
JSS Journal of Statistical Software
June 2017, Volume 78, Issue 6. doi: 10.18637/jss.v078.i06

msBP: An R Package to Perform Bayesian
Nonparametric Inference Using Multiscale

Bernstein Polynomials Mixtures

Antonio Canale
University of Padua and Collegio Carlo Alberto

Abstract

msBP is an R package that implements a new method to perform Bayesian multiscale
nonparametric inference introduced by Canale and Dunson (2016). The method, based on
mixtures of multiscale beta dictionary densities, overcomes the drawbacks of Pólya trees
and inherits many of the advantages of Dirichlet process mixture models. The key idea is
that an infinitely-deep binary tree is introduced, with a beta dictionary density assigned
to each node of the tree. Using a multiscale stick-breaking characterization, stochastically
decreasing weights are assigned to each node. The result is an infinite mixture model.
The package msBP implements a series of basic functions to deal with this family of priors
such as random densities and numbers generation, creation and manipulation of binary
tree objects, and generic functions to plot and print the results. In addition, it implements
the Gibbs samplers for posterior computation to perform multiscale density estimation
and multiscale testing of group differences described in Canale and Dunson (2016).

Keywords: binary trees, density estimation, multiscale stick-breaking, multiscale testing.

1. Introduction
Multiscale methods have received abundant attention in the statistical literature, having sev-
eral appealing characteristics that pushed their use in many applications. With the term
“multiscale model” we refer to a model in which multiple sub-models at different scales are
used simultaneously. A notable example is represented by wavelets, which are routinely used
in signal and image processing, nonparametric regression, and density estimation (Donoho,
Johnstone, Kerkyacharian, and Picard 1996). However, from the Bayesian perspective, multi-
scale density estimation is surprisingly understudied. Indeed, most of the approaches rely on
single-scale kernel mixtures. Among these, the Dirichlet process (DP; Ferguson 1973, 1974)

http://dx.doi.org/10.18637/jss.v078.i06

2 msBP: Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials in R

mixtures of Gaussians (Lo 1984; Escobar and West 1995) are the gold standard in many
applications. An exception is represented by Pólya trees (Mauldin, Sudderth, and Williams
1992; Lavine 1992a,b) that unfortunately have some unappealing characteristics. For example
they tend to produce extremely spiky densities even when the true density is fairly smooth
and are sensitive to the prior specification. This sensitivity can be overcome within a mixture
approach (Hanson and Johnson 2002), but in this case there is a price to pay in terms of
computation. Both the DP and Pólya tree mixture models are implemented in the famous
DPpackage (Jara, Hanson, Quintana, Müller, and Rosner 2011), an R package that repre-
sents the de facto standard software for Bayesian nonparametric inference under a variety of
settings.
Canale and Dunson (2016) recently proposed a Bayesian multiscale method that inherits some
advantages of the DP mixture and avoids the disadvantages of Pólya trees. The key idea lies
in introducing an infinitely-deep binary tree, with a beta dictionary density assigned to each
node of the tree. Using a multiscale stick-breaking (Sethuraman 1994) characterization, the
authors define a stochastically decreasing sequence of weights assigned to each node of the
tree. This formulation implies that within a level of the tree, the densities are equivalent
to Bernstein polynomials (Petrone 1999a,b). Extensions to deal with unconstrained domain
data are also discussed. A similar idea appeared also in Chen, Hanson, and Zhang (2014).
The DP-like characteristics are derived from the formulation of a multiscale generalization
of the stick-breaking process, which can be exploited to build an efficient slice sampling
algorithm. The same multiscale stick-breaking process has also been used by Wang, Canale,
and Dunson (2016) to learn the joint density in massive dimensional settings, using geometric
multiresolution analysis to estimate the dictionary densities over the binary tree at a first
stage.
The R package msBP (Canale 2017) implements the multiscale stick-breaking process, and its
applications to density estimation and to testing of group differences as discussed in Canale
and Dunson (2016), and a series of basic R functions to deal with this family of nonparametric
priors such as random density and number generation, creation and manipulation of binary
trees, and generic functions to plot and print the results. The package’s core is written in
C++ by means of a specific ‘bintree’ data class and it is called from R via the .C function.
The package is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=msBP.
The rest of the paper is organized as follow: In the next section we outline the theoreti-
cal framework with particular emphasis on the multiscale stick-breaking process. Section 3
describes the main features of the C++ implementation while Section 4 is concerned with
demonstrating the main features of the package.

2. A multiscale prior for densities

2.1. Basic formulation

Let x ∈ X ⊂ R, be a random variable, g be an unknown density and x ∼ g. Under a Bayesian
perspective g0 is assumed to be a prior guess for g, with G0 and G−1

0 the corresponding
cumulative distribution function (CDF) and inverse CDF, respectively. A prior for g centered
on g0 can be introduced through a prior for the density f of y = G0(x) ∈ (0, 1). The CDFs

https://CRAN.R-project.org/package=msBP
https://CRAN.R-project.org/package=msBP

Journal of Statistical Software 3

F and G corresponding to the densities f and g, respectively, have the following relationship

G(x) = F{G0(x)}, x ∈ X , F (y) = G{G−1
0 (y)}, y ∈ (0, 1). (1)

A similar construction also appeared in Chen et al. (2014). The density f is assumed to have
the following structure:

f(y) =
∞∑
s=0

2s∑
h=1

πs,hBe(y;h, 2s − h+ 1), (2)

where Be(a, b) denotes the beta density with mean a/(a+b). The sequence of random weights
{πs,h} are constructed via the multiscale stick-breaking process described below. We will refer
to the latter construction as multiscale Bernstein polynomial (msBP) model.
To build a multiscale stick-breaking process, an infinite sequence of scales s = 0, 1, . . . ,∞
labelling the levels of an infinite-deep binary tree is introduced. At each scale s there will
be 2s different nodes. A cartoon of the binary tree is reported in Figure 1. To describe a
stochastic path from the root node to the leaves, at each scale s and node h within the scale,
the following independent random variables are introduced:

Ss,h ∼ Be(1, a), Rs,h ∼ Be(b, b), (3)

corresponding to the probability of stopping at node (s, h) and taking the right path after
node (s, h) conditionally on not stopping, respectively. This formulation generalizes the stick-
breaking process representation of Sethuraman (1994). Each time the stick is broken, it is
then randomly divided in two parts (one for the probability of going right, the remainder for
the probability of going left) before the next break. Hence, similarly to Sethuraman (1994),
the infinite sequence of weights can be defined as

πs,h = Ss,h
∏
r<s

(1− Sr,gshr
)Tshr, (4)

where gshr = dh/2s−re is the node traveled through at scale r on the way to node h at scale
s, Tshr = Rr,gshr

if (r+ 1, gshr+1) is the right daughter of node (r, gshr), and Tshr = 1−Rr,gshr

if (r + 1, gshr+1) is the left daughter of (r, gshr). Note that the general (s, h) node is related
to the Be(h, 2s − h+ 1) density.
The above construction leads to a meaningful sequence of weights, i.e., ∑∞s=0

∑2s

h=1 πs,h = 1
almost surely for any a, b > 0 as proved in Lemma 1 of Canale and Dunson (2016). An
appealing aspect of this formulation is that it produces a multiscale clustering of the subjects.
In particular, two subjects having similar observations may have the same cluster allocation
up to some scale s, but are not clustered together on finer scales.

2.2. Bayesian multiscale inference on group differences

A promising feature of this multiscale stick-breaking process is its ease of generalization to
more complex settings than mere density estimation. For example, the sequence of random
variables defined in Equation 3 can be generalized to include predictors or other forms of
dependence, (e.g., spatial or temporal). Motivated by epigenetic data, Canale and Dunson
(2016) modified model (2)–(3), to perform Bayesian multiscale inference on group differences.

4 msBP: Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials in R

Be(1, 1)
(0, 1)

Be(1, 2)
(1, 1)

Be(1, 4)
(2, 1)

Be(1, 8)
(3, 1)

Be(2, 7)
(3, 2)

Be(2, 3)
(2, 2)

Be(3, 6)
(3, 3)

Be(4, 5)
(3, 4)

Be(2, 1)
(1, 2)

Be(3, 2)
(2, 3)

Be(5, 4)
(3, 5)

Be(6, 3)
(3, 6)

Be(4, 1)
(2, 4)

Be(7, 2)
(3, 7)

Be(8, 1)
(3, 8)

Figure 1: Binary tree with beta kernels at each node (s, h), where s is the scale level and h
is the index within the scale.

Let yi be a bounded (between zero and one) outcome for subject i with yi ∼ fdi
and di ∈ {0, 1}.

The label di denotes a subject’s group (e.g., cases/controls, drug/placebo). Using the msBP
representation, the hypothesis f0 = f1 is true if the groups share the same weights over the
binary tree. If f0 6= f1, we may have the same weights on the dictionary elements up to a
given scale, so that the densities are equivalent up to that scale but not at finer scales. Thus,
one can also test for Hs

0 : fs0 = fs1 , i.e., no differences between the two groups at scale s.
Clearly H0

0 is true with probability one, and thus a further modification of (3) consists to set
S0,1 = 0.
The subjects surviving up to scale s can stop or progress to the next scale. Let N s denote
these actions, with N s

(d) denoting the actions in group d. Conditionally on N s the posterior
probability of H0 being true at scale s can be written as

P(Hs
0 |N s) = P s0 P(N s|Hs

0)
P s0 P(N s|Hs

0) + (1− P s0)P(N s|Hs
1) , (5)

where P s0 is our prior guess for the null being true at scale s and P(N s|Hs
0) is the probability

of the possible actions if H0 is true up to scale s. To compute the latter, we can use

P(N s|Hs
0) =

∫
T

P(N s|T)P(T |a, b)dT

=
{Γ(a+ 1)

Γ(a)
Γ(2b)
Γ(b)2

}2s ∫
T

2s∏
h=1

S
ns,h

s,h (1− Ss,h)âs,h−1R
b̂s,h−1
s,h (1−Rs,h)ĉs,h−1dT

=
{Γ(a+ 1)Γ(2b)

Γ(a)Γ(b)2

}2s 2s∏
h=1

Γ(1 + ns,h)Γ(â)
Γ(a+ vs,h + 1)

Γ(b̂)Γ(ĉ)
Γ(2b+ vs,h − ns,h) , (6)

where âs,h = a + vs,h − ns,h, b̂s,h = b + rs,h, and ĉs,h = b + vs,h − ns,h − rs,h, and vs,h is the
number of subjects passing through node (s, h), ns,h is the number of subjects stopping at
node (s, h), and rs,h is the number of subjects that continue to the right after passing through

Journal of Statistical Software 5

node (s, h). Similarly

P(N s|Hs
1) = P(N s

(0)|H
s
1)× P(N s

(1)|H
s
1)

=
{Γ(a+ 1)Γ(2b)

Γ(a)Γ(b)2

}22s 2s∏
h=1

Γ(1 + n
(0)
s,h)Γ(â(0))

Γ(a+ v
(0)
s,h + 1)

Γ(b̂(0))Γ(ĉ(0))
Γ(2b+ v

(0)
s,h − n

(0)
s,h)
×

2s∏
h=1

Γ(1 + n
(1)
s,h)Γ(â(1))

Γ(a+ v
(1)
s,h + 1)

Γ(b̂(1))Γ(ĉ(1))
Γ(2b+ v

(1)
s,h − n

(1)
s,h)

, (7)

where v(d)
s,h is the number of subjects passing through node (s, h) in group d, n(d)

s,h is the number
of subjects stopping at node (s, h) in group d, and r(d)

s,h is the number of subjects that continue
to the right after passing through node (s, h) in group d, with d = 0, 1. The global null will
be the cumulative product of Equation 5 for each scale.
Motivated by a DNA methylation arrays application, Canale and Dunson (2016) generalized
the latter formulation in the case in which yi = (yi1, . . . , yip)>. To deal with p-dimensional
arrays, a prior for P s0 is assumed in order to borrow information across sites and to learn the
joint null probability P s0 . This feature is not yet implemented in the msBP package. A similar
multiscale approach to perform two-sample comparison has been proposed and successfully
applied in the multivariate context in Ma and Wong (2011) extending the optional Pólya
tree prior of Wong and Ma (2010). The latter approach is able to jointly perform testing of
two sample difference and learn the underlying structure of the difference. Anther proposal
connected to Pólya trees and dealing with more than two groups, censored, and multivariate
data, is discussed in Chen and Hanson (2014); see also Holmes, Caron, Griffin, and Stephens
(2015) for a related approach.

3. The C++ implementation
All the main functions of the msBP package are written in C++ and most of them rely on
the ‘bintree’ data structure, i.e.,

struct bintree
{

double data;
struct bintree *left;
struct bintree *right;

};

The ‘bintree’ structure is composed of a root (or parent node), each of which stores data
and the two links to the leaves (or daughters nodes). Clearly each leaf connects to two other
leaves and it is the beginning of a new, nested binary tree. A binary tree is a well known data
structure with appealing characteristics in computer science. For example, it is possible to
easily access and insert data into a binary tree using search and insert functions recursively
called on successive leaves. This data structure will be used to store the random variables
Ss,h and Rs,h, the weights in the mixtures, and other sample statistics. Basic functions to
handle the ‘bintree’ data structure, such as create a tree, write and extract the data on a

6 msBP: Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials in R

(0,1) (1,1) (1,2) (2,1) (2,2) (2,3) (2,4)

Figure 2: Behavior of the tree2array function. Arrows denote the branch of the original
binary tree, with continuous line for the right daughter and dashed line for the left daughter.
The number inside the array cells represent the original tree indexes.

given node of a tree and so forth, have also been implemented. Among them, the following
functions

void tree2array(struct bintree *node, double *array, ...)
void array2tree(double *a, int maxScale, struct bintree *node)

allow for the conversion of a binary tree structure into an array and vice versa, and have been
written to allow the input-output communication of R and C++ via the .C function. The first
two arguments of the tree2array function are the pointers to the binary tree and to the array
in which to write the values of the tree. Note that the array needs to be initialized before the
use of tree2array and needs to have at least length 2s−1, where s is the maximum depth of
the tree. The tree2array function writes the array as described in Figure 2. The arguments
of array2tree, instead, are the pointer to the array, an integer denoting the maximum scale
of the binary tree, and the pointer to the binary tree structure to populate. In this latter case
the binary tree structure only needs to be initialized and the function takes care of growing
the tree up to the desired depth.
In addition to the basic functions already described, the msBP package also features more
complex functions. However, most of them are then wrapped into R scripts and define the
working functions of the package itself. Thus we do not further describe them here.

4. Usage of the msBP package
The main functions of msBP are msBP.Gibbs, which allows to perform nonparametric density
estimation using the Gibbs sampler, and msBP.test which allows to perform Bayesian multi-
scale testing of group differences. In this section of the article we provide examples of how to
use these functions. In Section 4.1, basic and generic functions to handle the multiscale prior,
to sample from an msBP process, and to plot the results, are described. Then, in Sections 4.2
and 4.3, the functions msBP.Gibbs and msBP.test are extensively discussed.

4.1. Basic and generic functions

The msBP package introduces two new R object classes implemented in S3. The first is the
‘binaryTree’ class. An object of the ‘binaryTree’ class represents a finite-depth binary tree.

Journal of Statistical Software 7

It consists of a list containing T and max.s, the binary tree itself and an integer denoting
its depth, respectively. Specifically, T is a list where each element is a vector containing the
values of the nodes at a given scale. A binary tree of depth 3 containing the integers from 1
to 15 can be obtained with

R> tree <- structure(list(T = list(1, c(2, 3), c(4, 5, 6, 7),
+ c(8, 9, 10, 11, 12, 13, 14, 15)), max.s = 3), class = "binaryTree")

The tree structure can be converted into a vector using the tree2vec function

R> x <- tree2vec(tree)

while vec2tree(x) populates a binary tree with the values contained in the vector x. The
latter function is ideally constructed for vectors of length 2n − 1, where n ∈ N . However
if the length l 6= 2n − 1 for any n, the function creates a tree up to scale dlog2(bl/2c + 1)e
with the last leaves populated with NA. This object class will be largely used by other higher
level functions, since the approach described in Section 2 deals with several binary trees such
as Equations 3, 4 and so forth. A general plot function is available for the ‘binaryTree’
object class. The result of plot(tree, ...) is a cartoon of a binary tree with the root
node at the top. As additional arguments, the function features: value, size, and white. If
value = TRUE the numerical values of each node appear inside the node (up to the number
of digits specified by precision); if size = TRUE the sizes of the nodes are proportional to
their values; if white = TRUE the background color of the nodes is white, otherwise it is in
color scale (default gray.colors). Figure 3 shows the output of some combinations.
The second S3 object class implemented in the msBP package is the ‘msBPTree’ class. An
object of class ‘msBPTree’ is a list of 5 elements that represent a random draw from an
msBP(a, b) process. The first two elements are the trees of the stopping and descending-to-
the-right probabilities, described by Equation 3. Both are objects of the class ‘binaryTree’
with the same max.s. The third and fourth argument are the hyperparameters of the msBP
prior, namely a and b. The last value is an integer with the maximum depth of both trees.
To simulate a random density from an msBP(a, b) prior truncated at scale 3, the msBP.rtree
function can be used as

R> set.seed(17012014)
R> draw <- msBP.rtree(a = 5, b = 1, max.s = 3)

Note that the last scale has Ss,h = 1. The induced trees of probabilities, calculated by means
of (4) can be obtained with the msBP.compute.prob function as

R> weights <- msBP.compute.prob(draw)

and the results can be plotted using plot, as it is an object of class ‘binaryTree’. An
additional argument root = FALSE sets S0,1 = 0. This can be used, for example, in the
settings of Section 2.2. The induced random density can be drawn on a finite grid of length
n.points of its domain with the function msBP.pdf, i.e.,

R> density <- msBP.pdf(weights, n.points = 100)
R> plot(dens ~ y, data = density, xlab = "y", ylab = "Density", type = "l")

8 msBP: Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials in R
sc

al
es

●

● ●

● ● ● ●

● ● ● ● ● ● ● ●

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(a)
sc

al
es

●

● ●

● ● ● ●

● ● ● ● ● ●

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(b)

sc
al

es

●

● ●

● ● ● ●

● ● ● ● ● ● ● ●

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(c)

sc
al

es

●

● ●

● ● ● ●

● ● ● ● ● ●

(d)

Figure 3: Output of the plot(tree) function with (a) default arguments values, (b) size
= TRUE, (c) white = FALSE, and (d) white = FALSE, size = TRUE, value = FALSE,
col.grid = heat.colors(15).

Given a random density from an msBP(a, b) process, it is also possible to generate a sample
of size n from that density. To this end we use the Algorithm 1, implemented in C++
and wrapped into R via the msBP.rsample function. The function msBP.rsample needs two
parameters only: the sample size n and an object of class ‘msBPTree’.

4.2. Density estimation

Posterior density estimation under the msBP setup relies on a Markov chain Monte Carlo
(MCMC) sampling algorithm. We briefly recall the algorithm proposed by Canale and Dun-
son (2016) in what follows. It basically consists of two steps: (i) multiscale cluster allocation

Journal of Statistical Software 9

Algorithm 1 Generating a random sample from a random density having an msBP prior.
for i = 1, . . . , n do

loop = TRUE;
si = 0, hi = 1;
while loop do

let loop = FALSE with probability Ss,h.
if loop then
with probability Rsi,hi

, let hi = 2hi.
with probability 1−Rsi,hi

, let hi = 2hi − 1.
end if

end while
generate yi ∼ Be(hi, 2si − hi + 1).

end for

conditionally on the current values of the parameters {πs,h}, and (ii) update of the proba-
bilities parameters in the mixture, conditionally on the cluster allocation. Such a structure
is typical of mixture models where first data augmentation allocates the observation to a
mixture component and conditionally on such allocation the parameters of each component
are updated (Bush and MacEachern 1996; MacEachern and Müller 1998; Ishwaran and James
2001).
Suppose that si and hi are the scale and the node within scale labels for subject i. Condi-
tionally on the binary tree of weights {πs,h}, the posterior probability of subject i belonging
to node (s, h) is simply

P(si = s, hi = h|yi, πs,h) ∝ πs,hBe(y;h, 2s − h+ 1).

Now rewrite model (2) as

f(y) =
∞∑
s=0

πs

2s∑
h=1

π̄s,hBe(y;h, 2s − h+ 1),

where πs = ∑2s

h=1 πs,h, and π̄s,h = πs,h/πs. The cluster allocation uses a modification of the
slice sampler of Kalli, Griffin, and Walker (2011) and is reported in Algorithm 2.
Algorithm 2 is implemented in the msBP.postCluster function. It requires two arguments:
the sample of observations y and a binary tree of weights weights. The function makes a call
to the postCluster C++ subroutine. The output of the function is a matrix with length(y)
rows and two columns of cluster labels: the first denoting the scale and the second denoting
the node within a given scale. The same C++ subroutine called by msBP.postCluster is
called at each iteration of the MCMC sampler as described below.
Conditionally on the cluster allocations, the stopping and descending-right probabilities can
be updated from their full conditional posteriors, namely:

Ss,h ∼ Be(1 + ns,h, a+ vs,h − ns,h), Rs,h ∼ Be(b+ rs,h, b+ vs,h − ns,h − rs,h). (8)

Calculation of vs,h and rs,h can be performed via the msBP.nrvTrees function, a wrap-
per calling the allTree C++ subroutine. The input of msBP.nrvTrees is the output of

10 msBP: Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials in R

Algorithm 2 Multiscale cluster posterior allocation for i-th subject.
for each scale s do
calculate πs = ∑2s

h=1 πs,h.
end for
simulate ui|yi, si ∼ U(0, πsi).
for each scale s do

if πs > ui then
for h = 1, . . . , 2s do

compute π̄s,h = πs,h/πs.
end for
compute P(si = s|ui, yi) ∝

∑2s

h=1 π̄s,hBe(yi;h, 2s − h+ 1).
else

P(si = s|ui, yi) = 0.
end if

end for
sample si with probability P(si = s|ui, yi) ∝ 1I(s : πs > ui)

∑2s

h=1 π̄s,hBe(yi;h, 2s − h+ 1).
sample hi with probability P(hi = h|yi, si) ∝ π̄si,hBe(yi;h, 2si − h+ 1).

msBP.postCluster, i.e., a matrix with 2 columns and number of rows equal to the sample
size. The output of msBP.nrvTrees is a list containing tree objects of the class ‘binaryTree’.
The main function implemented in the msBP package is the msBP.Gibbs function, perform-
ing the actual MCMC simulation from the posterior. The function basically iterates between
cluster allocation, using the postCluster C++ subroutine and parameter updating, calculat-
ing first the elements ns,h, rs,h, and vs,h by means of the allTree C++ subroutine, and then
using Equation 8. The Markov chain sampling is written in C++ but additional R language
is used to initialize the function.
To describe the use of msBP.Gibbs, we will now walk the reader through the entire process
of density estimation under the msBP setup. We will start showing how to elicit prior in-
formation, how to run the sampler, and how to analyze the output of the analysis. We do
this using the famous Galaxy dataset (Roeder 1990). The dataset contains the velocity of
82 galaxies. The histogram of the speeds reveals that the data are clearly multimodal. This
feature supports the Big Bang theory, as the different modes of density can be thought as
clusters of galaxies moving at different speed.

R> data("galaxy", package = "DPpackage")
R> x <- galaxy$speed / 1000

We start by discussing prior elicitation. In Section 2.1 we assumed that g0 is our prior guess
for g, the density of x and we want to center our msBP process in such a prior. We discussed
that if G0 and G−1

0 are the corresponding CDF and inverse CDF, we can first transform the
data with y = G0(x) ∈ (0, 1), and then estimate f ∼ msBP(a, b). It can be shown (see
Canale and Dunson 2016) that the expectation E{F (A)} = λ(A), where λ(A) is the Lebesgue
measure over the set A and F (A) =

∫
A f . Since the prior for f is centered about the uniform,

the prior on g is automatically centered in g0. To allow this from a practical viewpoint we
can use the argument g0 of the msBP.Gibbs function. The package features four different
prior guesses for g0: g0 = c("uniform", "normal", "gamma", "empirical") for uniform,

Journal of Statistical Software 11

normal, gamma and, following an empirical approach, the kernel density estimate. As default
choice the function implements the "empirical" specification. For "normal" and "gamma",
the parameters can be fixed or an additional prior distribution can be assumed. The former
approach is adopted using g0par a vector of size two corresponding to mean and standard
deviation of the normal, or shape and rate parameters for the gamma, respectively. The latter
approach is adopted using hyper$hyperpriors$g0 = TRUE. In this case the model becomes

y = G0(x; θ), θ ∼ P(θ),

and thus an additional step of Gibbs sampling to simulate θ is necessary. The full conditional
posterior of θ is simply

P(θ | −) ∝ P(θ)
n∏
i=1

f(G0(xi); θ)g0(xi; θ),

and to sample from the latter full conditional posterior distribution the package uses a
Metropolis-Hastings step (Hastings 1970) with proposal equal to the prior. Currently only
g0 = "normal" is allowed with normal-inverse-gamma prior.
Then one has to specify the values of a and b, the hyperparameters of the msBP prior.
The hyperparameter a controls the decline in probabilities over scales. Let S(i) denotes the
scale of i-th observation. It can be shown that E(S(i)) = a which means that for small
a, high probability is placed on coarse scales, leading to smoother densities and as a in-
creases, finer scale densities will be weighted more, leading to spiker realizations. Addi-
tional hyperpriors for a and b can be assumed. Clearly, this will lead to additional sampling
steps in the Gibbs sampling algorithm. In the msBP.Gibbs function this can be achieved
by setting hyper$hyperpriors$a = TRUE and hyper$hyperpriors$b = TRUE, respectively.
Specifically the algorithm implements a ∼ Ga(β, γ) and b ∼ Ga(δ, λ). This leads to the
following conditional posterior distributions:

a|− ∼ Ga

β + 2s′+1 − 1, γ −
s′∑
s=0

2s∑
h=1

log(1− Ss,h)

 , (9)

and

P(b|−) ∝ bδ−1

B(b, b)2s′+1−1
exp

b
 s′∑
s=0

2s∑
h=1

log{Rs,h(1−Rs,h)} − λ

 , (10)

where s′ is the maximum occupied scale and B(p, q) is the Beta function. To sample from
the conditional posterior distribution of b, a Griddy-Gibbs approach over the grid defined by
hyper$hyperpar$gridB is used (see Ritter and Tanner 1992). For sake of illustration we run
and discuss msBP.Gibbs under the following different prior specifications:

R> hyper1 <- list(hyperprior = list(a = TRUE, b = TRUE, g0 = FALSE),
+ hyperpar = list(beta = 50, gamma = 5, delta = 10, lambda = 1,
+ gridB = seq(0, 20, length = 30)))
R> g0_1 <- "empirical"
R> hyper2 <- list(hyperprior = list(a = TRUE, b = TRUE, g0 = FALSE),
+ hyperpar = list(beta = 50, gamma = 5, delta= 10, lambda = 1,
+ gridB = seq(0, 20, length = 30)))

12 msBP: Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials in R

R> g0_2 <- "normal"
R> g0par_2 <- c(21, 2.5)
R> hyper2 <- list(hyperprior = list(a = TRUE, b = TRUE, g0 = TRUE),
+ hyperpar = list(beta = 50, gamma = 5, delta = 10, lambda = 1,
+ gridB = seq(0, 20, length = 30), mu0 = 21, kappa0 = 0.1,
+ alpha0 = 1, beta0 = 20))
R> g0_3 <- "normal"
R> g0par_3 <- c(21, 2.5)

which correspond to: (i) g0 is assumed to be equal to the empirical kernel density estimate,
(ii) g0 is assumed to be normal with mean 21 and variance 2.5, and (iii) g0 is assumed to be
normal with random mean and variance with prior (µ, σ2) ∼ N(µ, µ0, κ0σ

2)I-Ga(σ2;α0, β0).
In all cases the parameters of the msBP prior are assumed to be random with hyperprior
distributions a ∼ Ga(50, 5), and b ∼ Ga(10, 1), with the prior for b evaluated on a grid from
0 to 20 of length 30.
The number of iterations to perform in the MCMC chain can be set via the function argument
mcmc, a list including nb, the number of burn-in iterations, nrep the total number of iterations
(including nb), and ndisplay the multiple of iterations to be displayed on screen while the
C++ routine is running:

R> mcmc <- list(nrep = 10000, nb = 5000, ndisplay = 1000)

To obtain a posterior estimate of the density, the grid argument needs to be fixed. It consists
of a named list giving the parameters for plotting the posterior mean density over a finite
grid of points. It must include low and upp giving the lower and upper bound respectively of
the grid and n.points, an integer giving the number of evaluation points.

R> grid <- list(n.points = 150, low = 5, upp = 38)

Additional arguments to be set are maxS and printing. The former is an upper bound for
the binary trees involved in the MCMC sampling, and the latter is a control argument. If
printing = TRUE the C++ routine prints on standard output what it is doing every ndisplay
iterations. The default choice is printing = FALSE. With the following code we run the
MCMC algorithm:

R> set.seed(17012014)
R> fit.msbp.1 <- msBP.Gibbs(speeds, a = 10, b = 10, g0 = g0_1,
+ mcmc = mcmc, hyper = hyper1, maxS = 5, grid = grid)
R> fit.msbp.2 <- msBP.Gibbs(speeds, a = 10, b = 10, g0 = g0_2,
+ g0par = g0par_2, mcmc = mcmc, hyper = hyper2, maxS = 5, grid = grid)
R> fit.msbp.3 <- msBP.Gibbs(speeds, a = 10, b = 10, g0 = g0_3,

g0par = g0par_3, mcmc = mcmc, hyper = hyper3, maxS = 5, grid = grid)

The function output is a named list containing four objects:

• density: a named list containing postMeanDens, the posterior mean density estimate
evaluated over xDens and the related lower and upper pointwise 95% credible bands
(postLowDens and postUppDens).

Journal of Statistical Software 13

Histogram of Speed

x

D
en

si
ty

10 15 20 25 30 35

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 4: Posterior mean density for the Galaxy dataset.

• mcmc: a named list containing the MCMC chains: dens is a matrix (nrep-nb) × n.grid
containing the values of the density for each MCMC iteration, a and b are vectors
containing the MCMC replicates for the two msBP parameters (if hyperprior$a or
hyperprior$b are set to TRUE), scale is a matrix where each column is an MCMC
sample of the total mass for each scale, R and S are matrices where each column is the
tree2vec form of the corresponding trees, weights is a matrix where each column is
the tree2vec form of the corresponding tree of weights, s and h are matrices where each
column is the MCMC chain for the node labels for a subject, mu and sigma are vectors
containing the MCMC replicates for the two parameters of the normal transformation
of the data (if hyper$hyperprior$g0 was set to TRUE).

• postmean: a named list containing posterior means over the MCMC samples of a, b, and
of all binary trees. If hyper$hyperprior$g0 was set to TRUE, the named list contains
also the posterior means of the two parameters of the normal transformation of the
data.

• fit: a named list containing the LPML, mean, and median of the log CPO (conditional
predictive ordinate).

The histogram of the raw data and the plot of the posterior mean density and the related
95% credible bands for the first specification are reported in Figure 4.
To assess the convergence of the MCMC, one can visually inspect the traceplots of the chains
for some parameter of interest. In general fit.msbp.1$mcmc contains the MCMC chains of

14 msBP: Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials in R

all the model’s parameters. For example, if hyperpriors on the msBP prior parameters have
been assumed, one can monitor the convergence of the chains for a and b with

R> plot(fit.msbp.1$mcmc$a, type = "l", main = "Traceplot for a", ylab = "")
R> plot(fit.msbp.1$mcmc$b, type = "l", main = "Traceplot for b", ylab = "")

and test for convergence using, for example, the Geweke (1992) diagnostics implemented in
the coda package (Plummer, Best, Cowles, and Vines 2006), i.e.,

R> library("coda")
R> geweke.diag(fit.msbp.1$mcmc$a)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1
-0.1161

R> geweke.diag(fit.msbp.1$mcmc$b)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1
-1.769

We finally compare the fit obtained with the different prior specifications with the fit obtained
running DPdensity and PTdensity from package DPpackage. As prior specification for the
latter models we rely on the specifications described in the documentation of the package,
reported for sake of completeness in the online supplements of this article. The comparison is
based on the log pseudo-marginal likelihood (LPML) criterion. The LPML is a leave-one-out
cross validatory measure based on the predictive densities, see Green and Richardson (2001)
and Gelfand and Dey (1994) for details. The three msBP specifications have a LPML of
−215, −298, and −265, respectively. The best performance is obtained using the first prior
specification which centers the prior expected density in the kernel density estimate of the
raw data. The latter is practically equivalent to the best fits obtained with DPdensity and
PTdensity, where the LPML is equal to −210 and to −216, respectively.

4.3. Inference in group differences

The function msBP.test performs multiscale hypothesis testing of difference in the distri-
bution of two groups. It exploits the closed form expression for the conditional posterior
probability for Hs

0 in Equation 5. However, since it cannot be directly used due to the depen-
dence on the unknown multiscale clustering structure, the function relies on a Gibbs sampling
algorithm. Again, the algorithm is made of two steps: multiscale cluster allocation, and up-
date of the tree of weights. For node h at scale s, let π(0)

s,h denote the weight under Hs
0 and

Journal of Statistical Software 15

0 1000 2000 3000 4000 5000

3
5

7
9

Traceplot for a

Iteration

0 1000 2000 3000 4000 5000

5
10

15
20

Traceplot for b

Iteration

Figure 5: Posterior draw for a and b.

π
(1,d)
s,h for d = 0, 1 denote the group-specific weights under Hs

1 . The allocation of subject i, at
each iteration, will be made via msBP.postCluster using the following set of weights:

π
(di)
s,h = P (Hs

0 |N s
(0),N

s
(1))π

(0)
s,h + {1− P (Hs

0 |N s
(0),N

s
(1))}π

(1,di)
s,h . (11)

Then, at a given iteration the quantities in Equations 6–7 can be calculated explicitly, and
used to update the stopping and descending probabilities.
We describe the parameters and the behavior of the function via the Indian Liver dataset,
available at the UCI Machine Learning repository (Bache and Lichman 2013). This dataset
contains data on 580 subjects where 413 are liver patients and 167 are non-liver patients.
Subjects with liver problems typically register higher levels of bilirubin in their blood and
thus we want to test if there is a difference in the distribution of the relative direct bilirubin,
calculated as the ratio of the direct bilirubin over the total bilirubin. An histogram of the
raw data is reported in Figure 6(a).
The msBP.test function, in addition to a vector of observations and to a vector of group labels,
requires prior values for a, b, and for the probability of H0. The choice of the hyperparameters
a and b can be made using prior information. In what follows, however, the choice is done with
a two-step procedure. First, the density of the pooled dataset is fitted with the msBP.Gibbs
function assuming hyperpriors for a and b

R> mcmc.test <- list(nrep = 8000, nb = 4000, ndisplay = 1000)
R> hyper.test <- list(hyperprior = list(a = TRUE, b = TRUE),
+ hyperpar = list(beta = 5, gamma = 0.5, delta = 1, lambda = 1))

16 msBP: Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials in R

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

dirbil

de
ns

ity

group liver−patient non−liver−patient

(a)

●

●

● ● ●

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

scale
P

r̂(
H

0
| −

−
)

(b)

Figure 6: Histogram of the raw data (a) and posterior mean of P(H0s | −) as function of s
for the Indian liver dataset.

R> set.seed(17012014)
R> dens.liver <- msBP.Gibbs(liver$dirbil, a = 10, b = 10, g0 = "unif",
+ mcmc = mcmc.test, hyper = hyper.test, maxScale = 5)

Then the posterior mean of a and b are used as plug-in estimates for the testing. We fix the
prior probability of H0 to 0.5 in order to put equal weights to the null and the alternative,
and we fix the upper bound for the scales to 5. The function can be executed via

R> test.liver <- msBP.test(liver$dirbil, a = dens.liver$postmean$a,
+ b = dens.liver$postmean$b, group = liver$group, priorH0 = 0.5,
+ mcmc = mcmc.test, plot.it = TRUE, maxScale = 5)

The function’s output is a list containing all the MCMC replicates for P(Hs
0 |−) along with

their posterior means and the global Bayes factor

BF = P(H0 | −)
P(H1 | −) .

Figure 6(b) reports the posterior mean of the global null hypothesis, as function of the scale.
The differences between the two groups are minimal at the first scale but start to become
evident for increasing scales.

5. Conclusions
We have presented a detailed introduction to the R package msBP, which implements a
recently introduced multiscale stick-breaking prior and allows to perform density estimation
and to test for differences in the distribution of two groups. The package implements also
basic and generic functions to handle the involved multiscale trees structures.

Journal of Statistical Software 17

Acknowledgements
The author thanks David Dunson and Giovanna Menardi for comments on early versions of the
manuscript. Comments on the package implementation by Roberto Vigo, Marco Pischedda,
Brian Ripley, and the R-package-devel mailing list are gratefully acknowledged. This work
has been conducted while the author was affiliated to the University of Turin.

References

Bache K, Lichman M (2013). “UCI Machine Learning Repository.” URL http://archive.
ics.uci.edu/ml.

Bush CA, MacEachern SN (1996). “A Semiparametric Bayesian Model for Randomised Block
Designs.” Biometrika, 83(2), 275–285. doi:10.1093/biomet/83.2.275.

Canale A (2017). msBP: Multiscale Bernstein Polynomials for Densities. R package version
1.3, URL https://CRAN.R-project.org/package=msBP.

Canale A, Dunson D (2016). “Multiscale Bernstein Polynomial for Densities.” Statistica
Sinica, 26(3), 1175–1195. doi:10.5705/ss.202015.0163.

Chen Y, Hanson T (2014). “Bayesian Nonparametric k-Sample Tests for Censored and
Uncensored Data.” Computational Statistics & Data Analysis, 71, 335–346. doi:
10.1016/j.csda.2012.11.003.

Chen Y, Hanson T, Zhang J (2014). “Accelerated Hazards Model Based on Parametric
Families Generalized with Bernstein Polynomials.” Biometrics, 70(1), 192–201. doi:10.
1111/biom.12104.

Donoho DL, Johnstone IM, Kerkyacharian G, Picard D (1996). “Density Estimation by
Wavelet Thresholding.” The Annals of Statistics, 24(2), 508–539. doi:10.1214/aos/
1032894451.

Escobar MD, West M (1995). “Bayesian Density Estimation and Inference Using Mix-
tures.” Journal of the American Statistical Association, 90(430), 577–588. doi:10.1080/
01621459.1995.10476550.

Ferguson TS (1973). “A Bayesian Analysis of Some Nonparametric Problems.” The Annals
of Statistics, 1(2), 209–230. doi:10.1214/aos/1176342360.

Ferguson TS (1974). “Prior Distributions on Spaces of Probability Measures.” The Annals of
Statistics, 2(4), 615–629. doi:10.1214/aos/1176342752.

Gelfand AE, Dey DK (1994). “Bayesian Model Choice: Asymptotics and Exact Calculations.”
Journal of the Royal Statistical Society B, 56(3), 501–514.

Geweke J (1992). “Evaluating the Accuracy of Sampling-Based Approaches to the Calcula-
tion of Posterior Moments.” In JM Bernardo, JO Berger, AP Dawid, AFM Smith (eds.),
Bayesian Statistics 4, pp. 169–188. Oxford University Press, Oxford.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1093/biomet/83.2.275
https://CRAN.R-project.org/package=msBP
http://dx.doi.org/10.5705/ss.202015.0163
http://dx.doi.org/10.1016/j.csda.2012.11.003
http://dx.doi.org/10.1016/j.csda.2012.11.003
http://dx.doi.org/10.1111/biom.12104
http://dx.doi.org/10.1111/biom.12104
http://dx.doi.org/10.1214/aos/1032894451
http://dx.doi.org/10.1214/aos/1032894451
http://dx.doi.org/10.1080/01621459.1995.10476550
http://dx.doi.org/10.1080/01621459.1995.10476550
http://dx.doi.org/10.1214/aos/1176342360
http://dx.doi.org/10.1214/aos/1176342752

18 msBP: Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials in R

Green P, Richardson S (2001). “Modelling Heterogeneity with and without the Dirichlet
Process.” Scandinavian Journal of Statistics, 28(2), 355–375. doi:10.1111/1467-9469.
00242.

Hanson T, Johnson WO (2002). “Modeling Regression Error with a Mixture of Polya
Trees.” Journal of the American Statistical Association, 97(460), 1020–1033. doi:
10.1198/016214502388618843.

Hastings WK (1970). “Monte Carlo Sampling Methods Using Markov Chains and Applica-
tions.” Biometrika, 57(1), 97–109. doi:10.2307/2334940.

Holmes CC, Caron C, Griffin JE, Stephens DA (2015). “Two-Sample Bayesian Nonparametric
Hypothesis Testing.” Bayesian Analysis, 10(2), 297–320. doi:10.1214/14-ba914.

Ishwaran H, James LF (2001). “Gibbs Sampling Methods for Stick Breaking Priors.”
Journal of the American Statistical Association, 96(453), 161–173. doi:10.1198/
016214501750332758.

Jara A, Hanson T, Quintana FA, Müller P, Rosner GL (2011). “DPpackage: Bayesian Semi-
And Nonparametric Modeling in R.” Journal of Statistical Software, 40(5), 1–30. doi:
10.18637/jss.v040.i05.

Kalli M, Griffin J, Walker SG (2011). “Slice Sampling Mixture Models.” Statistics and
Computing, 21(1), 93–105. doi:10.1007/s11222-009-9150-y.

Lavine M (1992a). “Some Aspects of Polya Tree Distributions for Statistical Modelling.” The
Annals of Statistics, 20(3), 1222–1235. doi:10.1214/aos/1176348767.

Lavine M (1992b). “More Aspects of Polya Tree Distributions for Statistical Modelling.” The
Annals of Statistics, 22(3), 1161–1176. doi:10.1214/aos/1176325623.

Lo AY (1984). “On a Class of Bayesian Nonparametric Estimates: I. Density Estimates.” The
Annals of Statistics, 12(1), 351–357. doi:10.1214/aos/1176346412.

Ma L, Wong WH (2011). “Coupling Optional Pólya Trees and the Two Sample Problem.”
Journal of the American Statistical Association, 106(496), 1553–1565. doi:10.1198/jasa.
2011.tm10003.

MacEachern SN, Müller P (1998). “Estimating Mixture of Dirichlet Process Models.” Journal
of Computational and Graphical Statistics, 7(2), 223–238. doi:10.1080/10618600.1998.
10474772.

Mauldin D, Sudderth WD, Williams SC (1992). “Polya Trees and Random Distributions.”
The Annals of Statistics, 20(3), 1203–1203. doi:10.1214/aos/1176348766.

Petrone S (1999a). “Bayesian Density Estimation Using Bernstein Polynomials.” Canadian
Journal of Statistics, 27(1), 105–126. doi:10.2307/3315494.

Petrone S (1999b). “Random Bernstein Polynomials.” Scandinavian Journal of Statistics,
26(3), 373–393. doi:10.1111/1467-9469.00155.

http://dx.doi.org/10.1111/1467-9469.00242
http://dx.doi.org/10.1111/1467-9469.00242
http://dx.doi.org/10.1198/016214502388618843
http://dx.doi.org/10.1198/016214502388618843
http://dx.doi.org/10.2307/2334940
http://dx.doi.org/10.1214/14-ba914
http://dx.doi.org/10.1198/016214501750332758
http://dx.doi.org/10.1198/016214501750332758
http://dx.doi.org/10.18637/jss.v040.i05
http://dx.doi.org/10.18637/jss.v040.i05
http://dx.doi.org/10.1007/s11222-009-9150-y
http://dx.doi.org/10.1214/aos/1176348767
http://dx.doi.org/10.1214/aos/1176325623
http://dx.doi.org/10.1214/aos/1176346412
http://dx.doi.org/10.1198/jasa.2011.tm10003
http://dx.doi.org/10.1198/jasa.2011.tm10003
http://dx.doi.org/10.1080/10618600.1998.10474772
http://dx.doi.org/10.1080/10618600.1998.10474772
http://dx.doi.org/10.1214/aos/1176348766
http://dx.doi.org/10.2307/3315494
http://dx.doi.org/10.1111/1467-9469.00155

Journal of Statistical Software 19

Plummer M, Best N, Cowles K, Vines K (2006). “coda: Convergence Diagnosis and Output
Analysis for MCMC.” R News, 6(1), 7–11. URL https://www.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

Ritter C, Tanner MA (1992). “Facilitating the Gibbs Sampler: The Gibbs Stopper and the
Griddy-Gibbs Sampler.” Journal of the American Statistical Association, 87(419), 861–868.
doi:10.1080/01621459.1992.10475289.

Roeder K (1990). “Density Estimation with Confidence Sets Emplified by Superclusters and
Voids in Galaxies.” Journal of the American Statistical Association, 85(411), 617–624.
doi:10.1080/01621459.1990.10474918.

Sethuraman J (1994). “A Constructive Definition of Dirichlet Priors.” Statistica Sinica, 4(2),
639–650. doi:10.5705/ss.2012.047.

Wang Y, Canale A, Dunson DB (2016). “Scalable Geometric Density Estimation.” In A Gret-
ton, CC Robert (eds.), Proceedings of the 19th International Conference on Artificial Intel-
ligence and Statistics, volume 51 of Proceedings of Machine Learning Research, pp. 857–865.
PMLR, Cadiz, Spain. URL http://proceedings.mlr.press/v51/wang16e.html.

Wong WH, Ma L (2010). “Optional Pólya Tree and Bayesian Inference.” The Annals of
Statistics, 38(3), 1433–1459. doi:10.1214/09-aos755.

Affiliation:
Antonio Canale
Department of Statistical Sciences
University of Padua and
Collegio Carlo Alberto
E-mail: canale@stat.unipd.it
URL: homes.stat.unipd.it/antoniocanale

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

June 2017, Volume 78, Issue 6 Submitted: 2015-10-24
doi:10.18637/jss.v078.i06 Accepted: 2016-05-18

https://www.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://www.R-project.org/doc/Rnews/Rnews_2006-1.pdf
http://dx.doi.org/10.1080/01621459.1992.10475289
http://dx.doi.org/10.1080/01621459.1990.10474918
http://dx.doi.org/10.5705/ss.2012.047
http://proceedings.mlr.press/v51/wang16e.html
http://dx.doi.org/10.1214/09-aos755
mailto:canale@stat.unipd.it
homes.stat.unipd.it/antoniocanale
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v078.i06

	Introduction
	A multiscale prior for densities
	Basic formulation
	Bayesian multiscale inference on group differences

	The C++ implementation
	Usage of the msBP package
	Basic and generic functions
	Density estimation
	Inference in group differences

	Conclusions

