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Abstract

We describe the R package NonpModelCheck for hypothesis testing and variable selec-
tion in nonparametric regression. This package implements functions to perform hypoth-
esis testing for the significance of a predictor or a group of predictors in a fully nonpara-
metric heteroscedastic regression model using high-dimensional one-way ANOVA. Based
on the p values from the test of each covariate, three different algorithms allow the user
to perform variable selection using false discovery rate corrections. A function for clas-
sical local polynomial regression is implemented for the multivariate context, where the
degree of the polynomial can be as large as needed and bandwidth selection strategies are
built in.

Keywords: high dimensional one-way ANOVA, local polynomial regression, false discovery
rate.

1. Introduction

In modern science, with the advances of computing and data storage, new challenges are often
found when building models that can predict the behavior of a response variable according
to massive sets of covariates and large number of data points. To address these issues, one
fundamental procedure that can be used is that of model checking which, besides testing
parameters and assumptions, can also be viewed as testing hypotheses about the significance
of a covariate or a group of covariates in the model. This is of great importance for model
building due to the bias or lack of power that misspecification of covariates can cause. There
are basically two main principles for model building: parsimony and sparseness. Parsimony is
the idea of using few parameters and sparseness is the concept of prediction with only a few
variables. Connecting these two principles, variable selection methods have been proposed,
with the objective of finding a model that contains only significant covariates. Hence, model
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checking and variable selection have become extremely important tools for building predictive
models, being implemented by several computer packages and software.
Recent research on variable selection and predictive models have significantly contributed to
a wide variety of applications. However, most attention has been given to linear models,
i.e., when the expected response at x, the observed vector of covariates, is assumed to be
m(x) = x>β, where β is the parameter vector to be estimated. One of the reasons why
such an analysis is preferred is because of the readily available statistical software. With the
linear model, a new class of methodologies has recently been developed, which uses penalty
functions to perform variable selection through the choice of a shrinking parameter, such as
LASSO (Tibshirani 1996), SCAD (Fan and Li 2001), least angle regression (Efron, Hastie,
Johnstone, and Tibshirani 2004), adaptive LASSO (Zou 2006), and Dantzig selector (Candes
and Tao 2005). Some of these methods are already available in R (R Core Team 2017), such
as packages ncvreg for SCAD (Breheny and Huang 2011; Breheny 2017), glmnet for LASSO
and elastic net (Friedman, Hastie, and Tibshirani 2010), lars for least angle regression (Hastie
and Efron 2013).
Another approach explores the connection of model checking and variable selection. Let yi
denote the ith response observation, xij the ith observation of the jth predictor. Abramovich,
Benjamini, Donoho, and Johnstone (2006) showed that the application of the false discovery
rate (FDR) procedure of Benjamini and Hochberg (1995) on p values resulting from testing
Hj

0 : βj = 0 in the aforementioned linear model, can be translated into minimizing a model
selection criterion of the form

n∑
i=1

yi −∑
j∈S

β̂Sj xij

2

+ σ2|S|λ,

where S is a subset of {1, 2, . . . , d} specifying the model, β̂Sj denotes the least squares estimator
from fitting model S, |S| is the cardinality of the subset S, and the penalty parameter λ
depends both on d and |S|.
The assumption of linearity of the expected response function may not always be correct.
A model checking or variable selection procedure with such an assumption may not detect
significant covariates that have nonlinear effects. Because of this, procedures for both model
checking and variable selection have been developed under more general/flexible models; see,
for example, Claeskens (2004), Li and Liang (2008), Wang and Xia (2009), Meinshausen,
Meier, and Bühlmann (2009), Huang, Horowitz, and Wei (2010), Storlie, Bondell, Reich,
and Zhang (2011), Antoniadis, Gijbels, and Lambert-Lacroix (2014), Gijbels, Verhasselt, and
Vrinssen (2015) and references therein. In a completely nonparametric regression, Zambom
and Akritas (2014) introduced a variable selection procedure using its conceptual connection
with model checking. The idea is to perform backward elimination considering the Benjamini
and Yekutieli (2001) method applied to the p values resulting from testing the significance of
each covariate. The extension to testing a group of covariates and running group selection was
explored in Zambom and Akritas (2015). This new methodology inspired the development
of package NonpModelCheck (Zambom 2015), which provides functions for testing, in a
nonparametric regression context, the significance of a covariate or a group of covariates, and
functions to perform variable selection using the results of these tests.
The remainder of this paper is organized as follows. In Section 2 we summarize the method-
ology of hypothesis testing in nonparametric regression introduced by Zambom and Akri-
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tas (2014) and Zambom and Akritas (2015). The function for model checking in package
NonpModelCheck is presented in Sections 2.1 and 2.2, along with some examples. Section 3 in-
troduces the modified variable selection algorithm, based on backward elimination or forward
selection and FDR corrections, followed by the description of the function npvarselect()
and performance comparisons with methods in the literature. The package is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
NonpModelCheck.

2. Nonparametric model checking
The effects of model misspecification in linear regression have been explored in several papers,
such as Larson and Bancroft (1963), Ramsey (1969), Deegan Jr. (1976), among others. Also,
in the nonlinear context, it has been seen that inappropriate assumptions or misspecified
models can cause serious consequences, see for example White (1981), and Hartford and
Davidian (2000).
One important question in checking appropriateness of a model, is to check if the covariates
under consideration are significantly related to the response variable. An example of such
a situation is when a researcher is doubtful of a few of the measured predictors, and wants
to decide if they are necessary to accurately predict the response. Hypothesis testing can
be performed on these problems in order to test a specific covariate or a group of covariates
at once. Moreover, since recent experiments are based on a rather large number of predic-
tors, often researchers do not know in advance which of those are significant to the model.
Hence, the aforementioned connection between hypothesis testing and variable selection is
an important tool for model building, and will be explored in the next section. Next, we
will formalize the hypothesis testing for the significance of one or several covariates in the
mean regression function in nonparametric regression. Denote the response variable by Y
and the set of d available covariates by U. The nonparametric regression model, allowing for
heterocedasticity, can be written as

Y = m(U) + σ(U)ε, (1)

where σ(U) is the variance function and ε is the random error with zero mean and constant
variance independent of U. Writing the set of covariates as U = (X,Z), where X has
dimension r and Z has dimension s (r+s = d), the concept of model checking as a hypothesis
test for covariates can be written in the following way

H0 : m(x, z) = m1(x). (2)

This null hypothesis is basically stating that the mean regression function depends only on
some of the observed covariates, specifically, only on x. Note that if s = 1, we are only testing
if a single covariate should be dropped from the model, but for s > 1 this is a multivariate
test.
One class of procedures is based on the idea that the null hypothesis residuals, ξ = Y−m1(X1),
satisfy E(ξ|X) = 0 under H0 but under the alternative are equal to E(ξ|X) = m(X) −
m1(X1). Hence, it is straightforward to see that E(ξE(ξ|X)|X) = (m(X) −m1(X1))2 under
the alternative and zero under the null. Using this idea, Fan and Li (1996) proposed a test
statistic based on E[ξf1(X1)E(ξf1(X1)|X)f(X)], a weighted version of E(ξE(ξ|X)|X), avoiding
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the randomness in the denominator (when estimating m(X) =
∫
yf(x, y)dy/fX(x)). Note

that E[ξf1(X1)E(ξf1(X1)|X)f(X)] = E[(m(X)−m1(X1))2f1(X)2f(X)] under the alternative
and zero under the null. They show that their test statistic is asymptotically normal underH0.
Lavergne and Vuong (2000) propose a test statistic based on a different estimator of the same
quantity as Fan and Li (1996), which is also proven to be asymptotically normal under H0. A
related class of procedures is based on the direct estimation of E[(m(X) −m1(X1))2W (X)],
for some weight function W ; see, for example, Ait-Sahalia, Bickel, and Stoker (2001). The
use of such test statistics is complicated by the need to correct for their bias. Other tests
are also available, such as the bootstrap-based procedure of Delgado and Manteiga (2001)
(which is computationally intensive) and the generalized likelihood ratio test of Fan, Zhang,
and Zhang (2001) and Fan and Jiang (2005).
The R package NonpModelCheck provides a function for hypothesis testing of covariate(s)
using the test statistic proposed by Zambom and Akritas (2014), which, in simulation, out-
performed the procedures described above. The key idea of the test statistic proposed by
Zambom and Akritas (2014) is to construct a high dimensional one-way ANOVA, with factor
levels being the values of the covariates Zi, i = 1, . . . , n, and ξ̂i = Yi − m̂1(xi) being the
observations from factor level Zi. With this setup, testing for no factor effects is an intuitive
test for H0. In order to estimate the residuals ξ̂i, one needs to estimate m1(x), which is done
by local polynomial regression for its smoothness and asymptotic properties.
Due to the fact that, in high dimensional ANOVA, theoretical assumptions require more than
one observation per cell, factor levels here are augmented by including residuals from nearby
covariate values. To be specific, consider the simple situation when s = 1, that is, when Z
is univariate. In this case, each cell is augmented by including additional (p − 1) ξ̂`’s which
correspond to the (p − 1)/2 Z` values that are nearest to Zi on either side. More precisely,
the (ξ̂i, Zi), i = 1, . . . , n, are considered to be arranged so that Zi1 < Zi2 whenever i1 < i2,
and for each Zi, (p− 1)/2 < i ≤ n− (p− 1)/2, define the nearest neighbor window Wi as

Wi =
{
j : |F̂Z(Zj)− F̂Z(Zi)| ≤

p− 1
2n

}
, (3)

where F̂Z is the empirical distribution function of Z. Hence, the augmented cell corresponding
to Zi is defined by the values of ξ̂ with indices in Wi. Hence, the vector of (n − p + 1)p
constructed “observations” in the augmented one-way ANOVA design is

ξ̂ = (ξ̂j , j ∈W(p−1)/2+1, . . . , ξ̂j , j ∈Wn−(p−1)/2)>. (4)

Let MST = MST(ξ̂) and MSE = MSE(ξ̂) denote the balanced one-way ANOVA mean squares
due to treatment and error, respectively, computed on the data ξ̂. The test statistic is

n1/2(MST−MSE), (5)

which has an asymptotic normal distribution with mean 0 and variance 2p(2p−1)
3(p−1) τ

2, where

τ =
∫ [∫

σ2(x, z)fX|Z=z(x)dx
]2
fZ(z)dz. Zambom and Akritas (2014) suggest the following

estimator of τ2

τ̂2 = 1
4(n− 3)

n−2∑
j=2

(ξ̂j − ξ̂j−1)2(ξ̂j+2 − ξ̂j+1)2. (6)
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For the case when Z is multidimensional, the task of ordering the factor levels according to Zi
becomes a challenge. This is overcome by replacing Zi by a nonlinear version of Bair, Hastie,
Paul, and Tibshirani (2006)’s first supervised principal component (SPC), P λi = Z>i Cλ,
defined in the following way. Consider the p values pj , obtained by applying the univariate
tests Hj

0 : m(X, Zj) = m(X), j = 1, . . . , s. Let Zλ have the same coordinates of Z except
those whose corresponding p values pj are smaller than a threshold parameter λ. Then, P λi
is defined to be the first principal component of Zλ. Therefore, when Z has dimension larger
than 1, the windows Wi are formed using P λi instead of Zi, and the computation of the test
statistic n1/2(MST−MSE) and τ̂ also depend on P λi .
It is important to note that, computationally the test is carried out by a one-sided test,
comparing

n1/2(MST−MSE)√
2p(2p−1)
3(p−1) τ̂

2

with the standard Normal distribution, since the test statistic tends to get larger as we depart
from the null hypothesis.

2.1. Hypothesis testing for a single covariate with NonpModelCheck

In this section we give specific examples on how to use the function npmodelcheck() for
testing hypotheses as in (2). To use this function, the user needs to provide a few parame-
ters/attributes which can basically be divided into 3 groups: 1. data and index of covariates
to be tested, 2. parameters for the local polynomial fit and 3. parameters for dimension re-
duction. The input data is basically a vector or matrix of observed covariates and a vector
of observed responses, and the user is also required to input the index of the covariate(s) to
be tested. For the parameters of the local polynomial fit, see Appendix A.
Note that, under the assumption of a sparse model, the estimation of m1 in a nonparametric
context will suffer from the curse of dimensionality. To moderate this issue, there are avail-
able, within the function, two techniques to reduce the dimension of X before applying the
local polynomial fit. The first technique is the nonlinear SPC, as described previously, with
fixed λ = 0.3. The second technique available for the user is the sliced inverse regression (SIR)
method proposed by Li (1991). In SIR, it is assumed that a small number of linear combina-
tions of the predictors contain all information about Y . More specifically, it is assumed that
y = m(x>β1, . . . ,x>βK , ε), where β’s are unknown row vectors and ε is independent of x.
This is an extension of the so called multiple index model. The estimation of these directions
are based on the inverse regression of x> on y coordinate-wise. A brief description of this
procedure is as follows: Let xi, i = 1, . . . , n, be the p-dimensional vector of the observation
i; standardize it to obtain x̃i = Σ̂−1/2(xi − x̄); divide the range of y in H slices and let
p̂h be the proportion of yi that falls in slice h ∈ H; calculate m̂h = 1

np̂h

∑
{yi in slice h} x̃i;

perform a weighted principal components analysis by getting the eigenvectors and eigenvalues
of V̂ =

∑H
h=1 p̂hm̂hm̂

>
h ; the result is β̂k = η̂kΣ̂−1/2(k = 1, . . . ,K), where η̂k are the K largest

eigenvectors of V̂ . The number of eigenvectors is chosen by a sequential test by testing if the
K first eigenvalues of V are significantly different from zero (see Li 1991 for details).
The call of the function, as described in the package manual, is:
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npmodelcheck(X, Y, ind_test, p = 7, degree.pol = 0,
kernel.type = "epanech", bandwidth = "CV", gridsize = 30,
dim.red = c(1, 10))

The function npmodelcheck() returns an object of the class ‘npmodelcheck’, containing a
list with 3 items: the bandwidth used for the local polynomial fit, the predicted/smoothed
values of the local polynomial fit and the p value of the hypothesis test. When simply called,
it will only print the p value of the test, but a summary function is available, so that when
the object of class ‘npmodelcheck’ is inputted, it will display all items.
To illustrate the function npmodelcheck(), we will consider the following situation. Suppose
we have 100 observations of a set U of 12 covariates and a response variable Y . Assume that
the true, but unknown regression function is

m(U) = m1(U2, U5)

= θ

4
(
sin(2U2) + 2 exp(−16U2

2 )
)

+
√
|U5(1− U5) sin(2π1.05/(U5 + .05))|+ ε,

where ε ∼ N(0, .52), and Ui
iid∼ N(0, 1), i = 1, . . . , 12, and θ a known constant. In this example,

we will explore the test implemented by this function when testing H0 : m(U) = m1(U−(2)),
where U−(2) represents all covariates except that of index 2. We will use θ = 0, 1 and 2,
for when θ = 0 we have the null hypothesis, and when θ > 0 we are under the alternative
and expect the p value to be smaller as θ increases. The following code will run the test on
simulated data.

R> set.seed(1)
R> runs <- 1000
R> p <- 9
R> n <- 100
R> d <- 12
R> result <- c(0, 0, 0)
R> for (index in 1:runs) {
+ for (theta in 0:2) {
+ U <- matrix(0, n, d)
+ for (i in 1:d) {
+ U[, i] <- rnorm(n)
+ }
+ Y <- theta/4 * (sin(2 * U[, 2]) + 2 * exp(- 16 * U[, 2]^2)) +
+ sqrt(abs(U[, 5] * (1 - U[, 5]))) *
+ sin(2 * pi * 1.05 / (U[, 5] + 0.05)) + rnorm(n, 0, 0.5)
+ if (npmodelcheck(U, Y, 2)$p_value < 0.05) {
+ result[theta + 1] <- result[theta + 1] + 1
+ }
+ }
+ }
R> result/runs

[1] 0.051 0.405 0.954
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The vector result contains the rejection rates, after 1000 simulation runs, of the test for
θ = 0, 1, 2 in its positions 1, 2 and 3 respectively. We see that the average rejection in the
first position of result, which corresponds to the type I error, is 0.051, suggesting that the
level of the test is very close to the nominal level 0.05. On the other hand, the rejections for
θ = 1 and 2 are higher, indicating an increase in power of the test under alternatives. For
comparison purposes, the generalized likelihood ratio test (GLRT) of Fan and Jiang (2005)
was also evaluated with the same settings, as it is one of the most recent tests that can deal
with nonparametric hypothesis testing. The rejection rates of their test are 0.052, 0.33 and
0.90 for θ = 0, 1 and 2 respectively. These results suggest that the test npmodelcheck() not
only provides good level of the test, but also higher power than its competitors.
To demonstrate the importance of the dimension reduction techniques, and the improvement
on the power of the test they can provide, we ran a similar simulation to the one above with
the option npmodelcheck(U, Y, 2, dim.red = 0). In this case, no dimension reduction is
performed and the algorithm computes a nonparametric estimate of m1(X−(2)), where X−(2)
represents all X covariates except that of index 2, with local polynomial regression, hence
suffering from the curse of dimensionality. The output of the vector result/runs is

[1] 0.079 0.192 0.490

It is clear that the rejection rates from the test in this situation are completely different
from those with dimension reduction, and the power for detecting departure from the null
hypothesis is far from optimal.
The function npmodelcheck() also allows the user to input the size p of the window Wi, as
defined in (3). This choice is crucial, as the larger p is the stronger the dependence between
neighboring cells in the one-way ANOVA, causing decrease in power. On the other hand, we
do not advise using p too small due to the instability of the test. For example, the code below
tests the significance of the third covariate in U using p = 3, 7 and 15. Note that for p = 15
the test fails to detect the significance of the third covariate.

R> set.seed(1)
R> n <- 50
R> d <- 4
R> U <- matrix(0, n, d)
R> for (i in 1:d) {
+ U[, i] <- rnorm(n)
+ }
R> Y <- abs(U[, 3])^2 / 3 + rnorm(n, 0, 0.5)
R> npmodelcheck(U, Y, 3, p = 3)

Call:
npmodelcheck.default(X = U, Y = Y, ind_test = 3, p = 3)

P-value of the test: 0.008420023409187571417078

R> npmodelcheck(U, Y, 3, p = 7)

Call:
npmodelcheck.default(X = U, Y = Y, ind_test = 3, p = 7)
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P-value of the test: 0.02166820662532253916055

R> npmodelcheck(U, Y, 3, p = 15)

Call:
npmodelcheck.default(X = U, Y = Y, ind_test = 3, p = 15)

P-value of the test: 0.3451234209169911082427

2.2. Hypothesis testing for multiple covariates with NonpModelCheck
It is not unusual to find applications where covariates act together as groups. Model checking
in this case can be seen as testing for the significance of all the covariates in a group at once,
i.e, testing if the group should be dropped from the model. An interesting example, which has
been explored in several papers recently, is DNA microarray data. Such data usually consists
of thousands of predictors (genes) but only a few hundred (or less) observations. Studies
show that genes can be clustered together in their association with the response, avoiding
collinearity among predictors and hence improving model adequacy.
The function npmodelcheck() allows the user to test a group of covariates in a single test, i.e.,
hypothesis tests as in (2). For that purpose, the user only needs to input a vector of indices
corresponding to the covariates to be tested for the ind_test parameter of npmodelcheck().
As an example, consider the situation where 6 covariates are observed but they are clustered
together in the following groups: group 1: (X2, X4, X5), group 2: (X1, X3) group 3: (X6).
Assume that the covariates X = (X1, . . . , X6) come from a normal distribution with mean
µ = (0, . . . , 0) and variance

Σ =



1 0 0.55 0 0 0
0 1 0 0.6 0.7 0

0.55 0 1 0 0 0
0 0.6 0 1 0.6 0
0 0.7 0 0.6 1 0
0 0 0 0 0 1


.

Suppose that the response variable Y is associated with X through the following equation

Y = X2 +X4 +X5
4 + ε,

where ε iid∼ N(0, 1). The code below tests the significance of group 1.

R> library("MASS")
R> set.seed(1)
R> runs <- 1000
R> n <- 100
R> d <- 6
R> result <- 0
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R> sigma <- matrix(c(1, 0, 0.55, 0, 0, 0, 0, 1, 0, 0.6, 0.7, 0, 0.55, 0, 1,
+ 0, 0, 0, 0, 0.6, 0, 1, 0.6, 0, 0, 0.7, 0, 0.6, 1, 0, 0, 0, 0, 0, 0, 1),
+ 6, 6)
R> for (index in 1:runs) {
+ X <- mvrnorm(n, rep(0, 6), sigma)
+ }
R> Y <- (X[, 2] + X[, 4] + X[, 5]) / 4 + rnorm(n)
R> if (npmodelcheck(X, Y, ind_test = c(2, 4, 5))$p_value < 0.05) {
+ result = result + 1
+ }
R> result/runs

[1] 0.978

For comparison purposes, we also evaluated the GLRT test for group 1. The rejection rate
obtained was 0.976, demonstrating that even for additive models such as the one simulated,
the hypothesis test npmodelcheck() achieves power as high as the GLRT.

3. Nonparametric variable/group selection
Variable selection has become an important topic in regression analysis. It uses the assump-
tion of sparseness to build parsimonious models. Generally, when the initial regression model
is introduced, we are presented with a large number of predictors. While using many predic-
tors decreases bias, prediction may be poor if the model is built with insignificant ones. In
order to have a more accurate model, with enhanced prediction power, procedures of vari-
able selection such as backward elimination or forward selection aim at selecting only those
predictors that contribute significantly to the regression model.
The function npvarselec() in package NonpModelCheck, uses either backward elimination
or forward selection to build a model, exploring the connection between model checking and
variable selection. Such a procedure was introduced by Zambom and Akritas (2014), where, in
backward elimination for example, the algorithm eliminates, at each step, the least significant
covariate, as long as its p value is larger than the cut off point in the false discovery rate
correction for dependent tests (Benjamini and Yekutieli 2001). Next we briefly describe the
algorithms for backward elimination or forward selection.
Assume that the model with d covariates is sparse, in the sense that there exits a subset of
indices I0 = {j1, . . . , jd0} ⊂ {1, . . . , d} such that only the covariates Xj with j ∈ I0 influence
the regression function. Moreover, assume the dimension reduction model of Li (1991), i.e.,
m(x) = g(Bx), for a K-dimensional function g, where B is a K × d matrix. The backward
elimination algorithm, based on the Benjamini and Yekutieli (2001) method for controlling
the false discovery rate, is as follows:

1. Obtain p values from testing each of the hypotheses

Hj
0 : m(x) = m1(x(−j)), j = 1, . . . , d, (7)

where x(−j) = (x1, ..., xj−1, xj+1, ..., xd) in the following way:
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(a) Compute the test statistic

zj =
√
n(MSTj −MSEj)/

√
2p(2p− 1)
3(p− 1) τ̂2

j

using residuals formed by a local polynomial regression on the variables B̂x(−j),
where B̂ is the K × (d− 1) estimated matrix obtained by applying SIR;

(b) Compute the p value for Hj
0 as πj = 1− Φ(zj).

2. Compute

k = max
{
j : π(j) ≤

j

d

α∑d
l=1 l

−1

}
(8)

for a choice of level α, where π(1), . . . , π(d) are the ordered p values. If k = d stop and
retain all variables. If k < d

(a) update x by eliminating the covariate corresponding to π(d);
(b) update d to d− 1;
(c) and proceed to the next step.

3. Repeat Steps 1 and 2, with the updated x and B̂.

Note that if the user is trying to run the backward elimination on a very large number of
covariates, computational cost may be high. Simulations show that a screening procedure
can be applied before running the algorithm, not affecting the power. That is, by eliminating
those covariates whose p values (obtained with univariate tests npmodelcheck()) are very
high, say greater than 0.7 or 0.8, the algorithm does not improve performance, but reduces
computational time.
With the same assumptions of sparseness and the dimension reduction model, a forward
algorithm for variable selection with FDR corrections can be described as:

1. Obtain p values from testing each of the hypotheses

Hj
0 : m(xj) = c, where c is a constant (w.l.o.g. c = Ȳ ) (9)

in the following way:

(a) Compute the test statistic

zj =
√
n(MSTj −MSEj)/

√
2p(2p− 1)
3(p− 1) τ̂2

j

using (Y− Ȳ ) instead of residuals in the high-dimensional one-way ANOVA.
(b) Compute the p value for Hj

0 as πj = 1− Φ(zj).

2. If π(1) > 0.05, where π(1), . . . , π(d) are the ordered p values, stop and retain no covariates.
If π(1) < 0.05, include in the model the covariate corresponding to π(1):
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(a) let x∗ = xj and q = 1;
(b) update x by eliminating the covariate corresponding to π(1);
(c) and update d to d− 1.

3. Find the smallest p value to include: obtain p values from testing each of the hypotheses

Hj
0 : m(x∗, xj) = m1(x∗), j = 1, . . . , d (10)

in the following way:

(a) Compute the test statistic

zj =
√
n(MSTj −MSEj)/

√
2p(2p− 1)
3(p− 1) τ̂2

j

using residuals formed by a local polynomial regression on the variables B̂x∗, where
B̂ is the K × q estimated matrix obtained by applying SIR.

(b) Compute the p value for Hj
0 as πj = 1− Φ(zj).

4. Temporarily include in the model the covariate with smallest p value:

(a) let x∗ = (x∗, x(1)), where x(1) is the covariate corresponding to π(1); and let q =
q + 1;

(b) update x by eliminating the covariate corresponding to π(1);
(c) update d to d− 1;
(d) and proceed to the next step.

5. Check if all the covariates in the present model are significant according to FDR:

(a) Obtain p values from testing each of the hypotheses

Hj
0 : m(x∗) = m1(x∗(−j)), j = 1, . . . , q, (11)

where x(−j) = (x1, ..., xj−1, xj+1, ..., xq), in the following way:
i. Compute the test statistic

zj =
√
n(MSTj −MSEj)/

√
2p(2p− 1)
3(p− 1) τ̂2

j

using residuals formed by a local polynomial regression on the variables B̂x∗(−j),
where B̂ is the K × (q − 1) estimated matrix obtained by applying SIR.

ii. Compute the p value for Hj
0 as πj = 1− Φ(zj).

(b) Compute

k = max
{
j : π(j) ≤

i

q

α∑q
l=1 l

−1

}
(12)

for a choice of level α, where π(1), . . . , π(q) are the ordered p values. If k = q = d
stop and retain all covariates. If k = q < d go to Step 3. If k < q
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i. remove from x∗ the covariate temporarily added in Step 4, and let q = q − 1;
ii. stop and retain x∗.

This forward procedure, at each step, first finds a candidate covariate to enter the model. The
candidate is the covariate that yields the smallest p value from test npmodelcheck(), taking
into consideration all covariates that are already in the model. Then, the candidate covariate
is only retained if the new model, with the candidate covariate included, is significant, i.e., if
the test of each covariate in the new model produces a significant p value according to FDR
corrections.
Note that there may be a covariate which, when added to the model, would result in a new
significant model. However, when tested as candidate, it is not the one that yields the smallest
p value. Hence, a different forward procedure can be defined, adding to the model only the
covariate that would result in the “most significant” new model.

1. Obtain p values from testing each of the hypotheses

Hj
0 : m(xj) = c, where c is a constant (w.l.o.g. c = Ȳ ) (13)

in the following way:

(a) Compute the test statistic

zj =
√
n(MSTj −MSEj)/

√
2p(2p− 1)
3(p− 1) τ̂2

j

using (Y− Ȳ ) instead of residuals in the high-dimensional one-way ANOVA.
(b) Compute the p value for Hj

0 as πj = 1− Φ(zj).

2. If π(1) > 0.05, where π(1), . . . , π(d) are the ordered p values, stop and retain no covariates.
If π(1) < 0.05, include in the model the covariate corresponding to π(1):

(a) let x∗ = xj and q = 1;
(b) update x by eliminating the covariate corresponding to π(1);
(c) and update d to d− 1.

3. Add the covariate that produces the “most significant” new model:

(a) For k in 1, . . . , d:
i. Let u∗ = (x∗, xj). Obtain p values from testing each of the hypotheses

Hj
0 : m(u∗) = m1(u∗(−j)), j = 1, . . . , q + 1 (14)

where u∗(−j) the vector u∗ without covariate u∗j , in the following way:
A. Compute the test statistic

zj =
√
n(MSTj −MSEj)/

√
2p(2p− 1)
3(p− 1) τ̂2

j

using residuals formed by a local polynomial regression on the variables
B̂u∗(−j), where B̂ is the K× q estimated matrix obtained by applying SIR.
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B. Compute the p value for Hj
0 as πj = 1− Φ(zj).

ii. Compute

` = max
{
j : π(j) ≤

i

q

α∑q
m=1m

−1

}
(15)

for a choice of level α, where π(1), . . . , π(q) are the ordered p values. If ` = q and
if π(q) is less than the π(q) produced by the other candidates, set the covariate
k as the new candidate.

(b) If no covariate was set as candidate, stop. Otherwise
i. include in x∗ the candidate covariate and set q = q + 1;
ii. update x by eliminating the candidate covariate and set d = d− 1;
iii. return to Step 3a.

When it is believed that covariates come in groups, as for example clusters of genes in mi-
croarrays, one fundamental goal is to select those groups (clusters) that have a significant
effect on the response variable Y . It is possible to use algorithms similar to those described
above in order to run group selection, the only difference would be to use the test of the whole
group in each step (see Zambom and Akritas 2015 for details).

3.1. Nonparametric variable selection with NonpModelCheck
The procedures for variable selection described in the previous section are implemented in
function npvarselec() in package NonpModelCheck. The arguments for this function are
basically the same as the ones needed for npmodelcheck(), except that the user is required to
specify the type of the selection. The options are "backward", "forward" and "forward2",
corresponding to the 3 algorithms described in Section 3, in the order they appear.
To demonstrate the use of this function, a study was performed in the following way. A data
set with sample size n = 110 was generated from the model Y = Xβ + ε, where ε iid∼ N(0, 32)
and X = (X1, . . . , X25) ∼ N(0,Σ), with Σi,j = I a diagonal matrix.

R> library("mnormt")
R> set.seed(1)
R> n <- 110
R> p <- 9
R> d <- 25
R> Cov_Matrix <- diag(d)
R> X <- rmnorm(n, rep(0, d), Cov_Matrix)
R> beta <- c(3, 1.5, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0,
+ 0, 0, 0, 0, 0)
R> Y <- as.numeric(X % * % beta + rnorm(n, 0, 3))
R> npvarselec(X, Y, method = "backward", p = 9, degree.pol = 1,
+ kernel.type = "epanech", bandwidth = "CV")

-------------------------------------------------------------
Iter. | Variables in the model
1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
3 | 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
4 | 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23
5 | 1 2 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23
6 | 1 2 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23
7 | 1 2 5 6 7 8 10 11 12 13 15 16 17 18 19 20 21 22 23
8 | 1 2 5 6 7 8 10 11 12 13 15 16 17 18 19 20 21 22
9 | 1 2 5 6 7 10 11 12 13 15 16 17 18 19 20 21 22
10 | 1 2 5 6 7 10 11 12 13 15 16 17 18 19 20 21
11 | 1 2 5 6 7 10 11 12 13 15 17 18 19 20 21
12 | 1 2 5 6 7 10 11 12 13 15 17 19 20 21
13 | 1 2 5 7 10 11 12 13 15 17 19 20 21
14 | 1 2 5 7 10 12 13 15 17 19 20 21
15 | 1 2 5 7 12 13 15 17 19 20 21
16 | 1 2 5 7 12 13 15 17 19 20
17 | 1 2 5 7 13 15 17 19 20
18 | 1 2 5 7 13 15 17 19
19 | 1 2 5 7 13 15 17
20 | 1 2 5 7 15 17
21 | 1 2 5 7 17
-------------------------------------------------------------

Number of Covariates Selected: 5

Covariate(s) Selected:
---------------------------
Covariate Index | p-value

1 | 0
2 | 0.00082
5 | 6.4e-11
7 | 6e-11

17 | 0
---------------------------

The output of npvarselec() is the step by step result at each iteration of the algorithm. We
see that in this case, the selected predictors were exactly the ones that really have an effect
on the response variable.
In order to assess the performance of the variable selection procedure using the three different
algorithms, we simulated the above linear model 100 times and computed the average num-
ber of correctly selected predictors and the average number of incorrectly selected predictors.
We also simulated this linear model when there is dependence between the covariates, that
is when Σi,j = 0.5|i−j|. The performance of these algorithms was compared to recent non-
linear variable selection methods COSSO (R package cosso; Zhang and Lin 2013) and CISE
(MATLAB package cise; accompanying material for Chen, Zou, and Cook 2010 available at
http://www.stat.nus.edu.sg/~stacx/cise.zip). The results are shown in Table 1. Those
for CISE were obtained using Octave (Eaton, Bateman, Hauberg, and Wehbring 2015). In

http://www.stat.nus.edu.sg/~stacx/cise.zip
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Σ = I Σ = (0.5|i−j|)
Method Correct Incorrect Correct Incorrect
ANOVA backward 4.70 0.58 4.10 0.58
ANOVA forward 4.50 0.68 4.00 0.65
ANOVA forward2 4.50 0.75 4.10 0.74
COSSO 4.10 0.99 3.90 1.00
CISE 3.15 0.40 3.28 0.74

Table 1: Comparisons for a linear model with d = 25 and n = 110.

g1 g2
Method Correct Incorrect Correct Incorrect
ANOVA backward 1.00 0.13 1.90 0.09
ANOVA forward 1.00 0.19 2.00 0.10
ANOVA forward2 1.00 0.18 2.00 0.11
COSSO 0.55 1.60 0.91 1.10
CISE 0.27 1.76 0.37 1.65

Table 2: Comparisons using nonlinear models with d = 8 and n = 40.

Table 2, 100 data sets of size n = 40 were generated from the models Y = g`(X) + ε, ` = 1, 2,
where ε ∼ N(0, 0.32), the dimension of X is d = 8, and

g1(x) = sin(πx1), g2(x) = sin(3/4πx1)− 3Φ(−|x5|3).

In both linear and nonlinear models, the three proposed algorithms from npvarselec()
had similar results. For the linear models, although CISE selected, in average, less incorrect
predictors, it missed, on average, one more than the proposed algorithms. On the other hand,
all three algorithms substantially outperformed CISE and COSSO in the case of nonlinear
models. COSSO results were inferior in the simulated linear and nonlinear models compared
to CISE and the proposed algorithms.
A demonstration of the nonparametric group selection algorithms using npvarselec() can
be found in Section 4.

4. Group selection applied to a real data set
Microarray experiments generate large datasets which generally contain just a few samples
but expression values for thousands of genes. In such studies, data analysts often consider
studying clusters (or groups) of genes that act together, since their collective expression may
have a stronger association with the response. Thus, it is crucial not only to find these
clusters, but also to select those which significantly influence the outcome variable. Function
group.npvarselec() in package NonpModelCheck performs group selection with algorithms
similar to those in Section 3. All three types of algorithm are available: backward, forward
and forward2. The difference is that at each step, all the covariates of a group are tested at the
same time. Basically, the arguments of the function are the same as those for npvarselec(),
except for two extra ones. First, the user needs to specify the indices of the variables in each
group in an argument of the type ‘list’. Second, when testing group i, instead of computing
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the residuals based on m̂1(X(−Ii)), where Ij is the set of the indices of covariates in group
i, the user may prefer to fit m̂1(S1, . . . , Si−1, Si+1, . . . , Sd), where Sj , j = 1, . . . , d is the first
supervised principal component of group j, with d being the total number of groups. If the
argument fitSPC is set to true, the latter is fit, otherwise the former computation is done.
A demonstration of the use of this function will be done using the prostate cancer dataset of
Singh et al. (2002), available at http://icos.cs.nott.ac.uk/datasets/microarray.html.
The data set is composed of gene expressions of 52 prostate tumor and 50 non-tumor prostate
samples, obtained from the Affymetrix technology. Before applying the group selection algo-
rithm, the clusters need to be formed. To do so, the procedure wilma() from package supclust
was used. The following code performs a forward algorithm for group variable selection on
the 60 clusters formed by wilma() (note that applying wilma() to a fixed dataset twice may
result in different output clusters due to the randomness built in its algorithm).
R> library("supclust")
R> data <- read.table("prostate.txt")
R> Y <- as.numeric(data[, 1] == "normal")
R> X <- matrix(as.matrix(data[, (2:dim(data)[2])]),
+ ncol = ncol(data[, (2:dim(data)[2])]), dimnames = NULL)
R> n <- dim(X)[1]
R> d <- 60
R> set.seed(1)
R> fit <- wilma(X, Y, d, once.per.clust = TRUE)
R> groups <- vector("list", d)
R> for (i in 1:d) {
+ groups[[i]] <- fit$clist[[i]]
+ }
R> group.npvarselec(X, Y, groups, method = "forward2", fitSPC = TRUE)

-------------------------------------------------------------
Iter. | Variables in the model
1 | 1
2 | 1 14
3 | 1 14 22
4 | 1 14 22 25
5 | 1 14 22 25 26
6 | 1 14 22 25 26 31
7 | 1 14 22 25 26 31 41
8 | 1 14 22 25 26 31 41 54
9 | 1 14 22 25 26 31 41 54 58
10 | 1 14 22 25 26 31 41 54 58 15
11 | 1 14 22 25 26 31 41 54 58 15 52
12 | 1 14 22 25 26 31 41 54 58 15 52 59
13 | 1 14 22 25 26 31 41 54 58 15 52 59 56
14 | 1 14 22 25 26 31 41 54 58 15 52 59 56 57
15 | 1 14 22 25 26 31 41 54 58 15 52 59 56 57 8
16 | 1 14 22 25 26 31 41 54 58 15 52 59 56 57 8 29
17 | 1 14 22 25 26 31 41 54 58 15 52 59 56 57 8 29 5
-------------------------------------------------------------

http://icos.cs.nott.ac.uk/datasets/microarray.html
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Number of Groups Selected: 17

Groups Selected:
---------------------------
Group Index | p-value

1 | 0.0032
14 | 6.7e-09
22 | 3.5e-07
25 | 4.2e-07
26 | 2.2e-07
31 | 2.9e-07
41 | 5.2e-07
54 | 2.5e-09
58 | 4.2e-11
15 | 0
52 | 4.3e-10
59 | 2.4e-09
56 | 4.3e-07
57 | 1.9e-07
8 | 0.0031

29 | 9.3e-07
5 | 3.7e-11

---------------------------

Function group.npvarselec() returns the indices of the selected groups and the correspond-
ing p values. Note that all the groups in the final model have p values that are significant
according to the false discovery rate corrections.
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A. A new function for local polynomial fitting in R
Local polynomial regression is one of the most powerful nonparametric curve fitting ap-
proaches. It was introduced by Stone (1977) and has since been used in several applications.
Its advantages over the simple Nadaraya-Watson estimator made it prominent in modern
research when estimating surfaces without parametric assumptions. For example, it does
not suffer from boundary effects, reduces bias, has the ability of design adaptation and is
uniformly consistent over compact subsets (see Fan 1992, Fan 1993, Fan and Gijbels 1992,
Ruppert and Wand 1994, Masry 1996, among others).
Due to its fundamental role in nonparametric estimation of regression curves, it is generally
found in most mathematical/statistical software. Specifically in R, local polynomial estima-
tion is implemented in functions loess (stats), locpoly (KernSmooth; Wand 2015), locfit
(locfit; Loader 2013), locpol (locpol; Ojeda Cabrera 2012) and sm.regression (sm; Bowman
and Azzalini 2014). However, not all the advantages of this procedure are explored in these
functions: locpoly() and locpol() only admit the univariate case, sm.regression() works
with 1 or 2 covariates, loess() fits up to 4 predictors and up to degree 2, and locfit() is
complicated to use: It requires the user to input the predictors one by one and does not have
a built-in procedure for automatically selecting the smoothing parameter.
Package NonpModelCheck provides a new function for local polynomial regression fitting,
namely localpoly.reg(), which is extremely easy to use and implements clearly the classical
approach. Moreover, it automatically identifies the number of predictors in the input matrix,
provides several kernel type options for weights and different built-in procedures for bandwidth
selection. Besides, it does not only estimate the regression function, but also its derivatives.
The call of the function is

localpoly.reg(X, Y, points = NULL, bandwidth = "CV", gridsize = 30,
degree.pol = 0, kernel.type = "epanech", deriv = 0).

It is well known that the goodness of the fit highly depends on the type of kernel weight
and degree of polynomial used. localpoly.reg() offers a variety of kernel options to the
user, including "box", "trun.normal", "gaussian", "epanech", "biweight", "triweight"
and "triangular". For the univariate case (when there is only one predictor), the choice of
degree of the polynomial is unlimited, providing further bias reduction when desired. For the
multivariate case where several predictors are available, the polynomial can be chosen up to
the second degree. In a simulated example, we generated a uniform predictor X iid∼ U(−4, 4)
and set the response Y = sin(πX)X2 + ε, where ε iid∼ N(0, 1) and fitted a nonparamet-
ric regression using localpoly.reg() and loess() with degree 2 polynomial. In another
example, we generated X

iid∼ U(−3, 10) and set Y =
√
|X(7−X)| cos(1/6πX) + ε, where

ε
iid∼ N(0, .2), and fitted 2 different types of kernel in another simulation, comparing it to the

fit of sm.regression(). The code is given below and the comparative plots in Figure 1.

R> set.seed(1)
R> X <- runif(180, - 4, 4)
R> Y <- sin(pi * X) * X^2 + rnorm(180, 0, 1)
R> fit <- localpoly.reg(X, Y, degree.pol = 2)
R> fit2 <- loess(Y ~ X)
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Figure 1: Left: Estimated curves using localpoly.reg() with degree = 2 and cross vali-
dation to select the bandwidth (red), loess() by default (black) and loess() with span 0.2
(blue). Right: Estimated curves using localpoly.reg() with kernel = "box" (black) and
kernel = "epanech" (red), and sm.regression() using bandwidth selection method "df"
(blue).

R> fit3 <- loess(Y ~ X, span = 0.2)
R> plot(X, Y)
R> lines(X[order(X)], fit$predicted[order(X)], col = 2)
R> lines(X[order(X)], fit2$fitted[order(X)], col = 1)
R> lines(X[order(X)], fit3$fitted[order(X)], col = 4)
R> library("sm")
R> set.seed(11)
R> X <- runif(150, - 3, 10)
R> Y <- sqrt(abs(X * (7 - X))) * (cos(1/6 * pi * X)) + rnorm(150, 0, 0.2)
R> h <- h.select(X, Y)
R> sm.regression(X, Y, h = h, col = 4)
R> fit <- localpoly.reg(X, Y, kernel.type = "box")
R> lines(X[order(X)], fit$predicted[order(X)])
R> fit2 <- localpoly.reg(X, Y, kernel.type = "epanech")
R> lines(X[order(X)], fit2$predicted[order(X)], col = 2)

Note from Figure 1 on the left that when the default is used, loess() does not capture
all features of the regression, so the argument span has to be input manually or chosen
adequately, visually or by another procedure, in order to produce a better fit. It can be seen
from Figure 1 on the right that using different kernel types as weights yields different fits,
specifically in this case, the epanech kernel produces a smoother curve compared to the box
kernel.
A fundamental advantage of localpoly.reg() over the other functions is that it provides
bandwidth selection procedures built-in, allowing the user to choose according to the situation,
or even compare different methods if needed. In the univariate case, the available methods
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for bandwidth selection are leave-one-out cross validation, generalized cross validation and
adaptive/variable bandwidth (binned) selection. The adaptive/variable bandwidth selection
is a modified version of the one proposed by Fan and Gijbels (1995): first the interval of
estimation (range of X) is divided into [1.5n/(10 log(n))] subintervals; then, a leave-one-out
cross validation is performed using only the observations in each subinterval, selecting its
corresponding bandwidth; finally the resulting bandwidth step function is smoothed using a
local polynomial fit with leave-one-out cross validation to select the pilot bandwidth.
The options for bandwidth selection are all condensed in the bandwidth argument of func-
tion localpoly.reg(). To request leave-one-out cross validation, just set the bandwidth
argument to "CV", while for generalized cross validation, set it to "GCV" and for adaptive
bandwidth selection set it to "Adp". The following code generates 3 random simulations,
demonstrating the use of the different bandwidth selection methods in localpoly.reg().
Figures 2 and 3 are the output of the following code, where localpoly.reg() fits can be
compared to the ones of locpoly(), locfit(), locpol() and sm.regression().

R> library("KernSmooth")
R> library("locfit")
R> set.seed(123456789)
R> X <- runif(150, 2, 12)
R> Y <- exp(1/X) * (1 - 1/X) / sqrt(1 + abs(8 - X)) / 4.5 +
+ rnorm(150, 0, .01)
R> fit <- localpoly.reg(X, Y, bandwidth = "CV", degree.pol = 2,
+ kernel.type = "triweight")
R> fit2 <- locpoly(X, Y, bandwidth = fit$bandwidth, degree = 2)
R> fit3 <- locfit(Y ~ lp(X, deg = 2))
R> plot(fit3, get.data = TRUE)
R> lines(fit2$x, fit2$y, col = 4)
R> lines(X[order(X)], fit$predicted[order(X)], col = 2)
R> library("locpol")
R> set.seed(123)
R> X <- c(runif(150, 2, 12))
R> Y <- exp(1/X) / sqrt(2 + sqrt(abs(pi * (6 - X)))) + rnorm(150, 0, .01)
R> d <- data.frame(X)
R> d$Y <- Y
R> fit <- locpol(Y ~ X, d)
R> plot(X, Y)
R> lines(fit$xeval, fit$lpFit[, 2])
R> fit2 <- localpoly.reg(X, Y, bandwidth = "GCV", degree.pol = 1)
R> lines(X[order(X)], fit2$predicted[order(X)], col = 2)
R> set.seed(123)
R> X <- c(runif(30, 0, 15), runif(100, 15, 25), runif(50, 25, 55),
+ runif(300, 55, 230))
R> Y <- c(rnorm(30, 0, 0.1), sin(1/2 * pi * X[31:130]) + rnorm(100, 0, 0.3),
+ rnorm(50, 0, 0.15), cos(1/25 * pi * X[181:480]) + rnorm(300, 0, 0.2))
R> fit <- localpoly.reg(X, Y, bandwidth = "Adp", degree.pol = 1)
R> h <- h.select(X, Y, method = "cv")
R> fit2 <- sm.regression(X, Y, h = h)
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Figure 2: Left: Estimated curves using localpoly.reg() with leave-one-out cross validation
to select the bandwidth (red), locfit() (black) and locpoly() (blue). Right: Estimated
curves using localpoly.reg() with generalized cross validation (red) and locpol() (black),
both with degree of polynomial equal to 1.
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Figure 3: Estimated curves using localpoly.reg() with adaptive bandwidth selection (red),
locfit() using 0.05 for nearest neighbor argument (black) and sm.regression() using cross
validation to select bandwidth (blue).

R> fit3 <- locfit(Y ~ lp(X, deg = 1, nn = .05))
R> plot(fit3, get.data = TRUE)
R> lines(fit2$eval.points, fit2$estimate, col = 4)
R> lines(fit$points, fit$predicted, col = 2)

In Figure 2 on the left, the default settings of function locfit() were used, and in that case
the fit produced was clearly oversmoothed. locpoly() may have the same characteristics as
localpoly.reg(), as long as the user finds another code for selecting a useful bandwidth,
for the user is required to input the bandwidth manually. Figure 2 on the right presents
the curve estimated by locpol() and localpoly.reg(), where we can see that the latter
has a slightly smoother estimate. In Figure 3, the simulated data has different patterns
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of relationship according to the predictor x, hence requiring a variable bandwidth. Clearly
sm.regression() does not capture the first sine trend, and locfit() only does so when
its nearest neighbor argument is manually set to be very small (0.05), while the adaptive
algorithm built into localpoly.reg() captures all trends in the data.
An important feature that may be useful for the smoothing choice, is that a fixed bandwidth
for each observed data point can be inputted to the function directly. When the observed data
X is univariate, a vector of bandwidths of the same length as X may be used, corresponding
to a bandwidth for each data point. For the case of multivariate X, a vector or a matrix
of bandwidths can be used: If a vector, it must be of the same dimension of the columns of
X, so that each entry of the bandwidth vector will be used for each covariate; if a matrix, it
must be of the same dimensions of X, where each entry of the matrix corresponds to each
data point.
Modern research deals with an increasing amount of data, and often scientists face situations
where linear models are not adequate. With the large number of observations available, it
is possible to fit nonparametric models for multivariate predictors. Several models can be
used in this case such as additive models, varying coefficient models, single index models,
etc., with packages in R such as gam (Hastie 2016), mgcv (Wood 2017, 2006), etc. However,
for a completely nonparametric model, the options for such analysis in R are restricted to a
few functions, namely loess(), locfit() and sm.regression(). While sm.regression()
can only deal with up to 2 predictors, loess() and locfit() work with a set of up to 4
covariates. For function localpoly.reg() in package NonpModelCheck, the user can input
a matrix X with no limit on the number of predictors (columns) or on observations (rows).
Obviously, caution must be taken with the curse of dimensionality, for an estimation in several
dimensions for small sample size may be very poor. The call of the function is the same as
described previously, so that if the argument X is a matrix, the function will identify it and
run a multivariate local polynomial regression.
In the case of a bivariate situation, the function plot3d.localpoly.reg() available in pack-
age NonpModelCheck, creates a 3-dimensional plot of the surface estimated by function
localpol.reg() using function persp() from the base package graphics. The call for this
function is

R> plot3d.localpoly.reg(X, Y, bandwidth = "CV", gridsize = 30,
+ degree.pol = 0, kernel.type = "epanech", gridsurface = 30,
+ xlab = expression(X_1), ylab = expression(X_2), zlab = expression(Y),
+ theta = 30, phi = 30, expand = 0.5, col = "lightblue", ltheta = 120,
+ shade = 0.75, ticktype = "detailed", pch = 16, ...)

The user can input the parameters for function localpoly.reg() and also for persp(). The
only extra parameter is gridsurface, which corresponds to the number of points on each axis
at which to estimate the local polynomial surface. Figure 4 shows an example of an estimated
bivariate curve plot from plot3d.localpoly.reg(). The code for such a plot is as follows.

R> set.seed(1111)
R> X <- matrix(0, 200, 2)
R> X[, 1] <- runif(200, - 3, 3)
R> X[, 2] <- runif(200, - 3, 3)
R> Y <- 4 * sin(pi * X[, 1]) + 4 * sin(pi * X[, 2]) + rnorm(200, 0, 0.3)
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Figure 4: Estimated curve from a bivariate local polynomial regression with localpoly.reg()
(left) and the original surface (right).

R> par(mfrow = c(1, 2))
R> plot3d.localpoly.reg(X, Y, bandwidth = "CV2", degree.pol = 0,
+ gridsurface = 30, main = "Estimated function")
R> f <- function(x1, x2) { 4 * sin(pi * x1) + 4 * sin(pi * x2) }
R> persp(seq(min(X[, 1]), max(X[, 1]), length = 30), seq(min(X[, 2]),
+ max(X[, 2]), length = 30), outer(seq(min(X[, 1]), max(X[, 1]),
+ length = 30), seq(min(X[, 2]), max(X[, 2]), length = 30), f),
+ theta = 30, phi = 30, expand = 0.5, col = "lightblue", ltheta = 120,
+ shade = 0.75, ticktype = "detailed", xlab = "X_1", ylab = "X_2",
+ zlab = "Y", main = "Original function")

Note that the choice of bandwidth was "CV2". This indicates a request for leave-one-out cross
validation for each dimension, as a search in a tensor product. If bandwidth is set to "GCV2",
the algorithm runs the tensor product search for generalized cross validation. The values
"CV" and "GCV" used in the univariate case can also be used for multivariate predictors: The
bandwidth for each dimension is chosen in an individual search, within the regression of each
predictor on the response.

In conclusion, R package NonpModelCheck is user friendly and provides a very useful combi-
nation of tools for local polynomial estimation, which is not yet found in any other existing
package in R. It performs the classical method, with unrestricted degree of polynomial for
the univariate case, and up to second degree for the multivariate case. Moreover, three differ-
ent bandwidth selection methods are available: cross-validation, generalized cross validation
and adaptive (binned) bandwidth. Hence, NonpModelCheck provides resources, not found
in other packages, that combined are useful for the user seeking to do nonparametric local
polynomial estimation.
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