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Abstract

Factorial designs are widely used tools for modeling statistical experiments in all
kinds of disciplines, e.g., biology, psychology, econometrics and medicine. For testing
null hypotheses in this framework, ANOVA methods are widely used. However, the cor-
responding F tests are only valid for normally distributed data with equal variances, two
assumptions which are often not met in practice. The R package GFD provides an im-
plementation of the Wald-type statistic (WTS), the ANOVA-type statistic (ATS) and a
studentized permutation version of the WTS. Both the WTS and the permuted WTS do
not require normally distributed data or variance homogeneity, whereas the ATS assumes
normality. All methods are available for general crossed or nested designs and all main
and interaction effects can be plotted. Additionally, the package is equipped with an
optional graphical user interface to facilitate application for a wide range of users. We
illustrate the implemented methods for a range of different designs.
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1. Introduction
Originated in the agricultural sciences factorial designs are widely used tools for modeling sta-
tistical experiments in a variety of disciplines, e.g., biology, econometrics, medicine, ecology
or psychology. For testing null hypotheses formulated in terms of means, analysis-of-variance
(ANOVA) methods are well known, and preferred for making statistical inference. ANOVA
methods are implemented in R within the function aov in the R package stats (R Core Team
2017). The anova function in this package as well as Anova in the car package (Fox and
Weisberg 2011) provide clearly arranged ANOVA tables for fitted models. The corresponding
F tests, however, are only valid under the assumption of normally distributed errors and equal
variances across the different treatment groups. These assumptions are hard to verify in prac-
tice and often not met. A violation usually inflates the type-I or -II errors of the F statistics.
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The accuracy of the F tests depends on the actual data distributions, sample size allocations,
and the degree of variance heteroscedasticity. For normally distributed errors, several pro-
cedures for heteroscedastic data have been proposed, e.g., the generalized Welch-James test
(Johansen 1980), the approximate degrees of freedom test (Zhang 2012) or the ANOVA-type
test proposed by Brunner, Dette, and Munk (1997), see also Bathke, Schabenberger, Tobias,
and Madden (2009). These tests control the type-1 error level in heteroscedastic designs quite
accurately, but are in general not asymptotically exact for non-normal data. In comparison
to that, the Wald-type statistic, see Equation 2 below, is asymptotically exact in general
factorial designs without assuming variance homogeneity or normally distributed error terms.
It is well known, however, that the Wald-type statistic requires large sample sizes to control
the pre-assigned type-I error, see e.g., Vallejo, Fernández, and Livacic-Rojas (2010). Its small
sample behavior may be improved by applying an adequate permutation procedure, see Pauly,
Brunner, and Konietschke (2015) for the theoretical background. The only comparable test
included in the R function oneway.test is the Welch (1951) test for heteroscedastic one-way
layouts. Furthermore, an ANOVA-type test based on ranks is also implemented in the R
package asbio (Aho 2017) within the functions BDM and BDM.2way for nonparametric one- and
two-way layouts, respectively.
For a user friendly application of these rather robust methods in statistical data sciences, the
R package GFD has been developed. The use of the main function GFD as well as its output
are very similar to the aov function from the R package stats or the Anova function from the
R package car (Fox and Weisberg 2011). Its application provides a descriptive overview of
the data as well as the complete ANOVA-tables according to the formula input, which al-
lows the modeling of arbitrary high-way layouts. Hereby the Wald-type statistic, a permuted
version thereof as well as the ANOVA-type statistic for these general factorial designs are
implemented. Both the Wald-type statistic as well as the permutation test neither assume
normality nor homogeneous variances, while the ANOVA-type statistic assumes normality.
Furthermore, all main and interaction effects can be plotted along with (1 − α) confidence
intervals. In addition, the package is equipped with a graphical user interface (GUI) to
facilitate application for a wide audience of statisticians, practitioners, and educational pur-
poses. The package is freely available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=GFD.
The paper is organized as follows: In Section 2 we describe the statistical model and the tests
used in this setting. In Section 3 we provide various examples for different settings which are
statistically evaluated with the R package GFD. Finally, we discuss the results in Section 4
and provide an outlook to future work.
Throughout the paper we use the following notation: We denote by P a = Ia − 1

aJa the
a-dimensional centering matrix, Ia is the a-dimensional unit matrix and Ja denotes the a×a
matrix of 1’s, i.e., Ja = 1a1>a , where 1a = (1, . . . , 1)> is the a-dimensional column vector of
1’s.

2. Statistical model and inference methods
In order to cover different factorial designs, we consider the following general linear model

Yik = µi + εik, (1)

where k = 1, . . . , ni is the experimental unit within class i = 1, . . . , a. Note that different
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sample sizes ni are admitted. For each fixed i the error terms εik are independent and
identically distributed with E(εi1) = 0 and VAR(εi1) = σ2

i > 0. Note that we neither assume
normality of the error terms nor variance homoscedasticity. In this setting, a higher way
factorial structure with crossed or nested factors can be achieved by splitting up the index i
into sub-indices i1, i2, . . . , ip. In our notation, the components i = 1, . . . , a can be considered
as a lexicographic order of the factor level combinations.
In this framework we like to test general linear null hypotheses

Hµ
0 : Hµ = 0

about the mean vector µ = (µ1, . . . , µa)>. Here H denotes an adequate hypothesis contrast
matrix of interest.
Let Y · = (Y 1·, . . . , Y a·)> denote the vector of group means and let V N = COV(

√
N Y ·) =

diag(Nni
σ2
i : i = 1, . . . , a) denote the covariance matrix of

√
N Y ·. Then V N is consistently

estimated by V̂ N = diag(Nni
σ̂2
i ), where σ̂2

i = 1
ni−1

∑ni
i=1(Yik − Y i·)2 denotes the empirical

variance of the sample Y i = (Yi1, . . . , Yini)>.
In order to test the null hypotheses formulated above in this general framework, we consider
two generalizations of the two-sample Welch t statistic: The Wald-type statistic (WTS) as
discussed, e.g., in Pauly et al. (2015), and the ANOVA-type statistic (ATS) from Brunner
et al. (1997). The WTS is given by

QN = N Y
>
· H

>(HV̂ NH
>)+H Y ·. (2)

Here, M+ denotes the Moore-Penrose inverse of a matrix M . It is well known that under
rather weak assumptions the WTS has asymptotically a central χ2

f distribution with f =
rank(H) degrees of freedom under Hµ

0 : Hµ = 0. However, the WTS requires large sample
sizes to get a satisfactory approximation by using the quantiles of the limiting χ2 distribution
(Akritas, Arnold, and Brunner 1997; Akritas and Brunner 1997; Vallejo et al. 2010; Pauly
et al. 2015).
A second generalization of the two-sample Welch statistic is the ANOVA-type statistic (ATS)
defined as

AN = N

tr(T V̂ N )
Y
>
· T Y ·,

where T = H>(HH>)−H. Following Brunner et al. (1997) the distribution of the ATS can
be approximated by an F (f̂ , f̂0)-distribution such that the first two moments coincide, i.e.,
by choosing

f̂ = tr(T V̂ N )2/tr(T V̂ NT V̂ N )

and
f̂0 = tr(T V̂ N )2/tr(D2V̂

2
NΛ).

Here D denotes the matrix of diagonal elements of T and Λ = diag((n1 − 1)−1, . . . , (na −
1)−1) (Brunner et al. 1997; Brunner and Puri 2001). Note that in the two-sample case this
approximation coincides with the Satterthwaite-t-approximation. However, the ATS is in
general asymptotically exact only for normally distributed error terms.
Another possibility is to improve the small sample behavior of the WTS by applying a per-
mutation procedure (Pauly et al. 2015). To describe this procedure in detail, let Y π =
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π(Y 1, . . . ,Y a)> denote a fixed but arbitrary permutation of Y , i.e., π ∈ SN . Furthermore,
let Y π

· = (Y π
1·, . . . , Y

π
a·)> denote the vector of means and V̂ π

N = diag
(
N
ni

(σ̂ πi )2 : i = 1, . . . , a
)

the diagonal matrix of empirical variances (σ̂ πi )2 under this permutation. Then, the permuted
Wald-type statistic (WTPS) is given by

Qπ
N = N(Y π

· )>H>(HV̂ π

NH
>)+H Y

π
· ,

which is the WTS as defined in Equation 2 calculated with the permuted observations. Now,
a permutation test is achieved by the following steps:

1. Fix the data Y and compute the WTS QN .

2. Permute the data randomly and obtain the value of Qπ
N . Safe this in A1.

3. Repeat Step 2 J (say J = 10, 000) times and obtain the values A1, . . . , AJ .

4. Compute the p value by the (approximative) conditional permutation distribution (i.e.,
the empirical distribution of A1, . . . , AJ) as

p value = 1
J

J∑
j=1
I(QN ≥ Aj).

Instead of computing the p value for making statistical inference, the original WTS QN
can be compared with the (1 − α) quantile of the conditional distribution of Qπ

N given the
data Y , i.e., the empirical quantile of A1, . . . , AJ . Pauly et al. (2015) have shown that this
algorithm yields a valid permutation approach and consistent level α test, i.e., the conditional
distribution of the WTPS always approximates the null distribution of QN . The test controls
the preassigned level α under the null hypothesis and is even finitely exact if the pooled data
is exchangeable under the hypothesis. Note that in the special case of a one-way layout the
WTPS reduces to the permutation test for means of Chung and Romano (2013). The default
value for the number of permutation runs in the R package GFD is nperm = J = 10, 000.
For practical recommendations we briefly summarize the main properties of the three con-
sidered tests from Pauly et al. (2015): Mathematically, only the WTS and WTPS provide
valid asymptotic procedures for general factorial designs. Nevertheless, simulation studies
demonstrate that the ATS controls the α level for finite samples rather satisfactory. In case
of non-normal data, however, the test tends to be conservative, which leads to loss of power.
The WTS, in contrast, is quite liberal for small to moderate sample sizes. The WTPS is
a rather accurate procedure even for non-normal data. When data is very skewed and het-
eroscedastic, the test tends to be liberal and to over-reject the hypothesis, in particular when
the larger sample has the smaller variance (so called negative pairing). Its liberality is, how-
ever, not as pronounced as for the WTS.
Note that in comparison the coin package (Hothorn, Hornik, van de Wiel, and Zeileis 2008),
which contains permutation tests for two- and multiple-sample problems, does not, e.g., handle
heteroscedastic shift models. In our more general situation we allow for different variances
and/or different distributions among the different groups. Furthermore, the Welch test from
the function oneway.test is also only an approximation for normally distributed models that
is known to perform worse than the ATS and the WTPS, see e.g., Vallejo et al. (2010) and



Journal of Statistical Software – Code Snippets 5

Pauly et al. (2015). Remark further, that the ANOVA-type tests from the R package asbio
(Aho 2017) are based on ranks and test different null hypotheses formulated in terms of
distribution functions instead of means.
For the calculation of the confidence intervals, we have used the corresponding quantiles of
the t distribution.

2.1. Two-sample tests

A special case of model (1) is the heteroscedastic two-sample case, i.e., a = 2. This results in
the extended Behrens-Fisher model

Yik = µi + εik, i = 1, 2; k = 1, . . . , ni,

which is usually analyzed using a Welch’s t test in the statistic

TN = Y 1· − Y 2·√
σ̂2

1/n1 + σ̂2
2/n2

. (3)

Its distribution is approximated by a tν distribution with estimated Satterthwaite-Welch
degree of freedom ν to account for variance heterogeneity. Another possibility to approximate
the distribution of TN as defined in Equation 3 is to employ the studentized permutation
distribution of TN , and to carry out the test as a permutation test as proposed by Janssen
(1997, 2005).
Note that the Wald-type statistic QN , as well as the ATS AN are the square of TN in the
two-sample case. Furthermore, both the statistics QN and AN are identical in this setup; and
the second degree of freedom f̂0 of the ATS is identical to the Satterthwaite-Welch degree
of freedom. The first degree of freedom f̂ is equal to 1, by definition. Thus the ATS test is
essentially Welch’s t test and the WTPS test is in fact Janssen’s permutation test.

3. Examples
In this section, we provide examples demonstrating how different factorial designs can be
analyzed using the GFD package. The function GFD returns an object of class ‘GFD’ from
which the user may obtain plots and summaries of the results using plot(), print() and
summary() methods, respectively. Here, print() returns a short summary of the results,
i.e., the values of the test statistics along with degrees of freedom and corresponding p values
whereas summary() also displays some descriptive statistics such as the means and variances
for the different factor level combinations. Plotting is based on plotrix (Lemon 2006). For
two- and higher-way layouts, the factors for plotting can be additionally specified in the plot
call, see the examples below.

GFD(formula, data = NULL, nperm = 10000, alpha = 0.05)

Note that the test statistics for the main effects considered in Section 2 are not changed
by whether or not an additional interaction term is specified in formula since the tests are
determined by the choice of the hypothesis matrixH. Only crossed and hierarchical (nested)
designs are implemented – a mixture of both is up to date not available.
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Figure 1: The GUI for tests in general factorial designs: The user can specify the data location,
the formula, the number of permutations and the significance level α. One can additionally
choose to plot the results.

Figure 2: Graphical user interfaces for plotting: The left GUI is for the one-way layout (no
choice of factors possible), the other one is for a higher-way layout. An example for plotting
interactions is given in the right panel.

Furthermore, the GFD package is equipped with an optional GUI, based on RGtk2 (Lawrence
and Temple Lang 2010), which will be explained in detail in the next section.

3.1. Graphical user interface

The GUI is started in R with the command calculateGUI(). Note that the GUI depends
on RGtk2 and will only work if RGtk2 is installed. The user can specify the data location
(either directly or via the "load data" button), the formula, the number of permutations and
the significance level α, see Figure 1. Additionally, one can specify whether or not headers are
included in the data file, and which separator and character symbols are used for decimals
in the data file. The GUI also provides a plotting option, which generates a new window
for specifying the factors to be plotted (in higher-way layouts) along with a few plotting
parameters, see Figure 2. Note that four- and higher way interactions cannot be plotted due
to the increasing complexity of the plots.

R> library("GFD")
R> calculateGUI()

3.2. Two-sample tests

As an example of a two-sample problem we consider a subset of the weightgain data set
(Hand, Daly, McConway, Lunn, and Ostrowski 1993) from the HSAUR package (Everitt and
Hothorn 2017). The data contains information on the weight gain (in grams) of rats which
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were randomized to one of four diets, distinguished by the amount of protein (high and low)
and the source of protein (beef and cereal). For our purposes, we first restrict our analysis to
the high protein group.

R> library("GFD")
R> data("weightgain", package = "HSAUR")
R> weightgain2 <- subset(weightgain, type == "High")
R> set.seed(123)
R> two_sample <- GFD(weightgain ~ source, data = weightgain2,
+ nperm = 10000, alpha = 0.05)
R> plot(two_sample, main = "Two-sample test", cex.axis = 1.5,
+ cex.lab = 1.5, cex.main = 1.5, lwd = 2)
R> two_sample

Call:
weightgain ~ source

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

4.37169244 1.00000000 0.03654068 0.05580000

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

4.37169244 1.00000000 17.99896078 0.05099558

Note that the results are identical with those using the t.test function:

R> t.test(weightgain ~ source, data = weightgain2)

Welch Two Sample t-test

data: weightgain by source
t = 2.0909, df = 17.999, p-value = 0.051
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.0679184 28.2679184
sample estimates:

mean in group Beef mean in group Cereal
100.0 85.9

As mentioned in Section 2.1 the p values obtained using the ATS and the Satterthwaite-Welch
t test are identical. A reason for the smaller p value obtained with the WTS may be given
due to its more liberal behavior in case of small sample sizes (n1 = n2 = 10), see Vallejo et al.
(2010) and Pauly et al. (2015).
The data may also be analyzed using the GUI, see Figure 3 for an example. The corresponding
plot of the effect is given in Figure 4.
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Figure 3: Graphical user interface with formula for the weightgain data set.
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Figure 4: Mean weight gain for the two different sources of protein, beef and cereal, in the
two-sample problem.

3.3. One-way layout

In a one-way layout,
Yik = µi + εik, i = 1, . . . , a; k = 1, . . . , ni,

we are interested in the effect of factor A, i.e., we wish to test the null hypothesis H0 : {µ1 =
. . . = µa} = {P aµ = 0}.
An example for such a model is the data set on startup costs of companies, which was selected
from the Business Opportunities Handbook, see Cengage College (2008). The data represent
business startup costs in thousands of dollars for five different kinds of shops.

R> library("GFD")
R> data("startup", package = "GFD")
R> set.seed(456)
R> model1 <- GFD(Costs ~ company, data = startup, nperm = 10000,
+ alpha = 0.05)
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Figure 5: Mean startup costs for the five different companies in the startup data example.

R> summary(model1)
R> plot(model1, main = "Startup Costs", cex.axis = 1.5, cex.lab = 1.5,
+ cex.main = 1.5, lwd = 2)

Call:
Costs ~ company

Descriptive:
company n Means Variances Lower 95 % CI Upper 95 % CI

1 baker 11 92.09091 1512.6909 66.28044 117.90138
2 gifts 10 87.00000 1289.1111 61.70193 112.29807
3 pets 16 51.62500 733.0500 37.27595 65.97405
4 pizza 13 83.00000 1165.1667 62.54732 103.45268
5 shoes 10 72.30000 983.7889 50.19995 94.40005

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

15.037830399 4.000000000 0.004623394 0.024600000

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

2.57248203 3.70623134 44.51042721 0.05456579

This example nicely demonstrates the liberal behavior of the WTS (p value = 0.0046) as
well as the conservative behavior of the ATS (p value = 0.055). The WTPS, in contrast, is
somewhere in between with a p value of 0.0246.
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3.4. Two-way layout

In a two-way crossed design,

Yijk = µij + εijk = µ+ αi + βj + γij + εijk,

with i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , nij , one is interested in tests for the main effects of
the factors A and B as well as for an interaction of the two, i.e.,

H0(A) : {αi = µi· − µ·· = 0 ∀ i = 1, . . . , a},
H0(B) : {βj = µ·j − µ·· = 0 ∀ j = 1, . . . , b},

H0(AB) : {γij = µij − µi· − µ·j + µ·· = 0 ∀ i = 1, . . . , a, j = 1, . . . , b},

or formulated with suitable contrast matrices:

H0(A) : {HAµ = P a ⊗
1
b
1>b · µ = 0},

H0(B) : {HBµ = 1
a
1>a ⊗ P b · µ = 0},

H0(AB) : {HABµ = P a ⊗ P b · µ = 0}.

We will again consider the weightgain data set from package HSAUR. This time, however,
we are interested in analyzing both factors, i.e., amount and source of protein.

R> library("GFD")
R> data("weightgain", package = "HSAUR")
R> set.seed(789)
R> model2 <- GFD(weightgain ~ source * type, data = weightgain)
R> summary(model2)
R> plot(model2, factor = "source:type", main = "Interaction", xlab = "Type",
+ cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5)
R> plot(model2, factor = "source", main = "Mean weight gain",
+ xlab = "source", cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5)

Call:
weightgain ~ source * type

Descriptive:
source type n Means Variances Lower 95 % CI Upper 95 % CI

1 Beef High 10 100.0 229.1111 89.33489 110.66511
3 Beef Low 10 79.2 192.8444 69.41534 88.98466
2 Cereal High 10 85.9 225.6556 75.31562 96.48438
4 Cereal Low 10 83.9 246.7667 72.83158 94.96842

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

source 0.9879494 1 0.32024407 0.3229
type 5.8123090 1 0.01591439 0.0204
source:type 3.9517976 1 0.04682133 0.0554
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Figure 6: Plots of the interaction of factors source and type in the weight gain data (left)
and for factor source alone (right).

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

source 0.9879494 1 35.72893 0.32692829
type 5.8123090 1 35.72893 0.02118641
source:type 3.9517976 1 35.72893 0.05452616

The factor type, i.e., high or low amount of protein in the food, has a significant impact on
the weight gain at 5% level of significance using all three different tests. The source of the
protein, in contrast, does not have a significant influence. The interesting part is the test for
interaction: Here, the classical WTS results in a p value of 0.047, whereas both the ATS and
WTPS provide a p value of 0.055. Thus, both the ATS and WTPS endorse a “borderline
significance” at 5% level.
Figure 6 shows plots for the main effect of the factor type as well as the interaction between
both factors.

3.5. Three-way layout

For the three-way example, we consider a data set on pizza delivery times (Mackisack 1994).
The objective of the study was to see how the delivery time in minutes would be affected by
three different factors: whether thick or thin crust was ordered (factor A), whether Coke was
ordered with the pizza or not (factor B), and whether or not garlic bread was ordered as a
side (factor C). The R code to analyze this data is given in the following statements:

R> library("GFD")
R> data("pizza", package = "GFD")
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R> set.seed(1234)
R> model3 <- GFD(Delivery ~ Crust * Coke * Bread, data = pizza)
R> summary(model3)
R> plot(model3, factor = "Crust:Coke:Bread", legendpos = "center",
+ main = "Delivery time of pizza", xlab = "Bread", cex.axis = 1.5,
+ cex.lab = 1.5, cex.main = 1.5, lwd = 2)
R> plot(model3, factor = "Crust:Coke", legendpos = "topleft",
+ main = "Two-way interaction", xlab = "Coke", cex.axis = 1.5,
+ cex.lab = 1.5, cex.main = 1.5, lwd = 2)

Call:
Delivery ~ Crust * Coke * Bread

Descriptive:
Crust Coke Bread n Means Variances Lower 95 % CI Upper 95 % CI

1 thin no no 2 19.0 2.0 14.69735 23.30265
5 thin no yes 2 17.5 0.5 15.34867 19.65133
3 thin yes no 2 17.5 4.5 11.04602 23.95398
7 thin yes yes 2 15.0 2.0 10.69735 19.30265
2 thick no no 2 19.5 0.5 17.34867 21.65133
6 thick no yes 2 18.0 2.0 13.69735 22.30265
4 thick yes no 2 21.5 0.5 19.34867 23.65133
8 thick yes yes 2 18.5 0.5 16.34867 20.65133

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

Crust 11.56 1 0.0006738585 0.0089
Coke 0.36 1 0.5485062355 0.5613
Crust:Coke 6.76 1 0.0093223760 0.0286
Bread 11.56 1 0.0006738585 0.0073
Crust:Bread 0.04 1 0.8414805811 0.8153
Coke:Bread 1.00 1 0.3173105079 0.3457
Crust:Coke:Bread 0.04 1 0.8414805811 0.8212

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

Crust 11.56 1 4.699248 0.02121110
Coke 0.36 1 4.699248 0.57625702
Crust:Coke 6.76 1 4.699248 0.05122842
Bread 11.56 1 4.699248 0.02121110
Crust:Bread 0.04 1 4.699248 0.84984482
Coke:Bread 1.00 1 4.699248 0.36598284
Crust:Coke:Bread 0.04 1 4.699248 0.84984482

We find a significant influence of the factors Crust and Bread. The WTS and WTPS also
suggest a significant interaction between the factors Crust and Coke at 5% level, which is only
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Figure 7: Plots of the three-way interaction (upper panel) and the two-way interaction be-
tween factors Coke and Crust (lower panel).

borderline significant when using the ATS. Figure 7 shows interaction plots of the three-way
interaction as well as the two-way interaction between Crust and Coke.

3.6. Nested design
A nested design is covered by the model

Yijk = µij + εijk = µ+ αi + βj(i) + εijk,

where factor B is nested within the levels of factor A. As an example, we consider the curdies
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data set (Quinn, Lake, and Schreiber 1996) included in the GFD package. The aim of the
study was to describe basic patterns of variation in a small flatworm, Dugesia, in the Curdies
River, Western Victoria. Therefore, worms were sampled at two different seasons and three
different sites within each season. For our analyses we consider both factors as fixed (e.g.,
some sites may only be accessed in summer). The R code for analyzing this nested design is
given in the following:

R> library("GFD")
R> data("curdies", package = "GFD")
R> set.seed(987)
R> nested <- GFD(dugesia ~ season + season:site, data = curdies)
R> summary(nested)
R> plot(nested, factor="season:site", xlab = "site", cex.axis = 1.5,
+ cex.lab = 1.5, cex.main = 1.5, lwd = 2)

Call:
dugesia ~ season + season:site

Descriptive:
season site n Means Variances Lower 95 % CI Upper 95 % CI

1 SUMMER 4 6 0.4190947 0.4615290 -0.25954958 1.0977390
2 SUMMER 5 6 0.2290862 0.3148830 -0.33146759 0.7896401
3 SUMMER 6 6 0.1942443 0.0729142 -0.07549781 0.4639864
4 WINTER 1 6 2.0494375 4.0647606 0.03543415 4.0634408
5 WINTER 2 6 4.1819078 35.6801853 -1.78509515 10.1489107
6 WINTER 3 6 0.6782063 0.1910970 0.24151987 1.1148927

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

season 5.415180 1 0.01996239 0.0001
season:site 5.200991 4 0.26728919 0.3154

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

season 5.415180 1.000000 6.447707 0.05593278
season:site 1.382224 1.217424 6.447707 0.29278958

In this setting, both WTS and WTPS detect a significant influence of the season whereas
the ATS, again, only shows a borderline significance at 5% level. The effect of the site is not
significant. A plot for the nested effect is given in Figure 8.

4. Conclusion and future work
The R package GFD implements a broad range of semi-parametric methods for the analysis of
general factorial designs, i.e., linear models without the assumption of normality and/or ho-
moscedastic variances across the treatment groups. Three different methods are implemented:
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Figure 8: Plot for the effects in the nested design. The sites are nested within seasons.

Wald-type statistic QN , ANOVA-type statistic AN as well as a permutation approach pro-
posed by Pauly et al. (2015). All methods can be used to test general hypotheses among the
main and interaction effects. In particular, nested designs can be analyzed using GFD. From
a practical point of view we recommend the WTPS procedure since it has been found in Pauly
et al. (2015) to posses both good finite type-I error rate control and power behavior. The
ATS and WTS, in comparison, are slightly conservative or rather liberal, respectively. Con-
fidence interval plots are available for all effects of interest – except of four- and higher-way
interactions.
A graphical user interface (GUI) has been implemented which allows a convenient use of
the software in industry, academia, and educational purposes. We plan to update the GFD
package on a regular basis with new procedures available for the analysis of general designs.
So far, ANOVA-based methods are implemented, and an adjustment of the treatment effects
for covariates is not possible. Furthermore, tests and simultaneous confidence intervals for
multiple comparisons based on the permutation approach are not yet available. The extension
of the implemented methods to covariates and multiple comparisons and their implementation
will be part of future research.
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