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Abstract

Let (X,Y ) be a random variable consisting of an observed feature vector X and an
unobserved class label Y ∈ {1, 2, . . . , L} with unknown joint distribution. In addition,
let D be a training data set consisting of n completely observed independent copies of
(X,Y ). Instead of providing point predictors (classifiers) for Y , we compute for each
b ∈ {1, 2, . . . , L} a p value πb(X,D) for the null hypothesis that Y = b, treating Y
temporarily as a fixed parameter, i.e., we construct a prediction region for Y with a certain
confidence. The advantages of this approach over more traditional ones are reviewed
briefly. In principle, any reasonable classifier can be modified to yield nonparametric
p values.

We describe the R package pvclass which computes nonparametric p values for the
potential class memberships of new observations as well as cross-validated p values for
the training data. Additionally, it provides graphical displays and quantitative analyses
of the p values.

Keywords: classification, quantification of uncertainty, R.

1. Introduction
Let (X,Y ) be a pair of random variables, consisting of an observed feature vector X with
values in a feature space X and an unobserved class label Y ∈ Y := {1, 2, . . . , L} with
L ≥ 2 possible values. Our aim is inference about Y with a given confidence, based on X
and certain training data. In the sequel we provide a brief introduction to the particular
paradigm of p values as introduced by Dümbgen, Igl, and Munk (2008). It is closely related
to Neyman-Pearson classification, see Scott (2007), Zhao, Feng, Wang, and Tong (2015) and
the references cited therein.

1.1. From classifiers to p values
For the moment let us assume that the joint distribution of X and Y is known, i.e., the a
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priori probabilities wy := P(Y = y) and the conditional distributions Py := L(X |Y = y)
for all y ∈ Y. Here and throughout, L(·) stands for ‘distribution of’. Further let Py have
density fy > 0 with respect to some measure M on X . In the simplest case, we choose a
classifier Ŷ : X → Y, i.e., a point predictor of Y , and claim that Y = Ŷ (X). However we have
no information about confidence. A Bayesian approach would be to calculate the posterior
distribution of Y given X, i.e., the posterior weights

wy(X) := P(Y = y |X) = wyfy(X)/f(X)

with the density f =
∑
y∈Y wyfy of L(X) with respect to M . In fact, a classifier Ŷ ∗ sat-

isfying Ŷ ∗(X) ∈ arg maxy∈Y wy(X) is optimal in the sense of minimizing the risk R(Ŷ ) :=
P(Ŷ (X) 6= Y ). Furthermore, the posterior weights wy(X) carry additional information such as
P(Ŷ ∗(X) 6= Y |X) = 1−maxy∈Y wy(X). However, this depends very sensitively on the prior
weights wy. In some realistic settings, e.g., case-control studies in biostatistics, estimation of
the conditional distributions Py from training data is possible, but we have no information
about the a priori probabilities wy. Moreover, if some classes y have very small prior weights,
the classifier Ŷ ∗ tends to ignore these, i.e., the class-dependent risk P(Ŷ ∗ 6= Y |Y = y) may
be rather large for some classes y.
To treat all classes impartially, we propose to treat Y temporarily as an unknown fixed
parameter and to provide for each class label θ ∈ Y a p value πθ for the null hypothesis that
Y = θ. That means, πθ : X → [0, 1] satisfies

P(πθ(X) ≤ α |Y = θ) ≤ α for all α ∈ (0, 1). (1)

Given such p values πθ, the set

Ŷα(X) := {θ ∈ Y : πθ(X) > α}

is a (1− α)-prediction region for Y , i.e.,

P(Y ∈ Ŷα(X) |Y = θ) ≥ 1− α for any θ ∈ Y, α ∈ (0, 1).

Thus we can exclude all classes θ /∈ Ŷα(X) with confidence 1 − α. If there is only one θ ∈
Ŷα(X), we have classified X uniquely with confidence 1−α. There exist intrinsically difficult
classification problems, especially in biomedical applications. But even in such situations,
some observations may be classified uniquely with high confidence. And in settings with
L ≥ 3 potential classes, excluding at least one or more classes with a prescribed confidence
might be useful.

1.2. Example

In case of L = 2 classes, the posterior weights may be written as

w1(x) =
(
1 + (w2/w1)(f2/f1)(x)

)−1 and w2(x) = 1− w1(x),

i.e., w2(x) is a strictly increasing function of (f2/f1)(x). Specifically, let X = (0,∞), and
suppose that P1 = Gamma(3, 1), P2 = Gamma(6, 1). Here (f2/f1)(x) = x3/24. Figure 1
illustrates how sensitively the optimal point predictor Y ∗(x) and the posterior weights wy(x)
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Figure 1: Posterior weights w2(x) for different ratios of prior probabilities w2/w1.
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Figure 2: p value functions for class memberships.

depend on the prior ratio w2/w1. It shows w2(x) for w2/w1 = 5, 1, 1/5 from left to right. The
corresponding boundaries of Y ∗(x) are drawn as vertical lines.
Alternatively, we can calculate p values which do not depend on the prior probabilities wy.
Since w2(x) is increasing in x, we define the p values

π1(x) := P(X ≥ x |Y = 1) = 1− F1(x),
π2(x) := P(X ≤ x |Y = 2) = F2(x),
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Figure 3: ROC functions P1(π2 ≤ ·) (left) and P2(π1 ≤ ·) (right).

where Fθ is the distribution function of Pθ. If πθ(X) ≤ α we claim with confidence 1−α that
Y 6= θ. Figure 2 shows the p value functions π1(x) and π2(x). In addition, the three regions
where Ŷ0.1(x) = {1}, {2}, {1, 2} are marked. With other choices of the gamma parameters
there could be a region where Ŷ0.1(x) = ∅.
To assess how well the two classes can be discriminated, it is also of interest to look at the
two receiver operating characteristic (ROC) functions

(0, 1) 3 α 7→ P(π2(X) ≤ α |Y = 1) = P1(π2 ≤ α) = F1(F−1
2 (α)),

(0, 1) 3 α 7→ P(π1(X) ≤ α |Y = 2) = P2(π1 ≤ α) = 1− F2(F−1
1 (1− α)).

These functions are depicted in Figure 3. The first ROC function specifies for each test level α
the probability that class 2 is rejected at this level if class 1 is the true one, i.e. the conditional
probability that 2 6∈ Ŷα(X) given Y = 1. The second ROC curve is analogous with the roles
of classes 1 and 2 interchanged. For a general account of ROC curves in binary classification
and hypothesis testing we refer to Altman and Bland (1994) and Fawcett (2006).

1.3. Optimal p values as benchmark

Suppose that L
(
(fθ/f)(X)

)
is continuous. This is true, for instance, if the Py are non-

degenerate Gaussian distributions on X = Rq and not all identical. Then the Neyman-Pearson
Lemma shows that the p value

π∗θ(x) = Pθ
{
z ∈ X : (fθ/f)(z) ≤ (fθ/f)(x)

}
(2)

is optimal in the sense that it minimizes the risk Rα(πθ) := P(πθ > α) for any α ∈ (0, 1), cf.
Dümbgen et al. (2008). Two other representations of π∗θ(x) are given by

π∗θ(x) = Pθ
{
z ∈ X : wθ(z) ≤ wθ(x)

}
= Pθ

{
z ∈ X : T ∗θ (z) ≥ T ∗θ (x)

}
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with
T ∗θ (x) :=

∑
b6=θ

wb,θfb(x)
fθ(x) and wb,θ :=

(∑
c 6=θ

wc/wb
)−1

.

The first representation shows that π∗θ(x) is a non-decreasing function of wθ(x). The second
representation shows that the prior weight wθ itself is irrelevant for the optimal p value π∗θ .
Only the ratios wc/wb with b, c 6= θ matter. In particular, in case of L = 2 classes, T ∗1 (x) =
(f2/f1)(x) = T ∗2 (x)−1, and the optimal p values do not depend on the prior distribution of Y
at all.

1.4. Training data and nonparametric p values

The joint distribution of (X,Y ) is typically unknown. In this case we compute p values
πθ(X,D) and prediction regions

Ŷα(X,D) := {θ ∈ Y : πθ(X,D) > α}

depending on the current feature vector X as well as on a training data set D consisting
of n completely observed pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn). We assume that (X,Y ) and
(X1, Y1), . . . , (Xn, Yn) are independent with L(Xi |Yi = y) = Py. This setting includes situ-
ations with stratified training data, e.g., case-control studies, as well as i.i.d. training data.
Condition (1) can be extended in two ways:

P(πθ(X,D) ≤ α |Y = θ) ≤ α, (3)
P(πθ(X,D) ≤ α |Y = θ,D) ≤ α+ op(1) as n→∞, (4)

for any θ ∈ Y, α ∈ (0, 1). Condition (3) corresponds to “single use” of the p values in the sense
that we consider how well one future observation (X,Y ) is classified. This condition (3) can be
guaranteed in various settings. Condition (4) corresponds to “multiple use” of the p values in
the sense that the training data D are utilized to classify arbitrarily many future observations.
Thus it is reasonable to condition on the training data D as well as the class label of future
observations. As explained in Dümbgen et al. (2008), Condition (4) can be guaranteed under
moderate assumptions, but the summand op(1) cannot be avoided in general.
For the computation of the p values we condition on the n+ 1 class labels Y1, Y2, . . . , Yn and
Y and treat them as fixed parameters. We write

Nθ := #Gθ and Gθ :=
{
i ∈ {1, . . . , n} : Yi = θ

}
and assume tacitly that all these group sizes Nθ are positive.
To compute a nonparametric p value πθ(X,D) for one particular class label θ, let Tθ(X,D)
be a test statistic which is symmetric in (Xi)i∈Gθ and quantifies the implausibility of ‘Y = θ’.
To test the latter hypothesis we define D(X, θ) to be the training data augmented by (X, θ),
i.e., we assume temporarily that Y = θ. If that is true, the Nθ + 1 random variables X and
Xi, i ∈ Gθ, are exchangeable. Hence the nonparametric p value

πθ(X,D) :=
#
{
i ∈ Gθ : Tθ(Xi,D(X, θ)) ≥ Tθ(X,D(X, θ))

}
+ 1

Nθ + 1 (5)

does satisfy (3).
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By definition, πθ(X,D) ≥ (Nθ+1)−1. Therefore this procedure is only useful, if Nθ+1 ≥ α−1.
For instance if α = 0.05, Nθ should be at least 19.
As to the test statistic Tθ(X,D), there are no restrictions except for the symmetry in (Xi)i∈Gθ .
The optimal p value π∗θ(x) suggests using an estimator for the weighted likelihood ratio
T ∗θ (x) or a strictly increasing transformation thereof. Section 2 contains explicit examples for
Tθ(X,D).
More details on the nonparametric p values, including asymptotic properties such as (4), can
be found in Dümbgen et al. (2008) and Zumbrunnen (2009).

1.5. Cross-validated p values and ROC functions

To visualize the separability of different classes by means of given p values πθ(·, ·), we compute
cross-validated p values

πθ(Xi,Di)

for i = 1, . . . , n with Di denoting the training data without observation (Xi, Yi). That means,
we treat each training observation temporarily as a new observation to be classified with the
remaining data Di. Then we display the cross-validated p values graphically.
We also compute the empirical conditional inclusion probabilities

Îα(b, θ) := #{i ∈ Gb : θ ∈ Ŷα(Xi,Di)}
Nb

and the empirical pattern probabilities

P̂α(b, S) := #{i ∈ Gb : θ ∈ Ŷα(Xi,Di) = S}
Nb

for b, θ ∈ Y and S ⊂ Y. These numbers can be interpreted as estimators of

Iα(b, θ | D) := P(θ ∈ Ŷα(X,D) |Y = b,D)

and
Pα(b, S | D) := P(Ŷα(X,D) = S |Y = b,D),

respectively.
Finally, for training data with large group sizes Nb we also display the L2 empirical ROC
functions as a plot matrix with L rows and L columns. In row b and column θ we depict the
function

(0, 1) 3 α 7→ 1− Îα(b, θ).

For any fixed α (horizontal axis), the value 1− Îα(b, θ) (vertical axis) is an estimator for the
probability that class θ is rejected at this level if class b is the true one, i.e. the conditional
probability that θ 6∈ Ŷα(X,D) given Y = 1 and D. The plots on the diagonal (b = θ) are
essentially straight lines connecting (0, 0) and (1, 1). Deviations are due to the fact that
πθ(·,D) has a discrete distribution.
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1.6. Data example buerk

To illustrate the main functions of pvclass we use the data set buerk provided by pvclass. It
was collected by Prof. Dr. Conny Georg Bürk at the university hospital in Lübeck, Germany,
and contains data of 21556 surgeries in a certain time period (end of the nineties). Besides the
mortality and the morbidity it contains 21 variables describing the condition of the patient
and the surgery.

2. Choices of test statistics
In this section we describe the test statistics Tθ(·, ·) implemented in the package pvclass. As
indicated in Section 5, users could easily incorporate test statistics corresponding to their
own favorite classifiers, see Section 5. From now on we assume that the feature vector X
consists of q numerical covariates. If the raw data involve categorical coveralls, they should
be coded by means of {0, 1}-valued indicator variables as usual. In our procedures the latter
are treated like numerical variables.

2.1. Plug-in estimator for standard model

In the standard model, where Pθ = Nq(µθ,Σ) with mean vectors µθ ∈ Rq and a common
symmetric, nonsingular covariance matrix Σ ∈ Rq×q, the test statistic for the optimal p value
is given by

T ∗θ (x) =
∑
b 6=θ

wb,θ exp
(
(x− µθ,b)>Σ−1(µb − µθ)

)
with µθ,b := 2−1(µθ + µb). To compute the nonparametric p values, we replace the unknown
parameters in T ∗θ with the corresponding estimators. We use Nb/n as a proxy for wb and the
the standard estimator

µ̂θ := 1
Nθ

∑
i∈Gθ

Xi

for µθ. For Σ the package pvclass offers the standard estimator

Σ̂ := 1
n− L

∑
θ∈Y

∑
i∈Gθ

(Xi − µ̂θ)(Xi − µ̂θ)>.

as well as more robust M estimators Σ̂M and Σ̂sym. The reason to use a robust estimator for
Σ is that for the computation of πθ(X,D) we add the new observation X temporarily to the
the class θ and X may be an outlier with respect to the distribution Pθ.
The first M estimator, Σ̂M , is the maximum likelihood estimator in the model where Pθ =
Nq(µθ, cθΣ) with cθ > 0 and Σ ∈ Rq×q symmetric and positive definite with det(Σ) = 1. For
the calculations we use that Σ̂M is the solution of the fixed point equation

Σ = q
∑
b∈Y

Nb

n

Mb

trace(Σ−1Mb)

with Mb :=
∑
j∈Gb(Xj − µ̂b)(Xj − µ̂b)>. The second M estimator, Σ̂sym, is a generalization

for more than one group of the symmetrized version of Tyler’s M estimator, as it is defined
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in Dümbgen (1998). It is the solution of the fixed point equation

Σ = 2q
n− L

∑
b∈Y

1
Nb

∑
j,k∈Gb
j<k

(Xj −Xk)(Xj −Xk)>

(Xj −Xk)>Σ−1(Xj −Xk)
.

(If observations Xi within one group Gb are identical, the previous equation has to be modified
somewhat.) For more details on M estimators we refer to Dümbgen, Pauly, and Schweizer
(2015) and Dümbgen, Nordhausen, and Schuhmacher (2016).

2.2. Nearest neighbors and weighted nearest neighbors

Suppose that d(·, ·) is some metric on X . Let B(x, r) := {y ∈ X : d(x, y) ≤ r}, and for a fixed
positive integer k ≤ n define

r̂k(x) = r̂k(x,D) := min{r ≥ 0: #{i ≤ n : Xi ∈ B(x, r)} ≥ k}.

Further let P̂θ(B) denote the empirical distribution of the points Xi with Yi = θ, i.e.,

P̂θ(B) := 1
Nθ

#{i ∈ Gθ : Xi ∈ B} for B ⊂ X .

Then the k nearest neighbor estimator of wθ(x) is given by

ŵθ(x,D) := ŵθP̂θ(B(x, r̂k(x)))∑
b∈Y

ŵbP̂b(B(x, r̂k(x)))

with certain estimators ŵb = ŵb(D) of wb. In the package pvclass we use ŵb = Nb/n and get

ŵθ(x,D) := #{i ∈ Gθ : d(x,Xi) ≤ r̂k}
#{i ≤ n : d(x,Xi) ≤ r̂k}

=
n∑
i=1

1{d(x,Xi) ≤ r̂k}1{Yi = θ}
/ n∑
i=1

1{d(x,Xi) ≤ r̂k}.

The k nearest neighbor estimator weights all k nearest neighbors of the observation X equally.
However it would be reasonable to assign larger weights to training observations which are
closer to X. pvclass also offers a weighted nearest neighbor estimator for wθ(x). To com-
pute this, we first order the training data according to their distance to X and then assign
descending weights to them. Let W (1) ≥W (2) ≥ · · · ≥W (n) ≥ 0 be given weights and

R̂(x,Xi) := #{j ≤ n : d(x,Xj) ≤ d(x,Xi)},

the rank of training observation Xi according to its distance to x. The weighted nearest
neighbor estimator for wθ(x) is then defined as

ŵθ(x,D) :=
n∑
i=1

W (R̂(x,Xi))1{Yi = θ}
/ n∑
i=1

W (R̂(x,Xi)).

In pvclass either the linear weight function

W (i) = max(1− (i/n)/τ, 0)
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or the exponential weight function

W (i) = (1− i/n)τ

with a tuning parameter τ > 0 can be used. For the linear weight function, τ should be in
(0, 1]. Alternatively, one can specify arbitrary weights with an n dimensional vector W .
Often the different variables of a data set are measured on different scales. To take this into
account, pvclass offers besides the fixed Euclidean distance two data-driven distances which
are scale invariant. The first is the data driven Euclidean distance where we divide each
component of X by its sample standard deviation and then use the Euclidean distance. For
the second we assume that all classes have a common covariance matrix and estimate this
with one of the estimators described in Section 2.1. Then we use the Mahalanobis distance
with respect to the estimated covariance matrix Σ̂, i.e., we use the distance

DΣ̂(x, y) :=
√

(x− y)>Σ̂−1(x− y).

2.3. Penalized multicategory logistic regression

One of our versions of penalized multicategory logistic regression is similar to the regularized
multinomial regression introduced by Friedman, Hastie, and Tibshirani (2010), the other one
is a variation of the procedure of Zhu and Hastie (2004). Let X = Rq and X contain the
values of q − 1 numerical or binary variables and a constant term. Our temporary working
assumption is that

P(Y = y |X = x) = exp(b>y x)
/ L∑
z=1

exp(b>z x) (6)

for unknown parameters b1, b2, . . . , bL ∈ Rq. With estimators b̂z = b̂z(D) to be specified
below, p values are computed with the test statistics

Tθ(x,D) = log
( L∑
z=1

exp(b̂>z x)
)
− b̂>θ x.

The parameter b =
(
b>1 , b

>
2 , . . . , b

>
L

)> ∈ RLq is estimated via penalized maximum likelihood.
We pretend temporarily that the training observations (Xi, Yi) are independent copies of
(X,Y ) satisfying (6). The corresponding negative conditional log-likelihood function, given
the Xi, is given by

Λ(b) :=
n∑
i=1

(
−b>YiXi + log

( L∑
z=1

exp(b>z Xi)
))
.

The parametrization in (6) is not unique, because P (Y = θ |X = x) remains unchanged if we
add one and the same arbitrary vector to all parameters bz. One way to guarantee uniqueness
of the parameter b is to require

L∑
z=1

bz = 0.

More generally, with bz = (bj,z)qj=1 write b[j] :=
(
bj,z
)L
z=1. With 1L := (1, 1, . . . , 1)> ∈ RL, the

previous condition means that
1>Lb[j] = 0 (7)
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for all j = 1, 2, . . . , q. To enforce (7) at least for some j we can add

R0(b) := 2−1
q∑
j=1

σj
(
1>Lb[j]

)2
with numbers σj ≥ 0 to Λ(b). The choice of σj will depend on further regularization terms.

Regularization 1: Penalizing subvectors. For logistic regression there are various good
reasons to regularize the functional Λ or Λ+R0. One is to avoid numerical problems. Another
is to guarantee existence of a minimizer in cases where Λ alone has no minimizer. This happens
if one subgroup {Xi : Yi = bo} is separated from {Xi : Yi 6= bo} by a hyperplane. Moreover,
we want to favor parameter vectors with only few large components. A first way to do this
would be to add the penalty

q∑
j=1

τj‖b[j]‖

with numbers τj ≥ 0 to Λ(b)+R0(b). Here and throughout, ‖·‖ denotes Euclidean norm. This
regularization is motivated by Tibshirani’s (1996) LASSO and similar in spirit to penalized
logistic regression as proposed by Zhu and Hastie (2004). The latter authors used ‖θ[j]‖2

instead of ‖θ[j]‖. Note that ‖b[j] − c 1L‖2 becomes minimal if c equals the mean 1>Lb[j]/L.
Hence minimizing Λ(b) +R0(b) +R1(b) enforces Condition (7) whenever σj + τj > 0 for all j.

Regularization 2: Component-wise penalties. A simple form of regularization, analo-
gous to Tibshirani’s (1996) LASSO is to add the penalty

q∑
j=1

τj

L∑
z=1
|bj,z| =

q∑
j=1

τj‖b[j]‖1

to Λ(b) +R0(b).

Choice of σj and τj. The three versions of penalized logistic regression are available in
pvclass, specified by the parameters pen.method and τo:

pen.method R σj τj
vectors R0 +R1 1 τoSj
simple R0 +R2 1{Sj = 0} τoSj
none R0 1 –

Here Sj is the sample standard deviation (within groups) of the j-th components of Xi.
For results about the existence of unique minimizers we refer to Zumbrunnen (2014).

3. Implementation and main functions
The package pvclass (Zumbrunnen and Dümbgen 2017) was written in the R programming
language (R Core Team 2017) and depends on the recommended package Matrix (Bates and
Mächler 2017).
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The main functions of pvclass compute p values for the potential class memberships of new
observations (pvs) as well as cross-validated p values for training data (cvpvs). With the
function analyze.pvs the package pvclass also provides graphical displays and quantitative
analyses of the p values.
In this section we illustrate the main functions with the data set buerk of Section 1.6. We
use the mortality as class label Y. The original data set contains 21556 observations. To get
a smaller data set, which is easier to handle, we take all the 662 observations with Y = 1 and
with the function sample we choose randomly 3 · 662 observations with Y = 0. For the test
data set we choose 100 observations from each of the classes. So we end up with a training
data set containing 2448 observations, whereof 562 belong to class 1.

R> library("pvclass")
R> data("buerk")
R> set.seed(3)
R> X.raw <- as.matrix(buerk[, 1:21])
R> Y.raw <- buerk[, 22]
R> n0.raw <- sum(1 - Y.raw)
R> n1 <- sum(Y.raw)
R> n0 <- 3 * n1
R> X0 <- X.raw[Y.raw == 0, ]
R> X1 <- X.raw[Y.raw == 1, ]
R> tmpi0 <- sample(1:n0.raw, size = 3 * n1, replace = FALSE)
R> tmpi1 <- sample(1:n1, size = n1, replace = FALSE)
R> Xtrain <- rbind(X0[tmpi0[1:(n0 - 100)], ], X1[1:(n1 - 100), ])
R> Ytrain <- c(rep(0, n0 - 100), rep(1, n1 - 100))
R> Xtest <- rbind(X0[tmpi0[(n0 - 99):n0], ], X1[(n1 - 99):n1, ])
R> Ytest <- c(rep(0, 100), rep(1, 100))

3.1. Classify new observations

The function pvs computes nonparametric p values for the potential class memberships of
new observations. It returns a matrix PV containing the p values. Precisely, for each new
observation NewX[i,] and each class b the number PV[i,b] is a p value for the null hypothesis
that Y [i] = b. With the option method = "method" or using directly on of the functions
pvs.method one can choose one of the test statistics of Section 2. For the following example
we use the weighted nearest neighbor statistic with an exponential weight function and tau
= 10.

R> PV <- pvs(NewX = Xtest, X = Xtrain, Y = Ytrain, method = "wnn",
+ wtype = "exponential", tau = 10)
R> head(PV)

1 2
[1,] 0.8839428 0.012433393
[2,] 0.9167992 0.007104796
[3,] 0.1314255 0.538188277
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Figure 4: Illustration of the p values without indicating the class labels of the test data.

[4,] 0.3990461 0.174067496
[5,] 0.2342342 0.364120782
[6,] 0.8335983 0.019538188

Next we illustrate the p values graphically with the function analyze.pvs using the first ten
observations of each class.

R> analyze.pvs(pv = PV[c(1:10, 101:110), ], alpha = 0.05)

For each p value a rectangle with an area proportional to the p value is drawn, see Figure 4.
The rectangle is blue if the p value is greater than alpha and red otherwise. If we specify the
class labels of the test data as in the next example, then the data are sorted per class and
the class labels are shown in the plot, see Figure 5. If L ≤ 3 the function analyze.pvs also
prints the empirical pattern probabilities P̂α(b, S) for all subsets S ⊂ Y. Otherwise it prints
the empirical conditional inclusion probabilities Îα(b, θ) for all combinations of b and θ and
the empirical pattern probabilities for S = ∅,Y and {θ} for all θ ∈ Y. Additionally ROC
functions are plotted by default. We suppress this here with the argument roc = FALSE. An
example of the ROC function plot can be found in the next section.

R> analyze.pvs(pv = PV[c(1:10, 101:110), ], Y = Ytest[c(1:10, 101:110)],
+ roc = FALSE)

b P(b,{}) P(b,{1}) P(b,{2}) P(b,{1,2})
1 0 0.4 0.1 0.5
2 0 0.1 0.4 0.5

In this example the empirical pattern probabilities for uniquely correct classification P̂α(b, {b})
are 0.4 for both classes.
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Figure 5: Illustration of the p values with class labels of the test data.

3.2. Cross-validated p values
The function cvpvs returns a matrix PV containing cross-validated nonparametric p values
for the potential class memberships of the training data. Precisely, for each feature vector
X[i,] and each class b the number PV[i,b] is a p value for the null hypothesis that Y [i] = b.
For the following example we use the logistic regression with penalty parameter tau.o = 2.
The option progress = FALSE suppresses the printing of the computation progress.

R> PV.cv <- cvpvs(X = Xtrain, Y = Ytrain, method = "logreg", tau.o = 2,
+ progress = FALSE)
R> PV.cv[1:3, ]

1 2
[1,] 0.1320255 0.120781528
[2,] 0.2221633 0.044404973
[3,] 0.9772004 0.001776199

R> PV.cv[2001:2003, ]

1 2
[1,] 0.00317965 0.8167260
[2,] 0.06677266 0.2526690
[3,] 0.01642819 0.6281139

The cross-validated p values can be illustrated graphically with analyze.pvs the same way
as the p values for the new observations. In the following example we suppress the plot of
the p values and get only the plot of the ROC functions, see Figure 6. The output shows the
empirical pattern probabilities P̂α(b, S) as described in Section 3.1.
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Figure 6: ROC curves of the cross-validated p values.

R> analyze.pvs(pv = PV.cv, Y = Ytrain, pvplot = FALSE, cex = 1.3)

b P(b,{}) P(b,{1}) P(b,{2}) P(b,{1,2})
1 0 0.79586426 0.04984093 0.1542948
2 0 0.04982206 0.64412811 0.3060498

In this example the empirical pattern probabilities for uniquely correct classification are
P̂α(0, {0}) = 0.788 for class 0 and P̂α(1, {1}) = 0.721 for class 1.

4. Choice of tuning parameters
Some of the previous test statistics depend on a tuning parameter τ > 0, i.e., Tθ(x,D) =
T

(τ)
θ (x,D). Our goal is to choose this parameter in a data-driven way such that overfitting of

the training data is avoided while symmetry in (Xi)i∈Gθ is preserved.
The following criterion turned out to be quite useful: In view of our specific construction of
the p values, T (τ)

θ (X,D(X, θ)) should take relatively big values whenever Y 6= θ. Hence we
compute for all training observations with Yi 6= θ the test statistic

T
(τ)
θ (Xi,Di(Xi, X, θ)),

where Di(Xi, X, θ) denotes the training data after adding the observation (X, θ) and setting
the class label of observation Xi to θ. Then we take the sum of these values,

S(τ,X, θ) :=
∑

i : Yi 6=θ
T

(τ)
θ (Xi,Di(Xi, X, θ)),

and search for a parameter τ∗(X, θ,D) maximizing S(τ,X, θ) over a certain set of candidates
for τ .
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Implementations in pvclass. The functions for the nearest neighbor methods accept vec-
tors for the parameters k and τ , respectively. If a vector is provided, the function searches for
the best of the given parameters. If no parameter is provided (k = NULL or tau = 0) certain
default vectors are used.
In connection with penalized logistic regression, note that to determine the optimal tuning
parameters for a new observation X and all potential class memberships, the test statistic
has to be computed (L − 1) · n · l times, where l is the number of tuning parameters from
which we want to choose the optimal one. This can be very computer-intensive, especially
for penalized logistic regression in high dimensions. For the latter method we observed in
simulated and real data examples that the p values do not depend too sensitively on the choice
of the penalty parameter and S(τo, X, θ) is unimodal in τo. Therefore if find.tau == TRUE,
we only consider few values for τo on a logarithmic grid as follows: We start with a certain
value τo (default 10) and compare S(τo, X, θ) with S(τo · δ,X, θ) for some δ > 1 (default 2).
While S(τo ·δ,X, θ) > S(τo, X, θ) and τo is smaller than a certain threshold τmax (default 100)
we replace τo with τo · δ. If in the very beginning S(τo, X, θ) ≥ S(τo · δ,X, θ), we compare
S(τo, X, θ) with S(τo/δ,X, θ). While S(τo/δ,X, θ) > S(τo, X, θ) and τo is larger than a certain
threshold τmin (default 1) we replace τo with τo/δ.

4.1. Numerical examples

We illustrate the procedure with two simulated data sets.

Example 1. Consider L = 2 classes with Pθ = N100(µθ, I100), where µ1 = (1, 0.5, 0.25, 0.125,
0, . . . , 0)> and µ2 = −µ1. We simulated 100 training sets with N1 = N2 = 100 observations
per class. For each training set we simulated a test set again with N1 = N2 = 100 observations
per class and computed π(τ)

θ (X,D(X, θ)) for each test observation and τ = 1, 2, 4, 8, 16, 32, 64.
Here π(τ)

θ denotes the p value based on penalized logistic regression. Additionally we computed
τ∗ for 20 training sets.
Figure 7 shows boxplots of the distributions of the rates of uniquely correct classified test ob-
servations for different values of τ . The misclassification rates depend heavily on the training
set. Nevertheless our method is very stable and chooses for 99.8% of the test observations
τ∗ = 16, which has the highest median rate of uniquely correct classification.

Example 2. Next we consider an example with L = 5 classes, Pθ = N100(µθ, I100) and
µθ = (04(θ−1), 2, 1, 0.5, 0.25, 0, . . . , 0)>, where 0j denotes the row vector with j zeros. We
simulated 100 training sets with Nθ = 100 per class. For each training set we simulated a
test set with Nθ = 40 test observations per class and computed π(τ)

θ (X,D(X, θ)) for each test
observation and τ = 1, 2, 4, 8, 16, 32, 64. Additionally we computed τ∗ for 5 training sets.
Figure 8 shows boxplots of the distributions of the rates of uniquely correct classified test
observations for different values of τ . As in the previous example the misclassification rates
depend heavily on the training set. Again our method is very stable and chooses for all test
observations τ∗ = 16, which has the highest median rate of uniquely correct classification.

Example 3 (Buerk). For the hospital data described in Section 3 we computed p values for
τ = 1, 2, . . . , 100. The amount of regularization had no influence on the misclassification rates
in this example.
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Figure 7: Distributions of the rates of uniquely correct classified test observations for different
values of τ for Example 1.
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Figure 8: Distributions of the rates of uniquely correct classified test observations for different
values of τ for Example 2.
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5. Relation to other classifiers and packages
There are numerous software packages for classification. It should be stressed that our package
does not provide just another classifier. Our aim is to provide a first open-source implemen-
tation of nonparametric p values for classification. Indeed one can can easily combine our
package with one’s favorite classifier, e.g. based on neural nets or support vector machines, as
long as it involves some plausibility or implausibility measures for class memberships. Pre-
cisely, suppose that for given training data D your favorite classifier provides explicitly or
implicitly a matrix 

T11 T12 · · · T1L
T21 T22 · · · T2L
...

...
...

Tn1 Tn2 · · · TnL

 (8)

where Tiy measures the implausibility of “Yi = y” for the feature vector Xi. (If Tiy measures
the plausibility of “Yi = y”, just replace Tiy with −Tiy.) To compute a p value πθ(X,D)
for a new observation, one has to compute this matrix with the augmented data matrix
D(X, θ) in place of D. This results in a matrix with an additional first row [T01, T02, . . . , T0L]
corresponding to the additional observation (X0, Y0) = (X, θ). Note that in general the other
n rows will be different from the original n rows of (8). Then the p value πθ(X,D) is given
by

πθ(X,D) = (Nθ + 1)−1
n∑
i=0

1{Yi = θ, Tiθ ≥ T0θ}.

To analyze the training data itself by means of cross-validated p values, one has to compute
the matrix (8) 1+n(L−1) times: For i = 1, 2, . . . , n, the original data set D and the resulting
matrix (8) yield the cross-validated p value

πθ(Xi,Di) = N−1
θ

n∑
j=1

1{Yj = θ, Tjθ ≥ Tiθ} for θ = Yi.

For θ 6= Yi one may use the same formula, but one has to recalculate the matrix (8) after
replacing (Xi, Yi) in D with (Xi, θ). Note that this affects the group sizes Nθ and NYi , too.
The resulting matrix

(
πθ(Xi,Di)

)
i,θ
∈ [0, 1]n×L of crossvalidated p values may be analyzed

by means of analyze.pvs.
These remarks indicate that the computation of our p values is necessarily more involved
than the computation of a traditional classifier. Roughly saying, to evaluate one future
feature vector, one has to compute the underlying classifier L times, and for the computation
of all cross-validated p values one needs nL computations of the classifier. On the other hand,
the underlying data sets D, D(X, θ), Di etc. are very similar, and in our implementation in
pvclass we utilize various tricks to exploit these redundancies.
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