
JSS Journal of Statistical Software
June 2017, Volume 78, Issue 1. doi: 10.18637/jss.v078.i01

libstable: Fast, Parallel, and High-Precision
Computation of α-Stable Distributions in R,

C/C++, and MATLAB

Javier Royuela-del-Val
University of Valladolid

Federico Simmross-Wattenberg
Universidad de Valladolid

Carlos Alberola-López
Universidad de Valladolid

Abstract

α-stable distributions are a family of well-known probability distributions. However,
the lack of closed analytical expressions hinders their application. Currently, several tools
have been developed to numerically evaluate their density and distribution functions or to
estimate their parameters, but available solutions either do not reach sufficient precision on
their evaluations or are excessively slow for practical purposes. Moreover, they do not take
full advantage of the parallel processing capabilities of current multi-core machines. Other
solutions work only on a subset of the α-stable parameter space. In this paper we present
an R package and a C/C++ library with a MATLAB front-end that permit parallelized,
fast and high precision evaluation of density, distribution and quantile functions, as well
as random variable generation and parameter estimation of α-stable distributions in their
whole parameter space. The described library can be easily integrated into third party
developments.

Keywords: α-stable distributions, numerical calculation, parallel processing.

1. Introduction

α-stable distributions are a family of probability distributions that permit adjustable levels
of heavy tails and skewness and include distributions such as Gaussian, Cauchy and Lévy
as particular cases. They were first introduced by Lévy (1925) and have since been ap-
plied in many research fields. The increasing interest in α-stable distributions is due, on the

http://dx.doi.org/10.18637/jss.v078.i01

2 libstable: α-Stable Distributions in R, C/C++, MATLAB

one hand, to the empirical evidence that they properly describe the behavior of real data
exhibiting impulsiveness or strong asymmetries; on the other hand, the generalized central
limit theorem (Samorodnitsky and Taqqu 1994) states that the normalized sum of indepen-
dent and identically distributed random variables with finite or infinite variance converges,
if so, to an α-stable distribution. This result provides theoretical support when the data
under study can be interpreted as the superposition of many independent sources. This way,
Mandelbrot and Wallis (1968) model precipitation data as α-stable measurements, Fama
(1965) and Borak, Misiorek, and Weron (2011) use them to predict stock prices and asset re-
turns, Simmross-Wattenberg, Asensio-Pérez, de-la Higuera, Martín-Fernández, Dimitriadis,
and Alberola-López (2011) and Willinger, Taqqu, Sherman, and Wilson (1997) show that
the marginal distribution of aggregated network traffic may be accurately modeled by stable
laws; in addition, Vegas-Sánchez-Ferrero, Simmross-Wattenberg, Martín-Fernández, Palen-
cia, and Alberola-López (2012) use them to characterize speckle noise in medical ultrasonic
data, Salas-Gonzalez, Górriz, Ramírez, Schloegl, Lang, and Ortiz (2013) model white and
gray matter of the brain in magnetic resonance imaging as α-stable random variables and
Gonchar, Chechkin, Sorokovŏı, Chechkin, Grigor’eva, and Volkov (2003) characterize ion cur-
rent fluctuations in plasma physics as being α-stable. All these phenomena share the common
property of being markedly impulsive in nature and, in many cases, strongly asymmetrical,
so α-stable distributions emerge as natural candidates to work with. However, α-stable dis-
tributions are not limited to modeling natural phenomena. Li, Samorodnitsk, and Hopcroft
(2013) describe how to use them to compute distance (or similarity) in high-dimensional data
and Li, Zhang, and Zhang (2014) use them to recover sparse signals under compressed sensing
theory. Both of these proposals, in turn, have many applications on their own and the list is
far from complete.

The major drawback for the application of α-stable models is the lack of closed analytical
expressions for their probability density function (PDF) or cumulative distribution function
(CDF) except in particular cases, which makes the application of numerical methods a must.
Besides, the non-existence of moments of order two or higher (except in the Gaussian case)
increases the difficulty in estimating their parameters to fit real data. Several authors have
addressed both the numerical evaluation of the PDF or CDF of α-stable distributions (Nolan
1997; Mittnik, Doganoglu, and Chenyao 1999a; Belov 2005; Menn and Rachev 2006; Górska
and Penson 2011) and the estimation of their parameters (Fama and Roll 1971; Koutrouvelis
1981; McCulloch 1986; Mittnik, Rachev, Doganoglu, and Chenyao 1999b; Nolan 2001; Fan
2006; Salas-Gonzalez, Kuruoglu, and Ruiz 2009) and have proposed different methods and
algorithms for these purposes (details are discussed in Section 2). Some authors also provide
implementations of their own or relying on others’ methods, offering software solutions or
packages in various common computer languages. However, some of these solutions are not
fully operational in their public domain versions and do not take advantage of multi-core
processors (Nolan 2006), have limited accuracy (Belov 2005; Menn and Rachev 2006) or take
a computation time that makes results unaffordable for several practical applications (Veillete
2010; Liang and Chen 2013).

In this paper we present an R (R Core Team 2017) package and a C/C++ library with a MAT-
LAB front-end (The MathWorks Inc. 2013) that permit parallelized, fast and high precision
evaluation of density and distribution functions, random variable generation and parameter
estimation in α-stable distributions. The library can be easily integrated in third party de-
velopments to be used by practitioners. Its utilization in MATLAB and R is straightforward

Journal of Statistical Software 3

and takes advantage of both the high efficiency of the compiled C/C++ code and the familiar
interface and statistical tools of MATLAB and R environments.
The rest of the paper is organized as follows. In Section 2, currently proposed algorithms and
methods to numerically evaluate the density and distribution functions of α-stable distribu-
tions are described, as well as reported methods to estimate their parameters. In Section 3,
the developed library and its functionality are presented. The results obtained with the li-
brary are discussed in Section 4. In Section 5, the usage of the proposed library is described.
Finally, Section 6 describes main conclusions and further work possibilities derived from this
work.

2. Numerical methods in α-stable distributions
α-stable distributions are typically described by their characteristic function (CF) due to the
fact that no closed expressions exist for the general case. Let Φ(t) = exp[Ψ(t)] denote this
function with (Samorodnitsky and Taqqu 1994):

Ψ(t)=
{
−|σt|α

[
1− iβ tan

(
πα
2
)

sign(t)
]

+ iµt, α 6=1,
−|σt|

[
1 + iβ 2

π sign(t) ln (|t|)
]

+ iµt, α=1,
(1)

where

sign(t) =

 1, t > 0,
0, t = 0,
−1, t < 0.

The four parameters above are (1) the stability index α ∈ (0, 2], (2) the skewness parameter
β ∈ [−1, 1], (3) the scale parameter σ > 0 and (4) the location parameter µ ∈ R. An α-stable
distribution is referred to as standard if σ = 1 and µ = 0. When α = 2 the distribution
becomes normal with standard deviation σ/

√
2 and mean µ (β becomes irrelevant). The

Cauchy distribution results from setting α = 1 and β = 0 with scale parameter σ and
location parameter µ, and the Lévy distribution when α = 0.5 and β = 1. These are the
only cases for which the PDF can be expressed analytically. Otherwise, the PDF has to be
calculated numerically.
The next subsections discuss different methods proposed in the literature to obtain the PDF
and CDF, to estimate the parameters of α-stable distributions and to generate samples of an
α-stable random variable.

2.1. Numerical computation of α-stable distributions

The PDF and CF of any probability function are related via the Fourier inversion formula
given by

f(x) = 1
2π

∫ +∞

−∞
φ(t)e−itx dt = 1

2π

∫ +∞

−∞
eψ(t)−itx dt. (2)

When substituting Equation 1 in Equation 2 the resulting integral cannot be, as a rule, solved
analytically; therefore it must be evaluated by numerical methods. To this end, the well-
known fast Fourier transform (FFT) provides an algorithm to efficiently evaluate the previous
integral. Mittnik et al. (1999a) apply the FFT directly to calculate the PDF. However, this
approach suffers from several important drawbacks. First, the algorithm provides the value

4 libstable: α-Stable Distributions in R, C/C++, MATLAB

of the integral on a set of evenly spaced points of evaluation. This is not valid for some
applications, where the PDF or CDF must be evaluated at some specific set of points. A
posterior step of interpolation is then required, which introduces additional computational
costs and reduces precision. Second, the method is only suitable for α close to 2, for which
the tails of the distribution decay more quickly. When α is small, the tails decay very
slowly and the aliasing effect becomes more noticeable, thus reducing the achievable precision.
Experimentally, the committed absolute error is in the order of 10−5, but relative error goes
as high as 10−2. Menn and Rachev (2006) propose a method based on a refinement of the
FFT to increase precision in the central part of the PDF. The tails of the distribution are
calculated via the Bergström asymptotic series expansion (Zolotarev 1986), which provides
an alternative expression as an infinite sum of decaying terms. This way they achieve relative
precision of about 10−4, but this precision heavily depends on the values of α and β and the
method is only applicable when α > 1.
Górska and Penson (2011) follow a different approach and obtain explicit expressions for the
PDF and CDF as series of generalized hypergeometric functions. However, the expressions
involved in the calculation are expensive to evaluate and the results are only valid for some
rational values of the parameters α and β, so they are not valid for the whole parameters
space.
When compared with the FFT, direct integration of the expression in Equation 2 by numerical
quadrature initially implies a higher computational cost, but evaluation can be performed at
any desired set of points without the need of additional interpolation steps and there is no
restriction on the values of the distribution parameters. This method has been implemented
by Nolan (1999)1. However when α is small the integrand oscillates very quickly and its
amplitude decays slowly along the infinite integration interval, which limits the achievable
precision even when many evaluations of the integrand are used. According to the author,
the method results are valid only for α > 0.75 and it achieves a precision in the order of
10−6. Similar results have been obtained later by Belov (2005), where the infinite integrand
interval is divided in two (one bounded and the other infinite) and two quadrature formulae
are applied.
In order to overcome the previous difficulties, Nolan (1997) obtains a new set of equations
from the original ones by means of an analytic extension of the integrand to the complex
plane. This way, a continuous, bounded, non-oscillating integrand is obtained. Moreover,
the integration interval becomes finite. The expressions obtained allow the author to achieve,
by numerical quadrature, a relative accuracy in the order of 10−14 in most of the parameter
space. For numerical convenience, a slightly different parameterization of the distribution
is employed, based on Zolotarev (1986) M parameterization. The modification introduced
consists in a shift of the distribution along the abscissae axis in order to avoid the discontinuity
of the distribution at α = 1. In this paper, we denote the change in parameterization by the
subindex 0 and the resulting CF is given by Φ0(t) = exp[Ψ0(t)], where

Ψ0 =
{
−|σt|α

[
1+iβtan

(
πα
2
)
sign(t)

(
|σt|1−α−1

)]
+iµ0t, α 6=1,

−|σt|
[
1+iβ 2

π sign(t) ln (|σt|)
]
+iµ0t, α=1. (3)

The parameters α, β and σ keep their previous meaning while the original and modified
1Although finally published in 1999, this article is already cited in Nolan (1997) as a “to appear in” reference,

so the described software therein is earlier than 1997.

Journal of Statistical Software 5

location parameters µ and µ0 are related according to

µ =
{
µ0 − β tan

(
απ
2
)
σ, α 6= 1,

µ0 − β 2
πσ ln(σ), α = 1. (4)

With this modification, the resulting distribution is continuous in its four parameters, which
is convenient when estimating the parameters of the distribution or approximating its PDF
or CDF.

2.2. Parameter estimation of α-stable distributions

As previously explained, the lack of closed expressions for the PDF or CDF of α-stable
distributions implies a major drawback when estimating their parameters. Therefore, the
techniques employed for the estimation usually rely on numerical evaluations of these functions
or, alternatively, are based on other properties of the distributions.
Several methods can be found in the related literature. Hill (1975) proposes the estimation of
the α parameter by linear regression on the right tail of the empirical distribution. However,
in many practical cases the method is not applicable because of the high number of samples
needed to detect the tail behavior. McCulloch (1986) proposes an algorithm to estimate
the four parameters of the α-stable distribution simultaneously from sample quantiles and
tabulated values. The resulting estimator has a very low computational cost but a low
accuracy as well. However, it can be conveniently used to provide initial estimates for other
methods. Koutrouvelis (1981) departs from the empirical CF to obtain, by means of recursive
linear regressions on its log-log plot, estimators for α and σ in a first step and for β and µ
in a second one. The method implies a higher computational cost than the quantile method,
but yields more accurate results.
Maximum likelihood (ML) estimation is considered the most accurate estimator available for
α-stable distributions (Borak et al. 2011). However, numerical methods to both approximate
the PDF and to maximize the likelihood of the sample must be used, which implies a very high
computational cost due to the numerous PDF evaluations required to maximize the likelihood
in the four-dimensional parameter space. However, increasing computer capabilities and the
use of precalculated values of the PDF make the use of this method possible in certain
applications (Nolan 2001).

2.3. Generation of α-stable random variables

Given the lack of closed expressions for the CDF or its inverse (the quantile function, CDF−1),
the simulation of α-stable distributed random variables cannot be achieved easily from a
uniform random variable. Chambers, Mallows, and Stuck (1976) provided a direct method
to generate an α-stable random variable by means of the transformation of an exponential
and a uniform random variable. The method proposed lacked a theoretical demonstration
until Weron (1996) gave an explicit proof and slightly modified the original expressions. The
resulting method is regarded as the fastest and the most accurate available (Weron 2004).
Based on the methods described so far, several software tools are currently available. The pro-
gram STABLE (Nolan 2006) employs Nolan’s expressions (Nolan 1997) for the high precision
computation of PDF, CDF, quantile function and maximum likelihood parameter estimation.
However, a fully operational version of the software is not publicly available. Veillete (2010)

6 libstable: α-Stable Distributions in R, C/C++, MATLAB

has developed a MATLAB package that also applies Nolan’s expressions for high precision
PDF and CDF evaluation and Koutrouvelis (1981)’s method for parameter estimation based
on the CF. However, the performance obtained is low when trying to achieve high precision
or when fitting a large data sample. A package with similar features and characteristics has
been reported by Liang and Chen (2013).

3. Algorithms and implementation
One purpose of the proposed library is to have a fast and accurate tool to numerically evaluate
the PDF and CDF of α-stable distributions. From the previous study, it may be concluded
that those methods that employ Nolan’s expressions give the most accurate results. Therefore,
the developed library is based on them. However, these expressions have some issues which
must be addressed. First, the mathematical expressions involved in the calculation are, in
computational terms, expensive to evaluate. Second, although the integral involved in the
calculations (a convenient transformation of Equation 2) has some desirable properties, it is
generally hard to approximate. Therefore some strategies have to be elaborated in order to
evaluate it accurately and efficiently.

3.1. Fast and accurate evaluation of Nolan’s expressions

Nolan’s expressions to calculate the PDF of a standard α-stable distribution with α 6= 1 are:

fX(x;α, β) =



α

π(x− ζ)|α− 1|

∫ π/2

−θ0
hα,β(θ;x) dθ, x > ζ,

Γ(1 + 1
α) cos(θ0)

π(1 + ζ2) 1
2α

, x = ζ,

fX(−x;α,−β), x < ζ,

(5)

where

ζ(α, β) = −β tan
(
πα

2

)
,

θ0(α, β) = 1
α

arctan
(
β tan

(
πα

2

))
,

hα,β(θ;x) = (x− ζ)
α
α−1 Vα,β(θ)e−(x−ζ)

α
α−1 Vα,β(θ),

Vα,β(θ) = (cos(αθ0))
1

α−1

(cos(θ)
sin(α(θ0 + θ))

) α
α−1 cos(αθ0 + (α− 1) θ)

cos(θ) .

(6)

When α = 1, the definition of the expressions changes to

fX(x; 1, β) =



∫ π/2

−π
2

h1,β(θ;x) dθ, β 6= 0,

1
π(1 + x2) , β = 0,

(7)

Journal of Statistical Software 7

where
h1,β(θ;x) = e

−πx
2β V1,β(θ)

,

V (θ; 1, β) = 2
π

(π
2 + βθ

cos(θ)

)
e

1
β

(π2 +βθ) tan(θ)
.

(8)

It is worth noticing that the change in the definition of the expressions above when α = 1
does not imply a discontinuity in the PDF or CDF (Nolan 1997). For a general distribution,
the PDF is calculated for the corresponding standardized version (σ = 1 and µ0 = 0) and
then properly scaled and shifted back:

fX(x;α, β, σ, µ0) = 1
σ
fX

(
x− µ0
σ

;α, β
)
, (9)

FX(x;α, β, σ, µ0) = FX

(
x− µ0
σ

;α, β
)
.

In Figure 1 the function hα,β(θ;x) to be integrated is represented both in linear and logarith-
mic scales. As the point of evaluation x of the PDF increases, the integrand becomes closer
to a singular peak. The same behavior occurs when x tends to ζ. The numerical method
employed to evaluate the integral should avoid missing this peak as well as to evaluate the
integrand at regions with a marginal contribution to the final result. In order to focus on
the relevant areas, the integral is divided as represented in Figure 2. Before integrating, the
peak of hα,β(θ;x) is located numerically. Then, a symmetric interval around the peak where
the integrand holds above a determined threshold is defined. The value of the threshold de-
pends on the accuracy required to evaluate the integral. This required accuracy can be easily
adjusted by the user. With the interval of integration so divided, a first approximation to
the final value of the integral is obtained by applying Gauss-Kronrod quadrature formulas
(Press, Teukolsky, Vetterling, and Flannery 1994). Finally, the area under the rest of the
integration interval is calculated only to the desired precision, monitoring the contribution of
new intervals to the current value of the integral and stopping the procedure when additional
contributions are irrelevant.
When calculating the CDF, a similar approach is followed. In this case, the maximum of the
integrand is always at one extreme of the integration interval (see Nolan 1997, for details on
the expressions involved), so there is no need to find it numerically. To calculate the quantile
function, the CDF is numerically inverted. An initial guess of the value of the function is
obtained by interpolation over tabulated CDF values and then a root finding algorithm is
applied. Routines employed for numerical quadrature and root finding are supplied by the
GNU Scientific Library (GSL; Galassi, Davies, Theiler, Gough, Jungman, Booth, and Rossi
2009).
For the particular cases in which the PDF and CDF have closed analytical expression (Gaus-
sian, Cauchy and Lévy distributions, as exposed in Section 2) libstable will make use of them
to avoid unnecessary computations.

3.2. Parallelization of the workload

The evaluation of the PDF, CDF or CDF−1 at one point is completely independent from the
evaluation at any other different point. Besides, in practical applications it will be required
to evaluate the functions in several points, e.g., when estimating the α-stable parameters of

8 libstable: α-Stable Distributions in R, C/C++, MATLAB

0

0.1

0.2

0.3

0.4

0.5

x
=
0
.5
1

x
=
0
.6

x
=
1

x
=
1
.5

x
=
2
.5

x
=
7

x
=
3
2

0.4 0.6 0.8 1 1.2 1.4 1.6

10
-15

10
-10

10
-5

θ

h
α
,β

(θ
;x

)
lo
g
1
0
(h
α
,β

(θ
;x

))

Figure 1: Integrand function hα,β(θ;x) for α = 1.5 and β = 0.5 and various values of x in
linear (top) and logarithmic (bottom) scales. As x increases or approaches ζ, most of the area
under the curve gets concentrated in a narrow peak close to one extreme of the integration
interval.

given data with a method based on the PDF or CDF of distribution. Therefore, the evaluation
at different points can be done in parallel. When called, the library functions distribute the
points of evaluation between several threads of execution. The number of available threads
of execution can be fixed manually or determined automatically. When computation finishes,
the results are gathered together. Parallelism has been implemented using POSIX Threads
(Pthreads; Barney 2011), which allows the programmer to accurately control the threads
creation and execution. The distributions can be calculated in the original parameterization
or in the modified one, given respectively by Equations 1 and 3.

3.3. Parameter estimation and random variable generation

Four different methods of parameter estimation of α-stable distributions are available in the
library: First, the McCulloch (1986) method which yields very fast parameter estimation, at
the cost of lower accuracy. Second, the iterative Koutrouvelis (1981) method based on the
sample CF, which produces better estimates with longer execution times. Third, maximum
likelihood can be used directly. However, the elevated computational cost of both, numerical
evaluation of the PDF and maximization in the four-dimensional parameter space makes this
method very slow when the sample size is large. For these cases, a modified ML approach
is implemented, in which the maximization search is only performed in the 2D α-β space.
On each iteration of the maximization procedure, σ and µ are estimated with McCulloch’s
algorithm according to current α, β estimates.

The CMS method modified by Weron is used to simulate α-stable random variables. To
this end, a high quality uniform random number generator provided by the GSL package is
employed.

Journal of Statistical Software 9

0

0.1

0.2

0.3

h
α
,β
(θ
;x

)

0.4 0.6 0.8 1 1.2 1.4 1.6

θ

10
-10

10
-8

10
-6

10
-4

10
-2

θ
max

θ
1

θ
3

ε

0.4

θ
2

Figure 2: Subdivision of the integration interval for α = 1.5, β = 0.5 and x = 6 in linear
(top) and logarithmic scales (bottom). The maximum of the integrand (θmax) and points
for which h1.5,0.5(θ;x) crosses a threshold ε (θ1, θ2) are located. Then, a symmetric interval
around θmax is determined (θ3).

4. Results
In this section, the results obtained by the developed library are exposed and discussed. The
analysis is focused on the precision and performance obtained when evaluating both the PDF
and the CDF of α-stable distributions.

4.1. Precision results

Since no tabulated values for these functions are available with enough precision in the liter-
ature, errors are measured against the numerical results provided by the program STABLE,
which has been used frequently in the literature as ground truth (Weron 2004; Belov 2005;
Menn and Rachev 2006). Error is expressed in relative terms and measured for different
values of the parameters α and β. The parameters σ and µ are fixed to 1 and 0 respectively.
The abscissae axis is divided in several intervals in a log-scale fashion. Errors obtained for an
evenly distributed set of points inside each interval are averaged. This way, the behavior at
the tails and in the central region of the distribution can be analyzed independently.
The data obtained for a set of α and β values is presented in Tables 1 and 2. Omitted
values correspond to intervals where the PDF or CDF equal zero or take on values below
the machine minimum representable quantity. The precision obtained both at the tails and
at the central part of the distribution is fairly high and in many cases close to the hardware
precision limit employed in the calculations (about 10−16). The data obtained for a finer
sweep of the parameters is summarized in Figure 3. The error data has been smoothed for
convenient visualization with a median filter of size three. When α < 1, the results obtained
are in practice equivalent to those obtained by the program STABLE. When α gets close to
1, the error increases since the expressions involved become singular and hard to integrate in
this region. However, given the small relative error measured and the lack of exact values of

10 libstable: α-Stable Distributions in R, C/C++, MATLAB

α β
x-axis interval

[−1000,−10) [−10, 10) (10, 1000]

0.25
0 7.2·10−16 6.1·10−16 7.2·10−16

0.5 9.3·10−16 7.0·10−16 7.0·10−16

1 – 2.8·10−16 5.9·10−16

0.5
0 9.6·10−16 6.7·10−16 9.6·10−16

0.5 1.3·10−15 9.2·10−16 8.3·10−16

1 – 5.8·10−16 6.9·10−16

0.75
0 2.8·10−15 8.4·10−16 2.8·10−15

0.5 6.2·10−15 1.1·10−15 1.9·10−15

1 – 9.8·10−14 2.0·10−15

1
0 – – –
0.5 2.4·10−12 1.3·10−15 7.4·10−13

1 – 8.4·10−16 3.1·10−13

1.5
0 1.8·10−13 1.1·10−15 1.8·10−13

0.5 4.7·10−14 1.2·10−15 1.9·10−13

1 – 1.4·10−15 3.9·10−14

Table 1: Averaged relative error in the calculation of the PDF of standard α-stable distribu-
tions in three intervals for a set of α and β parameter values.

α β
x-axis interval

[−1000,−10) [−10, 10) (10, 1000]

0.25
0 1.8·10−15 5.4·10−16 2.6·10−16

0.5 2.4·10−15 7.9·10−16 3.6·10−16

1 – 1.9·10−16 3.4·10−16

0.5
0 4.3·10−15 5.2·10−16 2.3·10−16

0.5 3.9·10−15 5.5·10−16 2.6·10−16

1 – 3.5·10−16 2.5·10−16

0.75
0 1.6·10−14 5.4·10−16 2.2·10−16

0.5 1.8·10−14 6.2·10−16 2.4·10−16

1 – 5.4·10−16 2.3·10−16

1
0 – – –
0.5 7.3·10−14 6.1·10−16 8.7·10−8

1 – 3.8·10−16 9.9·10−8

1.5
0 6.0·10−13 4.8·10−16 2.2·10−16

0.5 1.2·10−12 5.7·10−16 2.2·10−16

1 – 5.0·10−16 2.2·10−16

Table 2: Averaged relative error in the calculation of the CDF of standard α-stable distribu-
tions in three intervals for a set of α and β parameter values.

the distribution, we cannot determine which software (the program STABLE used as reference
or the proposed library) is in fact deviating from the true values of the distribution. In the
calculation of the PDF the error increases also as α approaches 1.75. This can be due to
the faster decay of the tails of the distribution, which makes small absolute differences in the

Journal of Statistical Software 11

0 0.5 1 1.5 2
0

0.5

1

10
−16

10
−15

10
−14

10
−13

10
−12

α
β

ε
r

0 0.5 1 1.5 2
0

0.5

1

10
−16

10
−15

10
−14

10
−13

10
−12

α
β

ε
r

Figure 3: Averaged relative error in the calculation of the PDF (left) and CDF (right) of
standard α-stable distributions.

values obtained translate into higher relative errors measured. Despite this, the relative error
stays in the order of 10−13.

4.2. Performance results

The performance of the library is measured as the number of evaluations of the PDF or
CDF which can be executed per unit of time. To measure this, for a set of α and β values,
100 calls to the library have been done, with 10000 evaluations of the PDF or CDF per
call. The measurements are repeated setting the required precision to different values. The
tests have been performed in a machine with four Quad-Core AMD Opteron(tm) Processors
8350 (16 cores in total) with a CPU frequency of 2.0 GHz. For comparison, results obtained
for Veillete’s MATLAB functions and with the stabledist (Wuertz, Maechler, and Rmetrics
Core Team Members 2016) package in R on the same machine are included. The program
STABLE is only freely available for the Windows operating system, so performance results
are extrapolated from a similar machine running Windows.
Results for α = 0.75 and β = 0.5 are summarized in Figure 4. For other values of the
parameters, results exhibit the same behavior, up to a scale factor. When moderate errors
are tolerable, Veillete’s MATLAB functions achieve a performance higher than the one of
both programs, STABLE and the C/C++ library developed. This can be explained by the
simpler quadrature method employed, which leads to a faster convergence when low precision
is required. However, as precision requirements increase, the number of evaluations needed
by the simpler quadrature method increases very quickly leading to its inferior convergence
properties when compared with the more advanced rules and the strategy of integration used
in libstable. Therefore, the performance of the MATLAB solution quickly decreases becoming
much slower than the rest of the methods. Note that the MATLAB implementation is able
to use several threads, so it is compared with the 16 threads curve. The performance of the
stabledist R package is remarkably lower than both the program STABLE or the developed
library, even for single threaded execution.
Finally, the parallel capability of the C/C++ library clearly outperforms the rest of the
alternatives when multiple processing cores are available (as it is usually the case in modern

12 libstable: α-Stable Distributions in R, C/C++, MATLAB

10
−14

10
−12

10
−10

10
−8

10
−6

10
2

10
3

10
4

10
5

Precision required

P
D
F

e
v
a
lu
a
ti
o
n
s
p
e
r
se
c
o
n
d

α = 0.75, β = 0.5

1 thread

2 threads

4 threads

8 threads

16 threads

STABLE
MATLAB
stabledist R
libstable C

10
−14

10
−12

10
−10

10
−8

10
−6

10
2

10
3

10
4

10
5

Precision required

C
D
F

e
v
a
lu
a
ti
o
n
s
p
e
r
se
c
o
n
d

α = 0.75, β = 0.5

1 thread

2 threads

4 threads

8 threads

16 threads

STABLE
MATLAB
stabledist R
libstable C

Figure 4: Performance of the calculation of PDF and CDF vs. required precision. Color
indicates the number of execution threads employed. Median values and 95% confidence
intervals are represented.

machines). For the CDF, the increase in performance with respect to the program STABLE
is approximately equal to the number of threads used. In the case of the PDF, this increase is
even higher given the superior performance with one execution thread. The results presented
in Figure 4 allow us to estimate to what extent the proposed library is able to parallelize the
workload according to Amdahl’s law (Amdahl 1967). Results indicate that between 94% and
98% of the algorithm is being executed in parallel.

5. Usage of libstable

libstable has been developed at the Image Processing Laboratory (LPI) to give support for
various research projects based on α-stable distributions, where it is used on a regular ba-
sis. It is distributed both as a C/C++ library with MATLAB and R front-ends. It has
been thoroughly tested on specific applications. Its source code and sample programs are
publicly available at http://www.lpi.tel.uva.es/stable under the GPLv3 (Free Software
Foundation 2007) license.

5.1. Compiling the library

The developed library can be easily compiled from the source code with the make com-
mand. libstable depends on several numerical methods provided by the GSL package, which
must be installed on the system. After compilation, both shared (libstable.so) and static
(libstable.a) versions of the library are available.
Several example programs to test the main functions of libstable are also provided and com-
piled against the static version of the library by default. Further documentation on the library
functions can be found within the library distribution.

http://www.lpi.tel.uva.es/stable

Journal of Statistical Software 13

5.2. Usage in C/C++ developments
The next example program (example.c) illustrates how to use libstable to evaluate the PDF
of an α-stable distribution with given parameters and with 0 parameterization (i.e., we use
µ0 as opposed to µ, recall Equations 3 and 4) at a single point x:

#include <stdio.h>
#include <stable.h>

int main (void)
{

double alpha = 1.25, beta = 0.5, sigma = 1.0, mu = 0.0;
int param = 0;
double x = 10;
StableDist *dist = stable_create(alpha, beta, sigma, mu, param);
double pdf = stable_pdf_point(dist, x, NULL);
printf("PDF(%g; %1.2f, %1.2f, %1.2f, %1.2f) = %1.15e\n",

x, alpha, beta, sigma, mu, pdf);
stable_free(dist);
return 0;

}

The output of one execution of the example is:

PDF(10; 1.25, 0.50, 1.00, 0.00) = 3.225009046591297e-03

Compiling and linking
If the libstable header files and compiled library are not located on the standard search path
of the compiler and linker respectively, their location must be provided as a command line
flag to compile and link the previous program. The program must also be linked to the GSL
and system math libraries. A typical command for compilation and static linking of a source
file example.c with the GNU C compiler gcc is

$ gcc -O3 -I/path/to/headers -c example.c
$ gcc example.o /path/to/libstable/libstable.a -lgsl -lgslcblas -lm

The -O3 option activates several optimization procedures of the gcc compiler. Other options
can also be considered. When linking with the shared version of the library, the path to
libstable.so must be provided to the system’s dynamic linker, typically by defining the
shell variable LD_LIBRARY_PATH. The path to the shared library must also be provided when
linking the program:

$ gcc -L/path/to/libstable example.o -lgsl -lgslcblas -lm -lstable

Setting general parameters
Some general parameters can be adjusted for the library, such as precision required or available
number of threads. These parameters are stored as global variables that can be read and
modified with the functions described below.

14 libstable: α-Stable Distributions in R, C/C++, MATLAB

In multi-core systems, the functions

unsigned int stable_get_THREADS()
void stable_set_THREADS(unsigned int threads)

return and set up, respectively, the number of threads of execution used by the library. When
setting the number of threads to 0, the library will use as many threads as processing cores
are available in the system.
The relative tolerance indicates the precision required when calculating the PDF and CDF.
The following functions return the current relative tolerance and set the desired one, respec-
tively:

double stable_get_relTOL()
void stable_set_relTOL(double reltol)

Managing distributions

The library defines the structure ‘StableDist’ which contains some values associated to an
α-stable distribution, such as its parameters, the parameterization employed and a random
number generator. An α-stable distribution with desired parameters α, β, σ and µ in param-
eterization param can be created by

StableDist * stable_create(double alpha, double beta, double sigma,
double mu, int param)

The function returns a pointer to a ‘StableDist’ structure. This pointer is passed as an
argument to other functions. Once the ‘StableDist’ structure is created, the parameters of
a distribution can be easily changed:

int stable_setparams(StableDist * dist, double alpha, double beta,
double sigma, double mu, double param)

The returned value can be one of the following predefined constants:

• INVALID: Invalid or out of range parameters introduced.

• STABLE: General α-stable case.

• ALPHA_1: α = 1 case.

• GAUSS: Gaussian distribution (α = 2).

• CAUCHY: Cauchy distribution (α = 1 and β = 0).

• LEVY: Lévy distribution (α = 0.5 and β = 1).

A copy of an existing distribution can be obtained by

StableDist * stable_copy(StableDist * src_dist);

Journal of Statistical Software 15

To delete a distribution and free its associated memory resources call

void stable_free(StableDist * dist)

Calculating PDF, CDF and CDF−1

This section describes the functions provided to calculate the PDF, CDF and CDF−1 of α-
stable distributions. Two possibilities are provided for each: a single point function and a
vector function. The prototypes of the single point functions are:

double stable_cdf_point(StableDist * dist, const double x, double * err)
double stable_pdf_point(StableDist * dist, const double x, double * err)
double stable_inv_point(StableDist * dist, const double q, double * err)

Each function returns the value of the stable function being evaluated and stores in err an
estimation of the absolute error committed. If this estimation is not required, a NULL pointer
can be passed as argument instead. For the vector functions:

void stable_cdf(StableDist * dist, const double * x, const int Nx,
double * pdf, double * err)

void stable_pdf(StableDist * dist, const double * x, const int Nx,
double * cdf, double * err)

void stable_inv(StableDist * dist, const double * q, const int Nq,
double * inv, double * err)

the number of evaluation points (Nx, Nq, respectively) must be provided. An estimation of
the absolute error committed at each point of evaluation is stored in an array err. If this
estimation is not required, a NULL pointer can be passed as argument instead.

Random sample generation
In order to generate an α-stable random sample with desired parameters and population size,
a distribution must be created with those parameters as exposed above. Once the parameters
have been set, the function

double stable_rnd_point(StableDist * dist)

returns a single realization of an α-stable random variable. To obtain a vector of realizations
the function

void stable_rnd(StableDist * dist, double * rnd, const unsigned int N)

stores in the rnd array N independent realizations of an α-stable random variable.
When generating random samples, the function

void stable_rnd_seed(StableDist * dist, unsigned long int s)

initializes the internal random generator to a desired seed. This allows to reproduce results
across different executions. Nevertheless, it will be usually desirable to obtain different results
in different realizations, which involves to initialize the random generator to different seeds.
This can be easily achieved by initializing to a time dependent seed such as

16 libstable: α-Stable Distributions in R, C/C++, MATLAB

stable_rnd_seed(dist, time(NULL))

Parameter estimation

Several methods are available in libstable to estimate the parameters of α-stable distributions
from a data sample. Given its speed and simplicity, McCulloch (1986)’s method is always
used as initial approximation to the final estimation. It can be invoked by the function

void stable_fit_init(StableDist * dist, const double * data,
const unsigned int N, double * nu_c,double * nu_z)

This function sets the parameters of the distribution structure dist to the estimation ob-
tained from the sample in data, of length N. stable_fit_init is employed in other iterative
estimation methods which make use of the values stored in nu_c and nu_z. If these values
are not required, a NULL pointer can be passed as an argument.
As previously exposed, the McCulloch estimator has low accuracy. libstable provides other
estimators when higher accuracy is required. Koutrouvelis (1981)’s iterative estimation is
provided by the function

int stable_fit_koutrouvelis(StableDist * dist, const double * data,
const unsigned int N)

In this case, the parameters stored in the distribution dist when calling the function are
considered as initial guesses of the final estimation. Therefore, stable_fit_init could be
used before to obtain such approximation. The parameters in dist are then updated by
the estimator procedure. If the iterative method finishes correctly, the function returns 0.
Otherwise, a different value indicates that an error has occurred, such as no convergence of the
iterative method or estimated parameter values out of their definition space (see Section 2).
The high performance achieved in the calculation of the PDF allows to perform ML estimation
directly in many practical situations. For best results, the library should be set to require
only the needed relative precision (a value of 10−8 is recommended as a starting point) so that
computational costs associated with the evaluation of the likelihood function is minimized.
ML estimation of α-stable distributions can be obtained by

int stable_fit_mle(StableDist *dist, const double *data,
const unsigned int N)

If the computational cost of this function is unacceptable, a modified ML method is provided.
As exposed in Section 3.3, it performs an optimization procedure only in the α-β 2D space,
thus simplifying the procedure and reducing the number of evaluations of the likelihood
function required to find a solution. This method is implemented by the function

int_stable_fit_mle2d(StableDist *dist, const double *data,
const unsigned int N)

As for the Koutrouvelis estimator, ML and modified ML use the parameters stored in dist
as initial guesses which are updated by the method. A return value different from 0 indicates
that some error has occurred during the execution of the algorithm.

Journal of Statistical Software 17

An example of how to use the library to calculate the PDF, CDF and CDF−1 with desired
parameters, of how to generate a random sample and, given this sample, of how to estimate
the parameters of an α-stable distribution that best fits the generated data follows:

#include <stable.h>

int main(void)
{

double x[100], q[100], pdf[100], cdf[100], inv[100], rnd[100];
double alpha = 1.5, beta = 0.5, sigma = 2.0, mu = 4.0;
int seed = 1234;
int i;
StableDist * dist;

for (i = 0; i < 100; i++) {
x[i] = -5 + i * 0.1;
q[i] = 0.01 * (i + 0.5);

}

dist = stable_create(alpha, beta, sigma, mu, 0);
stable_pdf(dist, x, 100, pdf, NULL);
stable_cdf(dist, x, 100, cdf, NULL);
stable_inv(dist, q, 100, inv, NULL);
stable_rnd_seed(dist, seed);
stable_rnd(dist, rnd, 100);

stable_fit_init(dist, rnd, 100, NULL, NULL);
stable_fit_koutrouvelis(dist, rnd, 100);

printf("Estimated parameters: %f %f %f %f\n",
dist->alpha, dist->beta, dist->sigma, dist->mu_0);

stable_free(dist);
return 0;

}

In this example, the only output on screen is

Estimated parameters: 1.535524 0.058148 1.799415 4.563211

5.3. Usage in the MATLAB environment

MATLAB supports loading shared C libraries by calling the loadlibrary function. The shared
version of the proposed library (libstable.so) and the header file stable.h are required. In
order to start using libstable execute the following command in the MATLAB environment:

>> loadlibrary('libstable', 'stable.h')

18 libstable: α-Stable Distributions in R, C/C++, MATLAB

Paths to libstable.so and stable.h must be in the current folder or included in the MAT-
LAB search path.
When the library is no longer needed, it can be unloaded by executing

>> unloadlibrary('libstable')

Several MATLAB functions in the form of .m files are provided to access the capabilities
of libstable. These files can be easily modified by the user to adjust library parameters as
needed. The managing of α-stable distributions described in Section 5.2 is performed by the
provided functions, so it is not necessary to create or to delete the distributions.

Calculating PDF, CDF and CDF−1

The functions

>> pdf = stable_pdfC(x, pars, pm)
>> cdf = stable_cdfC(x, pars, pm)
>> inv = stable_invC(q, pars, pm)

return a vector containing the evaluation of the PDF, CDF and CDF−1, respectively, at the
points in x (q for the CDF−1). The parameters of the distribution are indicated in pars
= [alpha, beta, sigma, mu], and pm = {0, 1} is the parameterization employed. The
returned vector will have the same size as x.
By default, these functions set the library to use the maximum number of available threads
of execution and set the relative precision of the library to a fixed value of 10−12. This values
can be easily changed by modifying the corresponding .m files.
The letter “C” is appended to the functions names to indicate that a C shared library is being
invoked when calling the function.

Random variable generation

The generation of α-stable random variables is provided by the function

>> rnd = stable_rndC(N, pars, pm, seed)

A column vector containing N independent realizations of an α-stable random variable with pa-
rameters pars = [alpha, beta, sigma, mu] in parameterization pm = {0, 1} is returned.
The seed to initialize the random numbers generator can be set by seed. If not provided, by
default it is set to the system time each time stable_rndC is called. This behavior can be
modified in the function file.

Parameter estimation

A MATLAB function is provided for each of the estimation methods described in Section 5.2:

>> p = stable_fit_initC(data)
>> p = stable_fit_koutrouvelisC(data)
>> p = stable_fit_mleC(data)
>> p = stable_fit_mle2dC(data)

Journal of Statistical Software 19

These functions perform McCulloch, Koutrouvelis, ML and modified ML estimation, respec-
tively, for the sample data data. The estimated parameters are returned in the p vector.
By default, the McCulloch estimator is used by other methods as initial estimation of the
parameters. A user defined initial estimation can be used by passing an additional argument
p_ini = [alpha_ini, beta_ini, sigma_ini, mu_ini], e.g.,

>> p = stable_fit_mle2dC(data, p_ini)

The following lines serve as an example of a MATLAB session in which libstable is used to
calculate the PDF, CDF and CDF−1 of an α-stable distribution with desired parameters,
generate a random sample and, given the sample, estimate the parameters of the α-stable
distribution.
First, the library must be loaded:

>> loadlibrary('libstable', 'stable.h')

Vectors of points of evaluation and parameters are initialized. The parameterization employed
is also indicated:

>> x = -5 : .1 : 5;
>> q = 0.005 : 0.01 : 0.995;
>> p = [1.5, 0.5, 0.5, -1.0];
>> param = 0;

PDF, CDF, CDF−1 are evaluated and the results stored in corresponding vectors:

>> pdf = stable_pdfC(p, x, param);
>> cdf = stable_cdfC(p, x, param);
>> inv = stable_invC(p, q, param);

A sample of N = 500 realizations of the α-stable random variable is generated:

>> N = 500;
>> seed = 1234;
>> rnd = stable_rndC(N, pars, pm, seed);

From the generated sample, the original parameters are estimated by Koutrouvelis method:

>> p_est = stable_koutrouvelisC(rnd)

p_est =

1.4969 0.5259 0.5246 -0.9508

Once the session has finished, the library can be unloaded:

>> unloadlibrary('libstable');

20 libstable: α-Stable Distributions in R, C/C++, MATLAB

5.4. Usage of the R package

An R package based on the C/C++ library is also distributed with libstable. This section
describes how to use it. The provided functions have a similar syntax as in the MATLAB
front-end, and they implement the same functionalities. By default, as many threads as
available in the system are used.

Calculating PDF, CDF and CDF−1

The functions

pdf <- stable_pdf(x, pars, parametrization = 0, tol = 1e-12)
cdf <- stable_cdf(x, pars, parametrization = 0, tol = 1e-12)
q <- stable_q(p, pars, parametrization = 0, tol = 1e-12)

return a vector containing the evaluation of the PDF, CDF and CDF−1, respectively, at the
points in x (q for the CDF−1). The parameters of the distribution are indicated in the vector
pars. By default, the indicated parametrization and tolerance are used.

Random variable generation

The generation of α-stable random variables is provided by the function

rnd <- stable_rnd(N, pars, parametrization = 0, seed = 0)

A vector containing N independent realizations of an α-stable random variable with parameters
given in pars is returned. The seed to initialize the random numbers generator may be set
by seed. If not provided, by default it is set by default to the system time.

Parameter estimation

An R function is provided for each of the estimation methods described in Section 5.2:

p_est <- stable_fit_init(data, parametrization = 0)
p_est <- stable_fit_koutrouvelis(data, p_ini = numeric(0), parametrization = 0)
p_est <- stable_fit_mle(data, p_ini = numeric(0), parametrization = 0)
p_est <- stable_fit_mle2d(data, p_ini = numeric(0), parametrization = 0)

These functions perform McCulloch, Koutrouvelis, ML and modified ML estimation, respec-
tively, in the sample vector data. The estimated parameters are returned as a vector. By
default the McCulloch estimator is used by the other methods as an initial estimate of the
parameters, but a user defined initial estimate may be specified by the additional argument
p_ini = c(alpha_ini, beta_ini, sigma_ini, mu_ini). The third optional argument in-
dicates the parametrization used.
The following lines illustrate how to use the package in an R session. First, load the package:

R> library("libstableR")

Define a parameter and abscissae vectors and evaluate the PDF and the CDF:

Journal of Statistical Software 21

R> pars <- c(0.75, 0.5, 1.0, 0.0)
R> x <- seq(from = -5, to = 10, by = 0.01)
R> pdf <- stable_pdf(x, pars, parametrization = 0, tol = 1e-12)
R> cdf <- stable_cdf(x, pars, parametrization = 0, tol = 1e-12)

Evaluate the quantile function at desired points:

R> p <- seq(from = 0.01, to = 0.99, by = 0.01)
R> q <- stable_q(p, pars, parametrization = 0, tol = 1e-12)

Generate 500 random samples with a given seed and estimate a new parameter vector from
the sample with Koutrouvelis method:

R> N <- 500
R> rnd <- stable_rnd(N, pars, seed = 1234)
R> pars_est <- stable_koutrouvelis(rnd, p_ini = NULL)

6. Conclusions
In this paper, an R package and a C/C++ library with a MATLAB front-end to work with
α-stable distributions has been presented. The method of evaluation of the PDF, CDF and
quantile function provided achieves a high precision, in most cases in the same order of
magnitude than the widely acknowledged ground truth STABLE program. Based on the
methods provided by the library, maximum likelihood and other estimation techniques based
on the PDF can also be done in reasonable times. If desired, less accurate estimates can also
be obtained with much shorter execution times.
The developed library implements parallelization techniques to carry out its computations.
Hence, it can take full advantage of current multi-core systems. Besides, the use of appropriate
quadrature techniques and strategies of integration allows us to achieve an increment in
performance with respect to current reference software when calculating the PDF with just
one thread. As an example, when 16 threads of execution are available, a 25-fold increase
in performance is achieved with respect to the program STABLE (Nolan 2006) for PDF
evaluation on the same machine. This improvement in performance reaches a 100-fold increase
when compared with the R package stabledist.
The tools provided can be easily integrated in third party developments; to that end, we
have provided an R package and a MATLAB front-end through which our library shows no
appreciable loss of performance.

References

Amdahl GM (1967). “Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities.” In Proceedings of the Spring Joint Computer Conference, pp.
483–485. Association for Computing Machinery, New York.

Barney B (2011). POSIX Threads Programming Tutorial. Lawrence Livermore National
Laboratory, Livermore. URL https://computing.llnl.gov/tutorials/pthreads.

https://computing.llnl.gov/tutorials/pthreads

22 libstable: α-Stable Distributions in R, C/C++, MATLAB

Belov IA (2005). “On the Computation of the Probability Density Function of α-Stable Dis-
tributions.” In Proceedings of the 10th International Conference of Mathematical Modelling
and Analysis, pp. 333–341. Trakai.

Borak S, Misiorek A, Weron R (2011). “Models for Heavy-Tailed Asset Returns.” In Statistical
Tools for Finance and Insurance, pp. 21–55. Springer-Verlag, Berlin.

Chambers JM, Mallows CL, Stuck BW (1976). “A Method for Simulating Stable Random
Variables.” Journal of the American Statistical Association, 71(354), 340–344. doi:10.
1080/01621459.1976.10480344.

Fama EF (1965). “The Behavior of Stock-Market Prices.” The Journal of Business, 38(1),
34–105. doi:10.1086/294743.

Fama EF, Roll R (1971). “Parameter Estimates for Symmetric Stable Distributions.” Journal
of the American Statistical Association, 66(334), 331–338. doi:10.2307/2283932.

Fan Z (2006). “Parameter Estimation of Stable Distributions.” Communications in Statistics
– Theory and Methods, 35(2), 245–255. doi:10.1080/03610920500439992.

Free Software Foundation (2007). “GNU General Public License, Version 3.” URL http:
//www.gnu.org/licenses/gpl.html.

Galassi M, Davies J, Theiler J, Gough B, Jungman G, Booth M, Rossi F (2009). GNU
Scientific Library Reference Manual. 3rd edition. Network Theory Limited, Bristol. doi:
10.17226/13163.

Gonchar VY, Chechkin AV, Sorokovŏı EL, Chechkin VV, Grigor’eva LI, Volkov ED (2003).
“Stable Lévy Distributions of the Density and Potential Fluctuations in the Edge Plasma of
the U-3M Torsatron.” Plasma Physics Reports, 29(5), 380–390. doi:10.1134/1.1575308.

Górska K, Penson KA (2011). “Lévy Stable Two-Sided Distributions: Exact and Explicit
Densities for Asymmetric Case.” Physical Review E, 83, 061125. doi:10.1103/physreve.
83.061125.

Hill BM (1975). “A Simple General Approach to Inference about the Tail of a Distribution.”
The Annals of Statistics, 3(5), 1163–1174.

Koutrouvelis IA (1981). “An Iterative Procedure for the Estimation of the Parameters of
Stable Laws.” Communications in Statistics – Simulation and Computation, 10(1), 17–28.
doi:10.1080/03610918108812189.

Lévy P (1925). Calcul des Probabilités. Gauthier-Villars, Paris.

Li P, Samorodnitsk G, Hopcroft J (2013). “Sign Cauchy Projections and Chi-Square Ker-
nel.” In Advances in Neural Information Processing Systems, pp. 2571–2579. Harrahs and
Harveys, Lake Tahoe.

Li P, Zhang CH, Zhang T (2014). “Compressed Counting Meets Compressed Sensing.” In
Journal of Machine Learning Research: Workshop and Conference Proceedings, volume 35,
pp. 1–20.

http://dx.doi.org/10.1080/01621459.1976.10480344
http://dx.doi.org/10.1080/01621459.1976.10480344
http://dx.doi.org/10.1086/294743
http://dx.doi.org/10.2307/2283932
http://dx.doi.org/10.1080/03610920500439992
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://dx.doi.org/10.17226/13163
http://dx.doi.org/10.17226/13163
http://dx.doi.org/10.1134/1.1575308
http://dx.doi.org/10.1103/physreve.83.061125
http://dx.doi.org/10.1103/physreve.83.061125
http://dx.doi.org/10.1080/03610918108812189

Journal of Statistical Software 23

Liang Y, Chen W (2013). “A Survey on Computing Lévy Stable Distributions and a New
MATLAB Toolbox.” Signal Processing, 93(1), 242–251. doi:10.1016/j.sigpro.2012.07.
035.

Mandelbrot BB, Wallis JR (1968). “Noah, Joseph, and Operational Hydrology.” Water
Resources Research, 4(5), 909–918. doi:10.1029/wr004i005p00909.

McCulloch JH (1986). “Simple Consistent Estimators of Stable Distribution Parameters.”
Communications in Statistics – Simulation and Computation, 15(4), 1109–1136. doi:
10.1080/03610918608812563.

Menn C, Rachev ST (2006). “Calibrated FFT-Based Density Approximations for α-Stable
Distributions.” Computational Statistics & Data Analysis, 50(8), 1891–1904. doi:10.1016/
j.csda.2005.03.004.

Mittnik S, Doganoglu T, Chenyao D (1999a). “Computing the Probability Density Function
of the Stable Paretian Distribution.” Mathematical and Computer Modelling, 29(10–12),
235–240. doi:10.1016/s0895-7177(99)00106-5.

Mittnik S, Rachev ST, Doganoglu T, Chenyao D (1999b). “Maximum Likelihood Estimation
of Stable Paretian Models.” Mathematical and Computer Modelling, 29(10–12), 275–293.
doi:10.1016/s0895-7177(99)00110-7.

Nolan JP (1997). “Numerical Calculation of Stable Densities and Distribution Functions.”
Stochastic Models, 13(4), 759–774. doi:10.1080/15326349708807450.

Nolan JP (1999). “An Algorithm for Evaluating Stable Densities in Zolotarev’s (M) Pa-
rameterization.” Mathematical and Computer Modelling, 29(10–12), 229–233. doi:
10.1016/s0895-7177(99)00105-3.

Nolan JP (2001). “Maximum Likelihood Estimation and Diagnostics for Stable Distribu-
tions.” In OE Barndorff-Nielsen, T Mikosch, SI Resnick (eds.), Lévy Processes: Theory and
Applications, pp. 379–400. Birkhäuser, Boston.

Nolan JP (2006). Users Guide for STABLE 4.0.xx. URL http://academic2.american.edu/
~jpnolan/stable/stable.html.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1994). Numerical Recipes in C: The
Art of Scientific Computing. 2nd edition. Cambridge University Press, Cambridge.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org.

Salas-Gonzalez D, Górriz JM, Ramírez J, Schloegl M, Lang EW, Ortiz A (2013). “Parameter-
ization of the Distribution of White and Grey Matter in MRI Using the α-Stable Distribu-
tion.” Computers in Biology and Medicine, 43(5), 559–567. doi:10.1016/j.compbiomed.
2013.01.003.

Salas-Gonzalez D, Kuruoglu EE, Ruiz DP (2009). “Finite Mixture of α-Stable Distributions.”
Digital Signal Processing, 19(2), 250–264. doi:10.1016/j.dsp.2007.11.004.

http://dx.doi.org/10.1016/j.sigpro.2012.07.035
http://dx.doi.org/10.1016/j.sigpro.2012.07.035
http://dx.doi.org/10.1029/wr004i005p00909
http://dx.doi.org/10.1080/03610918608812563
http://dx.doi.org/10.1080/03610918608812563
http://dx.doi.org/10.1016/j.csda.2005.03.004
http://dx.doi.org/10.1016/j.csda.2005.03.004
http://dx.doi.org/10.1016/s0895-7177(99)00106-5
http://dx.doi.org/10.1016/s0895-7177(99)00110-7
http://dx.doi.org/10.1080/15326349708807450
http://dx.doi.org/10.1016/s0895-7177(99)00105-3
http://dx.doi.org/10.1016/s0895-7177(99)00105-3
http://academic2.american.edu/~jpnolan/stable/stable.html
http://academic2.american.edu/~jpnolan/stable/stable.html
https://www.R-project.org
http://dx.doi.org/10.1016/j.compbiomed.2013.01.003
http://dx.doi.org/10.1016/j.compbiomed.2013.01.003
http://dx.doi.org/10.1016/j.dsp.2007.11.004

24 libstable: α-Stable Distributions in R, C/C++, MATLAB

Samorodnitsky G, Taqqu MS (1994). Stable Non-Gaussian Random Processes: Stochastic
Models with Infinite Variance. Chapman & Hall/CRC, Boca Raton.

Simmross-Wattenberg F, Asensio-Pérez JI, de-la Higuera PC, Martín-Fernández M, Dimi-
triadis IA, Alberola-López C (2011). “Anomaly Detection in Network Traffic Based on
Statistical Inference and α-Stable Modeling.” IEEE Transactions on Dependable and Se-
cure Computing, 8(4), 494–509. doi:10.1109/tdsc.2011.14.

The MathWorks Inc (2013). MATLAB – The Language of Technical Computing, Version 8.2.0.
Natick. URL http://www.mathworks.com/products/matlab/.

Vegas-Sánchez-Ferrero G, Simmross-Wattenberg FJ, Martín-Fernández M, Palencia C,
Alberola-López C (2012). “Caracterización de Speckle con Modelos de Cola Pesada.” In
Proceedings of the XXX Annual Congress of the Spanish Society of Biomedical Engineering.
CASEIB 2012. San Sebastián.

Veillete MS (2010). Alpha-Stable Distributions in MATLAB. URL http://math.bu.edu/
people/mveillet/research.html.

Weron R (1996). “On the Chambers-Mallows-Stuck Method for Simulating Skewed Sta-
ble Random Variables.” Statistics & Probability Letters, 28(2), 165–171. doi:10.1016/
0167-7152(95)00113-1.

Weron R (2004). “Computationally Intensive Value at Risk Calculations.” In JE Gentle,
W Härdle, Y Mori (eds.), Handbook of Computational Statistics, pp. 911–950. Springer-
Verlag, Berlin.

Willinger W, Taqqu MS, Sherman R, Wilson DV (1997). “Self-Similarity Through High-
Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level.” IEEE/ACM
Transactions on Networking, 5(1), 71–86. doi:10.1109/90.554723.

Wuertz D, Maechler M, Rmetrics Core Team Members (2016). stabledist: Stable Distribu-
tion Functions. R package version 0.7-1, URL https://CRAN.R-project.org/package=
stabledist.

Zolotarev VM (1986). One-Dimensional Stable Distributions, volume 65 of Translations of
Mathematical Monographs. American Mathematical Society, Ann Arbor.

http://dx.doi.org/10.1109/tdsc.2011.14
http://www.mathworks.com/products/matlab/
http://math.bu.edu/people/mveillet/research.html
http://math.bu.edu/people/mveillet/research.html
http://dx.doi.org/10.1016/0167-7152(95)00113-1
http://dx.doi.org/10.1016/0167-7152(95)00113-1
http://dx.doi.org/10.1109/90.554723
https://CRAN.R-project.org/package=stabledist
https://CRAN.R-project.org/package=stabledist

Journal of Statistical Software 25

Affiliation:
Javier Royuela-del-Val
Laboratorio de Procesado de Imagen
E.T.S. de Ingenieros de Telecomunicación
Universidad de Valladolid
Paseo de Belén, 15. 47011 Valladolid, España
E-mail: jroyval@lpi.tel.uva.es
URL: http://www.lpi.tel.uva.es/~jroyval/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

June 2017, Volume 78, Issue 1 Submitted: 2013-11-17
doi:10.18637/jss.v078.i01 Accepted: 2015-10-29

mailto:jroyval@lpi.tel.uva.es
http://www.lpi.tel.uva.es/~jroyval/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v078.i01

	Introduction
	Numerical methods in alpha-stable distributions
	Numerical computation of alpha-stable distributions
	Parameter estimation of alpha-stable distributions
	Generation of alpha-stable random variables

	Algorithms and implementation
	Fast and accurate evaluation of Nolan's expressions
	Parallelization of the workload
	Parameter estimation and random variable generation

	Results
	Precision results
	Performance results

	Usage of libstable
	Compiling the library
	Usage in C/C++ developments
	Compiling and linking
	Setting general parameters
	Managing distributions
	Calculating PDF, CDF and CDF-1
	Random sample generation
	Parameter estimation

	Usage in the MATLAB environment
	Calculating PDF, CDF and CDF-1
	Random variable generation
	Parameter estimation

	Usage of the R package
	Calculating PDF, CDF and CDF-1
	Random variable generation
	Parameter estimation

	Conclusions

