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Abstract

Rgbp is an R package that provides estimates and verifiable confidence intervals for
random effects in two-level conjugate hierarchical models for overdispersed Gaussian, Pois-
son, and binomial data. Rgbp models aggregate data from k independent groups sum-
marized by observed sufficient statistics for each random effect, such as sample means,
possibly with covariates. Rgbp uses approximate Bayesian machinery with unique im-
proper priors for the hyper-parameters, which leads to good repeated sampling coverage
properties for random effects. A special feature of Rgbp is an option that generates syn-
thetic data sets to check whether the interval estimates for random effects actually meet
the nominal confidence levels. Additionally, Rgbp provides inference statistics for the
hyper-parameters, e.g., regression coefficients.

Keywords: overdispersion, hierarchical model, adjustment for density maximization, frequency
method checking, R.

1. Introduction
Gaussian, Poisson, or binomial data from several independent groups sometimes have more
variation than the assumed Gaussian, Poisson, or binomial distributions of the first-level ob-
served data. To account for this extra variability, called overdispersion, a two-level conjugate
hierarchical model regards first-level mean parameters as random effects that come from a
population-level conjugate prior distribution. The main goal of our two-level conjugate mod-
eling is to estimate these random effects for a comparison between groups. For example, this
model can be used to estimate unknown true batting averages (random effects) of baseball
players for a comparison among players based on their numbers of hits and at-bats possibly
with their covariate information.
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With an assumption of homogeneity within each group, the observed data are group-level
aggregate data from k independent groups, composed of sufficient statistics for their k random
effects (without the population-level data). Specifically, the data for the Gaussian model
consist of each group’s sample mean and its standard error, those for the Poisson model use
each group’s outcome count and an exposure measure, and those for the binomial model use
the number of each group’s successful outcomes together with the total number of trials. For
example, the observed data for the binomial model can be the number of hits out of at-bats
for each of k baseball players, a sufficient statistic for the unknown true batting average of
each player. The data analyzed by Rgbp may incorporate each group’s covariate information,
e.g., each player’s position.

These types of data are common in various fields for estimating random effects. For example,
biologists may be interested in unknown true tumor incidence rates in analyzing litter data
composed of each litter’s number of tumor-bearing animals out of a total number of animals at
risk (Tamura and Young 1987). The unknown true mortality rates on myocardial infarction
can be estimated based on the death rate data collected from several independent clinical
studies via a meta analysis (Gelman, Carlin, Stern, and Rubin 2014). County-level or state-
level summary data in small area estimation problems (Ghosh and Rao 1994; Rao 2003) can
be used to estimate population parameters, such as unknown unemployment rates.

For such data, assuming homogeneity within each group, Rgbp’s two-level model may be
viewed as a conjugate hierarchical generalized linear model (HGLM; Lee and Nelder 1996)
where each random effect comes from a conjugate prior distribution. However, the HGLM
focuses on estimating regression coefficients to explore associations between covariates and
observed data. While Rgbp does that too, its emphasis concerns making valid point and
interval estimates for the k random effects for a comparison among groups.

A defining feature of Rgbp is to evaluate the repeated sampling coverage properties of the
interval estimates for random effects (Christiansen and Morris 1997; Daniels 1999; Tang 2002;
Morris and Tang 2011; Morris and Lysy 2012). This procedure distinguishes Rgbp from other
R packages for similar hierarchical models, such as hglm (Alam, Rönnegård, and Shen 2015)
for fitting conjugate hierarchical generalized models, because most software packages produce
only estimation results without providing a quick way to evaluate their estimation proce-
dures. The evaluation procedure which we call frequency method checking uses a parametric
bootstrapping method that generates synthetic data sets given the fitted values of the esti-
mated hyper-parameters. The frequency method checking procedure estimates the coverage
rates of interval estimates based on the simulated data sets and checks whether the estimated
coverage rates achieve (or exceed) the nominal confidence level.

Rgbp combines Bayesian modeling tools with our improper hyper-prior distributions on the
second-level parameters. These hyper-prior distributions are known to produce good repeated
sampling coverage rates for the Bayesian interval estimates for the k random effects in two-
level Gaussian models (Morris and Tang 2011; Morris and Lysy 2012; Kelly 2014). We extend
these hyper-prior distributions for Rgbp’s Poisson and binomial hierarchical models.

For fitting the hierarchical model, Rgbp uses adjustment for density maximization (ADM;
Morris 1988a; Christiansen and Morris 1997; Morris and Tang 2011). ADM approximates
a posterior density or a likelihood function by fitting a selected (one dimensional) Pearson
family, based on the first two derivatives of the given density function. For example, when the
normal distribution is the chosen Pearson family, ADM reduces to a delta method via maxi-



Journal of Statistical Software 3

mum likelihood estimation. Besides ADM, Rgbp provides an option for the binomial hierar-
chical model to draw independent posterior samples of random effects and hyper-parameters
via an acceptance-rejection method (Robert and Casella 2013).
The rest of this paper is organized as follows. We specify the Bayesian hierarchical models and
discuss their posterior propriety in Section 2. In Section 3, we explain the inferential models
used to estimate the model parameters. We describe the estimation procedures including
ADM and the acceptance-rejection method in Sections 4 and 5, respectively. We introduce
frequency method checking techniques in Section 6. We explain the basic usages of Rgbp’s
main functions with three examples in Section 7, and specify the functions further with various
options in Section 8.

2. Conjugate hierarchical modeling structure
Rgbp allows users to choose one of three hierarchical models according to the type of data,
namely normal-normal, Poisson-gamma, and binomial-beta models. Although there are more
hierarchical models, we choose the three models because these are based on the most common
types of data we may encounter in practice. Also, their conjugacy leads to linear posterior
means simplifying computations.
Our parametrization of the three hierarchical models leads to an intuitive shrinkage interpre-
tation in inference because the shrinkage factors under our parametrization are determined
by the relative amount of information in the prior compared to the data (Morris 1983).

2.1. Normal-normal model for Gaussian data

The following normal-normal hierarchical model (hereafter the Gaussian model) assumed by
Rgbp is useful when the group-level aggregate data from k independent groups are continuous
(or approximately continuous) variables with known standard errors. The subscript j below
indicates the jth group among k groups in the data set. For j = 1, 2, . . . , k,

yj | µj
indep.∼ Normal(µj , Vj), (1)

µj | β, A
indep.∼ Normal

(
µEj , A

)
, (2)

where yj is an observed unbiased estimate, e.g., the sample mean, for the random effect µj ,
Vj is a completely known standard error of yj , µEj is an expected random effect defined as
E(µj | β, A) = x>j β = β1xj,1 + β2xj,2 + · · · + βmxj,m, and m is the number of unknown
regression coefficients. It is assumed that the second-level variance A is unknown and that
the vector of m regression coefficients β is also unknown unless otherwise specified. If no
covariates are available, but with an unknown intercept term, then x>j β = β1 (m = 1) and
thus µEj = µE = β1 for all j, resulting in an exchangeable conjugate prior distribution for the
random effects. Based on these conjugate prior distributions for random effects, it is easy to
derive the conditional posterior distribution of each random effect. For j = 1, 2, . . . , k,

µj | β, A,y
indep.∼ Normal

(
(1−Bj)yj +Bjµ

E
j , (1−Bj)Vj

)
, (3)

where Bj ≡ Vj/(Vj + A) is a shrinkage factor of group j and y = (y1, y2, . . . , yk)>. The
conditional posterior mean E(µj | β, A,y), denoted by µ∗j , is a convex combination of the
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observed sample mean yj and the expected random effect µEj weighted by the shrinkage factor
Bj . If the variance of the conjugate prior distribution, A, is smaller than the variance of the
observed distribution, Vj , then we expect the posterior mean to borrow more information
from the second-level conjugate prior distribution.

2.2. Poisson-gamma model for Poisson data

Rgbp can estimate a conjugate Poisson-gamma hierarchical model (hereafter the Poisson
model) when the group-level aggregate data from k independent groups consist of non-negative
count data without upper limit. However, its usage is limited to the case where the expected
random effect, λEj = exp(x>j β), is known (or equivalently all the regression coefficients β are
known (m = 0)); we may be able to obtain this information from the past studies or from
experts. For j = 1, 2, . . . , k,

yj | λj
indep.∼ Poisson(njλj), (4)

λj | r
indep.∼ Gamma

(
rλEj , r

)
, (5)

where yj is the number of events happening, nj is the exposure of group j, which is not
necessarily an integer, λEj = E(λj | r) is the known expected random effect (m = 0), and r
is the unknown second-level variance component. The mean and variance of this conjugate
gamma prior distribution are λE and λE/r, respectively1. Albert (1988) interprets r as the
amount of prior information as nj represents the amount of observed information because the
uncertainty of the conjugate prior distribution increases as r decreases and vice versa. The
conditional posterior distribution of the random effect λj for this Poisson model is

λj | r,y
indep.∼ Gamma

(
rλEj + nj ȳj , r + nj

)
, (6)

where ȳj ≡ yj/nj . The mean and variance of the conditional posterior distribution are

λ∗j ≡ E(λj | r,y) = (1−Bj)ȳj +Bjλ
E
j and VAR(λj | r,y) =

λ∗j
r + nj

. (7)

where Bj ≡ r/(r + nj) is the shrinkage factor of group j, the relative amount of information
in the prior compared to the data. The conditional posterior mean is a convex combination
of ȳj and λEj weighted by Bj . If the conjugate prior distribution contains more information
than the observed data have, i.e., the ensemble sample size r exceeds the individual sample
size nj , then the posterior mean shrinks towards the prior mean by more than 50%.
The conditional posterior variance in (7) is linear in the conditional posterior mean, whereas a
slightly different parametrization for a Poisson-gamma model has been used elsewhere (Chris-
tiansen and Morris 1997) that makes the variances quadratic functions of means.

2.3. Binomial-beta model for binomial data

Rgbp can fit a conjugate binomial-beta hierarchical model (hereafter the binomial model)
when the group-level aggregate data from k independent groups are composed of each group’s

1The density function of this gamma prior distribution in (5) is f(λj | r) ∝ λ
rλE

j −1
j exp(−rλj).
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number of successes out of total number of trials. The expected random effect in the binomial
model is either known (m = 0) or unknown (m ≥ 1). For j = 1, 2, . . . , k,

yj | pj
indep.∼ Binomial(nj , pj),

pj | β, r
indep.∼ Beta

(
rpEj , r(1− pEj )

)
,

where yj is the number of successes out of nj trials, pEj is the expected random effect of group
j defined as pEj ≡ E(pj | β, r) = exp(x>j β)/(1 + exp(x>j β)). The vector of the m logistic
regression coefficients β and the second-level variance component r are unknown. The mean
and variance of the conjugate beta prior distribution for group j are pEj and pEj (1−pEj )/(r+1),
respectively. The resultant conditional posterior distribution of random effect pj is

pj | β, r,y
indep.∼ Beta

(
nj ȳj + rpEj , nj(1− ȳj) + r(1− pEj )

)
, (8)

where ȳj = yj/nj is the observed proportion of group j. The mean and variance of the
conditional posterior distribution are

p∗j ≡ E(pj | β, r,y) = (1−Bj)ȳj +Bjp
E
j and VAR(pj | β, r,y) =

p∗j (1− p∗j )
r + nj + 1 .

The conditional posterior mean p∗j is a convex combination of ȳj and pEj weighted by Bj ≡
r/(r + nj) like for the Poisson model. If the conjugate prior distribution contains more
information than the observed distribution does (r > nj), then the resulting conditional
posterior mean borrows more information from the conjugate beta prior distribution.

2.4. Hyper-prior distribution

Hyper-prior distributions are the distributions assigned to the second-level parameters called
hyper-parameters. Our choices for the hyper-prior distributions are

β ∼ Uniform on Rm and A ∼ Uniform(0,∞) (or 1/r ∼ Uniform(0,∞)). (9)

The improper flat hyper-prior distribution on β is a common non-informative choice. In the
Gaussian case, the flat hyper-prior distribution on the second-level variance A is known to
produce good repeated sampling coverage properties of the Bayesian interval estimates for
the random effects (Morris and Tang 2011; Morris and Lysy 2012; Kelly 2014). The resulting
full posterior distribution of the random effects and hyper-parameters is proper if k ≥ m+ 3
(Morris and Tang 2011; Kelly 2014).
In the other two cases, Poisson and binomial, the flat prior distribution on 1/r induces the
same improper prior distribution on shrinkages (dBj/B2

j ) as does A with the Uniform(0,∞)
for the Gaussian case. The Poisson model with this hyper-prior distribution on r, i.e., dr/r2,
provides posterior propriety if there are at least two groups whose observed values yj are
non-zero and the expected random effects, λEj , are known (m = 0); see Appendix A for its
proof. If λEj is unknown, the reliability of Rgbp cannot be guaranteed as posterior propriety
has not been verified in this case. If the Poisson is being used as an approximation to the
binomial and the exposures are known integer values, then we recommend using the binomial
model with the same hyper-prior distributions.
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As for posterior propriety of the binomial model, let us define an interior group as the group
whose number of successes yj are neither 0 nor nj , and ky as the number of interior groups
among k groups. The full posterior distribution of random effects and hyper-parameters is
proper if and only if there are at least two interior groups in the data and the ky×m covariate
matrix of the interior groups is of full rank m (ky ≥ m) (Tak and Morris 2017).

3. The inferential model
The likelihood function of hyper-parameters, A and β, for the Gaussian model is derived from
the independent normal distributions of the observed data with random effects integrated out.

L(A,β) =
k∏
j=1

f(yj | A,β) =
k∏
j=1

1√
2π(A+ Vj)

exp
(
−

(yj − µEj )2

2(A+ Vj)

)
. (10)

The joint posterior density function of hyper-parameters for the Gaussian model is propor-
tional to their likelihood function in (10) because we use flat improper hyper-prior density
functions for A and β:

f(A,β | y) ∝ L(A,β). (11)

The likelihood function of r for the Poisson model comes from the independent negative-
binomial distributions of the observed data with the random effects integrated out.

L(r) =
k∏
j=1

f(yj | r) =
k∏
j=1

Γ(rλEj + yj)
Γ(rλEj )(yj !)

(1−Bj)yiB
rλEj
j , (12)

where Γ(a) is the gamma function defined as
∫∞

0 xa−1 exp(x)dx for a positive constant a. The
posterior density function of r for the Poisson model is the likelihood function in (12) times
the hyper-prior density function of r, i.e., dr/r2:

f(r | y) ∝ L(r)/r2. (13)

The likelihood function of hyper-parameters r and β for the binomial model is derived from the
independent beta-binomial distributions of the observed data with random effects integrated
out (Skellam 1948).

L(r,β) =
k∏
j=1

f(yj | r,β) =
k∏
j=1

(
nj
yj

)
B(yj + rpEj , nj − yj + r(1− pEj ))

B(rpEj , r(1− pEj ))
, (14)

where the notation B(a, b) (≡
∫ 1

0 v
a−1(1 − v)b−1dv) indicates the beta function for positive

constants a and b. The joint posterior density function of hyper-parameters f(r,β | y) for
the binomial model is proportional to their likelihood function in (14) multiplied by the
hyper-prior density functions of r and β based on distributions in (9):

f(r,β | y) ∝ L(r,β)/r2. (15)

Our goal is to obtain the point and interval estimates of the random effects from their joint
unconditional posterior density which, for the Gaussian model, can be expressed as

f(µ | y) =
∫
f(µ | A,β,y)f(A,β | y)dAdβ,
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where µ = (µ1, µ2, . . . , µk)> and the distributions in the integrand are given in (3) and (11).
For the Poisson model, the joint unconditional posterior density for the random effects is

f(λ | y) =
∫
f(λ | r,y)f(r | y)dr,

where λ = (λ1, λ2, . . . , λk)> and the distributions in the integrand are given in (6) and (13).
For the binomial model, the joint unconditional posterior density for the random effects is

f(p | y) =
∫
f(p | r,β,y)f(r,β | y)drdβ, (16)

where p = (p1, p2, . . . , pk)> and the distributions in the integrand are given in (8) and (15).

4. Estimation via the adjustment for density maximization
We illustrate our estimation procedure which utilizes adjustment for density maximization
(ADM; Morris 1988a; Christiansen and Morris 1997; Morris and Tang 2011). ADM is a
method to approximate a distribution by a member of the Pearson family of distributions
and obtain moment estimates via maximization. The ADM procedure for the Gaussian
model adopted in Rgbp is well documented in Kelly (2014) and thus we describe the ADM
procedure using the Poisson and binomial model in this section.

4.1. Estimation for shrinkage factors and expected random effects
Our goal here is to estimate the unconditional posterior moments of the shrinkage factors and
the expected random effects because they are used to estimate the unconditional posterior
moments of the random effects.

Unconditional posterior moments of shrinkage factors
It is noted that the shrinkage factors are a function of r, i.e., Bj = Bj(r) = r/(r + nj)
(or a function of A for the Gaussian model). A common method of estimation of Bj is to
approximate the likelihood of r with two derivatives and use a delta method for an asymptotic
normal distribution of B̂j(r̂MLE). This normal approximation, however, is defined on (−∞,∞)
whereas Bj lies on the unit interval between 0 and 1, and hence in small sample sizes the
delta method can result in point estimates lying on the boundary of the parameter space,
from which the restricted MLE procedure sometimes suffers (Morris and Tang 2011).
To continue with a maximization-based estimation procedure but to steer clear of aforemen-
tioned boundary issues we make use of ADM. The ADM approximates the distribution of
the function of the parameter of interest by one of the Pearson family distributions using the
first two derivatives as the delta method does; the delta method is a special case of the ADM
based on the normal distribution.
The ADM procedure specified in Morris and Tang (2011) assumes that the unconditional
posterior distribution of a shrinkage factor follows a beta distribution; for j = 1, 2, . . . , k,

Bj | y ∼ Beta(a1j , a0j). (17)

The mean of the beta distribution a1j/(a1j +a0j) is not the same as its mode (aj1−1)/(aj1 +
aj0 − 2). The ADM works on an adjusted posterior distribution fA(Bj | y) ∝ Bj(1 −
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Bj)f(Bj |y) so that the mode of fA(Bj | y) is the same as the mean of the original beta
distribution. The assumed posterior mean and variance of the jth shrinkage factor are

E(Bj | y) = a1j
a1j + a0j

= argmax
Bj

fA(Bj | y) ≡ B′j , (18)

VAR(Bj | y) =
B′j(1−B′j)
a1j + a0j + 1 =

B′j(1−B′j)

B′j(1−B′j)

− d2

dB2
j

log (fA(Bj | y))
∣∣∣∣
Bj=B′j

+ 1

. (19)

The ADM estimates these mean and variance using the marginal posterior distribution of r,
f(r | y) ∝ L(r)/r2. The marginal likelihood, L(r) =

∫
L(β, r)dβ, for the binomial model

is obtained via the Laplace approximation with a Lebesgue measure on β and that for the
Poisson model is specified in (12).
Considering that (18) involves maximization and (19) involves calculating the second deriva-
tive of log(fA(Bj | y)), we work on a logarithmic scale of r, i.e., α = − log(r) (or α = log(A)
for the Gaussian model). This is because the distribution of α is more symmetric than that
of r and α is defined on a real line without any boundary issues. Because fA(Bj | y) is
proportional to the marginal posterior density f(α | y) ∝ exp(α)L(α) as shown in Morris and
Tang (2011), the posterior mean in (18) is estimated by

B̂′j = exp(−α̂)
nj + exp(−α̂) , (20)

where α̂ is the mode of f(α | y), i.e., argmaxα{α+ log(L(α))} .
To estimate the variance in (19), Morris and Tang (2011) introduced the invariant information
defined as

Iinv ≡ −d
2 log(fA(Bj | y))
d[logit(Bj)]2

∣∣∣∣
Bj=B̂′j

= −d
2 log(fA(Bj(r) | y))

d[log(r)]2

∣∣∣∣
r=r̂

(21)

= −d
2 log(fA(Bj(r(α)) | y))

dα2

∣∣∣∣
α=α̂

.

This invariant information is the negative second-derivative of α+ log(L(α)) evaluated at the
mode α̂. Using the invariant information, we estimate the unconditional posterior variance
of the shrinkage factor in (19) by

V̂AR(Bj | y) =
(B̂′j)2(1− B̂′j)2

Iinv + B̂′j(1− B̂′j)
. (22)

We obtain the estimates of a1j and a0j , the two parameters of the beta distribution in (17),
by matching them to the estimated unconditional posterior mean and variance of Bj specified
in (20) and (22) as follows.

â1j = Iinv

1− B̂′j
and â0j = Iinv

B̂′j
. (23)

The moments of the beta distribution are well defined as a function of a1j and a0j , i.e.,
E(Bc

j | y) = B(a1j + c, a0j)/B(a1j , a0j) for c ≥ 0. Their estimates are

Ê(Bc
j | y) = B(â1j + c, â0j)

B(â1j , â0j)
. (24)
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The ADM approximation to the shrinkage factors via beta distributions is empirically proven
to be more accurate than a Laplace approximation (Morris 1988a; Christiansen and Morris
1997; Morris and Tang 2011; Morris and Lysy 2012).

Unconditional posterior moments of expected random effects
We estimate the unconditional posterior moments of expected random effects using their
relationship to the conditional posterior moments. For a non-negative constant c, the uncon-
ditional posterior moments are

E
((
pEj

)c ∣∣ y) = E
[
E
((
pEj

)c ∣∣ α,y) ∣∣ y].
We approximate the unconditional posterior moments on the left hand side by the conditional
posterior moments with α̂ inserted (Kass and Steffey 1989), i.e., by E((pEj )c | α̂,y).
However, calculating conditional posterior moments of each expected random effect involves
an intractable integration. For example, the first conditional posterior moment of pEj is

E(pEj | α̂,y) = E

( exp(x>j β)
1 + exp(x>j β)

∣∣∣∣α̂,y) =
∫

Rm

exp(x>j β)
1 + exp(x>j β)

f(β | α̂,y)dβ.

Thus, we use another ADM, assuming the conditional posterior distribution of each expected
random effect is a beta distribution as follows.

pEj | α̂,y =
exp(x>j β)

1 + exp(x>j β)

∣∣∣∣α̂,y ∼ Beta(b1j , b0j) ∼
G1

G1 +G0
, (25)

where G1 is a random variable following a Gamma(b1j , 1) distribution and independently G0
has a Gamma(b0j , 1) distribution. The representation in (25) is equivalent to exp(x>j β)|α̂,y ∼
G1/G0, a ratio of two independent gamma random variables. Its mean and variance are

E(exp(x>j β) | α̂,y) = E
(
G1
G0

)
= b1j
b0j − 1 ≡ ηj , (26)

VAR(exp(x>j β) | α̂,y) = VAR
(
G1
G0

)
= ηj(1 + ηj)

b0j − 2 . (27)

To estimate b1j and b0j , we assume that the conditional posterior distribution of β given α̂
and y follows a normal distribution with mean β̂ and variance-covariance matrix Σ̂, where β̂
is the mode of f(β | α̂,y) and Σ̂ is an inverse of the negative Hessian matrix at the mode.
Thus, the posterior distribution of x>j β is also normal with mean x>j β̂ and variance x>j Σ̂xj .
Using the property of the log-normal distribution for exp(x>j β), we estimate the posterior
mean and variance in (26) and (27) as

Ê(exp(x>j β) | α̂,y) = exp
(
x>j β̂ + x>j Σ̂xj/2

)
= η̂j , (28)

V̂AR(exp(x>j β) | y) = η̂2
j

(
exp(x>j Σ̂xj)− 1

)
. (29)

We estimate the values of b1j and b0j by matching them to the estimated unconditional
posterior mean and variance of exp(x>j β) in (28) and (29), that is,

b̂1j = η̂j(b̂0j − 1) and b̂0j = 1 + η̂j

η̂j
(
exp(x>j Σ̂xj)− 1

) + 2.
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Finally, we estimate the unconditional posterior moments of the expected random effects by

Ê
((
pEj

)c
| α̂,y

)
=
B
(
b̂1j + c, b̂0j

)
B
(
b̂1j , b̂0j

) for c ≥ 0. (30)

The ADM approximation to a log-normal density via a F -distribution (represented by a ratio
of two independent gamma random variables) is known to be more accurate than the Laplace
approximation (Morris 1988a).
For the Gaussian model (Morris and Tang 2011), the conditional posterior distribution of β
given Â and y is normal whose mean and variance-covariance matrix are(

X>D−1
V+ÂX

)−1
X>D−1

V+Ây and
(
X>D−1

V+ÂX
)−1

,

respectively, where X ≡ (x1,x2, . . . ,xk)> is a k ×m covariate matrix and DV+Â is a k × k
diagonal matrix with the jth diagonal element equal to Vj + Â. Because x>β given Â and y
is also normally distributed, we easily obtain the conditional posterior moments of µEj = x>β

given Â and use them to estimate unconditional posterior moments of µEj .

4.2. Estimation for random effects

We illustrate how we obtain approximate unconditional posterior distributions of random
effects using the estimated unconditional posterior moments of shrinkage factors and those of
expected random effects. It is intractable to derive analytically the unconditional posterior
distribution of each random effect for the three models. Thus, we approximate the distri-
butions by matching the estimated posterior moments with a skewed-normal distribution
(Azzalini 1985) for the Gaussian model, a gamma distribution for the Poisson model, and a
beta distribution for the binomial model; for j = 1, 2, . . . , k,

µj | y ∼ Skewed-Normal(φ, ω, δ), (31)
λj | y ∼ Gamma(s1j , s0j), (32)
pj | y ∼ Beta(t1j , t0j), (33)

where (φ, ω, δ) of the skewed-normal distribution are location, scale, and skewness parameters,
respectively.
Morris and Lysy (2012) first noted that the unconditional posterior distribution of the random
effect in a two-level conjugate Gaussian model might be skewed. Kelly (2014) shows that the
skewed-normal approximation to the unconditional posterior distribution of the random effect
is better than a normal approximation (µj | y ∼ Normal) in terms of the repeated sampling
coverage properties of random effects. Kelly (2014) estimates the first three moments of the
random effects by noting that µj is normally distributed given A and y, and thus estimates
the moments by using the ADM approximation of the shrinkage factors, Bj , and the law
of third cumulants (Brillinger 1969). The three estimated moments are then matched to
the first three moments of the skewed-normal distribution, i.e., E(µj | y) = φ + ωδ

√
2/π,

VAR(µj | y) = ω2(1 − 2δ2/π), and Skewness(µj | y) = (4 − π)δ3/[2(π/2 − δ2)3/2] (Azzalini
1985). The full derivation can be found in Kelly (2014).
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The unconditional posterior mean and variance of random effect λj in the Poisson model are

E(λj | y) = E(E(λj | r,y) | y) = (1− E(Bj | y))ȳj + E(Bj | y)λEj , (34)
VAR(λj | y) = E(VAR(λj | r,y) | y) + VAR(E(λj | r,y) | y) (35)

= E
(
λ∗j/(r + nj) | y

)
+ VAR

(
Bj(ȳj − λEj ) | y

)
(36)

=
[
ȳjE

(
(1−Bj)2|y

)
+ λEj E ((1−Bj)Bj |y)

]
/nj + (ȳj − λEj )2VAR

(
Bj |y

)
. (37)

To estimate these, we insert the estimated unconditional posterior moments of shrinkage
factors in (24) into both (34) and (37). Let µ̂λj and σ̂2

λj
denote the estimated unconditional

posterior mean and variance, respectively. The estimates of the two parameters s1j and s0j
in (32) are

ŝ1j =
µ̂2
λj

σ̂2
λj

, and ŝ0j =
µ̂λj
σ̂2
λj

.

To estimate the unconditional posterior moments of random effects in the binomial model, we
assume that hyper-parameters r and β are independent a posteriori. With this assumption,
the unconditional posterior mean and variance of random effect pj are

E(pj | y) = E(E(pj | r,β,y) | y) = (1− E(Bj | y))ȳj + E(Bj | y)E(pEj | y), (38)
VAR(pj | y) = E(VAR(pj | r,β,y) | y) + VAR(E(pj | r,β,y) | y) (39)

= E
(
p∗j (1− p∗j )/(r + nj + 1) | y

)
+ VAR

(
Bj(ȳj − pEj ) | y

)
(40)

≈ E
(
p∗j (1− p∗j )(1−Bj)/ni | y

)
+ VAR

(
Bj(ȳj − pEj ) | y

)
(41)

=
{
(1− ȳj)ȳj [1− E(Bj | y)] + (2ȳj − 1)E(Bj(1−Bj) | y)(ȳj − E(pEj | y))

+ E(B2
j (1−Bj) | y)E((ȳj − pEj )2 | y)

}
/nj + VAR

(
Bj(ȳj − pEj )|y

)
, (42)

where the approximation in (41) is a first-order Taylor approximation. By inserting the
estimated unconditional posterior moments of shrinkage factors in (24) and those of expected
random effect in (30) into both (38) and (42), we obtain the estimates of the unconditional
posterior mean and variance of each random effect, denoted by µ̂pj and σ̂2

pj , respectively. We
thus obtain the estimates of two parameters t1j and t0j in (33) as follows.

t̂1j =
(
µ̂pj (1− µ̂pj )

σ̂2
pj

− 1
)
µ̂pj , and t̂0j =

(
µ̂pj (1− µ̂pj )

σ̂2
pj

− 1
)

(1− µ̂pj ).

Finally, the assumed unconditional posterior distribution of the random effect for the Gaussian
model is

µj | y ∼ Skewed-Normal(φ̂, ω̂, δ̂), (43)
that for the Poisson model is

λj | y ∼ Gamma(ŝ1j , ŝ0j), (44)

and that for the binomial model is

pj | y ∼ Beta(t̂1j , t̂0j). (45)

Our point and interval estimates of each random effect are the mean and (2.5%, 97.5%) quan-
tiles (if we assign 95% confidence level) of the assumed unconditional posterior distribution
in (43), (44), or (45).
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For the binomial model, Rgbp provides a fully Bayesian approach for drawing posterior sam-
ples of random effects and hyper-parameters, which we illustrate in the next section.

5. The acceptance-rejection method for the binomial model
In this section, we illustrate an option of Rgbp that provides a way to draw posterior samples of
random effects and hyper-parameters via the acceptance-rejection (A-R) method (Robert and
Casella 2013) for the binomial model. Unlike the approximate Bayesian machinery specified
in the previous section, this method does not assume that hyper-parameters are independent
a posteriori. The joint posterior density function of α = − log(r) and β based on their joint
hyper-prior density function in (9) is

f(α,β | y) ∝ f(α,β)L(α,β) ∝ exp(α)L(α,β). (46)

The A-R method is useful when it is difficult to sample a parameter of interest θ directly
from its target probability density f(θ), which is known up to a normalizing constant, but
an easy-to-sample envelope function g(θ) is available. The A-R method samples θ from the
envelope g(θ) and accepts it with a probability f(θ)/(Mg(θ)), where M is a constant making
f(θ)/g(θ) ≤ M for all θ. The distribution of the accepted θ exactly follows f(θ). The A-R
method is stable as long as the tails of the envelope function are thicker than those of the
target density function.
The goal of the A-R method for the binomial model is to draw posterior samples of hyper-
parameters from (46), using an easy-to-sample envelope function g(α,β) that has thicker tails
than the target density function.
We factor the envelope function into two parts, g(α,β) = g1(α)g2(β) to model the tails of
each function separately. We consider the tail behavior of the conditional posterior density
function f(α | β,y) to establish g1(α); f(α | β,y) behaves as exp(−α(k − 1)) when α goes
to ∞ and as exp(α) when α goes to −∞. This indicates that f(α | β,y) is skewed to the
left because the right tail touches the x-axis faster than the left tail does as long as k > 1.
A skewed t-distribution is a good candidate for g1(α) because it behaves as a power law on
both tails, leading to thicker tails than those of f(α | β,y).
It is too complicated to figure out the tail behaviors of f(β | α,y). However, because
f(β | α,y) in the Gaussian model (as an approximation) has a multivariate Gaussian density
function (Morris and Tang 2011; Kelly 2014), we consider a multivariate t-distribution with
four degrees of freedom as a good candidate for g2(β).
Specifically, we assume

g1(α) = g1(α; l, σ, a, b) ≡ Skewed-t(α | l, σ, a, b), (47)
g2(β) = g2(β; ξ, S(m×m)) ≡ t4(β | ξ, S), (48)

where Skewed-t(α | l, σ, a, b) represents a density function of a skewed t-distribution of α with
location l, scale σ, degree of freedom a + b, and skewness a − b for any positive constants a
and b (Jones and Faddy 2003). Jones and Faddy (2003) derive the mode of g1(α) as

l + (a− b)
√
a+ b√

(2a+ 1)(2b+ 1)
, (49)
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and provide a representation to generate random variables that follows Skewed-t(α | l, σ, a, b);

α ∼ l + σ

√
a+ b(2T − 1)
2
√
T (1− T )

, where T ∼ Beta(a, b). (50)

They also show that the tails of the skewed-t density function follow a power law with α−(2a+1)

on the left and α−(2b+1) on the right when b > a.
The notation t4(β | ξ, S) in (48) indicates a density function of a multivariate t-distribution
of β with four degrees of freedom, a location vector ξ, and a m×m scale matrix S that leads
to the variance-covariance matrix 2S.
Rgbp determines the parameters of g1(α) and g2(β), i.e., l, σ, a, b, ξ, and S, to make the
product of g1(α) and g2(β) similar to the target joint posterior density f(α,β | y). First,
Rgbp obtains the mode of f(α,β | y), (α̂, β̂), and the inverse of the negative Hessian matrix
at the mode. We define −H−1

α̂ to indicate the (1, 1)th element of the negative Hessian matrix
and −H−1

β̂
to represent the negative Hessian matrix without the first row and the first column.

For g1(α), Rgbp sets (a, b) to (k, 2k) if k is less than 10 (or to (log(k), 2 log(k)) other-
wise) for left-skewness and these small values of a and b lead to thick tails. Rgbp matches
the mode of g1(α) specified in (49) to α̂ by setting the location parameter l to α̂ − (a −
b)
√
a+ b/

√
(2a+ 1)(2b+ 1). Rgbp sets the scale parameter σ to (−H−1

α̂ )0.5ψ, where ψ is a
tuning parameter; when the A-R method produces extreme weights defined in (51) below, we
need to enlarge the value of ψ.
For g2(β), Rgbp sets the location vector ξ to the mode β̂ and the scale matrix S to −H−1

β̂
/2

so that the variance-covariance matrix becomes −H−1
β̂

.

For implementation of the acceptance-rejection method, Rgbp draws four times more trial
samples than the desired number of samples, denoted by N , independently from g1(α) and
g2(β). Rgbp calculates 4N weights, each of which is defined as

wi ≡ w(α(i),β(i)) = f(α(i),β(i) | y)
g1(α(i))g2(β(i))

, for i = 1, 2, . . . , 4N. (51)

Rgbp accepts each pair of (α(i),β(i)) with a probability wi/M whereM is set to the maximum
of all the 4N weights. When Rgbp accepts more than N pairs, it discards the redundant. If
Rgbp accepts less than N pairs, then it additionally draws N ′ (six times the shortage) pairs
and calculates a new maximum M ′ from all the previous and new weights; Rgbp accepts or
rejects the entire pairs again with new probabilities wj/M ′, j = 1, 2, . . . , 4N +N ′.
After obtaining posterior samples of hyper-parameters, Rgbp draws posterior samples of
random effects from f(p | y) in (16). The integration on the right hand side of (16) can be
done by sampling p from f(pj | β, r,y) in (8) for j = 1, 2, . . . , k, given r = exp(−α) and β
that are already sampled from f(α,β | y) via the A-R method.

6. Frequency method checking
The question as to whether the interval estimates of random effects for a given confidence
level obtained by a specific model achieve the nominal coverage rate for any true parameter
values is one of the key model evaluation criteria. Unlike standard model checking methods
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Figure 1: Pseudo-data generating process.

that test whether a two-level model is appropriate for data (Dean 1992; Christiansen and
Morris 1996), frequency method checking is a procedure to evaluate the coverage properties
of the model. Conditioning on that the two-level model is appropriate, the frequency method
checking procedure generates pseudo-data sets given specific values of hyper-parameters and
estimates unknown coverage probabilities based on these mock data sets (i.e., parametric
bootstrapping). We describe the frequency method checking based on the Gaussian model
because the idea can be easily applied to the other two models.

6.1. Pseudo-data generation

Figure 1 displays the process of generating pseudo-data sets. It is noted that the conju-
gate prior distribution of each random effect in (2) is completely determined by two hyper-
parameters, A and β. Fixing these hyper-parameters at specific values, we generate Nsim sets
of random effects from the conjugate prior distribution, i.e., {µ(i), i = 1, . . . , Nsim}, where
the superscript (i) indicates the ith simulation. Next, using the distribution of observed data
in (1), we generate Nsim sets of observed data sets {y(i), i = 1, . . . , Nsim} given each µ(i).

6.2. Coverage probability estimation

After fitting the Gaussian model for each simulated data set, we obtain interval estimates of
the random effects µ(i). Let (µ̂(i)

j, low, µ̂
(i)
j, upp) represent the lower and upper bounds of the

interval estimate of random effect j based on the ith simulation given a specific confidence
level. We define the coverage indicator of random effect j on the ith mock data set as

I
(
µ

(i)
j

)
=
{

1, if µ(i)
j ∈

(
µ̂

(i)
j, low, µ̂

(i)
j, upp

)
,

0, otherwise.
(52)

This shrinkage indicator is equal to the value one if the random effect j in simulation i is
between its interval estimates and zero otherwise.

Simple unbiased coverage estimator

When the confidence level is 95%, the proportion of 95% interval estimates that contain ran-
dom effect j is an intuitive choice for the coverage rate estimator for random effect j. This
estimator implicitly assumes that there exist k unknown coverage probabilities of random ef-
fects, denoted by CA,β(µj) for j = 1, 2, . . . , k, depending on the values of the hyper-parameters
that generate random effects and mock data sets. The coverage indicators for random effect j
in (52) is assumed to follow an independent and identically distributed Bernoulli distribution
given the unknown coverage rate CA,β(µj). The sample mean of these coverage indicators is
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a simple unbiased coverage estimator for CA,β(µj); for j = 1, 2, . . . , k,

Ī(µj) = 1
Nsim

Nsim∑
i=1

I
(
µ

(i)
j

)
.

The unbiased variance estimator of VAR(Ī(µj)) is, for j = 1, 2, . . . , k,

V̂AR
(
Ī(µj)

)
= 1
Nsim(Nsim − 1)

Nsim∑
i=1

(
I(µ(i)

j )− Ī(µj)
)2
. (53)

Rao-Blackwellized unbiased coverage estimator
Frequency method checking is computationally expensive in nature because it fits a model
on every mock data set. The situation deteriorates if the number of simulations or the size
of data is large, or the estimation method is computationally demanding. Christiansen and
Morris (1997) and Tang (2002) use a Rao-Blackwellized (RB) unbiased coverage estimator
for the unknown coverage rate of each random effect, which is more efficient than the simple
unbiased coverage estimator. For j = 1, 2, . . . , k,

CA,β(µj) = E
(
Ī(µj) | A,β

)
= E

[ 1
Nsim

Nsim∑
i=1

E
(
I(µ(i)

j ) | A,β,y(i)
) ∣∣∣∣ A,β], (54)

where the sample mean of the interior conditional expectations in (54) is the RB unbiased
coverage estimator. Specifically,

ĪRB(µj) = 1
Nsim

Nsim∑
i=1

E
(
I(µ(i)

j ) | A,β,y(i)
)

(55)

= 1
Nsim

Nsim∑
i=1

P
(
µ

(i)
j ∈ (µ̂(i)

j, low, µ̂
(i)
j, upp) | A,β,y

(i)
)
. (56)

We can easily compute the conditional posterior probabilities in (56) using the cumulative
density function of the Gaussian conditional posterior distribution of each random effect in
(3). The variance of ĪRB(µj) does not exceed the variance of a simple unbiased coverage
estimator, Ī(µj) (Rao 1945; Blackwell 1947).
If one data set y(i) is simulated for each set of random effects µ(i), the variance estimator
below is an unbiased estimator of VAR(ĪRB(µj)). For j = 1, 2, . . . , k,

V̂AR(ĪRB(µj)) ≡
1

Nsim(Nsim − 1)

Nsim∑
i=1

(
E(I(µ(i)

j ) | A,β,y(i))− ĪRB(µj)
)2
. (57)

Overall unbiased coverage estimator
To summarize the frequency method checking, we report the overall unbiased coverage esti-
mate and its variance estimate,

¯̄IRB = 1
k

k∑
j=1

ĪRB(µj) and V̂AR( ¯̄IRB) = 1
k2

k∑
j=1

V̂AR(ĪRB(µj)). (58)
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7. Examples
In this section, we demonstrate how Rgbp can be used to analyze three realistic data sets:
medical profiling of 31 hospitals with Poisson distributed fatality counts; educational assess-
ment of eight schools with normally distributed data; and evaluation of 18 baseball hitters
with binomial success rates and one covariate. For each example, we construct 95% confidence
intervals. Additional usages and options of the functions in Rgbp can be found in Section 8.

7.1. Poisson data: Known expected random effect

We analyze a data set of 31 hospitals in New York State consisting of the outcomes of the
coronary artery bypass graft (CABG) surgery (Morris and Lysy 2012). The data set contains
the number of deaths, y, for a specified period after CABG surgeries out of the total number
of patients, n, receiving CABG surgeries in each hospital. A goal would be to obtain the point
and interval estimates for the unknown true fatality rates (random effects) of 31 hospitals to
evaluate each hospital’s reliability on the CABG surgery (Morris and Christiansen 1995 use
a similar Poisson model to handle these hospital profile data). We interpret the caseloads,
n, as exposures and assume that the state-level fatality rate per exposure of this surgery is
known, λEj = 0.03 (m = 0). The following code can be used to load these data into R.

R> library("Rgbp")
R> data("hospital", package = "Rgbp")
R> y <- hospital$d
R> n <- hospital$n

The function gbp can then be used to fit a Poisson-gamma to the fatality rates in New York
States with the expected random effect, λEj , equal to 0.03.

R> p.output <- gbp(y, n, mean.PriorDist = 0.03, model = "poisson")
R> p.output

Summary for each unit (sorted by n):

obs.mean n prior.mean shrinkage low.intv post.mean upp.intv post.sd
1 0.0448 67 0.03 0.911 0.0199 0.0313 0.0454 0.00653
2 0.0294 68 0.03 0.910 0.0189 0.0299 0.0435 0.00631
3 0.0238 210 0.03 0.765 0.0185 0.0285 0.0407 0.00566
4 0.0430 256 0.03 0.728 0.0225 0.0335 0.0467 0.00619
5 0.0335 269 0.03 0.718 0.0208 0.0310 0.0432 0.00573
6 0.0438 274 0.03 0.714 0.0229 0.0339 0.0472 0.00621
7 0.0432 278 0.03 0.711 0.0228 0.0338 0.0469 0.00617
8 0.0136 295 0.03 0.699 0.0157 0.0250 0.0366 0.00534
9 0.0288 347 0.03 0.663 0.0200 0.0296 0.0410 0.00536
10 0.0372 349 0.03 0.662 0.0222 0.0325 0.0446 0.00571
11 0.0391 358 0.03 0.656 0.0228 0.0331 0.0454 0.00579
12 0.0177 396 0.03 0.633 0.0165 0.0255 0.0363 0.00506
13 0.0278 431 0.03 0.613 0.0200 0.0292 0.0400 0.00511
14 0.0249 441 0.03 0.608 0.0191 0.0280 0.0387 0.00502
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15 0.0273 477 0.03 0.589 0.0199 0.0289 0.0394 0.00499
16 0.0455 484 0.03 0.585 0.0256 0.0364 0.0491 0.00601
17 0.0304 494 0.03 0.580 0.0211 0.0302 0.0409 0.00506
18 0.0220 501 0.03 0.577 0.0180 0.0266 0.0369 0.00483
19 0.0277 505 0.03 0.575 0.0202 0.0290 0.0395 0.00494
20 0.0204 540 0.03 0.559 0.0173 0.0258 0.0358 0.00474
21 0.0284 563 0.03 0.548 0.0206 0.0293 0.0395 0.00485
22 0.0236 593 0.03 0.535 0.0187 0.0270 0.0369 0.00466
23 0.0150 602 0.03 0.532 0.0147 0.0230 0.0329 0.00466
24 0.0238 629 0.03 0.521 0.0188 0.0271 0.0368 0.00460
25 0.0204 636 0.03 0.518 0.0173 0.0254 0.0351 0.00455
26 0.0480 729 0.03 0.484 0.0286 0.0393 0.0516 0.00587
27 0.0306 849 0.03 0.446 0.0223 0.0303 0.0397 0.00445
28 0.0274 914 0.03 0.428 0.0208 0.0285 0.0374 0.00423
29 0.0213 940 0.03 0.421 0.0176 0.0249 0.0335 0.00407
30 0.0293 1193 0.03 0.364 0.0223 0.0296 0.0379 0.00397
31 0.0201 1340 0.03 0.338 0.0170 0.0235 0.0310 0.00360
Mean 517 0.03 0.600 0.0201 0.0293 0.0403 0.00517

The output contains information about (from the left) the observed fatality rates ȳj , caseloads
nj , known expected random effect λEj , shrinkage estimates B̂′j , lower bounds (2.5%) of pos-
terior interval estimates λ̂j,low, posterior means Ê(λj |y), upper bounds (97.5%) of posterior
interval estimates λ̂j,upp, and posterior standard deviations ŜD(λj |y) for random effects based
on the assumed unconditional gamma posterior distributions in (44).
A function summary shows selective information about hospitals with minimum, median, and
maximum exposures and the estimation result of the hyper-parameter α = − log(r).

R> summary(p.output)

Main summary:

obs.mean n prior.mean shrinkage low.intv post.mean
Unit with min(n) 0.0448 67 0.03 0.911 0.0199 0.0313
Unit with median(n) 0.0455 484 0.03 0.585 0.0256 0.0364
Unit with max(n) 0.0201 1340 0.03 0.338 0.0170 0.0235
Overall Mean 517 0.03 0.600 0.0201 0.0293

upp.intv post.sd
0.0454 0.00653
0.0491 0.00601
0.0310 0.00360
0.0403 0.00517

Second-level Variance Component Estimation Summary:
alpha=log(A) for Gaussian or alpha=log(1/r) for binomial and Poisson data:
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Figure 2: Shrinkage plot and 95% interval plot for fatality rates at 31 hospitals.

post.mode.alpha post.sd.alpha post.mode.r
-6.53 0.576 684

The output of summary shows that r̂ = exp(6.53) = 684, which is an indicator of how valuable
and informative the second-level hierarchy is. This means that the 25 hospitals with caseload
less than 684 patients shrink their sample means towards the prior mean (0.03) more than
50%. For example, the shrinkage estimate of the first hospital (B̂1 = 0.911) was calculated
by 684 / (684 + 67), where 67 is its caseload (n1). For this hospital, using more information
from the conjugate prior distribution is an appropriate choice because the amount of observed
information (67) is much less than the amount of state-level information (684).
To obtain a graphical summary, we use the function plot.

R> plot(p.output)

The shrinkage plot (Efron and Morris 1975; Morris and Lysy 2012) in the first panel of
Figure 2 shows the regression towards the mean; the observed fatality rates, denoted by
empty dots on the upper horizontal line, are shrinking towards the known expected random
effect, denoted by a blue vertical line at 0.03, to the different extents. The red dots on the
bottom line denote the estimated posterior means. Some hospitals’ ranks have changed by
shrinking more sharply towards 0.03 than the others. For example, an empty square at the
crossing point of the two left-most lines (8th and 23rd hospitals on the list above) indicates
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that the seemingly safest hospital in terms of the observed mortality rate is probably not the
safest in terms of the estimated posterior mean accounting for the different caseloads of these
two hospitals.
To be specific, their observed fatality rates (yj , j = 8, 23) are 0.0136 and 0.0150 and caseloads
(nj , j = 8, 23) are 295 and 602, respectively. Considering solely the observed fatality rates
may lead to an unfair comparison because the latter hospital handled twice the caseload.
Rgbp accounts for this caseload difference, making the posterior mean for the random effect
of the former hospital shrink toward the state-level mean (λEj = 0.03) more strongly than
that for the latter hospital.
The point estimates are not enough to evaluate hospital reliability because one hospital may
have a lower point estimate but larger uncertainty (variance) than the other. The second plot
of Figure 2 displays the 95% interval estimates. Each posterior mean (red dot) is between the
sample mean (empty dot) and the known expected random effect (a blue horizontal line).
This 95% interval plot reveals that the 31st hospital has the lowest upper bound even though
its point estimate (λ̂31 = 0.0235) is slightly larger than that of the 23rd hospital (λ̂23 =
0.0230). The observed mortality rates for these two hospitals (yj , j = 23, 31) are 0.0150
and 0.0201 and the caseloads (nj , j = 23, 31) are 602 and 1340 each. The 31st hospital has
twice the caseload, which leads to borrowing less information from the New York State-level
hierarchy (or shrinking less toward the state-level mean, 0.03) with smaller variance. Based on
the point and interval estimates, the 31st hospital seems a better choice than the 23rd hospital.
(Note that this conclusion is based on the data, assuming no covariate information about the
overall case difficulties in each hospital. A more reliable analysis must take into account all
the possible covariate information and instead of our Poisson model, we recommend using
our binomial model to account for covariate information.)
Next, we perform frequency method checking to question how reliable the estimation proce-
dure is, assuming r equals its estimated value, r̂ = 683.53. The function coverage generates
synthetic data sets starting with the estimated value of r as a generative value. For reference,
we could designate other generative values of r and λEj by adding two arguments, A.or.r and
mean.PriorDist, into the code below, see Section 8.1 for details.

R> p.coverage <- coverage(p.output, nsim = 1000)

In Figure 3, the black horizontal line at 0.95 represents the nominal confidence level and
the red circles indicate RB unbiased coverage estimates, ĪRB(λj) for j = 1, 2, . . . , 31. The
overall unbiased coverage estimate across all the hospitals, ¯̄IRB in (58), is 0.955. None of
the RB unbiased coverage estimates for the 31 hospitals are less than 0.95 regardless of their
caseloads, which range from 67 for hospital 1 to 1,340 for hospital 31. This result shows that
the interval estimate for this particular data set adequately achieves a 95% confidence level
if r = r̂.
The following code provides 31 RB unbiased coverage estimates and their standard errors
(the output is omitted for space reasons).

R> p.coverage$coverageRB
R> p.coverage$se.coverageRB

The code below produces 31 simple unbiased coverage estimates and their standard errors.
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Figure 3: Coverage plot via frequency method checking for 31 hospitals.

R> p.coverage$coverageS
R> p.coverage$se.coverageS

It turns out that the variance estimate of the RB unbiased coverage estimate for the first
hospital (0.00162) is about 19 times smaller than that of the simple one (0.00702). This
means that the RB unbiased coverage estimates based on 1,000 simulations (Nsim) are as
precise as the simple unbiased coverage estimates based on 19,000 simulations in terms of
estimating the coverage probability for the first hospital, Cr,λE(λ1).

7.2. Gaussian data: Unknown expected random effect and no covariates
The Education Testing Service conducted randomized experiments in eight separate schools
(groups) to test whether students’ (units’) SAT scores are affected by coaching. The data
set contains the estimated coaching effects on SAT scores (yj , j = 1, . . . , 8) and standard
errors (V 0.5

j , j = 1, . . . , 8) of the eight schools (Rubin 1981). These data are contained in the
package and can be loaded into R as follows.

R> data("schools", package = "Rgbp")
R> y <- schools$y
R> se <- schools$se

Due to the nature of the test each school’s coaching effect has an approximately normal
sampling distribution with approximately known sampling variances, based on large sample
consideration. At the second hierarchy, the mean for each school is assumed to be drawn from
a common normal distribution (m = 1).

R> g.output <- gbp(y, se, model = "gaussian")
R> g.output

Summary for each group (sorted by the descending order of se):
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obs.mean se prior.mean shrinkage low.intv post.mean upp.intv post.sd
8 12.00 18.0 8.17 0.734 -10.21 9.19 29.9 10.23
3 -3.00 16.0 8.17 0.685 -17.13 4.65 22.5 10.10
1 28.00 15.0 8.17 0.657 -2.32 14.98 38.8 10.56
4 7.00 11.0 8.17 0.507 -8.78 7.59 23.6 8.26
6 1.00 11.0 8.17 0.507 -13.03 4.63 20.1 8.44
2 8.00 10.0 8.17 0.459 -7.25 8.08 23.4 7.81
7 18.00 10.0 8.17 0.459 -1.29 13.48 30.8 8.18
5 -1.00 9.0 8.17 0.408 -13.30 2.74 16.7 7.63
Mean 12.5 8.17 0.552 -9.16 8.17 25.7 8.90

This output from gbp summarizes the results. In this Gaussian model the amount of shrinkage
for each unit is governed by the shrinkage factor, Bj = Vj/(Vj + A). As such, schools whose
variation within the school (Vj) is less than the between-school variation (A) will shrink
greater than 50%. The results provided by gpb suggests that there is little evidence that
the training provided much added benefit due to the fact that every school’s 95% posterior
interval contains zero. In the case where the number of groups is large Rgbp provides a
summary feature:

R> summary(g.output)

Main summary:

obs.mean se prior.mean shrinkage low.intv post.mean
Unit with min(se) -1.00 9.0 8.17 0.408 -13.30 2.74
Unit with median(se)1 1.00 11.0 8.17 0.507 -13.03 4.63
Unit with median(se)2 7.00 11.0 8.17 0.507 -8.78 7.59
Unit with max(se) 12.00 18.0 8.17 0.734 -10.21 9.19
Overall Mean 12.5 8.17 0.552 -9.16 8.17

upp.intv post.sd
16.7 7.63
20.1 8.44
23.6 8.26
29.9 10.23
25.7 8.90

Second-level Variance Component Estimation Summary:
alpha=log(A) for Gaussian or alpha=log(1/r) for Binomial and Poisson data:

post.mode.alpha post.sd.alpha post.mode.A
4.77 1.14 118

Regression Summary:

estimate se z.val p.val
beta1 8.168 5.73 1.425 0.154
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Figure 4: Shrinkage plot and 95% interval plot for eight schools.

The summary provides results regarding the second level hierarchy parameters. It can be
seen that the estimate of the expected random effect, µE = β1 (beta1), is not significantly
different from zero suggesting that there is no effect of the coaching program on SAT math
scores.
Rgbp also provides functionality to plot the results of the analysis as seen in Figure 4. Plotting
the results provides a visual aid to understanding but is only largely beneficial when the
number of groups (k) is small.

R> plot(g.output)

The frequency method checking procedures generates new pseudo-data from our assumed
model. Unless otherwise specified, the procedure fixes the hyper-parameter values at their
estimates (Â and β̂1 in this example) and then simulates random effects µj for each group j.
The model is then estimated and this is repeated an Nsim (nsim) number of times to estimate
the coverage probabilities of the procedure.

R> g.coverage <- coverage(g.output, nsim = 1000)

As seen in Figure 5 the desired 95% confidence level, denoted by a black horizontal line at
0.95, is achieved for each school in this example. All the coverage estimates depend on the
chosen generative values of A and β1, and the assumption that the model is valid.



Journal of Statistical Software 23

● ● ● ● ● ● ●
●

Estimated coverage rate for each group

Group_ j ,  j = 1, ..., 8

C
ov

er
ag

e 
ra

te
 e

st
im

at
e

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8

Model: Normal−Normal
Red circles: RB coverage estimates
# of simulations per group:  1000
A for data generation:  117.71
beta0 for data generation: 8.168
Overall coverage estimate:  0.962
SE(overall coverage estimate):  5e−04

Figure 5: Coverage plot via frequency method checking for 8 schools.

In addition, the RB unbiased coverage estimate and its standard error for each school can be
calculated with the command below.

R> g.coverage$coverageRB

[1] 0.963 0.958 0.966 0.960 0.957 0.960 0.959 0.969

R> g.coverage$se.coverageRB

[1] 0.0015 0.0013 0.0015 0.0013 0.0011 0.0013 0.0013 0.0013

7.3. Binomial data: Unknown expected random effects and one covariate

The data of 18 major league baseball players contain the batting averages through their first
45 official at-bats of the 1970 season (Efron and Morris 1975). A binary covariate is created
that is equal to the value one if a player is an outfielder and zero otherwise. The data can be
loaded into R with the following code.

R> data("baseball", package = "Rgbp")
R> y <- baseball$Hits
R> n <- baseball$At.Bats
R> x <- ifelse(baseball$Position == "fielder", 1, 0)

Conditional on the unknown true batting average (random effect) of each player it is assumed
that the at-bats are independent and therefore, yj | pj ∼ Binomial(45, pj) independently for
j = 1, . . . , 18. Our goal is to obtain point and interval estimates of each random effect whilst
considering the additional information on whether the player is an outfielder or not. The
function gbp provides a way to incorporate such covariate information seamlessly into the
model so that the regression towards the mean occurs within outfielders and non-outfielders
separately.
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R> b.output <- gbp(y, n, x, model = "binomial")
R> b.output

Summary for each unit (sorted by n):

obs.mean n X1 prior.mean shrinkage low.intv post.mean upp.intv post.sd
1 0.400 45 1.0 0.310 0.715 0.248 0.335 0.429 0.0462
2 0.378 45 1.0 0.310 0.715 0.244 0.329 0.420 0.0448
3 0.356 45 1.0 0.310 0.715 0.240 0.323 0.411 0.0437
4 0.333 45 1.0 0.310 0.715 0.236 0.316 0.403 0.0429
5 0.311 45 1.0 0.310 0.715 0.230 0.310 0.396 0.0424
6 0.311 45 0.0 0.233 0.715 0.179 0.256 0.341 0.0415
7 0.289 45 0.0 0.233 0.715 0.175 0.249 0.331 0.0400
8 0.267 45 0.0 0.233 0.715 0.171 0.243 0.323 0.0388
9 0.244 45 0.0 0.233 0.715 0.166 0.237 0.315 0.0380
10 0.244 45 1.0 0.310 0.715 0.210 0.291 0.379 0.0432
11 0.222 45 0.0 0.233 0.715 0.161 0.230 0.308 0.0377
12 0.222 45 0.0 0.233 0.715 0.161 0.230 0.308 0.0377
13 0.222 45 0.0 0.233 0.715 0.161 0.230 0.308 0.0377
14 0.222 45 1.0 0.310 0.715 0.202 0.285 0.375 0.0441
15 0.222 45 1.0 0.310 0.715 0.202 0.285 0.375 0.0441
16 0.200 45 0.0 0.233 0.715 0.155 0.224 0.302 0.0377
17 0.178 45 0.0 0.233 0.715 0.148 0.218 0.297 0.0381
18 0.156 45 0.0 0.233 0.715 0.140 0.211 0.292 0.0389
Mean 45 0.4 0.267 0.715 0.191 0.267 0.351 0.0410

The shrinkage estimates are the same for all players because all players have the same 45
at-bats, i.e., the same amount of the observed information.

R> summary(b.output)

Main summary:

obs.mean n X1 prior.mean shrinkage low.intv
Unit with min(obs.mean) 0.156 45 0.000 0.233 0.715 0.140
Unit with median(obs.mean)1 0.244 45 0.000 0.233 0.715 0.166
Unit with median(obs.mean)2 0.244 45 1.000 0.310 0.715 0.210
Unit with max(obs.mean) 0.400 45 1.000 0.310 0.715 0.248
Overall Mean 45 0.444 0.267 0.715 0.191

post.mean upp.intv post.sd
0.211 0.292 0.0389
0.237 0.315 0.0380
0.291 0.379 0.0432
0.335 0.429 0.0462
0.267 0.351 0.0410
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Figure 6: Shrinkage plot and 95% interval plot for 18 baseball players.

Second-level Variance Component Estimation Summary:
alpha=log(A) for Gaussian or alpha=log(1/r) for Binomial and Poisson data:

post.mode.alpha post.sd.alpha post.mode.r
-4.73 0.957 113

Regression Summary:

estimate se z.val p.val
beta1 -1.194 0.131 -9.129 0.000
beta2 0.389 0.187 2.074 0.038

The regression coefficient for the outfielder indicator is significant, considering that the p value
for β̂2 (beta2) is 0.038. It means that the two estimates for the expected random effects for
the outfielders and infielders are significantly different. Also, the positive sign of β̂2 indicates
that the population batting average for outfielders tends to be higher than that for infielders.
The estimated odds ratio is exp(0.389) = 1.48.

R> plot(b.output)



26 Rgbp: Random Effects Models, with Frequency Coverage Evaluations in R

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Estimated coverage rate for each group

Group_ j ,  j = 1, ..., 18

C
ov

er
ag

e 
ra

te
 e

st
im

at
e

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 3 5 7 9 11 13 15 17

Model:  Binomial−Beta
Red circles: RB coverage estimates
# of simulations per group:  1000
r for data generation:  112.95
beta0 for data generation: −1.194
beta1 for data generation: 0.389
Overall coverage estimate:  0.973
SE(overall coverage estimate):  3e−04

Figure 7: Coverage plot via frequency method checking for 18 players.

The shrinkage plot in Figure 6 shows that the observed batting averages (empty dots) on the
upper horizontal line shrink towards the two expected random effects, 0.233 and 0.310. The
short red line symbols near some empty dots are for when two or more points have the same
mean and are plotted over each other. For example, five players (from the 11th player to the
15th) have the same batting average, 0.222, and at this point on the upper horizontal line,
there are short red lines toward five directions.
The 95% interval plot in Figure 6 shows the range of true batting average for each player,
which clarifies the regression towards the mean within two groups. The 10th, 14th, and 15th
players, for example, are outfielders but their observed batting averages are far lower than the
first five outfielders. This can be attributed to their bad luck because their observed batting
averages are close to the lower bounds of their interval estimates. The regression towards
the mean indicates that their batting averages shrink towards the expected random effect of
outfielders (0.310) in the long run.
To check the level of trust in these interval estimates, we proceed to frequency method checking
by assuming the estimates, 112.95 for r̂ and (−1.194, 0.389) for β̂, are the generative values.

R> b.coverage <- coverage(b.output, nsim = 1000)

In Figure 7, the estimated coverage probabilities for random effects are beyond 0.95, conser-
vatively satisfying the 95% confidence level if r = r̂ and β = β̂. The overall unbiased coverage
estimate across all the players is 0.972.
We can check the RB unbiased coverage estimates and their standard errors for each player;

R> b.coverage$coverageRB

[1] 0.972 0.972 0.975 0.974 0.974 0.972 0.973 0.971 0.974 0.974 0.975 0.973
[13] 0.973 0.972 0.972 0.972 0.974 0.972

R> b.coverage$se.coverageRB
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[1] 0.0012 0.0012 0.0009 0.0010 0.0011 0.0011 0.0010 0.0013 0.0009 0.0011
[11] 0.0010 0.0010 0.0010 0.0012 0.0011 0.0012 0.0010 0.0011

If we want to draw 2,000 posterior samples of random effects and hyper-parameters from their
full posterior distribution via the A-R method, we use the following R code.

R> b.output <- gbp(y, n, x, model = "binomial", n.AR = 2000)

The sampling result saved in b.output consists of 8,000 weights (b.output$weight), 2,000
posterior samples of α (b.output$alpha), a 2,000 × 2 matrix of β (b.output$beta) each
column of which corresponds to 2,000 posterior samples of each regression coefficient, and a
k × 2,000 matrix of random effects (b.output$p) each row of which has posterior samples of
each random effect.
If we run the frequency method checking using this sampling result, b.output, obtained via
the A-R method, the Nsim simulations also run the A-R method each time.

8. Usage of functions in Rgbp
In this section, we describe more specific usage with various options of the two main functions
of Rgbp, i.e., gbp for model fitting and coverage for frequency method checking.

8.1. Model fitting
The function gbp creates an S3 object ‘gbp’ for which three generic functions plot, print,
and summary are defined.
There are two cases according to whether covariates are available or not. When no covariates
are available, the function gbp requires fitting an intercept term or designating known values
of the expected random effects, i.e., the intercept term must be either estimated or known.
The default of gbp is to fit an intercept term. The value(s) of the known expected random
effect(s) can be assigned through an optional argument mean.PriorDist. Note that gbp can
fit the Poisson model only when the values of expected random effects, λEj , are known. The
usage of gbp to fit each model without any covariates is

R> g.output <- gbp(y, se.or.n, model = "gaussian")
R> b.output <- gbp(y, se.or.n, model = "binomial")
R> p.output <- gbp(y, se.or.n, mean.PriorDist, model = "poisson")

The argument y is a vector of k observed sample means for the Gaussian model, k observed
numbers of successful outcomes for the binomial model, and k observed outcome counts for
the Poisson model. The argument se.or.n is a vector of k standard errors of each sample
mean for the Gaussian model, k numbers of trials for the binomial model, and k exposures
for the Poisson model. The argument mean.PriorDist is either a constant (if all the known
expected random effects are the same) or a vector of k known expected random effects.
If covariate information for each group is available, users can fit the Gaussian and binomial
models, using the following codes.

R> g.output <- gbp(y, se.or.n, X, model = "gaussian")
R> b.output <- gbp(y, se.or.n, X, model = "binomial")
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The argument X is a matrix of covariate(s) each column of which corresponds to one covariate
for k groups. For example, if users have two covariates for each group, the argument X must
be a k × 2 matrix to estimate three regression coefficients β = (β1, β2, β3) including an
intercept term, β1, as a default. If users do not want to include an intercept term (β1 =
0), estimating two regression coefficients for the two covariates, users can add an optional
argument intercept as follows.

R> g.output <- gbp(y, se.or.n, X, model = "gaussian", intercept = FALSE)

The function gbp contains more optional arguments. The argument confidence.lvl, whose
default value is 0.95, sets the confidence level, producing 100 × confidence.lvl% interval
estimates for the random effects. For the Gaussian model, setting the argument normal.CI
to TRUE lets gbp use a normal approximation to the unconditional posterior distribution of
the random effect (Morris and Tang 2011). The default value of normal.CI is FALSE for the
skewed-normal approximation (Kelly 2014).
The function gbp uses the A-R method to fit the binomial model if users assign the desired
number of posterior samples (N in (51)) through the argument n.AR; its default value is
zero. There are several arguments related to the A-R method. The argument n.AR.factor
determines how many trial samples the method draws; its default value is four, meaning that
the function gbp draws 4 × n.AR trial samples and accepts or rejects them. The argument
trial.scale is ψ determining the scale parameter σ of the skewed-t distribution; its default
value is 1.3. The argument save.result indicates whether gbp saves the whole posterior
samples of the random effects and hyper-parameters; its default value is TRUE. The two
arguments t and u, taking on non-negative and positive values, respectively, allow users
to choose the joint hyper-prior density function, f(r,β) ∝ 1/(t+ r)u+1; the default values for
t and u are 0 and 1, respectively, for the joint hyper-prior density function specified in (9).
For example, when there are two covariates, the following code produces 2,000 posterior
samples of random effects and those of hyper-parameters, r and β(3×1) including an intercept
term, via the A-R method with 8,000 trial samples.

R> b.output <- gbp(y, se.or.n, X, model = "binomial", n.AR = 2000)

The object b.output above contains 8,000 weights (b.output$weight), 2,000 posterior sam-
ples of α (b.output$alpha), a 2,000 × 3 matrix of β (b.output$beta) each column of which
corresponds to 2,000 posterior samples of each regression coefficient, and a k × 2,000 matrix of
random effects (b.output$p) each row of which has posterior samples of each random effect.
The S3 object ‘gbp’ benefits from three generic functions, print, summary, and plot. The
estimation result for all the random effects appears if users type the ‘gbp’ object in the R
console, which plays the same role of the function print with its default argument sort =
TRUE. When the argument sort is set to TRUE, the function print displays the estimation
result for all the groups in the ascending order of n for the binomial and Poisson model and
in the descending order of standard errors for the Gaussian model. When the argument sort
is FALSE, the estimation result is returned in the order of data input.

R> b.output
R> print(b.output, sort = FALSE)
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The function summary prints a detailed estimation result, including the estimation result for
the hyper-parameters, A (or r) and β.

R> summary(b.output)

The function plot draws a shrinkage plot and 100 × confidence.lvl% interval plot for
random effects, see Figures 2, 4, or 6 for example. Its default argument sort = TRUE displays
the 100 × confidence.lvl% interval plot in the ascending order of n for the binomial and
Poisson model and the descending order of standard errors for the Gaussian model. When
the argument sort is set to FALSE the 100 × confidence.lvl% interval plot is displayed in
the order of data input.

R> plot(b.output)
R> plot(b.output, sort = FALSE)

8.2. Frequency method checking

The function coverage conducts the frequency method checking. It estimates the cover-
age properties for our estimators of the random effects at a particular value of the hyper-
parameters by averaging the coverage over many simulated data sets. The basic usage of
coverage needs a ‘gbp’ object, such as b.output above, as the first argument;

R> cov <- coverage(b.output, nsim = 1000)

The argument nsim sets the number of simulations, Nsim, defined in Section 6.1. If users do
not assign values of the hyper-parameters through the arguments A.or.r and reg.coef, then
the function coverage automatically sets the estimated posterior modes of hyper-parameters
saved in the ‘gbp’ object (or their posterior medians if the acceptance-rejection method for
the binomial model is used) as the generative values of hyper-parameters. If users want to
conduct the frequency method checking with different generated values of hyper-parameters,
for example, r = 100 and β = (2, 5)> when one covariate was used with an intercept term,
then users can specify them via the arguments A.or.r and reg.coef;

R> cov <- coverage(b.output, A.or.r = 100, reg.coef = c(2, 5), nsim = 1000)

When users fit a model via gbp with known expected random effects, e.g., a Poisson model
with known values of {λ1, λ2, . . . , λk}, coverage conducts the frequency method checking
based on these known values as a default. However, users may want to conduct the frequency
method checking with different known values of the expected random effects. For example, if
users want to try a different value of the expected random effect, e.g., λj = 30 (or can also
be a vector of different values), the argument mean.PriorDist is added as follows.

R> cov <- coverage(p.output, mean.PriorDist = 30, nsim = 1000)

The resulting frequency method checking is based on the estimated posterior mode of r
(because it is not specified through A.or.r) and the newly specified value of the expected
random effect, 30, as its known value.
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Though the function coverage does not produce an S3 object, the result of coverage contains
various numerical details; k RB coverage estimates (cov$coverageRB) and their standard
errors (cov$se.coverageRB), overall unbiased coverage estimate (cov$overall.coverageRB)
and its standard error (cov$se.overall.coverageRB), etc.
A coverage plot summarizing the result of coverage automatically appears. If the result
is saved in a variable such as cov above, then users can recall the coverage plot, using the
function coverage.plot.

R> coverage.plot(cov)

9. Discussion
Rgbp is an R package for estimating and validating two-level Gaussian, Poisson, and binomial
hierarchical models. The package aims to provide a procedure that is computationally effi-
cient with good frequency properties and includes frequency method checking functionality
to examine repeated sampling properties and to test that the method is valid at specified
hyper-parameter values.
As an alternative to other maximization based estimation methods such as MLE and REML,
Rgbp provides approximate point and interval estimates of parameters via ADM. Using the
ADM approach, with our specified choice of priors, protects from cases of overshrinkage and
undercoverage from which the aforementioned methods suffer (Morris 1988b).
A benefit of Rgbp is that it produces non-random output (except the A-R method for the
binomial model) and so results are easily reproduced and compared across studies. In addition
to being a stand-alone analysis tool the package can be used as an aid in a broader estimation
procedure. For example, by checking the similarity of output of Rgbp and that of another
estimation procedure such as MCMC (Markov chain Monte Carlo), the package can be used
as a confirmatory tool to check whether the alternative procedure has been programmed
correctly. In addition, the parameter estimates obtained via Rgbp can be used to initialize
an MCMC sampling procedure thus decreasing time to convergence. Lastly, due to its speed
and ease of use, Rgbp can be used as a method of preliminary data analysis. Such results
may tell statisticians and practitioners alike whether a more intensive method in terms of
implementation and computational time, such as MCMC, is needed.
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A. Posterior propriety of the Poisson model
If the posterior distribution of r is proper, then the full posterior distribution of random
effects and r is also proper because

f(λ, r | y) = f(λ | y)× f(r | y),

where f(λ | y) is a product of k proper conditional posterior density function in (32). Thus,
our goal is to show that

∫∞
0 f(r | y)dr <∞:

f(r | y) ∝ 1
r2L(r) ∝ 1

r2

k∏
j=1

Γ(rλEj + yj)
Γ(rλEj )

(1−Bj)yiB
rλEj
j (59)

= 1
r2

[
r
∑k

j=1 yj + · · ·+ akr
k
]

exp

−r k∑
j=1

λEj log(1 + nj/r)

 k∏
j=1

(
nj

nj + r

)yj
, (60)

where the polynomial function of r in the bracket has constant coefficients.
If there are at least two groups whose observed values yj are non-zero, then f(r | y) goes
to zero as r approaches zero due to the polynomial function of r in (60); the following two
factors in (60) approach one. As r becomes infinite, f(r | y) touches zero exponentially fast
due to the exponential term in the middle of (60). Thus, the integration of f(r | y) must be
finite.
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