
JSS Journal of Statistical Software
June 2017, Volume 78, Issue 3. doi: 10.18637/jss.v078.i03

pyParticleEst: A Python Framework for
Particle-Based Estimation Methods

Jerker Nordh
Lund University

Abstract

Particle methods such as the particle filter and particle smoothers have proven very
useful for solving challenging nonlinear estimation problems in a wide variety of fields dur-
ing the last decade. However, there are still very few existing tools available to support
and assist researchers and engineers in applying the vast number of methods in this field
to their own problems. This paper identifies the common operations between the methods
and describes a software framework utilizing this information to provide a flexible and
extensible foundation which can be used to solve a large variety of problems in this do-
main, thereby allowing code reuse to reduce the implementation burden and lowering the
barrier of entry for applying this exciting field of methods. The software implementation
presented in this paper is freely available and permissively licensed under the GNU Lesser
General Public License, and runs on a large number of hardware and software platforms,
making it usable for a large variety of scenarios.

Keywords: particle filter, particle smoother, expectation-maximization, system identification,
Rao-Blackwellized, Python.

1. Introduction
During the last few years, particle-based estimation methods such as particle filtering (Doucet,
Godsill, and Andrieu 2000) and particle smoothing (Briers, Doucet, and Maskell 2010) have
become increasingly popular and provide a powerful alternative for nonlinear/non-Gaussian
and multi-modal estimation problems. Noteworthy applications of particle methods include
multi-target tracking (Okuma, Taleghani, De Freitas, Little, and Lowe 2004), simultanous
localization and mapping (SLAM; Montemerlo, Thrun, Koller, Wegbreit, and others 2002)
and radio channel estimation (Mannesson 2013). Popular alternatives to the particle filter are
the extended Kalman filter (Julier and Uhlmann 2004) and the unscented Kalman filter (Julier
and Uhlmann 2004), but they cannot always provide the performance needed, and neither
handles multimodal distributions well. The principles of the particle filter and smoother are

http://dx.doi.org/10.18637/jss.v078.i03

2 pyParticleEst: Particle-Based Estimation Methods in Python

fairly straight forward, but there are still a few caveats when implementing them. There
is a large part of the implementation effort that is not problem specific and thus could be
reused, thereby reducing both the overall implementation effort and the risk of introducing
errors. Currently there is very little existing software support for using these methods, and
for most applications the code is simply written from scratch each time. This makes it harder
for people new to the field to apply methods such as particle smoothing. It also increases
the time needed for testing new methods and models for a given problem. This paper breaks
a number of common algorithms down to a set of operations that need to be performed on
the model for a specific problem and presents a software implementation using this structure.
The implementation aims to exploit the code reuse opportunities by providing a flexible and
extensible foundation to build upon where all the basic parts are already present. The model
description is clearly separated from the algorithm implementations. This allows the end
user to focus on the parts unique for their particular problem and to easily compare the
performance of different algorithms. The goal of this article is not to be a manual for this
framework, but to highlight the common parts of a number of commonly used algorithms
from a software perspective. The software presented serves both as a proof of concept and as
an invitation to those interested to study further, to use and to improve upon.
The presented implementation currently supports a number of filtering and smoothing algo-
rithms and has support code for the most common classes of models, including the special case
of mixed linear/nonlinear Gaussian state space (MLNLG) models using Rao-Blackwellized al-
gorithms described in Section 3, leaving only a minimum of implementation work for the end
user to define the specific problem to be solved.
In addition to the filtering and smoothing algorithms the framework also contains a module
that uses them for parameter estimation (grey-box identification) of nonlinear models. This
is accomplished using an expectation-maximization (EM; Dempster, Laird, and Rubin 1977)
algorithm combined with a Rao-Blackwellized particle smoother (RBPS; Lindsten and Schön
2010).
The framework is implemented in Python and following the naming conventions typically
used within the Python community it has been named pyParticleEst. For an introduction to
Python and scientific computation see Oliphant (2007). All the computations are handled by
the Numpy/Scipy (Jones, Oliphant, Peterson, and others 2017) libraries. The choice of Python
is motivated by the fact that it can run on a wide variety of hardware and software platforms,
moreover since pyParticleEst is licensed under the LGPL (FSF 1999) it is freely usable for
anyone without any licensing fees for either the software itself or any of its dependencies. The
LGPL license allows it to be integrated into proprietary code only requiring any modifications
to the actual library itself to be published as open source. All the code including the examples
presented in this article can be downloaded from Nordh (2013).
The remaining of this paper is organized as follows. Section 2 gives a short overview of other
existing software within this field. Section 3 gives an introduction to the types of models
used and a quick summary of notation. Section 4 presents the different estimation algorithms
and isolates which operations each method requires from the model. Section 5 provides an
overview of how the software implementation is structured and details how the algorithms
are implemented. Section 6 shows how to implement a number of different types of models
based on the framework. Section 7 presents some results that are compared with previously
published data to show that the implementation is correct. Section 8 concludes the paper
with a short discussion of the benefits and drawbacks with the approach presented.

Journal of Statistical Software 3

2. Related software
The only other software package within this domain to the author’s knowledge is LibBi
(Murray 2015). LibBi takes a different approach and provides a domain-specific language for
defining the model for the problem. It then generates high performance code for a particle
filter for that specific model. In contrast, pyParticleEst is more focused on providing an
easily extensible foundation where it is easy to introduce new algorithms and model types, a
generality which comes at some expense of run-time performance making the two softwares
suitable for different use cases. It also has more focus on different smoothing algorithms and
filter variants.
There is also a lot of example code that can be found on the Internet, but nothing in the form
of a complete library with a clear separation between model details and algorithm implemen-
tation. This separation is what gives the software presented in this article its usability as a
general tool, not only as a simple template for writing a problem specific implementation.
This also allows for easy comparison of different algorithms for the same problem.

3. Modeling
While the software framework supports more general models, this paper focuses on discrete
time stace-space models of the form

xt+1 = f(xt, vt), (1a)
yt = h(xt, et), (1b)

where xt are the state variables, vt is the process noise and yt is a measurement of the state
affected by the measurement noise et. The subscript t is the time index. Both v and e are
random variables according to some known distributions, f and h are both arbitrary functions.
If f, h are affine and v, e are Gaussian random variables the system is what is commonly
referred to as a linear Gaussian state space system (LGSS) and the Kalman filter is both the
best linear unbiased estimator (Arulampalam, Maskell, Gordon, and Clapp 2002) and the
maximum likelihood estimator.
Due to the scaling properties of the particle filter and smoother, which are discussed in
more detail in Section 4.1, it is highly desirable to identify any parts of the models that
conditioned on the other states would be linear Gaussian. The state-space can then be
partitioned as x> =

(
ξ>z>

)
, where z are the conditionally linear Gaussian states and ξ are

the rest. Extending the model above to explicitly indicate this gives

ξt+1 =
(
fnξ (ξt, vnξ)
f lξ(ξt)

)
+
(

0
Aξ(ξt)

)
zt +

(
0
vlξ

)
zt+1 = fz(ξt) +Az(ξt)zt + vz

yt =
(
hξ(ξt, en)
hz(ξt)

)
+
(

0
C(ξt)

)
zt +

(
0
el

)
vlξ ∼ N(0, Qξ(ξt)), vz ∼ N(0, Qz(ξt)), el ∼ N(0, R(ξt)).

(2)

As can be seen all relations in (2) involving z are linear with additive Gaussian noise when
conditioned on ξ. Here the process noise for the non-linear states vξ is split in two parts: vlξ

4 pyParticleEst: Particle-Based Estimation Methods in Python

appears linearly and must be Gaussian whereas vnξ can be from any distribution; this holds
true similarly for el and en. This is referred to as a Rao-Blackwellized model.
If we remove the coupling from z to ξ we get what is referred to as a hierarchical model

ξt+1 = fξ(ξt, vξ)
zt+1 = fz(ξt) +A(ξt)zt + vz

yt =
(
hξ(ξt, en)
hz(ξt)

)
+
(

0
C(ξt)

)
zt +

(
0
el

)
vz ∼ N(0, Qz(ξt)), el ∼ N(0, R(ξt)).

(3)

Another interesting class are mixed linear/nonlinear Gaussian (MLNLG) models

ξt+1 = fξ(ξt) +Aξ(ξt)zk + vξ

zt+1 = fz(ξt) +Az(ξt)zt + vz

yt = h(ξt) + C(ξt)zt + e

e ∼ N(0, R(ξt))[
vξ
vz

]
∼ N

([
0
0

]
,

[
Qξ(ξt) Qξz(ξt)
Qξz(ξt)> Qz(ξt)

]) (4)

The MLNLG model class (4) allows for non-linear dynamics but with the restrictions that all
noise must enter additively and be Gaussian.

4. Algorithms
This section gives an overview of some common particle-based algorithms; they are subdivided
into those used for filtering, smoothing and static parameter estimation. For each algorithm
it is identified which operations need to be performed on the model.

4.1. Filtering

This subsection gives a quick summary of the principles of the particle filter, for a thorough
introduction see for example Doucet et al. (2000).
The basic concept of a particle filter is to approximate the probability density function (PDF)
for the states of the system by a number of point estimates

p(xt|y1:t) ≈
N∑
i=1

w(i)δ(xt − x(i)
t). (5)

Each of the N particles in (5) consists of a state, x(i)
t , and a corresponding weight, w(i)

t ,
representing the likelihood of that particular particle. Each estimate is propagated forward
in time using (1a) by sampling vt from the corresponding noise distribution, providing an
approximation of p(xt+1|yt, . . . , y1). The measurement yt+1 is incorporated by updating the
weights of each particle with respect to how well it predicted the new measurement, giving an
approximation of p(xt+1|yt+1, yt, . . . , y1). This procedure is iterated forward in time providing
a filtered estimate of the state x.

Journal of Statistical Software 5

Algorithm 1: Standard particle filter algorithm. This is typically improved by not perform-
ing the resampling step at every iteration, but only when some prespecified criterion on the
weights is fulfilled.
Draw x

(i)
0 from p(x0), i ∈ 1..N .

Set w(i)
0 = 1

N , i ∈ 1..N .
for t← 0 to T − 1 do

for i← 1 to N do
Sample x(i)

t+1 from p(xt+1|x(i)
t).

Set w(i)
t+1 = w

(i)
t p(yt+1|x(i)

t+1).

Normalize weights, ŵ(i) = w
(i)
t+1/

∑
j w

(j)
t+1.

for i← 1 to N do
Sample x(i)

t+1 ∼ p(xt+1|yt+1) by drawing new particles from the categorical
distribution defined by (x(k)

t+1, ŵ
(k)), k ∈ 1..N .

Set w(i)
t+1 = 1

N , i ∈ 1..N .

A drawback with this approach is that typically all but one of the weights, w(i)
t , eventually

go to zero resulting in a poor approximation of the true PDF. This is referred to as particle
degeneracy and is commonly solved by a process called resampling (Arulampalam et al. 2002).
The idea behind resampling is that at each time step, or when some criterion is fulfilled, a
new collection of particles with all weights equal (w(i) = 1

N , ∀i) is created by randomly
drawing particles, with replacement, according to their weights. This focuses the particle
approximation to the most likely regions of the PDF, not wasting samples in regions with low
probability. This method is summarized in Algorithm 1.
Another issue with the standard particle filter is that the number of particles needed in
the filter typically grows exponentially with the dimension of the state-space as discussed in
Beskos, Crisan, and Jasra (2014) and Rebeschini and van Handel (2015), where they also
present methods to avoid this issue. Another popular approach is to use Rao-Blackwellized
methods when there exists a conditionally linear Gaussian substructure. Using the partition-
ing from model (2) this provides a better approximation of the underlying PDF for a given
number of particles by storing the sufficient statistics for the z-states instead of sampling
from the Gaussian distributions. For an introduction to the Rao-Blackwellized particle filter
(RBPF) see Schön, Gustafsson, and Nordlund (2005).
A variant of the particle filter is the so called auxiliary particle filter (APF), which attempts
to focus the particles to regions of high interest by looking one step ahead by evaluating
p(yt+1|xt) and using this to resample the particles before the propagation stage. Since there
is typically no analytic expression for this density it is often approximated by assuming that
the next state will be the predicted mean: p(yt+1|xt+1 = x̄t+1|t).
Table 1 summarizes the methods needed for the two different filters.

4.2. Smoothing

Conceptually the particle filter provides a smoothed estimate if the trajectory for each particle

6 pyParticleEst: Particle-Based Estimation Methods in Python

Operations Methods
Sample from p(x1) PF, APF
Sample from p(xt+1|xt) PF, APF
Evaluate p(yt|xt) PF, APF
Evaluate* p(yt+1|xt) APF

Table 1: Operations that need to be performed on the model for the different filter algorithms
(* typically only approximately).

0 10 20 30 40 50

t

12

10

8

6

4

2

0

2

4

6

x

Figure 1: Example realization of a model of a simple integrator. The solid red line is the
true trajectory. The black points are the filtered particle estimates forward in time, the
blue dashed lines are the smoothed trajectories that result from using the particles’ ancestral
paths. As can be seen this is severely degenerate for small values of t, whereas it works well
for t close to the end of the dataset.

is saved and not just the estimate for the current time step. The full trajectory weights are
then given by the corresponding particle weights for the last time step. In practice this does
not work due to the resampling step which typically results in all particles eventually sharing
a common ancestor, thus providing a very poor approximation of the smoothed PDF for
t� T . An example of this is shown in Figure 1.
Forward filter backward simulators (FFBSi) are a class of methods that reuse the point esti-
mates for xt|t generated by the particle filter and attempt to improve the particle diversity
by drawing backward trajectories that are not restricted to follow the same paths as those
generated by the filter. This is accomplished by selecting the ancestor of each particle with
probability ωt|T ∼ ωt|tp(xt+1|xt). Evaluating all the weights ωt|T gives a time complexity
O(MN) where N is the number of forward particles and M the number of backward trajec-
tories to be generated.

Journal of Statistical Software 7

Operations Methods
Evaluate p(xt+1|xt) FFBSi, FFBSi-RS, FFBSi-RSES,

FFBSi-RSAS, MH-FFBSi, MH-IPS,
MHBP

Evaluate argmaxxt+1 p(xt+1|xt) FFBSi-RS, FFBSi-RSES, FFBSi-RSAS
Sample from q(xt|xt−1, xt+1, yt) MH-IPS, MHBP
Evaluate q(xt|xt−1, xt+1, yt) MH-IPS, MHBP

Table 2: Operations that need to be performed on the model for the different smoothing
algorithms. They all to some extent rely on first running a forward filter, and thus in addition
require the operations needed for the filter. Here q is a proposal density, a simple option is
to choose q = p(xt+1|xt), as this does not require any further operations. The ideal choice
would be q = p(xt|xt+1, xt−1, yt), but it is typically not possible to directly sample from this
density.

A number of improved algorithms have been proposed that improve this by removing the need
to evaluate all the weights. One approach is to use rejection sampling (FFBSi-RS; Lindsten
and Schön 2013); this however does not guarantee a finite end-time for the algorithm, and
typically spends a lot of the time on just a few trajectories. This is handled by introducing
early stopping (FFBSi-RSES) which falls back to evaluating the full weights for a given time
step after a predetermined number of failed attempts at rejection sampling. Determining
this number ahead of time can be difficult, and the method is further improved by introduc-
ing adaptive stopping (FFBSi-RSAS; Taghavi, Lindsten, Svensson, and Schön 2013) which
estimates the probability of successfully applying rejection sampling based on the previous
successes and compares that with the cost of evaluating all the weights.
Another approach is to use Metropolis Hastings (MH-FFBsi; Bunch and Godsill 2013) when
sampling the backward trajectory, then instead of calculating N weights, R iterations of a
Metropolis-Hastings sampler are used.
All the methods mentioned so far only reuse the point estimates from the forward filter,
there also exists methods that attempt to create new samples to better approximate the true
posterior. One such method is the Metropolis-Hastings backward proposer (MHBP; Bunch
and Godsill 2013), another is the Metropolis-Hastings improved particle smoother (MH-IPS;
Dubarry and Douc 2011).
MHBP starts with the degenerate trajectories from the filter and while traversing them back-
wards proposes new samples by running R iterations of a Metropolis-Hastings sampler tar-
geting p(xt|xt−1, xt+1, yt) for each time step.
MH-IPS can be combined with the output from any of the other smoothers to give an improved
estimate. It performs R iterations where each iteration traverses the full backward trajectory
and for each time step runs a single iteration of a Metropolis-Hastings sampler targeting
p(xt|xt−1, xt+1, yt).
Table 2 lists the operations needed for the different smoothing methods. For a more detailed
introduction to particle smoothing see for example Briers et al. (2010), Lindsten and Schön
(2013), and for an extension to the Rao-Blackwellized case see Lindsten and Schön (2011).

4.3. Parameter estimation

8 pyParticleEst: Particle-Based Estimation Methods in Python

Using a standard particle filter or smoother it is not possible to estimate stationary parame-
ters, θ, due to particle degeneracy. A common work-around for this is to include θ in the state
vector and model the parameters as a random walk process with a small noise covariance. A
drawback with this approach is that the parameter is no longer modeled as being constant,
in addition it increases the dimension of the state-space, worsening the problems mentioned
in Section 4.1.

PS+EM

Another way to do parameters estimation is to use an expectation-maximization (EM) algo-
rithm where the expectation part is calculated using an RBPS. For a detailed introduction
to the EM algorithm see Dempster et al. (1977) and for how to combine it with a RBPS for
parameter estimates in model (4) see Lindsten and Schön (2010).
The EM algorithm finds the maximum likelihood solution by alternating between estimating
the Q-function for a given θk and finding the θ that maximizes the log-likelihood for a given
estimate of x1:T , where

Q(θ, θk) = EX|θk
[Lθ(X,Y |Y)] (6a)

θk+1 = argmax
θ

Q(θ, θk) (6b)

Here X is the complete state trajectory (x1, . . . , xN), Y is the collection of all measurements
(y1, . . . , yN) and Lθ is the log-likelihood as a function of the parameters θ. In Lindsten and
Schön (2010) it is shown that the Q-function can be split into three parts as follows

Q(θ, θk) = I1(θ, θk) + I2(θ, θk) + I3(θ, θk) (7a)
I1(θ, θk) = Eθk

[log pθ(x1)|Y] (7b)

I2(θ, θk) =
N−1∑
t=1

Eθk
[log pθ(xt+1|xt)|Y] (7c)

I3(θ, θk) =
N∑
t=1

Eθk
[log pθ(yt|xt)|Y] (7d)

The expectations in (7b)–(7d) are approximated using a (Rao-Blackwellized) particle
smoother, where the state estimates are calculated using the old parameter estimate θk.
This procedure is iterated until the parameter estimates converge. The methods needed for
PS+EM are listed in Table 3.

PMMH

Another method which instead takes a Bayesian approach is particle marginal Metropolis-
Hastings (PMMH; Andrieu, Doucet, and Holenstein 2010) which is one method within the
broader class known as particle Markov chain Monte Carlo (PMCMC) methods. It uses a
particle filter as part of a Metropolis-Hastings sampler targeting the joint density of the state
trajectory and the unknown parameters. This method is not discussed further in this paper.
The methods needed for PMMH are listed in Table 3.

Journal of Statistical Software 9

Operations Methods
Maximize Eθk

[log pθ(x1)|Y] PS+EM
Maximize Eθk

[log pθ(xt+1|xt)|Y] PS+EM
Maximize Eθk

[log pθ(yt|xt)|Y] PS+EM
Evaluate q(θ′|θ) PMMH
Sample from q(θ′|θ) PMMH
Evaluate π(θ) PMMH

Table 3: Operations that need to be performed on the model for the presented parameter
estimation methods. PS-EM relies on running a smoother, and thus in addition requires
the operations needed for the smoother. The maximization is with respect to θ. Typically
the maximization cannot be performed analytically, and then depending on which type of
numerical solver is used, gradients and Hessians might be needed as well. PMMH does not
require a smoothed estimate, it only uses a filter, and thus puts fewer requirements on the
types of models that can be used. Here q is the proposal density for the static parameters, π is
the prior probability density function. PMMH does not need a smoothed trajectory estimate;
the filtered estimate is sufficient.

5. Implementation

5.1. Language

The framework is implemented in Python; for an introduction to the use of Python in scientific
computing see Oliphant (2007). The numerical computations rely on Numpy/Scipy (Jones
et al. 2017) for a fast and efficient implementation. This choice was made as it provides a
free environment, both in the sense that there is no need to pay any licensing fees to use it,
but also that the code is open source and available for a large number of operating systems
and hardware platforms. The pyParticleEst framework is licensed under the LGPL (FSF
1999), which means that it can be freely used and integrated into other products, but any
modifications to the actual pyParticleEst code must be made available. The intent behind
choosing this license is to make the code easily usable and integrable into other software
packages, but still encourage sharing of any improvements made to the library itself. The
software and examples used in this article can be found in Nordh (2013).

5.2. Overview

The fundamental idea in pyParticleEst is to provide algorithms operating on the methods
identified in Section 4, thus effectively separating the algorithm implementation from the
problem description. Additionally, the framework provides an implementation of these meth-
ods for a set of common model classes which can be used for solving a large set of problems.
They can also be extended or specialized by the user by using the inheritance mechanism in
Python. This allows new types of problems to be solved outside the scope of what is cur-
rently implemented, but it also allows creation of classes building on the foundations present
but overriding specific methods for increased performance, without rewriting the whole algo-
rithm from scratch. The author believes this provides a good trade-off between generality,
extensibility and ease of use.
For each new type of problem to be solved the user defines a class extending the most suitable

10 pyParticleEst: Particle-Based Estimation Methods in Python

of the existing base classes, for example the one for MLNLG systems. In this case the user
only has to specify how the matrices and functions in (4) depend on the current estimate of
the nonlinear state. For a more esoteric problem class the end user might have to do more
implementation work and instead derive from a class higher up in the hierarchy, for example
the base class for models that can be partioned into a conditionally linear part, which is
useful when performing Rao-Blackwellized filtering or smoothing. This structure is explained
in more detail in Section 5.3.
The main interface to the framework is through the ‘Simulator’ class. This class is used to
store the model used for the estimation toghether with the input signals and measurements.
It also provides a mechanism for executing the different algorithms on the provided model
and data. It is used by creating an object of the ‘Simulator’ class with input parameters
that specify the problem to be solved as follows

>>> sim = Simulator(model, u, y)

Here model is an object defining all model specific operations, u is an array of all the input
signals and y is an array of all measurements. Once the object has been created it serves as
the interface to the actual algorithm, an example of how it could be used is shown below

>>> sim.simulate(num, nums, res = 0.67, filter = 'PF', smoother = 'mcmc')

Here num is the number of particles used in the forward filter, nums are the number of smoothed
trajectories generated by the smoother, res is the resampling threshhold (expressed as the
ratio of effective particles compared to total number of particles), filter is the filtering
method to be used and finally smoother is the smoothing algorithm to be used.
After calling the method above the results can be access by using some of the following
methods

>>> (est_filt, w_filt) = sim.get_filtered_estimates()
>>> mean_filt = sim.get_filtered_mean()
>>> est_smooth = sim.get_smoothed_estimates()
>>> smean = sim.get_smoothed_mean()

where (est_filt, w_filt) will contain the forward particles for each time step with the
corresponding weights, mean_filt is the weighted mean of all the forward particles for each
time step. est_smooth is an array of all the smoothed trajectories and smean the mean value
for each time step of the smoothed trajectories.

5.3. Software design

The software consists of a number of supporting classes that store the objects and their
relations. The most important of these are shown in Figure 2 and are summarized below.
The particles are stored as raw data, where each model class is responsible for determining
how it is best represented. This data is then sent as one of the parameters to each method
the model class defines. This allows the model to choose an efficient representation allowing
for, e.g., parallell processing of all the particles for each time step. The details of the class
hierarchy and the models for some common cases are explored further in the following sections.

Journal of Statistical Software 11

ParticleApproximation

TrajectoryStepParticleTrajectory

SmoothTrajectory

ParticleApproximation

TrajectoryStep WeightsParticleData

ParticleData

Figure 2: Overview of the classes used for representing particle estimates and their relation.
The grey boxes are classes that are part of the framework, the white boxes represent objects
of problem specific data-types. A box encapsulating another box shows that objects from
that class contains objects from the other class. The illustration is not complete, but serves
as an overview of the overall layout.

PF

RBPSBase

Hierarchical
MLNLGSampled

LTV

ParticleLSB ?
Problem specific classes

Filtering/Smoothing
FFBSi

ParamEst

Base classes

?

RBPFBase

? ?

NLG

FFBSiRSAPF

ParamEstGradientSampleProposer
Parameter Estimation

MLNLGMarginalized

Figure 3: Class hierarchy for models that are used in the framework. The ‘ParticleLSB’
class is presented in Section 6.3 and is an implementation of Example B from Lindsten and
Schön (2011).

The particle data is stored using the ‘ParticleApproximation’ class, which in addition to the
raw data also stores the corresponding weights according to (5). The class ‘TrajectoryStep’
stores the approximation for a given time instant combined with other related data such as
input signals and measurement data. The ‘ParticleTrajectory’ class represents the filtered
estimates of the entire trajectory by storing a collection of ‘TrajectoryStep’s, it also provides
the methods for interfacing with the chosen filtering algorithm.
The ‘SmoothTrajectory’ class takes a ‘ParticleTrajectory’ as input and using a particle
smoother creates a collection of point estimates representing the smoothed trajectory estimate.
In the same manner as for the ‘ParticleApproximation’ class the point estimates here are
of the problem specific data type defined by the model class, but not necessarily of the same
structure as the estimates created by the forward filter. This allows for example methods
where the forward filter is Rao-Blackwellized but the backward smoother samples the full
state vector.

12 pyParticleEst: Particle-Based Estimation Methods in Python

Model class hierarchy

The software utilizes the Python abc module to create a set of abstract base-classes that define
all the needed operations for the algorithms. Figure 3 shows the complete class hierarchy for
the algorithm interfaces and model types currently implemented.

• ‘PF’ defines the basic operations needed for performing particle filtering:

– create_initial_estimate: Create particle estimate of initial state.
– sample_process_noise: Sample vt from the process noise distribution.
– update: Calculate xt+1 given xt using the supplied noise vt.
– measure: Evaluate log p(yt|xt|t−1) and for the RBPF case update the sufficient

statistics for the z-states.

• ‘APF’ extends ‘PF’ with extra methods needed for the auxiliary particle filter:

– eval_1st_stage_weights: Evaluate (approximately) the so called first stage weights,
p(yt+1|xt).

• ‘FFBSi’ defines the basic operations needed for performing particle smoothing:

– logp_xnext_full: Evaluate log p(xt+1:T |x1:t, y1:T). This method normally just
calls logp_xnext, but the distinction is needed for non-Markovian models.

– logp_xnext: Evaluate log p(xt+1|xt).
– sample_smooth: For normal models the default implementation can be used which

just copies the estimate from the filter, but for, e.g., Rao-Blackwellized models
additional computations are made in this method.

• ‘FFBSiRS’ extends ‘FFBSi’:

– next_pdf_max: Calculate maximum of log p(xt+1|xt).

• ‘SampleProposer’ defines the basic operations needed for proposing new samples, used
in the MHBP and MH-IPS algorithms:

– propose_smooth: Propose new sample from q(xt|xt+1, xt−1, yt).
– logp_proposal: Evaluate logq(xt|xt+1, xt−1, yt).

• ‘ParamEstInterface’ defines the basic operations needed for performing parameter
estimation using the EM algorithm presented in Section 4.3:

– set_params: Set θk estimate.
– eval_logp_x0: Evaluate log p(x1).
– eval_logp_xnext: Evaluate log p(xt+1|xt).
– eval_logp_y: Evaluate log p(yt|xt) .

• ‘ParamEstInterface_GradientSearch’ extends ‘ParamEstInterface’ regarding its op-
erations to include those needed when using analytic derivatives in the maximization
step:

Journal of Statistical Software 13

– eval_logp_x0_val_grad: Evaluate log p(x1) and its gradient.
– eval_logp_xnext_val_grad: Evaluate log p(xt+1|xt) and its gradient.
– eval_logp_y_val_grad: Evaluate log p(yt|xt) and its gradient.

Base classes

To complement the abstract base classes from the previous section the software includes a
number of base classes to help implement the required functions.

• ‘RBPFBase’ provides an implementation handling the Rao-Blackwellized case automat-
ically by defining a new set of simpler functions that are required from the derived
class.

• ‘RBPSBase’ extends ‘RBPFBase’ to provide smoothing for Rao-Blackwellized models.

Model classes

These classes further specialize those from the previous sections.

• ‘LTV’ handles linear time-varying systems, the derived class only needs to provide call-
backs for how the system matrices depend on time.

• ‘NLG’ allows for nonlinear dynamics with additive Gaussian noise.

• ‘MixedNLGaussianSampled’ provides support for models of type (4) using an algorithm
which samples the linear states in the backward simulation step. The sufficient statistics
for the linear states are later recovered in a post processing step. See Lindsten and Schön
(2011) for details. The derived class needs to specify how the linear and non-linear
dynamics depend on time and the current estimate of ξ.

• ‘MixedNLGaussianMarginalized’ provides an implementation for models of type (4)
that fully marginalizes the linear Gaussian states, resulting in a non-Markovian smooth-
ing problem. See Lindsten, Bunch, Godsill, and Schön (2013) for details. The derived
class needs to specify how the linear and non-linear dynamics depend on time and the
current estimate of ξ. This implementation requires that Qξz = 0.

• ‘Hierarchial’ provides a structure useful for implementing models of type (3) using
sampling of the linear states in the backward simulation step. The sufficient statistics
for the linear states are later recovered in a post processing step.

For the LTV and MLNLG classes the parameters estimation interfaces, ‘ParamEstInterface’
and ‘ParamEstInterface_GradientSearch’, are implemented so that the end user can specify
the element-wise derivative for the matrices instead of directly calculating gradients of (7b)–
(7d). Typically there is some additional structure to the problem, and it is then beneficial
to override this generic implementation with a specialized one to reduce the computational
effort by utilizing that structure.

14 pyParticleEst: Particle-Based Estimation Methods in Python

Algorithm 2: (Rao-Blackwellized) particle filter.
for t← 0 to T − 1 do

for i← 1 to N do
Predict xt+1|t ← xt|t using Algorithm 3.
Update xt+1|t+1 ← xt+1|t, yt+1 using Algorithm 4.
if Neff < Ntreshold then

Resample using Algorithm 5.

Algorithm 3: RBPF Predict; steps 4–6 is only needed for the Rao-Blackwellized case.
1. Update system dynamics, f(xt, vt), based on ξt.
2. Sample process noise, vt.
3. Calculate ξt+1|t using sampled vt.
4. Use knowledge of ξt+1|t to update estimate of zt.
5. Update linear part of system dynamics with knowledge of ξt+1|t.
6. Predict zt+1|t (conditioned on ξt+1|t).

Algorithm 4: RBPF Measure; step 2 is only needed for the Rao-Blackwellized case.
1. Update system dynamics, h(xt, et), based on ξt+1|t.
2. Calculate zt+1|t+1 using yt+1.
3. Update weights w(i)

t+1|t+1 = w
(i)
t+1|tp(yt+1|xt+1|t).

Algorithm 5: The resampling algorithm used in the framework. Different resampling algo-
rithms have been proposed in the literature, this one has the property that a particle, x(i),
with w(i) ≥ 1

N is guaranteed to survive the resampling step.
ω̃c = cumsum(ω)
ωc = ω̃c/

∑
ω̃c

u = ([0 : N − 1] + U(0, 1))/N
for k ← 1 to N do

x(k) = x(i), i = argmin
j

ω(j)
c > u(k)

5.4. Algorithms

RBPF

The particle filter implemented is summarized with pseudo-code in Algorithm 2. The predict
step is detailed in Algorithm 3 and the measurement step in Algorithm 4. Neff is the effec-
tive number of particles as defined in Arulampalam et al. (2002) and is used to trigger the
resampling step when a certain predefined threshold is crossed.

RBPS

The main RBPS algorithm implemented in pyParticleEst is of the type JBS-RBPS with

Journal of Statistical Software 15

Algorithm 6: (Rao-Blackwellized) particle smoother.
(0. Run RBPF generating filtered estimates.)
Sample index i with probability w(i)

T |T .
Add x(i)

T |T to the backward trajectory.
for t← T − 1 to 0 do

Sample z̃t+1 from z
(i)
t+1|T .

Sample index k with probability w(k)
t|t p(ξ

(i)
t+1, z̃t+1|x(k)

t|t).
Update sufficent statistics of z(k)

t conditioned on (ξt+1, z̃t+1).
Append x(k)

t|T to trajectory.
i← k

Calculate dynamics for Rao-Blackwellized states conditioned on the non-linear trajectory
ξ0:T .
Run constrained RTS smoothing to recover sufficient statistics for z0:T .

Algorithm 7: Fully marginalized particle smoother for MLNLG (4).
(0. Run RBPF generating filtered estimates.)
Sample index i with probability w(i)

T |T .
Add ξ(i)

T |T to the backward trajectory.
for t← T − 1 to 0 do

Sample index k with probability w(k)
t|t p(ξ

(i)
t+1:T , yt+1:T |ξ(k)

t|t , z
(k)
t|t , Pz

(k)
t|t).

Append ξ(k)
t|T to trajectory.

i← k
Calculate dynamics for Rao-Blackwellized states conditioned on the non-linear trajectory
ξ0:T .
Run constrained RTS smoothing to recover sufficient statistics for z0:T .

constrained RTS smoothing from Lindsten et al. (2013). It simulatesM backward trajectories
using filtered estimates. During the backward simulation step it samples the linear/Gaussian
states, but later recovers the sufficient statistics, i.e., the mean and covariance, by running
a constrained RTS smoother (Rauch, Striebel, and Tung 1965) conditioned on the nonlinear
part of the trajectory. It can be combined with any of the backward simulation methods, for
example FFBSi-RS or MH-FFBSi. The method is summarized in Algorithm 6.
Additionally for MLNLG models (4) there is another RBPS algorithm implemented which
fully marginalizes the linear states, it is an implementation of the method described in Lind-
sten et al. (2013). This is the statistically correct way to solve the problem, and it gives better
accuracy, but it also requires more computations resulting in a longer execution time. Due to
the difficulty in evaluating argmaxxt+1:T p(xt+1:T , yt+1:T |xt|t, zt|t, Pt|t) rejection sampling is not
implemented, it is anyhow unlikely to perform well due the large dimension of target variables
(since they are full trajectories, and no longer single time instances). The implementation is
also limited to cases where the cross covariance (Qξz) between the nonlinear and linear states
is zero. This method is summarized in Algorithm 7.

16 pyParticleEst: Particle-Based Estimation Methods in Python

Algorithm 8: RBPS+EM algorithm.
(0. Initial parameter guess, θ0.)
for i← 1 to max_iter do

Estimate p(x1:T |y1:T , θi−1) using Algorithm 6 (RBPS).
Approximate Q(θ, θi−1) using estimated trajetory.
Calculate θi = argmax

θ
Q(θ, θi−1).

Parameter estimation

Parameter estimation is accomplished using an EM algorithm as presented in Section 4.3.
It requires that the derived particle class implements ‘ParamEstInterface’. The method is
summarized in Algorithm 8. Using scipy.optimize.minimize the maximization step in (6)
is performed with the l-bfgs-b method (Zhu, Byrd, Lu, and Nocedal 1997), which utilizes
the analytic Jacobian when present.

6. Example models

6.1. Integrator

A trivial example consisting of a linear Gaussian system

xt+1 = xt + wt,

yt = xt + et, x1 ∼ N(0, 1),
wt ∼ N(0, 1), et ∼ N(0, 1).

This model could be implemented using either the ‘LTV’ or ‘NLG’ model classes, but for this
example it was decided to directly implement the required top level interfaces to illustrate
how they work. In this example only the methods needed for filtering are implemented. To
use smoothing the logp_xnext method would be needed as well. An example realization
using this model was shown in Figure 1.

class Integrator(interfaces.ParticleFiltering):
def __init__(self, P0, Q, R):

self.P0 = numpy.copy(P0)
self.Q = numpy.copy(Q)
self.R = numpy.copy(R)

def create_initial_estimate(self, N):
return numpy.random.normal(0.0, self.P0, (N,)

).reshape((-1, 1))

def sample_process_noise(self, particles, u, t):
N = len(particles)
return numpy.random.normal(0.0, self.Q, (N,)

Journal of Statistical Software 17

).reshape((-1, 1))

def update(self, particles, u, t, noise):
particles += noise

def measure(self, particles, y, t):
logyprob = numpy.empty(len(particles))
for k in range(len(particles)):

logyprob[k] = kalman.lognormpdf(particles[k, 0] - y,
self.R)

return logyprob

For the above code lines one can note:

• The first numpy.random.normal call samples the initial particles from a zero-mean
Gaussian distribution with variance P0.

• The second numpy.random.normal call samples the process noise at time t.

• The update call propagates the estimates forward in time using the noise previously
sampled.

• The measure call calculates the log-probability for the measurement yt for particles x(i)
t .

6.2. Standard nonlinear model

This is a model that is commonly used as an example when demonstrating new algorithms,
see, e.g., Lindsten and Schön (2013), Arulampalam et al. (2002) and Briers et al. (2010).

xt+1 = 0.5xt + 25 xt
1 + x2

t

+ 8 cos 1.2t+ wt,

yt = 0.05x2
t + et, x1 ∼ N(0, 5),

wt ∼ N(0, 10), et ∼ N(0, 1).

For the chosen noise covariances the filtering distribution is typically multi-modal whereas
the smoothing distribution is mostly unimodal. Figure 4 shows an example realization from
this model, the smoothed estimates have been calculated using backward simulation with
rejection sampling using adapative stopping (FFBSi-RSAS).
The corresponding model definition exploits that this is a model of the type nonlinear Gaus-
sian, and thus inherits the base class for that model type.

class StdNonLin(nlg.NonlinearGaussianInitialGaussian):
def __init__(self, P0, Q, R):

super(StdNonLin, self).__init__(Px0=P0, Q=Q, R=R)

def calc_g(self, particles, t):
return 0.05 * particles ** 2

18 pyParticleEst: Particle-Based Estimation Methods in Python

0 5 10 15 20 25 30 35 40

t

20

15

10

5

0

5

10

15

20

25
x

Figure 4: Example realization using the standard nonlinear model. The solid red line is
the true trajectory. The black points are the filtered particle estimates forward in time, the
green dashed line is the mean value of the filtered estimates, the blue dashed line is the
mean value of the smoothed trajectories. The smoothing was performed using the BSi RSAS
algorithm. Notice that the filtered mean does not follow the true state trajectory due to the
multi-modality of the distribution, whereas the smoothed estimate does not suffer from this
problem.

def calc_f(self, particles, u, t):
return (0.5 * particles +

25.0 * particles / (1 + particles ** 2) +
8 * math.cos(1.2 * t))

For the above code lines one can note:

• In this example the covariance matrices are time-invariant and can thus be set in the
constructor. This also allows the base class to later perform optimization where the
fact that the matrices are identical for all particles can be exploited (see line 3 in the
code chunk above).

• calc_g utilizes that all the particles are stored in an array to effectively evaluate gt(x(i)
t)

for all particles in a single method call.

• calc_f evaluates ft(x(i)
t) in a similar fashion as above.

Journal of Statistical Software 19

6.3. Lindsten and Schön, Model B

This model was introduced in Lindsten and Schön (2011) as an extension to the standard
nonlinear model from Section 6.2. It replaces the constant 25 by the output of a fourth order
linear system.

ξt+1 = 0.5ξt + θt
ξt

1 + ξ2
t

+ 8 cos 1.2t+ vξ,t

zt+1 =


3 −1.691 0.849 −0.3201
2 0 0 0
0 1 0 0
0 0 0.5 0

 zt + vz,t

yt = 0.05ξ2
t + et

θt = 25 +
(

0 0.04 0.044 0.008
)
zt

ξ0 = 0, z0 =
(

0 0 0 0
)>

(8)

Since this model conforms to the class from (4) it was implemented using the MLNLG base
class. Doing so it only requires the user to define the functions and matrices as a function of
the current state. The corresponding source code is listed below.

class ParticleLSB(mlnlg.MixedNLGaussianMarginalizedInitialGaussian):
def __init__(self):

xi0 = numpy.zeros((1, 1))
z0 = numpy.zeros((4, 1))
P0 = numpy.zeros((4, 4))

Az = numpy.array([[3.0, -1.691, 0.849, -0.3201],
[2.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 0.5, 0.0]])

Qxi = numpy.diag([0.005])
Qz = numpy.diag([0.01, 0.01, 0.01, 0.01])
R = numpy.diag([0.1,])

super(ParticleLSB, self).__init__(xi0=xi0, z0=z0,
Pz0=P0, Az=Az,
R=R, Qxi=Qxi,
Qz=Qz,)

def get_nonlin_pred_dynamics(self, particles, u, t):
tmp = numpy.vstack(particles)[:, numpy.newaxis, :]
xi = tmp[:, :, 0]

Axi = (xi / (1 + xi ** 2)).dot(C_theta)
Axi = Axi[:, numpy.newaxis, :]

20 pyParticleEst: Particle-Based Estimation Methods in Python

fxi = (0.5 * xi +
25 * xi / (1 + xi ** 2) +
8 * math.cos(1.2 * t))

fxi = fxi[:, numpy.newaxis, :]

return (Axi, fxi, None)

def get_meas_dynamics(self, particles, y, t):
if (y != None):

y = numpy.asarray(y).reshape((-1, 1)),
tmp = 0.05 * particles[:, 0] ** 2
h = tmp[:, numpy.newaxis, numpy.newaxis]

return (y, None, h, None)

For the above code lines one can note:

• In the constructor all the time-invariant parts of the model are set (line 2 in the code
chunk).

• The function get_nonlin_pred_dynamics calculates Aξ(ξ(i)
t), fξ(ξ(i)

t) and Qξ(ξ(i)
t).

• The array Axi is resized to match the expected format (The first dimension indices the
particles, each entry being a two-dimensional matrix).

• Function get_nonlin_pred_dynamics returns a tuple containing Aξ, fξ and Qξ arrays.
Returning None for any element in the tuple indicates that the time-invariant values set
in the constructor should be used.

• The function get_meas_dynamics works in the same way as above, but instead cal-
culates h(ξt), C(ξt) and R(ξt). The first value in the returned tuple should be the
(potentially preprocessed) measurement.

7. Results
The aim of this section is to demonstrate that the implementation in pyParticleEst is correct
by reproducing results previously published elsewhere.

7.1. Rao-Blackwellized particle filtering/smoothing

Here Example B from Lindsten and Schön (2011) is reproduced, it uses the model definition
from Section 6.3 the marginalized base class for MLNLG models. The results are shown in
Table 4 which also contains the corresponding values from Lindsten and Schön (2011). The
values were calculated by running the RBPS algorithm on 1000 random realizations of model
(8) using 300 particles and 50 smoothed trajectories. The smoothed trajectories were averaged
to give a point estimate for each time step. The average was used to calculated the RMSE for

Journal of Statistical Software 21

RMSE ξ θ

pyParticleEst 0.275 0.545
Lindsten & Schön 0.317 0.585

Table 4: Root mean squared error (RMSE) values for ξ and θ from model (8), compared
with those presented in Lindsten and Schön (2011).

True value Lindsten & Schön pyParticleEst pyParticleEst*
θ1 1 0.966± 0.163 0.981± 0.254 1.006± 0.091
θ2 1 1.053± 0.163 0.947± 0.158 0.984± 0.079
θ3 0.3 0.295± 0.094 0.338± 0.308 0.271± 0.112
θ4 0.968 0.967± 0.015 0.969± 0.032 0.962± 0.017
θ5 0.315 0.309± 0.057 0.263± 0.134 0.312± 0.019

Table 5: Results presented by Lindsten and Schön in Lindsten and Schön (2010) compared
to results calculated using pyParticleEst. The column marked with * are the statistics when
excluding those realizations where the EM algorithm was stuck in local maxima for θ5.

a single realization. The values in this article were computed using the marginalized ‘MLNLG’
base class, which uses the smoothing algorithm presented in Lindsten et al. (2013). This is a
later improvement to the algorithm used in the original article, which explains why the values
presented here are better than those in Lindsten and Schön (2011). The mean RMSE is also
highly dependent on the particular realizations, 89.8% of the realizations have a lower RMSE
than the average, whereas 3.3% have an RMSE greater than 1.0. This also makes a direct
comparison of the values problematic since the exact amount of outliers in the dataset will
have a significant impact om the average RMSE.

7.2. Parameter estimation in MLNLG

In Lindsten and Schön (2010) the following model is introduced

ξt+1 = θ1 arctan ξt +
(
θ2 0 0

)
zt + vξ,t,

zt+1 =

 1 θ3 0
0 θ4 cos θ5 −θ4 sin θ5
0 θ4 sin θ5 θ4 cos θ5

 zt + vz,t,

yt =
(

0.1ξ2
t sgn(ξt)

0

)
+
(

0 0 0
1 −1 1

)
zt + et.

(9)

The task presented is to identify the unknown parameters, θi. Duplicating the conditions as
presented in the original article, but running the algorithm on 160 random data realizations
instead of 70, gives the results presented in Table 5. The authors of Lindsten and Schön
(2010) do not present the number of smoothed trajectories used in their implementation, for
the results in this article 5 smoothed trajectories were used.
Looking at the histogram of the estimate of θ5 shown in Figure 5 it is clear that there are
several local maxima. Of the 160 realizations 21 converged to a local maximum for θ5 thus
giving an incorrect solution. This is typically handled by solving the optimization problem

22 pyParticleEst: Particle-Based Estimation Methods in Python

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

30

35

40

45

Figure 5: Histogram for θ5. The peaks around −0.3 and 0 are likely due to the EM algorithm
converging to local maxima. Since θ5 enters the model through sin θ5 and cos θ5, with cos
being a symmetric function the peak around −0.3 could intuitively be expected.

using several different initial conditions and choosing the one with the maximum likelihood.
However since that does not appear to have been performed in Lindsten and Schön (2010)
it is problematic to compare the values obtained, since they will be highly dependent on
how many of the realizations that converged to local maxima. Therefore Table 5 contains a
second column named pyParticleEst* which presents the same statistics but excluding those
realizations where θ5 converged to a local maxima.

8. Conclusion

pyParticleEst lowers the barrier of entry to the field of particle methods, allowing many
problems to be solved with significantly less implementation effort compared to starting from
scratch. This was exemplified by the models presented in Section 6, demonstrating the sig-
nificant reduction in the amount of code needed to be produced by the end user. Its use for
grey-box identification was demonstrated in Section 7.2. The software and examples used in
this article can be found at Nordh (2013).
There is an overhead due to the generic design which by necessity gives lower performance
compared to a specialized implementation in a low-level language. For example a hand opti-
mized C-implementation that fully exploits the structure of a specific problem will always be
faster, but also requires significantly more time and knowledge from the developer. Therefore
the main use-case for this software when it comes to performance critical applications is likely
to be prototyping different models and algorithms that will later be re-implemented in a low-
level language. That implementation can then be validated against the results provided by
the generic algorithms. In many circumstances the execution time might be of little concern
and the performance provided using pyParticleEst will be sufficient. There are projects such

Journal of Statistical Software 23

as Numba (Continuum Analytics 2014), Cython (Behnel, Bradshaw, and Seljebotn 2009) and
PyPy (Rigo 2004) that aim to increase the efficiency of Python code. Cython is already used
for some of the heaviest parts in the framework. By selectively moving more of the compu-
tationally heavy parts of the model base classes to Cython it should be possible to use the
framework directly for many real-time applications.
For the future the plan is to extend the framework to contain more algorithms, for example the
interesting field of PMCMC methods (Moral, Doucet, and Jasra 2006). Another interesting
direction is smoothing of non-Markovian models as examplified by the marginalized smoother
for MLNLG models. This type of smoother could also be combined with Gaussian processes
as shown by Lindsten and Schön (2013). The direction taken by, e.g., Murray (2015) with a
high level language is interesting, and something that might be worthwhile to implement for
automatically generating the Python code describing the model, providing a further level of
abstraction for the end user.

Acknowledgments
The author is a member of the LCCC Linnaeus Center and the eLLIIT Excellence Center at
Lund University. The author would like to thank Professor Bo Bernhardsson, Lund University,
and Professor Thomas Schön, Uppsala University, for the feedback provided on this work.

References

Andrieu C, Doucet A, Holenstein R (2010). “Particle Markov Chain Monte Carlo Methods.”
Journal of the Royal Statistical Society B, 72(3), 269–342. doi:10.1111/j.1467-9868.
2009.00736.x.

Arulampalam MS, Maskell S, Gordon N, Clapp T (2002). “A Tutorial on Particle Filters
for Online Nonlinear/Non-Gaussian Bayesian Tracking.” IEEE Transactions on Signal
Processing, 50(2), 174–188. doi:10.1109/78.978374.

Behnel S, Bradshaw RW, Seljebotn DS (2009). “Cython Tutorial.” In G Varoquaux, S van
der Walt, J Millman (eds.), Proceedings of the 8th Python in Science Conference, pp. 4–14.
Pasadena.

Beskos A, Crisan D, Jasra A (2014). “On the Stability of Sequential Monte Carlo Methods
in High Dimensions.” The Annals of Applied Probability, 24(4), 1396–1445. doi:10.1214/
13-AAP951.

Briers M, Doucet A, Maskell S (2010). “Smoothing Algorithms for State-Space Models.”
The Annals of the Institute of Statistical Mathematics, 62(1), 61–89. doi:10.1007/
s10463-009-0236-2.

Bunch P, Godsill S (2013). “Improved Particle Approximations to the Joint Smoothing
Distribution Using Markov Chain Monte Carlo.” IEEE Transactions on Signal Processing,
61(4), 956–963. doi:10.1109/tsp.2012.2229277.

http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1214/13-AAP951
http://dx.doi.org/10.1214/13-AAP951
http://dx.doi.org/10.1007/s10463-009-0236-2
http://dx.doi.org/10.1007/s10463-009-0236-2
http://dx.doi.org/10.1109/tsp.2012.2229277

24 pyParticleEst: Particle-Based Estimation Methods in Python

Continuum Analytics (2014). Numba, Version 0.14. URL http://numba.pydata.org/
numba-doc/0.14/index.html.

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data
via the EM Algorithm.” Journal of the Royal Statistical Society B, 39(1), 1–38.

Doucet A, Godsill S, Andrieu C (2000). “On Sequential Monte Carlo Sampling Meth-
ods for Bayesian Filtering.” Statistics and Computing, 10(3), 197–208. doi:10.1023/a:
1008935410038.

Dubarry C, Douc R (2011). “Particle Approximation Improvement of the Joint Smoothing
Distribution with On-the-Fly Variance Estimation.” arXiv:1107.5524 [stat.ME], URL http:
//arxiv.org/abs/1107.5524.

FSF (1999). “The GNU Lesser General Public License.” URL http://www.gnu.org/
copyleft/lesser.html.

Jones E, Oliphant T, Peterson P, others (2017). “SciPy: Open Source Scientific Tools for
Python.” URL http://www.scipy.org/.

Julier SJ, Uhlmann JK (2004). “Unscented Filtering and Nonlinear Estimation.” Proceedings
of the IEEE, 92(3), 401–422. doi:10.1109/jproc.2003.823141.

Lindsten F, Bunch P, Godsill SJ, Schön TB (2013). “Rao-Blackwellized Particle Smoothers
for Mixed Linear/Nonlinear State-Space Models.” In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 6288–6292.

Lindsten F, Schön TB (2010). “Identification of Mixed Linear/Nonlinear State-Space Models.”
In 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 6377–6382. doi:
10.1109/cdc.2010.5717191.

Lindsten F, Schön TB (2011). “Rao-Blackwellized Particle Smoothers for Mixed Lin-
ear/Nonlinear State-Space Models.” Technical report, Linköpings Universitet. URL
http://user.it.uu.se/~thosc112/pubpdf/lindstens2011.pdf.

Lindsten F, Schön TB (2013). “Backward Simulation Methods for Monte Carlo Statistical
Inference.” Foundations and Trends in Machine Learning, 6(1), 1–143. doi:10.1561/
2200000045.

Mannesson A (2013). “Joint Pose and Radio Channel Estimation.” Licentiate thesis, Depart-
ment of Automatic Control, Lund University, Sweden.

Montemerlo M, Thrun S, Koller D, Wegbreit B, others (2002). “FastSLAM: A Factored
Solution to the Simultaneous Localization and Mapping Problem.” In AAAI/IAAI, pp.
593–598.

Moral PD, Doucet A, Jasra A (2006). “Sequential Monte Carlo Samplers.” Journal of the
Royal Statistical Society B, 68(3), 411–436. doi:10.1111/j.1467-9868.2006.00553.x.

Murray LM (2015). “Bayesian State-Space Modelling on High-Performance Hardware Using
LibBi.” Journal of Statistical Software, 67(1), 1–36. doi:10.18637/jss.v067.i10.

http://numba.pydata.org/numba-doc/0.14/index.html
http://numba.pydata.org/numba-doc/0.14/index.html
http://dx.doi.org/10.1023/a:1008935410038
http://dx.doi.org/10.1023/a:1008935410038
http://arxiv.org/abs/1107.5524
http://arxiv.org/abs/1107.5524
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.scipy.org/
http://dx.doi.org/10.1109/jproc.2003.823141
http://dx.doi.org/10.1109/cdc.2010.5717191
http://dx.doi.org/10.1109/cdc.2010.5717191
http://user.it.uu.se/~thosc112/pubpdf/lindstens2011.pdf
http://dx.doi.org/10.1561/2200000045
http://dx.doi.org/10.1561/2200000045
http://dx.doi.org/10.1111/j.1467-9868.2006.00553.x
http://dx.doi.org/10.18637/jss.v067.i10

Journal of Statistical Software 25

Nordh J (2013). “pyParticleEst.” URL http://www.control.lth.se/Staff/JerkerNordh/
pyparticleest.html.

Okuma K, Taleghani A, De Freitas N, Little JJ, Lowe DG (2004). “A Boosted Particle
Filter: Multitarget Detection and Tracking.” In Computer Vision – ECCV 2004, pp. 28–
39. Springer-Verlag.

Oliphant TE (2007). “Python for Scientific Computing.” Computing in Science Engineering,
9(3), 10–20. doi:10.1109/mcse.2007.58.

Rauch HE, Striebel CT, Tung F (1965). “Maximum Likelihood Estimates of Linear Dynamic
Systems.” Journal of the American Institute of Aeronautics and Astronautics, 3(8), 1445–
1450. doi:10.2514/3.3166.

Rebeschini P, van Handel R (2015). “Can Local Particle Filters Beat the Curse of Dimension-
ality?” The Annals of Applied Probability, 25(5), 2809–2866. doi:10.1214/14-aap1061.

Rigo A (2004). “Representation-Based Just-in-Time Specialization and the Psyco Prototype
for Python.” In Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation, pp. 15–26. ACM, Verona. doi:10.1145/
1014007.1014010.

Schön T, Gustafsson F, Nordlund PJ (2005). “Marginalized Particle Filters for Mixed Lin-
ear/Nonlinear State-Space Models.” IEEE Transactions on Signal Processing, 53(7), 2279–
2289. doi:10.1109/tsp.2005.849151.

Taghavi E, Lindsten F, Svensson L, Schön TB (2013). “Adaptive Stopping for Fast Particle
Smoothing.” In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2013, pp. 6293–6297. doi:10.1109/icassp.2013.6638876.

Zhu C, Byrd RH, Lu P, Nocedal J (1997). “Algorithm 778: L-BFGS-B: Fortran Subroutines
for Large-Scale Bound-Constrained Optimization.” ACM Transactions on Mathematical
Software, 23(4), 550–560. doi:10.1145/279232.279236.

Affiliation:
Jerker Nordh
Department of Automatic Control
Lund University
Box 118, SE-221 00 Lund, Sweden
E-mail: jerker.nordh@control.lth.se
URL: http://www.control.lth.se/Staff/JerkerNordh/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

June 2017, Volume 78, Issue 3 Submitted: 2014-10-15
doi:10.18637/jss.v078.i03 Accepted: 2015-10-01

http://www.control.lth.se/Staff/JerkerNordh/pyparticleest.html
http://www.control.lth.se/Staff/JerkerNordh/pyparticleest.html
http://dx.doi.org/10.1109/mcse.2007.58
http://dx.doi.org/10.2514/3.3166
http://dx.doi.org/10.1214/14-aap1061
http://dx.doi.org/10.1145/1014007.1014010
http://dx.doi.org/10.1145/1014007.1014010
http://dx.doi.org/10.1109/tsp.2005.849151
http://dx.doi.org/10.1109/icassp.2013.6638876
http://dx.doi.org/10.1145/279232.279236
mailto:jerker.nordh@control.lth.se
http://www.control.lth.se/Staff/JerkerNordh/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v078.i03

	Introduction
	Related software
	Modeling
	Algorithms
	Filtering
	Smoothing
	Parameter estimation
	PS+EM
	PMMH

	Implementation
	Language
	Overview
	Software design
	Model class hierarchy
	Base classes
	Model classes

	Algorithms
	RBPF
	RBPS
	Parameter estimation

	Example models
	Integrator
	Standard nonlinear model
	Lindsten and Schön, Model B

	Results
	Rao-Blackwellized particle filtering/smoothing
	Parameter estimation in MLNLG

	Conclusion

