. doi: 10.18637/jss.v077.i09

Iterative Bias Reduction Multivariate Smoothing
in R: The ibr Package

Pierre-André Cornillon
IRMAR

Université Rennes 2

Nicolas Hengartner
Los Alamos

National Laboratory

Eric Matzner-Løber
IRMAR

Université Rennes 2

Abstract

In multivariate nonparametric analysis curse of dimensionality forces one to use large
smoothing parameters. This leads to a biased smoother. Instead of focusing on optimally
selecting the smoothing parameter, we fix it to some reasonably large value to ensure
an over-smoothing of the data. The resulting base smoother has a small variance but
a substantial bias. In this paper, we propose an R package named ibr to iteratively
correct the initial bias of the (base) estimator by an estimate of the bias obtained by
smoothing the residuals. After a brief description of iterated bias reduction smoothers,
we examine the base smoothers implemented in the package: Nadaraya-Watson kernel
smoothers, Duchon splines smoothers and their low rank counterparts. Then, we explain
the stopping rules available in the package and their implementation. Finally we illustrate
the package on two examples: a toy example in R2 and the original Los Angeles ozone
dataset.

Keywords: multivariate smoothing, L2 boosting, thin-plate splines, kernel regression, R.

1. Introduction
Regression is a fundamental data analysis tool which relates a variable Y ∈ R to a function of
d explanatory variables. Classical linear regression is the simplest example of this: The func-
tion is chosen to be affine. More generally, we can let the data help determine the general form
of the relationship by using one of the numerous nonparametric regression estimators, such as
wavelets, kernel smoothers, and splines smoothers (Buja, Hastie, and Tibshirani 1989; Cleve-
land and Devlin 1988; Eubank 1988; Fan and Gijbels 1996; Antoniadis and Oppenheim 1995;
Simonoff 1996). Such methods are implemented as R (R Core Team 2017) functions found in
numerous contributed packages. For instance the package wavethresh (Nason 2016) imple-

http://dx.doi.org/10.18637/jss.v077.i09

2 ibr: Iterative Bias Reduction Multivariate Smoothing in R

ments a wavelet based smoother, the package lokern (Herrmann and Maechler 2016) provides
a kernel smoother and the function smooth.spline calculates a cubic spline smoother. When
the number of dependent variables d is greater than 3 or 4, fully nonparametric regression
suffers from the curse of dimensionality, even for moderate sample sizes (say n being equal
to a few hundred). As a result, application of fully nonparametric methods is discouraged in
dimensions four and higher. Instead, the statistical literature encourages using constrained
regression models (additive models, Hastie and Tibshirani 1990; single and multiple index
models and projection pursuit models) to estimate useful approximations of the conditional
expectation. The latter methods are provided to the R community in the contributed package
mgcv (Wood 2017) for additive modeling, function ppr in base R for projection pursuit and
package mda (Hastie, Tibshirani, Leisch, Hornik, and Ripley 2016) for MARS.

Originating from the machine learning community, the boosting algorithm is also another tool
for nonparametric regression (see Friedman 2001, and references therein). This fairly recent
and very popular method has numerous variations, such as adaboost (the original method),
logitboost for classification, and L2 boosting for regression. The interesting feature is that
it provides a framework for combining various weak learners (nonparametric smoothers) into
a smoother that is better than any single smoother that it is composed of. Packages for L2
boosting are already available in R: For instance the package mboost (Hothorn, Bühlmann,
Kneib, Schmid, and Hofner 2016) allows for L2 boosting for regression problems as well as
logistic boosting for classification. For multivariate regression, the L2 boosting algorithm has
been applied to component-wise additive modeling with classical smoother such as smoothing
splines (see Bühlmann and Hothorn 2007).

Iterative bias reduction is another tool for nonparametric regression, closely related to boost-
ing. The basic idea of the bias correction scheme is to estimate (and correct for) the bias of
a pilot smoother. These steps of estimation and correction can be done several times lead-
ing to iterative bias reduction. This idea goes back to the concept of twicing introduced by
Tukey (1977). The idea of iterating the bias correction was central to adaptive bagging of
the boosting-like algorithm of Breiman (1999). More details about statistical properties in
univariate or multivariate smoothers can be found in Bühlmann and Yu (2003) or Cornillon,
Hengartner, and Matzner-Løber (2014). Linking the L2 boosting algorithm to an iterative
bias correction scheme provides a statistical interpretation of the L2 boosting algorithm. This
interpretation was alluded to in Ridgeway (2000)’s discussion of Friedman, Hastie, and Tib-
shirani (2000) on the statistical interpretation of boosting and developed in Bühlmann and
Hothorn (2007) for the univariate framework and in Cornillon et al. (2014) for the multivariate
framework.

This paper focuses on the computational implementation in R of the iterated bias correction
procedure for fully multivariate regression smoothers. We start in Section 2 by briefly pre-
senting the concept of iterative bias reduction and recalling its connection to L2 boosting.
The details of our numerical implementation and a review of available options in our R pack-
age ibr are given in Section 3. Package ibr is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=ibr (Cornillon, Hengartner,
and Matzner-Lober 2017). Section 4 is devoted to examples.

https://CRAN.R-project.org/package=ibr

Journal of Statistical Software 3

2. Iterative bias reduction smoothers

2.1. Method

Suppose that the pairs (Xi, Yi) ∈ Rd × R are related through the nonparametric regression
model

Yi = m(Xi) + εi, i = 1, . . . , n, (1)

where m(·) is an unknown smooth function, and the disturbances εi are independent mean
zero and variance σ2 random variables that are independent of all the covariates. It is helpful
to rewrite Equation 1 in vector form by setting Y = (Y1, . . . , Yn)>, m = (m(X1), . . . ,m(Xn))>
and ε = (ε1, . . . , εn)>, to get

Y = m+ ε. (2)

Linear smoothers estimate the regression function m evaluated at the covariates by linear
combinations of the responses that can be compactly written as

m̂1 = SλY, (3)

where Sλ is an n × n smoothing matrix with smoothing parameter λ. By slight abuse of
language, we will sometimes refer to the vector of fitted values m̂ = Ŷ = (Ŷ1, . . . , Ŷn)> as the
smooth of Y . Typical smoothers (see for instance Hastie, Tibshirani, and Friedman 2001)
include bin smoothers, spline based smoothers (regression splines, smoothing splines, and
thin-plate splines), kernel based smoothers (Nadaraya-Watson kernels and local polynomials
smoothers), and series based smoothers (Fourier smoothers and wavelet smoothers). In this
paper, we focus only on two common types of smoothers: Nadaraya-Watson kernels (where
λ is the bandwidth) and Duchon splines of order (m, s) (where λ is the penalty parameter).
Extensions to other smoothers can easily be achieved by suitably modifying our theoretical
results and package.
The linear smoother (3) has bias

B(m̂1) = E[m̂1|X]−m = (Sλ − I)m

and variance

VAR(m̂1|X) =
(
SλS

>
λ

)
σ2.

To estimate the bias, observe that the residuals R1 = Y − m̂1 = (I − Sλ)Y have expected
value E[R1|X] = m− E[m̂1|X] = (I −Sλ)m = −B(m̂1). This suggests estimating the bias by
smoothing the negative residuals

b̂1 := −SλR1 = −Sλ(I − Sλ)Y.

Recall that, in multivariate nonparametric analysis, curse of dimensionality forces one to use
large smoothing parameters λ. This leads to a very biased base smoother Sλ. Thus the
bias correction in multivariate nonparametric analysis arises as a natural tool to correct the
classical smoother Sλ. If λ is large, not all the bias is usually removed after the first correction.

4 ibr: Iterative Bias Reduction Multivariate Smoothing in R

f(x
1
,x

2
)

x2
x1

Figure 1: True bivariate regression function m(x1, x2) (5) on the unit square [0, 1]× [0, 1] used
in our numerical examples.

To remove the remaining bias, iteration of the bias reduction step have to be performed. For
instance the k − 1th bias reduction step produces the linear smoother at iteration k:

m̂k = SλY + Sλ(I − Sλ)Y + · · ·+ Sλ(I − Sλ)k−1Y

= (I − (I − Sλ)k)Y. (4)

When d = 1, the sequence of iterated bias corrected smoothers agrees with the L2-boosted
smoothers without shrinkage. For d > 1, the boosting algorithm is applied component-wise
to additive regression models (see Bühlmann and Yu 2003). This results in a sequence of
constrained (additive) approximation of the fully nonparametric regression function m.
For thin-plate splines and kernel smoothers (with suitable kernels, such as a Gaussian density
function), each iteration of the bias correction produces a noisier but less biased smoother.
In the limit, the sequence of iterative bias corrected smoothers reproduces the raw data
(Cornillon et al. 2014). Thus there is a need for good stopping rules for the iterative bias
correction algorithm.
To illustrate this behavior, let us use a classical bivariate regression problem: Figure 1 graphs
Wendelberger’s test function (Wendelberger 1982):

m(x1, x2) = 3
4 exp

{
−((9x−2)2 +(9y−2)2)/4

}
+ 3

4 exp
{
−((9x+1)2/49+(9y+1)2/10)

}
+

1
2 exp

{
− ((9x− 7)2 + (9y − 3)2)/4)

}
− 1

5 exp
{
− ((9x− 4)2 + (9y − 7)2)

}
. (5)

The sequence of bias corrected thin-plate spline smoothers, starting from a pilot that over-
smooths the data, converges to an interpolant of the raw data (see Figure 2c). After some
suitable number of bias correction steps, the resulting bias corrected smoother will be a good
estimate for the true underlying regression function (see Figure 2b). The crucial choice of k is
achieved by using classical criteria such as the corrected Akaike informative criterion (AIC)
or generalized cross-validation (GCV, see Section 2.2).
We note that, provided λ is large enough, its exact value is not crucial as the choice of k will
adapt to λ: If two base smoothers are chosen, one with λ1 and another with λ2 > λ1, the

Journal of Statistical Software 5

x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

f(x
1
,x
2
)

0.0

0.2

0.4

0.6

0.8

1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

f(x
1
,x
2
)

0.0

0.2

0.4

0.6

0.8

1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

f(x
1
,x
2
)

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b) (c)

Figure 2: Thin-plate spline regression smoothers from 100 noisy observations from Equation 5
(see Figure 1) evaluated on a regular grid on [0, 1]× [0, 1]. Panel (a) shows the pilot smoother,
panel (b) graphs the bias corrected smoother after 500 iterations and panel (c) graphs the
smoother after 50000 iterations of the bias correction scheme.

chosen iteration k2 will be greater than k1 as it takes more iterations with a very smooth base
smoother to remove the bias.
To enable predictions at arbitrary locations x ∈ Rd of the covariates, we extend linear
smoothers to functions of the form

m̂(x) = Sλ(x)>Y, (6)

where S(x) is a vector of size n whose entries are the weights for predicting m(x). The vector
S(x) reduces to the jth row of the smoothing matrix when x = Xj , and is readily computed
for many smoothers used in practice.
To enable predictions at arbitrary locations x ∈ Rd for the iterative bias procedure let us
recall that the iterative bias correction scheme is the following

m̂k = m̂0 + b̂1 + · · ·+ b̂k

= Sλ[I + (I − Sλ) + (I − Sλ)2 + · · ·+ (I − Sλ)k−1]Y (7)
= Sλβ̂k. (8)

This implies that m̂k(Xj) = Sλ(Xj)>β̂k. Hence we propose to extend the iterative bias
corrected smoother to Rd via the function

m̂k(x) = Sλ(x)>β̂k. (9)

2.2. Stopping rules

Selecting a suitable number k of bias correction iterations k is crucial. On a theoretical ground,
for thin-plate spline base smoothers, there exists a number k that produces an estimator which
achieves the minimax rate of convergence in mean square error (see Bühlmann and Yu 2003 for
the univariate case and Cornillon et al. 2014 for the multivariate counter-part). This optimal
number of iterations can be selected from data using classical model selection methodologies
such as: GCV (Craven and Wahba 1978), AIC (Akaike 1973), Bayesian informative criterion
(BIC, Schwarz 1978), corrected AIC (AICc, Hurvich, Simonoff, and Tsai 1998) or generalized

6 ibr: Iterative Bias Reduction Multivariate Smoothing in R

minimum description length (gMDL, Hansen and Yu 2001). In particular, the use of AICc is
advocated in Bühlmann and Hothorn (2007) and theoretical consideration on the use of GCV
can be found in Cornillon et al. (2014). Other methods such as cross-validation (leave-one-out
or K-fold) or the use of training set and test set are also reasonable procedures to estimate k
(Bühlmann and Hothorn 2007).

2.3. Smoothers

The behavior of the sequence of iterative bias corrected kernel smoothers depends critically on
the properties of the smoother matrix. The eigenvalues of the matrix should be positive and
less or equal to one. This ensures that, as the number of iterations k increases, the smoothing
remains stable. The ibr package has three types of smoothers: kernel, Duchon splines and
low rank splines.
In order to have this paper as self-contained as possible, a presentation of these smoothers is
done in the following three subsections.

Kernel smoothers

In order to have eigenvalues between 0 and 1, the smoothing kernel needs to be positive
definite (see Marzio and Taylor 2008; Cornillon et al. 2014). Examples of positive definite
kernels include the Gaussian and the triangle densities, and examples of kernels that are not
positive definite include the uniform and the Epanechnikov kernels.
The proposed package includes the Gaussian product kernel defined in the following way:

• For univariate problems (d = 1), the smoother with bandwidth λ is defined as:

Sij = 1
λ
√

2π
exp

(
−1

2
(Xi −Xj

λ

)2)
.

[
n∑
j=1

1
λ
√

2π
exp

(
−1

2
(Xi −Xj

λ

)2)]−1

.

• For multivariate problems (d > 1), the smoother is simply the product of univariate
smoothers. Thus, if we denote X(l)

i the ith observation of the lth variable, we have the
Gaussian kernel smoother with bandwidth vector λ = (λ(1), . . . , λ(d)):

Sij =
d∏
l=1

[
1

λ(l)
√

2π
exp

(
−1

2
(X(l)

i −X
(l)
j

λ(l)

)2)]
.

[
n∑
j=1

d∏
l=1

[
1

λ(l)
√

2π
exp

(
−1

2
(X(l)

i −X
(l)
j

λ(l)

)2)]]−1

.

Duchon splines of order (ν0, s)
Splines of order (ν0, s) are a generalization of thin-plate splines (TPS) of order ν proposed
by Duchon (1977). These splines are also called sometimes pseudo-splines or Duchon splines.
The latter term appears first in the mgcv package (Wood 2017) which is the first public
domain implementation of these splines in the field of statistics. In his seminal paper, Duchon
defines Duchon splines and proposes a practical characterization using a reproducing kernel

Journal of Statistical Software 7

which allows their practical implementation. This paper gives also convergence results of
interpolation with these Duchon splines. These results are completed by convergence results
of both interpolation and smoothing Duchon splines (de Silanes and Arcangéli 1989). To
our best knowledge, the first example of Duchon splines in applied statistics can be found
in Miller and Wood (2014). In order to have this paper self-contained, we recall here some
results on Duchon splines which can be found also in all the previously cited papers.
Recall that TPS arise as the solution of the following minimization problem on the Sobolev
space H(ν) (see for instance Wood 2003)

1
n
‖Yi − f(Xi)‖2 + λJdν (f),

where

Jdν (f) =
∑

ν1+···+νd=ν

ν!
ν1! · · · νd!

∫
· · ·
∫ (

∂νf

∂xν1
1 · · · ∂x

νd
d

)2

dx1 · · · dxd.

The first part of the functional to be minimized controls the data fitting while the second
part, Jdν (f), controls the smoothness.
Provided that 2ν > d, it can be shown that the function minimizing expression has the form

f̂(x) =
M∑
j=1

αjφj(x) +
n∑
i=1

δiη(‖x− xi‖),

where the M =
(ν+d−1

d

)
functions {φj} are linearly independent polynomials spanning the

space of polynomials in Rd of degree less than ν, α ∈ RM and δ ∈ Rn are unknown parameter
vectors subject to the constraint that Φ>δ = 0 (with Φ an n ×M matrix of elements Φij =
φj(xi)) and the n functions ηi are defined by

ηi(r) =

(−1)ν+1+d/2

22ν−1πd/2(ν−1)!(ν−d/2)!r
2ν−d log(r) d even,

Γ(d/2−ν)
22νπd/2(ν−1)!r

2ν−d d odd.

Parameter vectors α and δ can be found as solution of a linear system and the associated
linear smoother S can be derived from it (see Gu 2002, p. 61).
It is well known that beside computational problems, TPS suffer from the fact that the
dimension M of the null space of Jdν (.) increases exponentially with d due to the condition
ν > d/2. For instance, when the number of explanatory variables d is equal to 10, ν is at
least 6 leading to M = 3003 unknown coefficients in α. In his seminal paper Duchon (1977)
presents a mathematical framework that extends TPS. Noting that the Fourier transform
(denoted by F()) is isometric, the smoothness penalty Jdν0(f) can be replaced by its squared
norm in Fourier space, that is,∫

‖Dν0f(t)‖2dt can be replaced by
∫
‖F(Dν0f)(τ)‖2dτ.

In the last equation, the parameter ν is replaced by ν0 to emphasize that it will be chosen
differently. In order to solve the problem of exponential growth of the dimension of the null

8 ibr: Iterative Bias Reduction Multivariate Smoothing in R

space of Jdν0(.), and to get new interpolation methods, Duchon introduces a weighting function
to define a new smoothness penalty:

Jdν0,s(f) =
∫
|τ |2s‖F(Dν0f)(τ)‖2dτ.

The solution of the variational problem introduced by Duchon:
1
n
‖Yi − f(Xi)‖2 + λJdν0,s(f),

is

g(x) =
M0∑
j=1

αjφj(x) +
n∑
i=1

δiη
d
ν0,s(‖x−Xi‖),

provided that ν0 +s > d/2 and s < d/2. The {φj(x)} are still a basis of the subspace spanned
by polynomials of degree ν0 − 1. We also have that:

ηdν0,s(r) ∝
{
r2ν0+2s−d log(r) d if 2ν0 + 2s− d is even,
r2ν0+2s−d d otherwise,

still with the same constraint on coefficients: Φ>δ = 0.
For the special case s = 0, the Duchon splines reduce to the TPS. But if one wants to have
a lower dimension for the null space of Jdν0,s, for instance pseudo-cubic splines with an order
ν0 = 2, one can choose (as suggested by Duchon, 1977) s = d−1

2 . For instance, when the
number of explanatory variables d is equal to 10, ν0 can be chosen equal to 2, s = 9/2 and
M0 =

(ν0+d−1
d

)
= 11 unknown coefficients in α are to be estimated, which is tractable even

for moderate datasets.

Low rank Duchon splines of order (ν0, s)
The following presentation is based upon the presentation done in the seminal paper of Wood
(2003). The Duchon splines fitting problem is

minimize ‖Y − Eδ − Φα‖2 + λδ>Eδ subject to Φ>δ = 0,

where the matrix E is defined by Eij = ηdν0,s(‖Xi − Xj‖) and the matrix Φ is defined by
Φij = φj(Xi). This ideal fitting problem can be restricted by searching a given rank r
parameter space that gives a good approximation to the Duchon splines fitting problem. The
general low rank problem is defined by using a rank r matrix Γr such that δ = Γrδr and by
the following problem:

minimize ‖Y − EΓrδr − Φα‖2 + λδ>r Γ>r EΓrδr subject to Φ>Γrδr = 0.

In order to have a well defined problem, the matrix Γr is chosen to be equal to Ur, an n× r
matrix whose jth column is the eigenvector of E corresponding to the jth eigenvalue Dj,j

and where the eigenvalues are arranged so that |Dj,j | ≥ |Dj+1,j+1|. This choice ensures good
approximation properties (see Wood 2003). Using that, the low rank Duchon splines fitting
problem is

minimize ‖Y − UrDrδr − Φα‖2 + λδ>r Drδr subject to Φ>Urδr = 0.

Journal of Statistical Software 9

To ensure that the condition Φ>Urδr = 0 is fulfilled, an orthogonal column basis Zr can be
found (e.g., by using the last M0− r columns of the Q matrix of a complete QR factorization
of (Φ>Ur)>). Thus any linear combination Zr δ̃, δ̃ ∈ RM0−r, leads to a parameter δr = Zr δ̃
which fulfills the condition. The low rank Duchon splines fitting problem becomes

minimize ‖Y − UrDrZr δ̃ − Φα‖2 + λδ̃>Z>r DrZr δ̃

with respect to α ∈ RM0 and δ̃ ∈ Rr−M0 . This approximation problem can be recasted in a
constrained regression framework by setting X = (UrDrZr, T), β> = (δ̃>, α>) leading to

minimize ‖Y −Xβ‖2 + λβ>Cβ

with the constraint block matrix C (of dimension r × r) equal to

C =
(
Z>r DrZr 0

0 0

)
.

The solution of this constrained regression is thus

β̂ = (X>X + λC)−1X>Y,

and the low rank splines smoothing matrix is

S = X(X>X + λC)−1X>.

3. Implementation in R
Our implementation of the iterative bias corrected procedure in R follows the established
S3 methods (for an introduction, see the help page of S3Methods in R). The main function
(called ibr) produces an object of class ‘ibr’. Applying generic functions, such as summary,
predict, plot or residuals, to an ‘ibr’ class object produces the expected standard sum-
mary statistics, prediction for new data (or fitted values), plot of the object and residuals.

3.1. Base smoother

Three types of base smoothers are implemented in the function ibr: TPS and Duchon splines,
low rank TPS and Duchon splines, and kernel smoother. This choice is driven by the smoother
argument (character): "tps", "ds" or "lrtps", "lrds", or "k". As TPS of order ν are a
particular case of Duchon splines of order (ν, s) (when the order is chosen equal to (ν, 0))
this artificial distinction in five cases is maintained only for the ease of the user. For kernel
smoother, some classical choices are available using the kernel argument (character): Gaus-
sian kernel ("g", the default), triangle density ("t"), and the quartic ("q") density. The
computations have been optimized for the Gaussian kernel. We also allow for the Epanech-
nikov ("e") and uniform ("u") kernels for pedagogical purposes.

3.2. Computations

To predict new data, we compute recursively β̂k using Equations 7 and 8. Computation of
the fitted values using Equation 4 can be performed using a similar recursive update formula;

10 ibr: Iterative Bias Reduction Multivariate Smoothing in R

starting with b̂0 = (I − Sλ)Y :

m̂k = Y − (I − Sλ)b̂k−1 and b̂k−1 = (I − Sλ)bk−2.

Computations of either b̂k or β̂k require matrix-vector multiplications, i.e., level 2 BLAS
functions (Golub and Van Loan 1996) with O(n2) flops. In practice, we found that often the
number of iterations k that are required to be evaluated in order to select a good data-driven
choice k̂ is commensurate with the sample size n. Thus, an algorithm which uses matrix-vector
multiplications would require typically O(n3) flops to produce the final smoother.
Numerical experiments have shown that an alternative algorithm, based on an eigenvalue
decomposition of the smoothing matrix Sλ (also an order O(n3) algorithm), is faster when
combined with GCV for selecting the number of iterations. We have implemented the latter
algorithm in the ibr package. This approach is easily understood and implemented for TPS
smoothers, whose smoothing matrix Sλ is symmetric. For kernel smoothers, the smoothing
matrix is not symmetric and further discussion is needed.
While the kernel base smoother Sλ is not symmetric, we can rewrite Equation 4 using an eigen
decomposition of a symmetric matrix. Specifically, write Sλ = DK, where K is a symmetric
matrix with general element Kij = ∏d

l=1K
{

(X(l)
i −X

(l)
j)/λ(l)

}
and D a diagonal matrix

with entries Dii = 1/∑n
j=1 Kij . With this notation, we write the smoothing matrix of m̂k in

Equation 4 as

I − (I − Sλ)k = I − (I −DK)k

= I − (D1/2D−1/2 −D1/2D1/2KD1/2D−1/2)k

= I −D1/2(I −A)kD−1/2

where A = D1/2KD1/2. The latter is symmetric, and so it can be diagonalized A = UΛU>,
with U the orthogonal matrix of eigenvectors and Λ the diagonal matrix of eigenvalues.
Equation 4 becomes

m̂k = D1/2U(I − (I − Λ)k)U>D−1/2Y.

The coefficient β̂k in Equation 7 becomes

β̂k = D1/2U [I + (I − Λ) + (I − Λ)2 + · · ·+ (I − Λ)k−1]U>D−1/2Y.

Recognizing the sum inside the bracket as the k−1 first term of geometrical series, we rewrite

β̂k = D1/2UΛ−1(1− (I − Λ)k)U>D1/2.

The core of computation becomes the eigen decomposition which is done in a very efficient
way by the function eigen for moderate n (n < 1000 for instance). For additional efficiency,
the computations of A and D1/2 are done in C for the default Gaussian kernel.
For the low rank splines, the user must provide a given rank r < n. The smoother

S = X(X>X + λC)−1X> (10)

can be written, using a QR transformation of X (X = QR and Q an orthogonal n×r matrix),
as

S = QR(R>R+ λC)−1R>Q> = QR(R>(I + λ(R>)−1CR−1)R)−1R>Q>

= Q(I + λ(R>)−1CR−1)Q>.

Journal of Statistical Software 11

Using an eigen decomposition of the r × r symmetric matrix (R>)−1CR−1 which can be
written as V ΛV > (with V orthogonal) we get the symmetric smoother

S = Q(V V > + λV ΛV >)−1Q> = QV (I + λΛ)−1V >Q>.

Here, the eigen decomposition of the smoother is given by the last equation: The (r− i+1)th
eigenvalue is (1 + λΛi)−1 and the associated eigenvector is the ith column of QV . When
the computation of X is done, the computation cost is dominated by the QR decomposition
of X (using LINPACK, the default in R) which requires O(nr2 − r3/3) flops (see Bischof
and Van Loan 1987). To calculate X, an eigen decomposition is needed (to calculate the Ur
matrix). The computations are made via the smoothCon function of package mgcv which
uses a Lanczos method for the eigen decomposition. Recall that each iteration of the Lanczos
algorithm needs to use a matrix-vector multiplication. In the mgcv package, the level 2
BLAS function dsymv of LAPACK is used for efficiency and thus each iteration of the Lanczos
algorithm requires O(n2) flops. As the number of iterations in the mgcv package is at least
r, we have a computation cost for low rank splines, with large n and small fixed r, of at least
O(rn2).

3.3. Stopping rules

The ibr package implements several classical criteria to empirically select an optimal number k
of bias correction iterations: generalized cross-validation (GCV), Akaike information criterion
(AIC), Bayesian information criterion (BIC), corrected Akaike information criterion (AICc)
and generalized minimum description length (gMDL). The choice of criterion is controlled
by the argument criterion of the ibr function. By default, the criterion is GCV. Cross-
validation is also available, but our discussion on that method is postponed to Section 3.5.
The evaluation of an optimal number k of iterations using any one of these classical criteria is
not a trivial task. The package ibr implements both a computationally burdensome exhaustive
search method and a computationally efficient but approximate method. The latter is the
default method. The user can request ibr to perform an exhaustive search by setting the
argument exhaustive = TRUE in the list control.par.

Exhaustive search method

The exhaustive search method evaluates, for each k in an interval [Kmin;Kmax], the criterion to
identify its global minimizer. The default values for the range are Kmin = 1 and Kmax = 106.

Numerical optimization method

The default method relies on the fact that the criterion is easily calculated for arbitrary
k ∈ R+. This enables us to use standard optimization routines to minimize the criterion.
While this approach is conceptually simple, there are two pitfalls: First, most criteria break
down for very large k for which the smoother essentially interpolates the data, i.e., m̂k ≈ Y .
Second, some criteria exhibit multiple local minima (see Figure 3b).
All model selection criteria trade-off goodness of fit, as measured by log(‖Y − m̂k‖2) with a
measure of the complexity of the smoother. Numerical difficulties arise when Y ≈ m̂k, which
occurs when the number k of iterations is close to the sample size n. To overcome this problem,
we bound from above the maximum allowable number of iterations by setting the variable

12 ibr: Iterative Bias Reduction Multivariate Smoothing in R

0 2000 4000 6000 8000 10000

−
4

.0
−

3
.5

−
3

.0
−

2
.5

iterations

G
C

V

(a) Typical evolution of GCV with k.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−
4

.1
0

−
4

.0
5

−
4

.0
0

−
3

.9
5

−
3

.9
0

−
3

.8
5

−
3

.8
0

iterations

G
C

V

(b) Evolution of GCV with k with two minima
indicated by arrows.

dfmaxi in the list control.par. By default, its value is 2n/3. Hardcoded error handling
prevents evaluation of the criteria when either k > n(1−10−10) or ‖Y −m̂k‖2 ≤ 10−10. These
exceptions also apply to the exhaustive search algorithms.
Classical model selection criteria have been developed in the context where the effective
number of estimated parameters is significantly smaller than the number of observations.
Investigation of the criteria, as a function of effective degrees of freedom over a broader range
of values reveals the presence of multiple local minima. While this does not impact the
performance of the exhaustive search, the presence of local minima is potentially problematic
for standard minimization algorithms. Our solution is to divide the interval [Kmin;Kmax]
into smaller subintervals and apply on each subinterval a numerical optimization using the
function optimize, and the minimizer of these minimizations is returned. The splitting is
controlled by the argument fraction in the list control.par, with default value of c(100,
200, 500, 1000, 5000, 1e04, 5e04, 1e05, 5e05, 1e06).
While the strategy of optimizing the criteria in subintervals is more expensive than optimizing
over the original interval, it remains significantly faster than performing an exhaustive search.

3.4. Scales of variables

The function ibr is designed to be used with two types of linear smoothers: Duchon splines
(full rank or low rank) and kernel smoothers. Duchon splines are governed by a single param-
eter λ that weights the contribution of the roughness penalty. As a result, it is desirable to
scale all the variables to have equal variance to ensure that the roughness penalty is applied
equally to each variable. This is achieved by pre-processing the data with the scale func-
tion before smoothing the data with ibr. By default, the variables are scaled when splines
smoother is selected (both full rank or low rank).
Our implementation of the kernel smoother allows for a different bandwidth to be used for
each of the regression variables. While the discussion on scaling applies when a common
bandwidth is used for all the variables, we found in our numerical experiments that we get
better results when we use the original variable but select a suitable bandwidth for each
variable. The objective is not to select an optimal bandwidth, but rather control the amount
of smoothing we do at each iteration. To this end, we propose to select the bandwidths such
that the one-dimensional smoothing matrix for each variable has the same effective degree
of freedom. Typical values for the effective degree of freedom values are 1.05, 1.1, 1.2, 1.5

Journal of Statistical Software 13

k
SComputation of

k =1,2,3,....

k=1,2,3,....Y

Y Y

Y

Data set

Splitting

X

Y

Y

X

X

Training

Validation

Y

mkv

mk||n
−1
v

|| mk
(−)/

1||v v
n

−1
v

tr tr

v v

or

RMSE(k)=

MAP(k)=

2
−|| v 2

Figure 3: Training set and validation set.

or 2, which the user sets with the df argument. Given an desired effective degree of freedom,
the package automatically determines the bandwidth using an adaptation of the uniroot
algorithm written in C.
Relating the effective degree of freedom of each of the univariate components to an effective
degree of freedom for the multivariate smoother is non-trivial. As a result, some users may
prefer to control the overall smoothing instead of the marginal smoothing of each component.
We allow the specification of the overall smoothing by setting the flag dftotal = TRUE in
list control.par (the default value of that flag is dftotal = FALSE): When set to TRUE,
the user specifies the desired overall degree of freedom of S with the argument df. The ibr
function determines a vector (λ(1), . . . , λ(l)) that produces a smoothing matrix S with the
desired overall degree of freedom using a C routine.

3.5. Stopping rules: K-fold cross-validation and data splitting

Leave-one-out cross-validation, K-fold cross-validation, and more generally data splitting, are
well established techniques for model selection which can be used to determine the optimal
number of iterations k for iterative bias reduction procedure. First, the dataset is split into
two disjoint subsets, a training set to estimate the regression function and a testing set to
evaluate the out-of-sample prediction error. This training/test split can be done several times.
Second, using either the root mean square error criterion = "rmse" or the mean of absolute
error criterion = "map" loss functions (see Figure 3) the out-of-sample prediction error is
quantified. The optimal k selected is the one which leads to the minimum of the chosen loss.
This minimization can be done either using an optimization routine, the default method, or
by exhaustive search (set exhaustive = TRUE in the list control.par).
Since simple leave-one-out cross-validation usually leads to an estimator that undersmooths
(in our case, the selected number of iterations k is larger than the optimal one), we prefer

14 ibr: Iterative Bias Reduction Multivariate Smoothing in R

to use either data splitting or K-fold cross-validation. The main difference between these
two procedures is that usually data splitting is conducted once (except if the user asks for
more using argument npermut) whereas for K-fold cross-validation, the original sample is
randomly partitioned into K subsamples with each of the K subsets used as the test set and
the remainder K − 1 subsets are combined to form the training set. The prediction error is
then computed by summing absolute relative errors or squared errors across the K trials (and
making the overall mean).
The list cv.options in ibr controls the various options for cross-validation, including the
size of the training set, the number of repetitions of the procedure, the loss function and the
type of splitting.

Selecting the number of iterations k with data splitting

To perform a data splitting cross-validation, we set the following options in cv.options:

1. Input either ntest or ntrain, the size of the testing set nv or the size of the training
test (n− nv), respectively. The default value sets ntest to bn/10c.

2. Set the number of times the dataset is split in npermut. For classical data splitting,
npermut have to be set equal to one (the default value is 20).

3. Set the type equal to random to allow random data splitting. This option can be omitted
as this is the default value. The argument seed can be used to control the seed of the
random number generator.

Data splitting (with test set of size bn/10c, i.e., the default value) with root mean square
error loss is achieved by the code

R> ibr(Y ~ ., data = dataset, criterion = "rmse",
+ cv.options = list(npermut = 1))

A more complex example of data splitting that uses 100 samples of 3 observations to evaluate
the prediction error using the mean absolute deviation loss is achieved with the code

R> ibr(Y ~ ., data = dataset, criterion = "map", cv.options =
+ list(ntest = 3, npermut = 100))

Selecting the number of iterations k with K-fold cross-validation

To perform a K-fold cross-validation with ibr, we set the following options in cv.options:

1. Set Kfold = TRUE (default is FALSE) or set Kfold equal to the number of folds.

2. Set the number of folds K. One can either specify the size of the testing set nv in ntest
or the size of the training set (n − nv) in ntrain, in which case the fold is computed
to be K = bn/nvc. One can set the number of folds K by setting the argument Kfold
equal to K. This implies that the size of the testing set is bn/Kc.

Journal of Statistical Software 15

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Fold 6

(a) Graphical summary of consecutive K = 6 folds
cross-validation.

Fold 6
Fold 5
Fold 4
Fold 3
Fold 2
Fold 1

Fold 6
Fold 5
Fold 4
Fold 3
Fold 2
Fold 1
Fold 6
Fold 5
Fold 4
Fold 3
Fold 2
Fold 1

●

●

●

(b) Graphical summary of interleaved K = 6 folds
cross-validation.

Figure 4: Options "consecutive" and "interleaved" for K-fold cross-validation.

3. Specify the type of data-split. By default, the data are split randomly ("random").
Alternatively, we divide the data using consecutive stretches of data ("consecutive")
or interleaved split ("interleaved"). A forth option, "timeseries" divides the data
chronologically and uses the last bn/Kc for the testing set. The splitting implied by
"consecutive" is shown in Figure 4a while the splitting using "interleaved" is shown
in Figure 4b. The obvious case of random draw is not shown. Finally, the optional
argument seed can be used to control the seed for the random number generator. It is
given as seed argument of the set.seed function.

The first two lines of code give rise to the examples summarized in Figures 4a and 4b, while
the third line corresponds to a random K-fold cross-validation:

R> ibr(Y ~ ., data = dataset, criterion = "rmse", cv.options =
+ list(Kfold = 6, type = "consecutive"))
R> ibr(Y ~ ., data = dataset, criterion = "rmse", cv.options =
+ list(Kfold = 6, type = "interleaved"))
R> ibr(Y ~ .,data=dataset,criterion = "rmse", cv.options =
+ list(Kfold = 6, type = "random"))

Finally, if the user wants to perform an exhaustive search for the number of iterations (from
1 to 1000 iterations) using the leave-one-out cross-validation, she runs

R> ibr(Y ~ ., data = dataset, criterion = "rmse", Kmax = 1000, control.par =
+ list(exhaustive = TRUE), cv.options = list(Kfold = TRUE, ntest = 1,
+ type = "consecutive"))

3.6. Variable selection
We can apply the standard strategy of balancing prediction errors and model complexity
to select predictors. The main issue with variable selection with ibr is computational, as we
wish to compare models using an optimal number of bias reduction iterations. To limit fitting
models with many parameters, we only consider forward variable selection.

16 ibr: Iterative Bias Reduction Multivariate Smoothing in R

Algorithm 1 Description of the forward function.
Require: criterion (GCV, AIC, AICc, BIC, gMDL, MAP or RMSE)
Require: varcrit (GCV, AIC, AICc, BIC, gMDL)
s← 1 # Current stage
R matrix of infinity with d columns # Matrix of results
S ← ∅ # Variable(s) selected at current stage
smin ←∞ # Current minimum of criterion
for s = 1 to d do

for j = 1 to d such that j 6∈ S do
Sc ← S ∪ {j} # Adding one variable to the set of variables already selected
res <- ibr(XSc,Y,criterion) # XSc contains explanatory variables in Sc
evaluation of criterion varcrit for res: Rsj

end for
if all {Rsj}j > smin then

Return matrix R from row 1 to s− 1
else

Updating
S ← S ∪ {arg minj Rsj}
smin ← minj Rsj # Current minimum of criterion varcrit
s← s+ 1

end if
end for

In analogy to selecting the number of iterations, controlled by entries in the list criterion,
we control the variable selection procedure with the list varcrit. The latter has the same
default values as the former.

In the following example, we use GCV to select the number of iterations and BIC for forward
variable selection. In the first stage (s = 1) all models with one variable are computed.
Computing these models induces a selection of the number of iterations for each model using
the GCV criteria. The variable with the smallest BIC is selected. At the second stage (s = 2),
the remaining variables are added in turn into the model. For each of the best fitting two
variables models (using GCV to select k), the BIC is calculated and the two variables model
with the smallest value is retained. If there is no two variables models that have smaller BIC
than the best one variable model, then the variable selection procedure stops. Otherwise, we
continue and consider all three variables models that extend the best two variables model
(see also Algorithm 1).

The forward function returns an object of class ‘forwardibr’. A plot method is provided for
this class of object.

4. Examples

Let us return to the Wendelberger’s test function (see Equation 5):

Journal of Statistical Software 17

R> f <- function(x, y) {
+ 0.75 * exp(-((9 * x - 2)^2 +(9 * y - 2)^2)/4) +
+ 0.75 * exp(-((9 * x + 1)^2/49 + (9 * y + 1)^2/10)) +
+ 0.50 * exp(-((9 * x - 7)^2 + (9 * y - 3)^2)/4) -
+ 0.20 * exp(-((9 * x - 4)^2 + (9 * y - 7)^2))
+ }

We start by plotting this function on a 50× 50 grid of points in the unit square (0, 1)× (0, 1)
that produces Figure 1.

R> ngrid <- 50
R> xf <- seq(0, 1, length = ngrid + 2)[-c(1, ngrid + 2)]
R> yf <- xf
R> zf <- outer(xf, yf, f)
R> grid <- cbind(rep(xf, ngrid), rep(xf, rep(ngrid, ngrid)))
R> persp(xf, yf, zf, theta = 130, phi = 20, expand = 0.45,
+ main = "True Function")
R> griddata <- cbind.data.frame(x = grid[, 1], y = grid[, 2])

Next, we can generate a dataset of 100 noisy observations of the function f evaluated on the
regular grid {0.05, 0.15, . . . , 0.85, 0.95}2, with Gaussian disturbances that have zero mean and
standard deviation producing a signal to noise ratio of five.

R> noise <- 0.2
R> N <- 100
R> xr <- seq(0.05, 0.95, by = 0.1)
R> yr <- xr
R> zr <- outer(xr, yr, f)
R> set.seed(25)
R> std <- sqrt(noise * var(as.vector(zr)))
R> noise <- rnorm(length(zr), 0, std)
R> Z <- zr + matrix(noise, sqrt(N), sqrt(N))

Concatenate explanatory variables into a 100× 2 matrix X and put the dependent variable in
vector form Zc and put them in a data-frame data

R> xc <- rep(xr, sqrt(N))
R> yc <- rep(yr, rep(sqrt(N), sqrt(N)))
R> X <- cbind(xc, yc)
R> Zc <- as.vector(Z)
R> data <- cbind.data.frame(x = xc, y = yc, z = Zc)

In this example, we will use TPS of order ν. The default value is the smallest possible
smoothness, which is 2 in our case. The effective degree of freedom of the TPS smoother
needs to be slightly larger than M =

(ν+d−1
ν−1

)
. In our example, M = 3 and we choose λ such

that the effective degree of freedom is 1.1×M = 3.3. Figure 2(a) graphs the base smoother
at iteration zero.

18 ibr: Iterative Bias Reduction Multivariate Smoothing in R

R> res.ibr <- ibr(z ~ x + y, data = data, df = 1.1, control.par =
+ list(iter = 1), smoother = "tps")
R> fit <- matrix(predict(res.ibr, griddata), ngrid, ngrid)
R> persp(xf, yf, fit, theta = 130, phi = 20, expand = 0.45,
+ main = "Fit", zlab = "fit")

Figures 2(b) and (c) show the bias corrected smoother after 500 and 50, 000 iterations. To
compute the smoother whose number of iterations is selected with GCV, we use

R> res.ibr <- ibr(z ~ x + y, data = data, df = 1.1, smoother = "tps")
R> summary(res.ibr)

The summary output of the resulting smoother prints the residual standard error, the initial
degree of freedom and reveals that the final degree of freedom is 26.5 and the value of (log)
GCV is −3.63 after k̂GCV = 424 iterations.

Residuals:
Min 1Q Median 3Q Max

-0.235037 -0.068251 -0.007412 0.069063 0.301480
Residual standard error: 1.197 on 73.5 degrees of freedom

Initial df: 3.3 ; Final df: 26.5
gcv

-3.938

Number of iterations: 424 chosen by gcv
Base smoother: Thin plate spline of order 2 (with 3.3 df)

To compute the fitted values, we use the predict function

R> predict(res.ibr)

that can be used to evaluate the mean absolute error (MAE) on a grid

R> mean(abs(predict(res.ibr, griddata) - as.vector(zf)))
[1] 0.05783938

To plot the fitted value, we employ the following code

R> predgrid <- matrix(predict(res.ibr, griddata), ngrid, ngrid)
R> persp(xf, yf, predgrid, theta = 130, phi = 20, expand = 0.45,
+ zlab = "fit")

To use either the AICc or the BIC criterion to select the number of iterations, we write

R> res.ibr.aicc <- ibr(z ~ x + y, data = data, df = 1.1, smoother = "tps",
+ crit = "aicc")
R> res.ibr.bic <- ibr(z ~ x + y, data = data, df = 1.1, smoother = "tps",
+ crit = "bic")

Journal of Statistical Software 19

yf

xf

fit

Figure 5: Fitted regression function m̂k(x1, x2) on the unit square [0, 1] × [0, 1], the number
of iterations is chosen by GCV: k̂GCV = 424.

Direct display of an ‘ibr’ object gives the following short description

R> res.ibr.aicc

Initial df: 3.3 ; Final df: 20.976
Number of iterations: 247 chosen by aicc

which reveals that AICc required 247 iterations and the resulting smoother has a slightly
larger mean absolute error than those obtained by using GCV. This last MAE is close to the
TPS smoother with λ (not k) selected with GCV

R> library("fields")
R> res.tps <- Tps(X, Zc)
R> mean(abs(predict(res.tps, griddata) - as.vector(zf)))

[1] 0.05823783

4.1. Real example: Los Angeles ozone data

We consider the classical Los Angeles basin ozone concentration dataset used by numerous
authors (see for example Breiman 1996; Bühlmann and Yu 2003, 2006) to demonstrate the
performance of various high dimensional smoothing techniques. The data consists of n = 330
observed ozone concentration values related to d = 8 explanatory variables.
To use the TPS base smoother, the order ν of TPS needs to be greater than d/2, that is
ν = 5. This implies that the minimal effective degree of freedom of the TPS smoother Sλ is
M = 495, which is greater than the sample size n. Even for larger sample sizes, say n = 500,
the TPS will be an unsatisfactory base smoother (recall that in the preceding section, for
d = 2 we started at 3.3 degrees of freedom with 100 observations). Other types of base
smoother, Kernel smoother or Duchon splines (low rank or full rank), can be used easily.

20 ibr: Iterative Bias Reduction Multivariate Smoothing in R

Let us consider the (default) Gaussian kernel smoother. As discussed in Section 3.4, we do
not scale the eight explanatory variables but instead select the bandwidth of each univariate
smoother to achieve a smoothing matrix that has an effective degree of freedom of 1.1. This
ensures that at face value, each of the eight covariates has the same influence. The number of
possible bias correction iterations k considered by the model selection procedure for selecting
the optimal number of iterations lies between one and 106 (default values for Kmin and Kmax).
The R code for fitting this data is

R> data("ozone", package = "ibr")
R> res.ibr <- ibr(Ozone ~ ., data = ozone, df = 1.1)
R> summary(res.ibr)

Residuals:
Min 1Q Median 3Q Max

-13.5581 -2.0566 -0.3481 1.9816 12.6049
Residual standard error: 71.69 on 309.6 degrees of freedom

Initial df: 2.06 ; Final df: 20.42
gcv

2.809

Number of iterations: 64 chosen by gcv
Base smoother: gaussian kernel (with 2.06 df)

The summary shows that the optimal number of iterations is k̂GCV = 64, which can be
thought as quite low (recall that in the previous example the number of iterations ranged
between 200 and 400). In this example, an exhaustive search method for determining the
optimal number of iterations

R> ibr(Ozone ~ ., data = ozone, df = 1.1,
+ control.par = list(exhaustive = TRUE))

gives the same result. Because we only need a relatively small number of bias correction
steps, we can select a smaller initial effective degree of freedom, say 1.05, while maintaining
the computational complexity at a manageable level. Indeed, decreasing the effective degree
of freedom of the pilot smoother increases the total number of bias reduction steps while
typically providing some performance gains as measured by out-of-sample prediction errors.
A plot method is also available for the ‘ibr’ object to display the residuals as a function
of fitted values. Figure 6 shows that variability increases with the fitted values that is het-
eroscedasticity is suspected.

R> plot(res.ibr)

As done in Bühlmann and Yu (2003), 50 random training/test splits are conducted. Each
split is done in order to have a training set of size nt = 297 and a test set of size nv = 33:

R> erreur1.5 <- rep(0, 33 * 50)
R> set.seed(123)

Journal of Statistical Software 21

● ●

●

●
●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●

●
●●

●

●

●
●

●

●

● ●●
●

●
●
●

●
●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●
●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●●

●
●
●

●
●

●●

●●

●
●

●

●

●

● ●●

5 10 15 20 25 30

−
10

−
5

0
5

10

Fitted

R
es

id
ua

ls

Figure 6: Fitted vs. residuals plot.

R> for (i in 1:50) {
+ indT <- sample(1:330, 33)
+ indA <- (1:330)[-indT]
+ YT <- ozone[indT, "Ozone"]
+ res.ibr <- ibr(Ozone ~ ., data = ozone, subset = indA)
+ erreur1.5[(33 * (i - 1) + 1):(33 * i)] <-
+ YT - predict(res.ibr, ozone[indT,])
+ }
R> mean(erreur1.5^2)

[1] 16.51436

We get an error of 16.51, which compares favorably with GAM (mgcv: 19.29), MARS (mda:
18.91), projection pursuit (ppr: 18.93 for nterms = 2) or boosting (package mboost: 17.93).
Note that since no default is available for the nterms argument of the function ppr, we follow
the examples provided in the ppr documentation and have set nterms equal to 2. To sum-
marize, the ibr smoother enjoys a 8% reduction in the out-of-sample prediction mean square
error over other classical multivariate (constrained) smoothing methods. Other simulations
and comparisons can be found in Cornillon, Hengartner, Jégou, and Matzner-Løber (2013).
We note that the above comparison favors the L2 boosting and MARS algorithms that take
advantage of built-in variable selection procedures. To compare to these methods, we apply
the forward variable selection using the random splitting method to ibr for this dataset
issuing the following commands:

R> set.seed(123)
R> ind <- sample(1:330, 33)
R> ozoneA <- ozone[-ind,]
R> ozoneT <- ozone[ind,]

We select variables using the commands

22 ibr: Iterative Bias Reduction Multivariate Smoothing in R

R> forward.ibr <- forward(XXA, YA)
R> varnumber <- apply(forward.ibr, 1, which.min)
R> varnumber

[1] 4 3 7 6 5

R> colnames(forward.ibr)[varnumber]

[1] "Temp.Sand" "Humidity" "Inv.Base.Temp" "Pressure.Grad"
[5] "Inv.Base.height"

That is, the order of the variables to be included into the model is 4, 3, 7, 6 and 5. Variable
selection leads to improved predictions. To quantify this improvement on the testing set, we
compare the prediction MSE of the selected five variables model with the prediction MSE of
the model that uses all eight variables.

R> res.ibr <- ibr(Ozone ~ ., data = ozoneA)
R> mean((ozoneT[, "Ozone"] - predict(res.ibr, ozoneT))^2)

[1] 16.1644

R> selectedvar <- paste(colnames(forward.ibr)[varnumber], collapse = "+")
R> formulaOzone <- formula(paste("Ozone ~ ", selectedvar, sep = ""))
R> res.ibr2 <- ibr(formulaOzone, data = ozoneA)
R> mean((ozoneT[, "Ozone"] - predict(res.ibr2, ozoneT))^2)

[1] 14.29262

This shows a small improvement. We remark that despite the increased computational time,
the forward function provides a simple and useful tool for selecting variables.
Remark: Change of base smoother can lead to improvement depending on the data. On this
example, a low rank Duchon splines smoother with rank r chosen equal to 270 (10% less than
the maximal value: 300) leads to a MSE of 14.56 and using the same selected variables leads
to a MSE of 14.43.

5. Conclusion
The ibr package provides additional features which are not offered by other packages on
CRAN. These features are a complete implementation, using the R language, of iterative
biased reduction procedures which implement and generalize the twicing idea of Tukey (1977).
This smoothing method for multivariate datasets seems to be promising especially on real
datasets (see Cornillon, Hengartner, Lefieux, and Matzner-Løber 2015). But one limitation
of this smoothing method is the use of an n×n matrix, where n is the number of observations.
Moreover, at the present time, the computational bottleneck is the eigen decomposition of an
n×n matrix. This decomposition can be performed entirely (with a complexity of O(n3)) or

Journal of Statistical Software 23

can be restrained to the r first eigenvectors by using the low rank splines (Wood 2003). In
this case, a complexity of O(rn2) can be attained.

Acknowledgments
The anonymous referees provided extremely helpful suggestions that have greatly enhanced
the quality of the present paper and its companion package. The author are greatly in-
debted to an unknown referee for suggesting the use of low rank splines to circumvent the
computational cost of the full rank splines.

References

Akaike H (1973). “Information Theory and an Extension of the Maximum Likelihood Prin-
ciple.” In BN Petrov, BF Csaki (eds.), Second International Symposium on Information
Theory, pp. 267–281. Academiai Kiado, Budapest.

Antoniadis A, Oppenheim G (eds.) (1995). Wavelets and Statistics. Springer-Verlag. doi:
10.1007/978-1-4612-2544-7.

Bischof C, Van Loan C (1987). “The WY Representation for Products of Householder
Matrices.” SIAM Journal on Scientific and Statistical Computing, 8(1), s2–s13. doi:
10.1137/0908009.

Breiman L (1996). “Bagging Predictors.” Machine Learning, 24, 123–140. doi:10.1007/
bf00058655.

Breiman L (1999). “Using Adaptive Bagging to Debias Regressions.” Technical Report 547,
Department of Statistics, UC Berkeley.

Bühlmann P, Hothorn T (2007). “Boosting Algorithms: Regularization, Prediction and Model
Fitting.” Statistical Science, 22, 477–505. doi:10.1214/07-sts242.

Bühlmann P, Yu B (2003). “Boosting with the L2 Loss: Regression and Classification.” Jour-
nal of the American Statistical Association, 98, 324–339. doi:10.1198/016214503000125.

Bühlmann P, Yu B (2006). “Sparse Boosting.” Journal of Machine Learning Research, 7,
1001–1024.

Buja A, Hastie T, Tibshirani R (1989). “Linear Smoothers and Additive Models.” The Annals
of Statistics, 17, 453–510. doi:10.1214/aos/1176347115.

Cleveland WS, Devlin S (1988). “Locally Weighted Regression: An Approach to Regression
Analysis by Local Fitting.” Journal of the American Statistical Association, 83, 596–610.
doi:10.1080/01621459.1988.10478639.

Cornillon PA, Hengartner N, Jégou N, Matzner-Løber E (2013). “Iterative Bias Reduc-
tion: a Comparative Study.” Statistics and Computing, 23, 777–791. doi:10.1007/
s11222-012-9346-4.

http://dx.doi.org/10.1007/978-1-4612-2544-7
http://dx.doi.org/10.1007/978-1-4612-2544-7
http://dx.doi.org/10.1137/0908009
http://dx.doi.org/10.1137/0908009
http://dx.doi.org/10.1007/bf00058655
http://dx.doi.org/10.1007/bf00058655
http://dx.doi.org/10.1214/07-sts242
http://dx.doi.org/10.1198/016214503000125
http://dx.doi.org/10.1214/aos/1176347115
http://dx.doi.org/10.1080/01621459.1988.10478639
http://dx.doi.org/10.1007/s11222-012-9346-4
http://dx.doi.org/10.1007/s11222-012-9346-4

24 ibr: Iterative Bias Reduction Multivariate Smoothing in R

Cornillon PA, Hengartner N, Lefieux V, Matzner-Løber E (2015). “Fully Nonparametric Short
Term Forecasting Electricity Consumption.” In Lecture Notes in Statistics: Modeling and
Stochastic Learning for Forecasting in High Dimension. Springer-Verlag.

Cornillon PA, Hengartner N, Matzner-Løber E (2014). “Recursive Bias Estimation for Mul-
tivariate Regression Smoothers.” ESAIM: Probability and Statistics, 18, 483–502. doi:
10.1051/ps/2013046.

Cornillon PA, Hengartner N, Matzner-Lober E (2017). ibr: Iterative Bias Reduction. R
package version 2.0-3, URL https://CRAN.R-project.org/package=ibr.

Craven P, Wahba G (1978). “Smoothing Noisy Data With Spline Functions: Estimating the
Correct Degree of Smoothing by the Method of Generalized Cross-Validation.” Numerische
Mathematik, 31, 377–403. doi:10.1007/bf01404567.

de Silanes MCL, Arcangéli R (1989). “Estimations de l’erreur d’approximation par splines
d’interpolation et d’ajustement d’ordre (M, s).” Numerische Mathematik, 56, 449–467.
doi:10.1007/bf01396648.

Duchon J (1977). “Splines Minimizing Rotation-Invariant Semi-Norms in Solobev Spaces.”
In W Shemp, K Zeller (eds.), Construction Theory of Functions of Several Variables, pp.
85–100. Springer-Verlag, Berlin.

Eubank R (1988). Spline Smoothing and Nonparametric Regression. Marcel Dekker, New-
York.

Fan J, Gijbels I (1996). Local Polynomial Modeling and Its Application, Theory and Method-
ologies. Chapman et Hall, New York.

Friedman J (2001). “Greedy Function Approximation: A Gradient Boosting Machine.” The
Annals of Statistics, 28(337-407). doi:10.1214/aos/1013203451.

Friedman J, Hastie T, Tibshirani R (2000). “Additive Logistic Regression: A Statistical View
of Boosting.” The Annals of Statistics, 28, 337–407. doi:10.1214/aos/1016120463.

Golub GH, Van Loan CF (1996). Matrix Computations. 3rd edition. The Johns Hopkins
University Press.

Gu C (2002). Smoothing Spline ANOVA Models. Springer-Verlag, New-York. doi:10.1007/
978-1-4757-3683-0.

Hansen M, Yu B (2001). “Model Selection and Minimal Description Length Principle.” Journal
of the American Statistical Association, 96, 746–774. doi:10.1198/016214501753168398.

Hastie T, Tibshirani R (1990). Generalized Additive Models. Chapman & Hall, London.

Hastie T, Tibshirani R, Friedman J (2001). The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer-Verlag, New-York.

Hastie T, Tibshirani R, Leisch F, Hornik K, Ripley BD (2016). mda: Mixture and Flexible
Discriminant Analysis. R package version 0.4-9, URL https://CRAN.R-project.org/
package=mda.

http://dx.doi.org/10.1051/ps/2013046
http://dx.doi.org/10.1051/ps/2013046
https://CRAN.R-project.org/package=ibr
http://dx.doi.org/10.1007/bf01404567
http://dx.doi.org/10.1007/bf01396648
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1214/aos/1016120463
http://dx.doi.org/10.1007/978-1-4757-3683-0
http://dx.doi.org/10.1007/978-1-4757-3683-0
http://dx.doi.org/10.1198/016214501753168398
https://CRAN.R-project.org/package=mda
https://CRAN.R-project.org/package=mda

Journal of Statistical Software 25

Herrmann E, Maechler M (2016). lokern: Kernel Regression Smoothing with Local or
Global Plug-in Bandwidth. R package version 1.1-8, URL https://CRAN.R-project.org/
package=lokern.

Hothorn T, Bühlmann P, Kneib T, Schmid M, Hofner B (2016). Model-Based Boosting. R
package version 2.7-0, URL https://CRAN.R-project.org/package=mboost.

Hurvich C, Simonoff J, Tsai CL (1998). “Smoothing Parameter Selection in Nonparamet-
ric Regression Using an Improved Akaike Information Criterion.” Journal of the Royal
Statistical Society B, 60, 271–294. doi:10.1111/1467-9868.00125.

Marzio MD, Taylor C (2008). “On Boosting Kernel Regression.” Journal of Statistical Plan-
ning and Inference, 138, 2483–2498. doi:10.1016/j.jspi.2007.10.005.

Miller DL, Wood SN (2014). “Finite Area Smoothing with Generalized Distance Splines.” En-
vironmental and Ecological Statistics, 21(4), 715–731. doi:10.1007/s10651-014-0277-4.

Nason G (2016). wavethresh: Wavelets Statistics and Transforms. R package version 4.6.8,
URL https://CRAN.R-project.org/package=wavethresh.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ridgeway G (2000). “Discussion of “Additive Logistic Regression: A Statistical View of
Boosting”.” The Annals of Statistics, 28, 393–400. doi:10.1214/aos/1016120463.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6,
461–464. doi:10.1214/aos/1176344136.

Simonoff J (1996). Smoothing Methods in Statistics. Springer-Verlag, New York. doi:
10.1007/978-1-4612-4026-6.

Tukey J (1977). Exploratory Data Analysis. Addison-Wesley.

Wendelberger J (1982). Smoothing Noisy Data with Multivariate Splines and Generalized
Cross-Validation. Ph.D. thesis, University of Wisconsin.

Wood S (2003). “Thin Plate Regression Splines.” Journal of the Royal Statistical Society B,
65, 95–114. doi:10.1111/1467-9868.00374.

Wood S (2017). mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness
Estimation. R package version 1.8-17, URL https://CRAN.R-project.org/package=mgcv.

https://CRAN.R-project.org/package=lokern
https://CRAN.R-project.org/package=lokern
https://CRAN.R-project.org/package=mboost
http://dx.doi.org/10.1111/1467-9868.00125
http://dx.doi.org/10.1016/j.jspi.2007.10.005
http://dx.doi.org/10.1007/s10651-014-0277-4
https://CRAN.R-project.org/package=wavethresh
https://www.R-project.org/
http://dx.doi.org/10.1214/aos/1016120463
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1007/978-1-4612-4026-6
http://dx.doi.org/10.1007/978-1-4612-4026-6
http://dx.doi.org/10.1111/1467-9868.00374
https://CRAN.R-project.org/package=mgcv

26 ibr: Iterative Bias Reduction Multivariate Smoothing in R

Affiliation:
Pierre-André Cornillon, Eric Matzner-Løber
IRMAR – UMR 6625 CNRS
Université Rennes 2 – CS 24307
35043 Rennes CEDEX, France
E-mail: pierre-andre.cornillon@univ-rennes2.fr, eric.matzner@univ-rennes2.fr
URL: http://perso.univ-rennes2.fr/pierre-andre.cornillon

http://perso.univ-rennes2.fr/eric.matzner

Nick Hengartner
Los Alamos National Laboratory
E-mail: nickh@lanl.gov
URL: http://www.ccs3.lanl.gov/group/people/?id=nickh

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

April 2017, Volume 77, Issue 9 Submitted: 2013-12-31
doi:10.18637/jss.v077.i09 Accepted: 2016-01-27

mailto:pierre-andre.cornillon@univ-rennes2.fr
mailto:eric.matzner@univ-rennes2.fr
http://perso.univ-rennes2.fr/pierre-andre.cornillon
http://perso.univ-rennes2.fr/eric.matzner
mailto:nickh@lanl.gov
http://www.ccs3.lanl.gov/group/people/?id=nickh
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v077.i09

	Introduction
	Iterative bias reduction smoothers
	Method
	Stopping rules
	Smoothers
	Kernel smoothers
	Duchon splines of order (nu0,s)
	Duchon splines of order (nu0,s)

	Implementation in R
	Base smoother
	Computations
	Stopping rules
	Exhaustive search method
	Numerical optimization method

	Scales of variables
	Stopping rules: K-fold cross-validation and data splitting
	Selecting the number of iterations k with data splitting
	Selecting the number of iterations k with K-fold cross-validation

	Variable selection

	Examples
	Real example: Los Angeles ozone data

	Conclusion

