

Journal of Statistical Software

July 2017, Volume 79, Issue 2.

doi: 10.18637/jss.v079.i02

Multinomial Logit Models with Continuous and Discrete Individual Heterogeneity in R: The gmnl Package

Mauricio Sarrias Universidad Católica del Norte Ricardo A. Daziano Cornell University

Abstract

This paper introduces the package **gmnl** in R for estimation of multinomial logit models with unobserved heterogeneity across individuals for cross-sectional and panel (longitudinal) data. Unobserved heterogeneity is modeled by allowing the parameters to vary randomly over individuals according to a continuous, discrete, or discrete-continuous mixture distribution, which must be chosen a priori by the researcher. In particular, the models supported by **gmnl** are the multinomial or conditional logit, the mixed multinomial logit, the scale heterogeneity multinomial logit, the generalized multinomial logit, the latent class logit, and the mixed-mixed multinomial logit. These models are estimated using either the maximum likelihood estimator or the maximum simulated likelihood estimator. This article describes and illustrates with real databases all functionalities of **gmnl**, including the derivation of individual conditional estimates of both the random parameters and willingness-to-pay measures.

Keywords: latent class, mixed multinomial logit, random parameters, preference heterogeneity, R.

1. Introduction

Modeling individual choices has been a very important avenue of research in diverse fields such as marketing, transportation, political science, and environmental, health, and urban economics. In all these areas the most widely used method to model choice among mutually exclusive alternatives has been the conditional or multinomial logit model (MNL, McFadden 1974), which belongs to the family of random utility maximization (RUM) models. The main advantage of the MNL model has been its simplicity in terms of both estimation and interpretation of the resulting choice probabilities and elasticities. On the one hand, the MNL has a closed-form choice probability and a likelihood function that is globally concave (for a complete overview of MNL and its properties, see Train 2009). MNL estimation is thus straightforward using the maximum likelihood estimator (MLE). On the other hand, it has been recognized that MNL not only imposes constant competition across alternatives – as a consequence of the independence of irrelevant alternatives (IIA) property – but also lacks the flexibility to allow for individual-specific preferences.

With the advent of more powerful computers and the improvement of simulation-aided inference in the last decades, researchers are no longer constrained to use models with closed-form solutions that may lead to unrealistic behavioral specifications. In fact, much of recent work in choice modeling focuses on extending MNL to allow for random-parameter models that accommodate unobserved preference heterogeneity.

The most popular MNL extension is the mixed logit model (MIXL). MIXL allows parameters to vary randomly over individuals by assuming some continuous heterogeneity distribution a priori while keeping the MNL assumption that the error term is independent and identically distributed (i.i.d) extreme value type 1 (McFadden and Train 2000; Train 2009; Hensher and Greene 2003). MIXL is a very flexible model (MIXL properties are discussed in McFadden and Train 2000) that does not exhibit pure IIA substitution (cf. Dotson, Brazell, Howell, Lenk, Otter, MacEachern, and Allenby 2015). Furthermore, using the parametric heterogeneity distribution that describes how preferences vary in the population it is possible to derive conditional estimates of the parameters at the individual-level (Train 2009).

Below we present a brief example to introduce the idea of unobserved heterogeneity across individuals, and how **gmnl** works. This example uses microdata about individual choice among four transportation modes: air, train, bus and car. Both the data itself and its correct formatting – which follows the **mlogit** data frame – as well as the **gmnl** syntax are explained further in the following sections.

```
R> library("gmnl")
R> data("TravelMode", package = "AER")
R> library("mlogit")
R> TM <- mlogit.data(TravelMode, choice = "choice", shape = "long",
+ alt.levels = c("air", "train", "bus", "car"))
R> mixl <- gmnl(choice ~ vcost + travel + wait | 1,
+ data = TM, model = "mixl", ranp = c(travel = "n"), R = 50)</pre>
```

Estimating MIXL model

In the estimated model, choice is a discrete (multinomial response) dependent variable that indicates which of the four alternative modes was actually chosen by each individual. There are three explanatory variables that have values that are alternative-specific (vcost: in-vehicle cost, travel: in-vehicle time, and wait: waiting time). The model also includes alternative-specific constants (| 1). Random parameters are considered just for the in-vehicle time component, making this example an application of a mixed logit model (model = "mixl"). The 'marginal disutility' of travel time¹ is assumed to be *normally distributed* in the line

¹In a discrete choice model, the parameters of interest are interpreted as marginal utilities, as choice is modeled as selecting the alternative that maximizes utility, which is a function of the explanatory variables. Some attributes cause a reduction in utility: travelers desire to reduce travel time, and hence its associated parameter is expected to be negative.

of code that identifies the random parameters (ranp = c(travel = "n")). The assumption of normality is an example of representing variation in preferences according to a parametric continuous distribution. All other parameters (the alternative-specific constants, wait and vcost) are assumed fixed. Finally, R = 50 evaluation points are used to simulate the likelihood function.

```
R> summary(mixl)
Model estimated on: Thu Feb 18 10:49:43 2016
Call:
gmnl(formula = choice ~ vcost + travel + wait | 1, data = TM,
    model = "mixl", ranp = c(travel = "n"), R = 50, method = "bfgs")
Frequencies of categories:
  air train
              bus
                    car
0.276 0.300 0.143 0.281
The estimation took: 0h:0m:10s
Coefficients:
                  Estimate Std. Error z-value Pr(>|z|)
train:(intercept)
                   0.36131
                               1.01014
                                          0.36
                                               0.72058
bus:(intercept)
                  -0.44685
                               1.03936
                                         -0.43
                                                0.66725
car:(intercept)
                  -4.90453
                               1.09319
                                         -4.49
                                                7.2e-06 ***
                                         -2.74
vcost
                  -0.02611
                              0.00954
                                                0.00621 **
                  -0.11642
                              0.01484
                                         -7.84
                                                4.4e-15 ***
wait
                  -0.00808
                              0.00236
                                         -3.42
                                                0.00062 ***
travel
                   0.00531
                              0.00204
                                          2.60 0.00927 **
sd.travel
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Optimization of log-likelihood by BFGS maximization
Log Likelihood: -189
Number of observations: 210
Number of iterations: 156
Exit of MLE: successful convergence
Simulation based on 50 draws
```

The output of calling the gmnl function includes the point estimates, standard errors, z values, and p values of the parameters of each explanatory variable. Note that for the normally distributed parameter, both the population mean and standard deviation are estimated: travel = -0.008 is the point estimate of the mean and sd.travel = 0.005 is the point estimate of the normal distribution that represents how preferences for invehicle travel time reductions are distributed in the population. Note that, we can infer the profile of individuals' preferences for travel time by looking at the shape of the parameter, which is distributed in this sample as $N(-0.008, 0.005^2)$.

In addition to MIXL, there are other models that can represent unobserved preference heterogeneity. Latent class (LC) discrete choice models offer an alternative to MIXL by replacing the continuous distribution assumption with a discrete distribution in which preference heterogeneity is captured by membership in distinct classes or segments (Boxall and Adamowicz 2002; Greene and Hensher 2003; Shen 2009). The standard LC specification with class-specific multinomial logit models of choice (LC-MNL) is useful if the assumption of preference homogeneity holds within segments. In effect, in an LC-MNL all individuals in a given class have the same parameters (fixed parameters within a class), but the parameters vary across classes (heterogeneity across classes).

Rossi, Allenby, and McCulloch (2005) in a Bayesian setting, and more recently Bujosa, Riera, and Hicks (2010) and Greene and Hensher (2013) in the frequentist context, have derived models with discrete-continuous mixing distributions of unobserved heterogeneity in the form of a (finite) mixture of normals. This model is also known as mixed-mixed logit (MM-MNL, Keane and Wasi 2013).

Other researchers have focused on MNL extensions that allow for a more flexible representation of heteroskedasticity. For example, Fiebig, Keane, Louviere, and Wasi (2010) proposed two new models, namely the scale heterogeneity (S-MNL) model and the generalized multinomial logit (G-MNL) model. S-MNL extends the MNL by letting the scale of errors vary across individuals (via a parametric specification of heteroskedasticity), whereas the G-MNL nests the S-MNL, MIXL, and MNL models. For a discussion of confounding effects between scale and preference heterogeneity, see Hess and Rose (2012) and Hess and Stathopoulos (2013).

In addition to **gmnl**, there exist different packages in R (R Core Team 2017) that estimate models with multinomial responses. Some packages for estimating multinomial logit models with fixed parameters are **mlogit** (Croissant 2013), **RSGHB** (Dumont, Keller, and Carpenter 2015), **mnlogit** (Hasan, Wang, and Mahani 2016), the function multinom function from the **met** package (Venables and Ripley 2002), **VGAM** (Yee 2010) **bayesm** (Rossi 2015), and **MCMCpack** (Martin, Quinn, and Park 2011). The multinomial probit (MNP) model is fitted in **bayesm**, **MNP** (Imai and Van Dyk 2005) and **mlogit**. Models with random parameters are supported by **mlogit**, **mclogit**² (Elff 2016), **bayesm**, **ChoiceModelR**³ (Sermas 2012) and **RSGHB**. In terms of models with latent classes **RSGHB**, **flexmix** (Leisch 2004), and **poLCA** (Linzer and Lewis 2011) offer alternative estimation procedures. **gmnl** is the only package to date that handles G-MNL specifications, and the only package that implements the maximum simulated likelihood estimator for MM-MNL. MM-MNL models are also implemented using a Bayes estimator in **bayesm**. However, **gmnl** allows the researcher to specify covariates that explain assignment to classes, whereas **bayesm** assumes constant weights for the continuous components of the double mixture.⁴

Among all the packages mentioned above, **mlogit** is one of the most complete and user-friendly R packages for the estimation of models with multinomial responses. For this reason, we have adopted most of the **mlogit** syntax in **gmnl**. Table 1 presents a more complete overview of the models supported by each package and the estimation procedure used to estimate the parameters.

²Only random intercepts are allowed in the current version.

³Both **bayesm** and **ChoiceModelR** only allow normally distributed parameters.

⁴One of the advantages of the Bayes estimator and its implementation in **bayesm** is the possibility of letting the number of discrete components of the double mixture free. This is achieved by assuming a Dirichlet process prior for the heterogeneity distribution.

Model	Package	Estimation procedure
MNL	gmnl	Maximum likelihood
	mclogit	Maximum likelihood
	mlogit	Maximum likelihood
	mnlogit	Maximum likelihood
	$\texttt{multinom}(\mathbf{nnet})$	Maximum likelihood
	VGAM	Maximum likelihood
	bayesm	Bayesian inference
	MCMCpack	Bayesian inference
	RSGHB	Bayesian inference
MNP	mlogit	Maximum simulated likelihood
	bayesm	Bayesian inference
	MNP	Bayesian inference
MIXL	gmnl	Maximum simulated likelihood
	mlogit	Maximum simulated likelihood
	mclogit	Penalized quasi-likelihood
	bayesm	Bayesian inference
	ChoiceModelR	Bayesian inference
	RSGHB	Bayesian inference
G-MNL	gmnl	Maximum simulated likelihood
S-MNL	gmnl	Maximum simulated likelihood
LC-MNL	gmnl	Maximum likelihood
	flexmix	Expectation-Maximization
	poLCA	Expectation-Maximization
	RSGHB	Bayesian inference
MM-MNL	gmnl	Maximum simulated likelihood
	bayesm	Bayesian inference

Table 1: Packages available in R for models with multinomial response.

The gmnl package (Sarrias and Daziano 2017) is intended to consolidate in a single R package the whole range of discrete choice models with random parameters for the use of researchers and practitioners. It shares similar functionalities with mlogit and mnlogit in terms of the formula interface. Furthermore, since gmnl is able to estimate G-MNL models, it also allows the user to estimate models in willingness-to-pay space with a minimal extra reformulation. Our package also provides the ability of constructing the conditional estimates for the individual parameters and willingness-to-pay. gmnl is available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=gmnl.

The paper is organized as follows: Section 2 presents a brief overview of the models supported by **gmnl**. Section 3 discusses the functionalities of the package. Section 4 explains some computational issues that may arise when estimating random parameter models using maximum simulated likelihood. Finally, Section 5 concludes the paper.

2. Models

2.1. Mixed and latent class logit models

MIXL generalizes the MNL model by allowing the preference or taste parameters to be different for each individual (McFadden and Train 2000; Train 2009). MIXL is basically a random parameter logit model with continuous heterogeneity distributions. The random utility of person i for alternative j and for choice occasion t is:

$$U_{ijt} = \mathbf{x}_{ijt}^{\dagger} \boldsymbol{\beta}_i + \epsilon_{ijt}, \quad i = 1, \dots, N, \quad j = 1, \dots, J, \quad t = 1, \dots, T_i,$$
(1)

where \mathbf{x}_{ijt} is a $K \times 1$ vector of observed alternative attributes; ϵ_{ijt} is the idiosyncratic error term or taste shock, and is i.i.d. extreme value type 1; the parameter vector $\boldsymbol{\beta}_i$ is unobserved for each *i* and is assumed to vary in the population following the continuous density $f(\boldsymbol{\beta}_i|\boldsymbol{\theta})$, where $\boldsymbol{\theta}$ are the parameters of this distribution. This mixing distribution can in principle take any shape. For example, when assuming that the parameters are distributed multivariate normal, $\boldsymbol{\beta}_i \sim \text{MVN}(\boldsymbol{\beta}, \boldsymbol{\Sigma})$, the vector $\boldsymbol{\beta}_i$ can be re-written as:

$$\boldsymbol{\beta}_i = \boldsymbol{\beta} + \mathbf{L}\boldsymbol{\eta}_i,$$

where $\eta_i \sim N(\mathbf{0}, \mathbf{I})$, and \mathbf{L} is the lower-triangular Cholesky factor of $\boldsymbol{\Sigma}$ such that $\mathbf{L}\mathbf{L}^{\top} = \mathsf{VAR}(\boldsymbol{\beta}_i) = \boldsymbol{\Sigma}$. If the off-diagonal elements of \mathbf{L} are zero, then the parameters are independently normally distributed. Observed heterogeneity (deterministic taste variations) can also be accommodated in the random parameters by including individual-specific covariates (see for example Greene 2012). Specifically, the vector of random coefficients is:

$$\boldsymbol{\beta}_i = \boldsymbol{\beta} + \boldsymbol{\Pi} \mathbf{z}_i + \mathbf{L} \boldsymbol{\eta}_i, \tag{2}$$

where \mathbf{z}_i is a set of M characteristics of individual i that influence the mean of the preference parameters; and $\boldsymbol{\Pi}$ is a $K \times M$ is a matrix of additional parameters.

Unlike the MIXL model, LC uses a discrete mixing distribution, where individual i belongs to class q with probability w_{iq} , i.e.,:

$$\boldsymbol{\beta}_i = \boldsymbol{\beta}_q$$
 with probability w_{iq} for $q = 1, \ldots, Q$,

where $\sum_{q} w_{iq} = 1$ and $w_{iq} > 0$. The discrete mixing distribution (or class assignment probability) is unknown to the analyst. The most widely used formulation for w_{iq} is the semi-parametric multinomial logit format (Greene and Hensher 2003; Shen 2009):

$$w_{iq} = \frac{\exp\left(\mathbf{h}_{i}^{\top} \boldsymbol{\gamma}_{q}\right)}{\sum_{q=1}^{Q} \exp\left(\mathbf{h}_{i}^{\top} \boldsymbol{\gamma}_{q}\right)}, \quad q = 1, \dots, Q, \quad \boldsymbol{\gamma}_{1} = \mathbf{0},$$

where \mathbf{h}_i denotes a set of socio-economic characteristics that determine assignment to classes. The parameters of the first class are normalized to zero for identification of the model. Note that one could omit any socio-economic covariate as a determinant of the class assignment probability. Under this scenario, the class probabilities simply become:

$$w_{iq} = \frac{\exp\left(\gamma_q\right)}{\sum_{q=1}^{Q} \exp\left(\gamma_q\right)}, \quad q = 1, \dots, Q, \quad \gamma_1 = 0,$$

where γ_q is a constant (Scarpa and Thiene 2005).

Let $y_{ijt} = 1$ if individual *i* chooses *j* on occasion *t*, and 0 otherwise. Then, the unconditional probabilities of the sequence of choices by individual *i* for MIXL and LC are respectively given by:

$$P_{i}(\boldsymbol{\theta}) = \int \left\{ \prod_{t}^{T} \prod_{j}^{J} \left[\frac{\exp\left(\mathbf{x}_{ijt}^{\top} \boldsymbol{\beta}_{i}\right)}{\sum_{j=1}^{J} \exp\left(\mathbf{x}_{ijt}^{\top} \boldsymbol{\beta}_{i}\right)} \right]^{y_{ijt}} \right\} f(\boldsymbol{\beta}_{i}) d\boldsymbol{\beta}_{i},$$

$$P_{i}(\boldsymbol{\theta}) = \sum_{q}^{Q} w_{iq} \left\{ \prod_{t}^{T} \prod_{j}^{J} \left[\frac{\exp\left(\mathbf{x}_{ijt}^{\top} \boldsymbol{\beta}_{q}\right)}{\sum_{j=1}^{J} \exp\left(\mathbf{x}_{ijt}^{\top} \boldsymbol{\beta}_{q}\right)} \right]^{y_{ijt}} \right\}.$$

Both MIXL and LC are widely used in practice to accommodate preference heterogeneity across respondents. As discussed above, in the MIXL approach parameters are assumed to vary across the population according to some prespecified statistical distribution that continuously represents preferences. In the LC model a discrete number of separate classes or segments, each with different fixed parameters, recover preference heterogeneity. In addition to differentiation in terms of continuous versus discrete consumer segments, there exist further differences between MIXL and LC. For example, compared with the MIXL approach, the LC model has the advantage of being "relatively simple, reasonably plausible and statistically testable" (Shen 2009). In addition, because LC is a semiparametric specification that depends only on the prespecified number of classes, it avoids misspecification problems in the distribution of individual heterogeneity. In fact, the main disadvantage of MIXL is that the researcher has to choose the distribution of the random parameters a priori. Nevertheless, LC is less flexible than MIXL precisely because the parameters in each class are fixed. Another important difference between these two models is the estimation procedure. The MIXL requires the use of the maximum simulated likelihood estimator – which can be very costly in terms of computational time – but no simulation is required for LC.⁵ gmnl implements the MLE for both LC and MIXL, using analytical expressions for the appropriate gradient.

2.2. Mixed-mixed logit model

To take advantage of the benefits of both MIXL and LC, recent empirical papers have derived a mixture of both models. This double-mixture is known as the 'mixed-mixed' logit model (MM-MNL, Keane and Wasi 2013).⁶ Bujosa *et al.* (2010), and Greene and Hensher (2013) developed this MM-MNL model by extending the LC model to allow for random parameters within each class.

Consider the case where the heterogeneity distribution is generalized to a discrete mixture of multivariate normal distributions. In this case we have:

$$\boldsymbol{\beta}_i \sim N(\boldsymbol{\beta}_q, \boldsymbol{\Sigma}_q)$$
 with probability w_{iq} for $q = 1, \dots, Q$. (3)

The appeal of using a Gaussian mixture for the heterogeneity distribution is that any continuous distribution can be approximated by a discrete mixture of normal distributions (Train

⁵For an empirical comparison between these two models, see for example Greene and Hensher (2003), Shen (2009) and Hess, Ben-Akiva, Gopinath, and Walker (2011).

⁶Train (2008) refers to this model as 'discrete mixture of continuous distributions', whereas Greene and Hensher (2013) label it 'LC-MIXL'.

2008). Note that the MM-MNL with only one class is equivalent to the MIXL model. Furthermore, if $\Sigma_q \to 0$ for all q, the model in Equation 3 becomes a LC-MNL model (Bujosa *et al.* 2010; Keane and Wasi 2013). Thus, MM-MNL nests both MIXL and LC.

The choice probabilities for the MM-MNL are given by:

$$P_i(\boldsymbol{\theta}) = \sum_{q}^{Q} w_{iq} \int \left\{ \prod_{t}^{T} \prod_{j}^{J} \left[\frac{\exp\left(\mathbf{x}_{ijt}^{\top} \boldsymbol{\beta}_{i}\right)}{\sum_{j=1}^{J} \exp\left(\mathbf{x}_{ijt}^{\top} \boldsymbol{\beta}_{i}\right)} \right]^{y_{ijt}} \right\} f_q(\boldsymbol{\beta}_i) d\boldsymbol{\beta}_i,$$

where $f_q(\beta_i) = N(\beta_q, \Sigma_q)$. Due to the complex expression of the probability, **gmnl** implements the maximum likelihood estimator for the MM-MNL parameters with the Monte Carlo approximation of this choice probability and the analytical expression of the gradient.

2.3. Generalized multinomial logit model

Fiebig *et al.* (2010) proposed a general version of the MIXL model, which they called the G-MNL model, where the parameters vary across individuals according to:

$$\boldsymbol{\beta}_{i} = \sigma_{i}\boldsymbol{\beta} + \left[\gamma + \sigma_{i}(1-\gamma)\right]\mathbf{L}\boldsymbol{\eta}_{i},\tag{4}$$

where σ_i is the individual-specific scale of the idiosyncratic error term, and γ is a scalar parameter that controls how the variance of residual taste heterogeneity $\mathbf{L}\boldsymbol{\eta}_i$ varies with scale. To better understand this specification, it is useful to note that differing sub-models arise when some structural parameters in the G-MNL model are constrained:

- G-MNL-I: If $\gamma = 1$, then $\beta_i = \sigma_i \beta + \mathbf{L} \eta_i$. In this model, the residual taste heterogeneity is independent of the scaling of β .
- G-MNL-II: If $\gamma = 0$, then $\beta_i = \sigma_i(\beta + \mathbf{L}\eta_i)$. In this model, the residual taste heterogeneity is proportional to σ_i .
- S-MNL: If VAR(η_i) = 0, then $\beta_i = \sigma_i \beta$. As pointed out by Fiebig *et al.* (2010), this model is observationally equivalent to the particular type of heterogeneity in which the parameters increase or decrease proportionally across individuals by the scaling factor σ_i . S-MNL provides a more parsimonious representation of continuous heterogeneity than MIXL, because $\beta \sigma_i$ has fewer parameters than $\beta + \mathbf{L} \eta_i$ (Fiebig *et al.* 2010).
- MIXL: $\beta_i = \beta + \mathbf{L} \eta_i$, if $\sigma_i = 1$.
- MNL: $\beta_i = \beta$, if $\sigma_i = 1$ and $VAR(\eta_i) = 0$.

Fiebig *et al.* (2010) note that some restrictions need to be considered to estimate the G-MNL model. First, the domain of σ_i should be the positive real line. A positive scale parameter is ensured by assuming that σ_i is distributed log-normal with standard deviation τ and mean $\bar{\sigma}$ Fiebig *et al.* (2010):

$$\sigma_i = \exp(\bar{\sigma} + \tau \upsilon_i),$$

where $v \sim N(0, 1)$. Fiebig *et al.* (2010) also note that when τ is too large, numerical problems arise for extreme draws of v_i . To avoid this numerical issue, the authors suggest to use a truncated normal distribution for v_i with truncation at ± 2 , so that $v \sim TN[-2, +2]$. Greene and Hensher (2010) found that constraining v_i at -1.96 and +1.96 maintains the smoothness of the estimator. Specifically, the authors used $v_{ir} = \Phi^{-1}(0.025 + 0.95u_{ir})$, where u_{ir} is a draw from the standard uniform distribution. **gmnl** allows the user to choose between these two ways of drawing from v_i , using the argument typeR (see Section 3.3).

Note that the parameters $\bar{\sigma}$, τ , and β are not separately identified. Fiebig *et al.* (2010) suggest that one can normalize the mean $\bar{\sigma}$ by setting:

$$\bar{\sigma} = -\log\left[\frac{1}{N}\sum_{i=1}^{N}\exp\left(\tau v_{i}\right)\right].$$

Another important issue in G-MNL is the domain of γ . Initially, Fiebig *et al.* (2010) imposed $\gamma \in [0, 1]$. To constrain γ in this interval, the authors used the logistic transformation:

$$\gamma = \frac{\exp(\gamma^*)}{1 + \exp(\gamma^*)},$$

and estimated γ^* . However, Keane and Wasi (2013) pointed out that both $\gamma < 0$ and $\gamma > 1$ still have meaningful behavioral interpretations. Thus, these authors estimate γ directly. **gmnl** allows to estimate γ using both procedures.

Finally, one can allow the mean of the scale to differ across individuals by including individualspecific characteristics. In this case the scale parameter can be written as:

$$\sigma_i = \exp(\bar{\sigma} + \delta \mathbf{s}_i + \tau \upsilon_i),$$

where \mathbf{s}_i is a vector of attributes of individual *i*.

In terms of computation, all models, except for the LC and the MNL model, are estimated in **gmnl** using the maximum simulated likelihood estimator (MSLE) and **maxLik** function from **maxLik** package (Henningsen and Toomet 2011). All models are estimated using the analytical gradient (instead of the numerical gradient). The MNL is estimated using also the analytical Hessian.

For a complete derivation of the asymptotic properties of the MSLE and a more comprehensive review of how to implement this estimator, see Train (2009), Lee (1992), Gourieroux and Monfort (1997) or Hajivassiliou and Ruud (1986).

3. The gmnl package

3.1. Format of data

The function mlogit.data from mlogit is very useful to handle multinomial data formats. gmnl thus uses the same class of data for estimation. If the user forgets to set the data in the mlogit.data format, gmnl will give an error message and the estimation process will stop.

For illustration purposes, we use the TravelMode data from the AER package (Kleiber and Zeileis 2008). As quickly presented in the introduction, the TravelMode data contains actual individual choices⁷ among four transportation modes (air, train, bus and car) for travel between the cities of Sydney and Melbourne in Australia.

 $^{^{7}\}mathrm{In}$ the choice modeling literature, microdata that represents real choices is known as 'revealed preference' (RP) data.

```
R> data("TravelMode", package = "AER")
R> with(TravelMode, prop.table(table(mode[choice == "yes"])))
air train bus car
```

0.276 0.300 0.143 0.281

Each mode is characterized by four alternative-specific variables (wait, vcost, travel, gcost),⁸ and two individual-specific variables (income, size). The observed shares of each mode are 27.62% (air), 30% (train), 14.29% (bus), and 28.1% (car). More details about and examples using this dataset can be found in Kleiber and Zeileis (2008).

R> head(TravelMode)

	individual	mode	choice	wait	vcost	travel	gcost	income	size
1	1	air	no	69	59	100	70	35	1
2	1	train	no	34	31	372	71	35	1
3	1	bus	no	35	25	417	70	35	1
4	1	car	yes	0	10	180	30	35	1
5	2	air	no	64	58	68	68	30	2
6	2	train	no	44	31	354	84	30	2

As can be seen above, the data is in a "long" format (one row per available mode) and can be transformed into the structure needed by gmnl using the mlogit.data in the following way:

```
R> library("mlogit")
R> TM <- mlogit.data(TravelMode, choice = "choice", shape = "long",
+ alt.levels = c("air", "train", "bus", "car"))</pre>
```

The argument choice indicates the choice made by the individuals; shape specifies the original format of the data; and alt.levels is a character vector that contains the name of the alternatives. We show how to transform other kinds of data in the examples below. For a more complete treatment of the data using mlogit.data function see Croissant (2013).

Before formal modeling, it is useful to summarize the (unconditional) relationship between the travel mode and the regressors. In the next example, we reshape the data from long to wide format:

```
R> wide_TM <- reshape(TravelMode, idvar = c("individual", "income", "size"),
+ timevar = "mode", direction = "wide")
R> wide_TM$chosen_mode[wide_TM$choice.air == "yes"] <- "air"
R> wide_TM$chosen_mode[wide_TM$choice.car == "yes"] <- "car"
R> wide_TM$chosen_mode[wide_TM$choice.train == "yes"] <- "train"
R> wide_TM$chosen_mode[wide_TM$choice.bus == "yes"] <- "train"</pre>
```

For the case-specific income variable, we get the following summary

```
10
```

 $^{^{8}}$ vcost denotes travel cost, whereas gcost represents a generalized cost that combines both vcost and travel – which is in-vehicle travel time – using an exogenous value of time. wait is for waiting time.

```
R> library("plyr")
R> ddply(wide_TM, ~ chosen_mode, summarize, mean.income = mean(income))
chosen_mode mean.income
1 air 41.7
2 bus 29.7
3 car 42.2
4 train 23.1
```

On average, those individuals choosing train have the lowest income and those choosing car have the highest. The relationship between the chosen travel mode and the alternative-specific regressor vcost is summarized as follows (a similar analysis can be done for the rest of the alternative-specific variables):

```
R> ddply(wide TM, ~ chosen mode, summarize, mean.air = mean(vcost.air),
     mean.car = mean(vcost.car), mean.train = mean(vcost.train),
+
     mean.bus = mean(vcost.bus))
+
  chosen mode mean.air mean.car mean.train mean.bus
1
          air
                   97.6
                            23.4
                                        58.5
                                                  34.3
2
                   89.3
                            26.8
                                        62.3
                                                 33.7
          bus
3
                   76.3
                                        53.6
                            15.6
                                                 33.8
          car
4
        train
                   80.4
                            21.1
                                        37.5
                                                 32.3
```

Note that these figures show that the chosen mode is not determined solely by travel cost. The purpose of the choice model is precisely to determine the tradeoffs across attributes that help to explain choices.

3.2. Formula interface

The specification of multinomial logit models using **gmnl** is similar to that of **mlogit** and **mnlogit**. In particular, we use the R package **Formula** (Zeileis and Croissant 2010), which is able to handle multi-part formulae.

Consider the TravelMode data and suppose that we want to estimate a multinomial logit model where the variables wait and vcost are alternative-specific variables with a generic coefficient β ; income is an individual-specific variable with an alternative specific coefficient γ_j ; and the variable travel is alternative-specific variables with an alternative-specific coefficient δ_j . This is done using the following 3-part formula:

```
R> f1 <- choice ~ wait + vcost | income | travel
```

By default, the alternative-specific constants (ASC) for each alternative are included. They can be omitted by adding +0 or -1 in the second part of the formula. For example:

```
R> f2 <- choice ~ wait + vcost | income + 0 | travel
R> f2 <- choice ~ wait + vcost | income - 1 | travel</pre>
```

Some parts may be omitted when there is no ambiguity. For instance, a model with only individual specific variables can be specified as follows:

```
R> f3 <- choice ~ 0 | income + size | 0
R> f3 <- choice ~ 0 | income + size | 1
```

Similarly, a conditional logit model, that is, a model with alternative-specific variables with a generic coefficient β , can be specified using either of the following formula objects:

For other models, such as the MIXL, S-MNL, LC-MNL and MM-MNL model, we require to use the fourth and fifth part of the formula. As explained in Section 2.1, gmnl allows incorporating observed heterogeneity in the mean of the random parameters. This can be achieved by including individual-specific characteristics (income and size) in the fourth part of the formula:

R> f5 <- choice ~ wait + vcost | 0 | 0 | income + size - 1

and then use the **mvar** argument to indicate how these two variables modify the mean of the random parameters. For a more complete example see Section 3.4.

The fifth part of the formula is reserved for either models with heterogeneity in the scale parameter or models with latent classes. For example, an S-MNL or G-MNL model where the scale varies across individuals by individual-specific characteristics can be specified as follows:

R> f6 <- choice ~ wait + vcost | 1 | 0 | 0 | income + size - 1

The same formulation can be used if a model with latent classes is estimated and both income and size determine the class assignment.

3.3. Estimating S-MNL models

In this example, we estimate an S-MNL model using the **TravelMode** data where the ASCs are fixed and not scaled. Fiebig *et al.* (2010) found that in a model where all attributes are scaled – including the ASCs – the estimates often show a explosive behavior and the model actually produces a worse fit. The basic syntax for estimation is the following:

```
R> library("gmnl")
R> smnl.nh <- gmnl(choice ~ wait + vcost + travel | 1, data = TM,
+ model = "smnl", R = 30, notscale = c(1, 1, 1, rep(0, 3)))
The following variables are not scaled:
[1] "train:(intercept)" "bus:(intercept)" "car:(intercept)"
Estimating SMNL model</pre>
```

12

Options for model	Model
"mnl"	Multinomial logit model
"mixl"	Mixed logit model
"smnl"	Scaled multinomial logit model
"gmnl"	Generalized multinomial logit model
"lc"	Latent class multinomial logit model
"mm"	Mixed-mixed multinomial logit model

Table 2: Models supported by **gmnl**.

The component | 1 in the formula means that the model is fitted using ASCs for the J-1 alternatives. The main argument in the model is model = "smnl", which indicates to the function that the user wants to estimate the S-MNL model (without random parameters). The rest of the models allowed by gmnl are given in Table 2. R = 30 indicates that 30 Halton draws are used to simulate the probabilities. Another important argument in this example is notscale. This is a vector that indicates which variables will not be scaled (1 = not scaled and 0 = scaled). Since the ASCs are always the first variables entering in the model (if they are specified using | 1 in the second part of formula) and only J - 1 = 3 ASCs are created, notscale = c(1, 1, 1, rep(0, 3)) implies that the constants will not be scaled.

R> summary(smnl.nh)

```
Model estimated on: Thu Feb 18 10:49:46 2016
Call:
gmnl(formula = choice ~ wait + vcost + travel | 1, data = TM,
    model = "smnl", R = 30, notscale = c(1, 1, 1, rep(0, 3)),
    method = "bfgs")
Frequencies of categories:
  air train
              bus
                    car
0.276 0.300 0.143 0.281
The estimation took: 0h:0m:3s
Coefficients:
                  Estimate Std. Error z-value Pr(>|z|)
train:(intercept) -1.25946
                              0.52091
                                         -2.42 0.01561 *
bus:(intercept)
                  -2.02267
                              0.64669
                                         -3.13
                                               0.00176 **
                  -7.19922
car:(intercept)
                              1.42002
                                         -5.07
                                                4.0e-07 ***
                  -0.14085
                                         -5.07
                                                3.9e-07 ***
wait
                              0.02777
vcost
                  -0.02198
                              0.01196
                                         -1.84
                                                0.06615 .
                  -0.00481
travel
                              0.00127
                                         -3.78
                                                0.00016 ***
                   0.54412
                              0.16422
                                          3.31 0.00092 ***
tau
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Optimization of log-likelihood by BFGS maximization
Log Likelihood: -188
Number of observations: 210
Number of iterations: 54
Exit of MLE: successful convergence
Simulation based on 30 draws
```

The results report the point estimates for each variable. Note that all preference parameters are statistically significant and negative,⁹ meaning that cost and the time components create a 'disutility' to the traveler, so that people prefer modes that are both cheaper and faster. τ , which represents the standard deviation of σ_i , is also significant supporting the presence of heterogeneous preferences by means of different error variances for each individual. The output also gives additional information about estimation. The model is estimated using the BFGS procedure. Other optimization procedures such as the BHHH and Newton Raphson (NR) can be called using the argument method passed to the maxLik function.

Another important point is that the number of observations reported by gmnl corresponds to N/J if cross-sectional data is used, or $N \times T/J$ if panel data (repeated choice situations) is used. Finally, it is always important to check all the details in the estimation output. In our example, the output informs us that the convergence was achieved successfully. If convergence fails, the analyst needs to revise identification of the model, starting values, estimation procedure, and measurement scale of the attributes. For further details about potential convergence problems see Section 4.

In the next example, we allow the scale to differ across individuals according to their income. Basically, we assume that:

 $\sigma_i = \exp\left(\bar{\sigma} + \delta_{\texttt{income}}\texttt{income}_i + \tau \upsilon_i\right).$

The syntax is very similar to our previous example, with minor changes in the formula argument:

```
R> smnl.het <- gmnl(choice ~ wait + vcost + travel | 1 | 0 | 0 | income - 1,
+ data = TM, model = "smnl", R = 30, notscale = c(1, 1, 1, 0, 0, 0),
+ typeR = FALSE)
```

```
The following variables are not scaled:
[1] "train:(intercept)" "bus:(intercept)" "car:(intercept)"
Estimating SMNL model
```

The fifth part of the formula is reserved for individual-specific variables that affect scale. In this example, we specify that the variable income and no constant are included in σ_i .

R> summary(smnl.het)

Model estimated on: Thu Feb 18 10:49:50 2016

 $^{^9 \}texttt{vcost}$ is significant at the 10% level.

```
Call:
gmnl(formula = choice ~ wait + vcost + travel | 1 | 0 | 0 | income -
    1, data = TM, model = "smnl", R = 30, notscale = c(1, 1,
    1, 0, 0, 0), typeR = FALSE, method = "bfgs")
Frequencies of categories:
  air train
              bus
                    car
0.276 0.300 0.143 0.281
The estimation took: 0h:0m:4s
Coefficients:
                  Estimate Std. Error z-value Pr(>|z|)
train:(intercept) -0.99226
                              0.49290
                                         -2.01
                                                0.04410 *
bus:(intercept)
                  -1.69842
                              0.61673
                                         -2.75
                                                0.00589 **
car:(intercept)
                  -6.92476
                              1.22665
                                         -5.65
                                                1.6e-08 ***
                                         -5.23
wait
                  -0.11795
                              0.02253
                                                1.7e-07 ***
                  -0.01489
                              0.01019
                                         -1.46
                                                0.14412
vcost
travel
                  -0.00439
                              0.00111
                                         -3.95
                                                7.8e-05 ***
                                                0.00014 ***
tau
                   0.54198
                              0.14234
                                          3.81
                   0.00564
                              0.00339
                                          1.66
                                               0.09635 .
het.income
___
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Optimization of log-likelihood by BFGS maximization
Log Likelihood: -185
Number of observations: 210
Number of iterations: 66
Exit of MLE: successful convergence
Simulation based on 30 draws
```

The results are similar to those of the previous example. However, vcost is no longer statistically significant. All the parameters for the variables that enter in the scale are preceded by the string het. Thus, the coefficient het.income corresponds to δ_{income} , and is significant at the 10% level. This result indicates that the variability of the error term for each individual depends on their income. Finally, the argument typeR determines the type of draws used for the scale parameter. If TRUE, truncated normal draws are used for the scale parameter. In this case, the function rtruncnorm of truncnorm (Trautmann, Steuer, Mersmann, and Bornkamp 2014) is used. If typeR = FALSE, as in this example, the procedure suggested by Greene and Hensher (2010) is used. See Section 2.3 for more details.

Suppose now that we want to test the null hypothesis H_0 : $\delta_{\text{income}} = 0$. This test can be performed using the function waldtest or lrtest from the package lmtest (Zeileis and Hothorn 2002):

R> library("lmtest")
R> waldtest(smnl.nh, smnl.het)

```
Wald test
Model 1: choice ~ wait + vcost + travel | 1
Model 2: choice ~ wait + vcost + travel | 1 | 0 | 0 | income - 1
  Res.Df Df Chisq Pr(>Chisq)
     203
1
2
     202 1 2.76
                       0.096 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R> lrtest(smnl.nh, smnl.het)
Likelihood ratio test
Model 1: choice ~ wait + vcost + travel | 1
Model 2: choice ~ wait + vcost + travel | 1 | 0 | 0 | income - 1
  #Df LogLik Df Chisq Pr(>Chisq)
1
    7
        -188
2
    8
        -185 1 5.21
                           0.022 *
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Both tests are asymptotically equivalent, but they can provide different results for finite samples. In this case, both reject the null hypothesis, but at different significance levels.

In some cases, one will need to decide among non-nested models. In such cases the LR, Wald and Lagrange multiplier tests cannot be applied. However, one can use either the AIC or BIC criteria to measure the relative quality of models. In general, given a set of candidate models for the data, the preferred model is the one with the minimum AIC or BIC value. We can obtain the AIC and BIC criteria by typing:

R> AIC(smnl.nh)
[1] 390
R> AIC(smnl.het)
[1] 387
R> BIC(smnl.nh)
[1] 414
R> BIC(smnl.het)
[1] 414

16

The results show that AIC favors the smnl.het model, whereas the BIC is not able to discriminate between both models.

3.4. Estimating MIXL models

In the following examples we show how to estimate MIXL models using gmnl. The package **mlogit** is very efficient in estimating MIXL models. However, one advantage of using gmnl is the inclusion of individual-specific variables to explain the mean of the random parameters (see Equation 2). Other important expansions include the possibility of producing point and interval estimates at the individual level, and the consideration of Johnson S_b heterogeneity distributions.

If we assume that the coefficients of travel and wait vary across individuals according to:

 $\begin{array}{lll} \beta_{\texttt{travel},i} &=& \beta_1 + \pi_{11}\texttt{income} + \pi_{12}\texttt{size} + \sigma_1\eta_{1i}, \\ \beta_{\texttt{wait},i} &=& \beta_2 + \pi_{21}\texttt{income} + \sigma_2\eta_{2i}, \end{array}$

where η_{1i} is triangular and $\eta_{2i} \sim N(0, 1)$, the corresponding MIXL model is estimated by typing:

Estimating MIXL model

The argument model = "mixl" indicates that the MIXL model will be estimated. The distribution of the random coefficients are specified by the argument ranp. The distributions supported by gmnl are presented in Table 3.¹⁰ Note also that the fourth part of the formula is reserved for all the variables that enter the mean of the random parameters. The argument mvar indicates which variables enter each specific random parameter. For example, travel = c("income", "size") indicates that the mean of the travel coefficient varies according to income and size. Finally, haltons is relevant if ranp is not NULL. If haltons = NULL, pseudo-random draws are used instead of Halton sequences. If haltons = NA, the first K primes are used to generate the Halton draws, where K is the number of random parameters, and 15 of the initial sequence of elements are dropped. Otherwise, haltons should be a list with elements prime and drop. In this example we use the prime numbers 2 and 17, and we drop the first 19 elements for each series. For a further explanation of Halton draws see Train (2009).

R> summary(mixl.hier)

¹⁰It is worth mentioning that given how the random parameters of the G-MNL model are constructed (see Equation 4), the distributions allowed when model = "gmnl" are the normal, uniform, and triangular. Similarly, when the model is estimated with correlated random parameters, only the normal distribution and its transformations – log-normal and truncated normal – are allowed.

Shorthands	Distributions
"n"	Normal distribution
"ln"	Log-normal distribution
"cn"	Truncated (at zero) normal distribution
"t"	Triangular distribution
"u"	Uniform distribution
"sb"	Johnson S_b distribution

Table 3: Continuous distributions supported by **gmnl**.

```
Model estimated on: Thu Feb 18 10:51:09 2016
Call:
gmnl(formula = choice ~ vcost + travel + wait | 1 | 0 | income +
   size - 1, data = TM, model = "mixl", ranp = c(travel = "t",
   wait = "n"), R = 50, haltons = list(primes = c(2, 17), drop = rep(19,
   2)), mvar = list(travel = c("income", "size"), wait = c("income")),
   method = "bfgs")
Frequencies of categories:
  air train
             bus
                   car
0.276 0.300 0.143 0.281
The estimation took: 0h:1m:19s
Coefficients:
                  Estimate Std. Error z-value Pr(>|z|)
                             1.13e+00 -0.15 0.88005
train:(intercept) -1.70e-01
bus:(intercept)
                 -1.14e+00
                             1.23e+00
                                       -0.93 0.35120
car:(intercept)
                             2.52e+00 -3.57 0.00035 ***
                 -9.00e+00
vcost
                 -3.07e-02 1.52e-02
                                       -2.02 0.04288 *
                 -7.75e-03 3.29e-03 -2.35 0.01861 *
travel
                 -1.53e-01
                            4.48e-02
                                       -3.42 0.00062 ***
wait
                 -1.59e-04
                             6.42e-05
                                       -2.48 0.01324 *
travel.income
                 3.51e-03
                             1.37e-03
                                        2.56 0.01057 *
travel.size
                 -1.19e-03
                             6.48e-04
wait.income
                                       -1.84 0.06568 .
sd.travel
                 5.48e-03
                             4.02e-03
                                       1.36 0.17288
                  8.41e-02
                             3.48e-02
                                        2.41 0.01582 *
sd.wait
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Optimization of log-likelihood by BFGS maximization
Log Likelihood: -165
Number of observations: 210
Number of iterations: 357
```

Exit of MLE: successful convergence Simulation based on 50 draws

The output shows the estimates in the following order: fixed parameters, mean of the random parameters, effect of the variables that affect the mean of the random parameters, and finally the standard deviation/spread of the random parameters. Note that travel.income corresponds to π_{11} , travel.size corresponds to π_{12} , and wait.income corresponds to π_{21} . The parameters have the expected sign. Note that individuals with higher income are more sensitive to in-vehicle time (due to the significant and negative travel.income). Whereas both components of time were assumed random, only waiting time appears as having significant variation in how it is perceived across travelers. This result may be due to income and size explaining taste variations (observed heterogeneity).

We now estimate a correlated random parameter model. For this example, we will use the Electricity data from the **mlogit** package, which is a panel dataset. There are 4,308 observations in this microdata set, but only 361 individuals. The analyst designed 12 hypothetical choice scenarios according to a discrete choice experiment,¹¹ where four hypothetical electricity suppliers were described in terms of price – which could be fixed (pf), time-of-day rate (tod), or seasonal rate (seas); length of contract (cl); and being local (loc) or 'well-known' (wk). The experimental design considered unlabeled alternatives, which means that alternative-specific constants can be set at zero. This microdata is in a "wide format" (one row describes all alternatives in a given choice situation). Given time compilation restrictions, in this example we will use just a subsample of this database (subset = 1:3000). The user may want to use the whole sample to reproduce this case study.

```
R> data("Electricity", package = "mlogit")
R> Electr <- mlogit.data(Electricity, id.var = "id", choice = "choice",
+ varying = 3:26, shape = "wide", sep = "")</pre>
```

In this example, two arguments are especially relevant in the gmnl function. First, panel = TRUE indicates that the data is a panel. When using panel data, the user needs to specify a variable in the id.var argument of the mlogit.data function that identifies the individual. Second, to estimate correlated random parameters correlation = TRUE needs to be indicated in the gmnl function. The syntax is the following:

```
R> Elec.cor <- gmnl(choice ~ pf + cl + loc + wk + tod + seas | 0,
+ data = Electr, subset = 1:3000, model = 'mixl', R = 50, panel = TRUE,
+ ranp = c(cl = "n", loc = "n", wk = "n", tod = "n", seas = "n"),
+ correlation = TRUE)
Estimating MIXL model
R> summary(Elec.cor)
```

Model estimated on: Thu Feb 18 10:51:26 2016

¹¹Discrete choice experiments collect 'stated preference' (SP) data, where choices reflect intended behavior. In this example, some respondents did not provide their choices for all 12 choice situations.

```
Call:
gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0,
    data = Electr, subset = 1:3000, model = "mixl", ranp = c(cl = "n",
        loc = "n", wk = "n", tod = "n", seas = "n"), R = 50,
    correlation = TRUE, panel = TRUE, method = "bfgs")
Frequencies of categories:
    1
          2
                3
                      4
0.215 0.303 0.217 0.265
The estimation took: 0h:0m:16s
Coefficients:
             Estimate Std. Error z-value Pr(|z|)
              -0.8702
                          0.0786 -11.07 < 2e-16 ***
pf
cl
              -0.1765
                          0.0430
                                   -4.11 4.0e-05 ***
               2.3822
                          0.3053
                                    7.80 6.0e-15 ***
loc
                                    7.80 6.2e-15 ***
wk
               1.9447
                          0.2493
tod
              -8.5026
                          0.7423 -11.45 < 2e-16 ***
                          0.7803 -11.08 < 2e-16 ***
seas
              -8.6456
sd.cl.cl
              0.3919
                          0.0420
                                    9.33 < 2e-16 ***
                                    2.48 0.01311 *
sd.cl.loc
               0.4921
                          0.1983
                                    2.59 0.00966 **
sd.cl.wk
               0.5514
                          0.2131
sd.cl.tod
              -0.9834
                          0.2802
                                   -3.51 0.00045 ***
sd.cl.seas
              -0.1470
                          0.2297
                                   -0.64 0.52206
sd.loc.loc
              2.5925
                          0.4226
                                    6.14 8.5e-10 ***
sd.loc.wk
               1.9311
                          0.3610
                                    5.35 8.8e-08 ***
sd.loc.tod
               1.0198
                          0.5651
                                    1.80 0.07114 .
                                    0.21 0.83723
sd.loc.seas
               0.0941
                          0.4579
sd.wk.wk
                          0.2212
                                   -1.51 0.13226
              -0.3330
sd.wk.tod
              1.9341
                          0.3208
                                    6.03 1.7e-09 ***
sd.wk.seas
               0.7349
                          0.3030
                                    2.43 0.01529 *
                                    6.25 4.1e-10 ***
sd.tod.tod
               2.0635
                          0.3301
               1.1689
                          0.2539
                                    4.60 4.2e-06 ***
sd.tod.seas
                                    6.72 1.8e-11 ***
sd.seas.seas
               1.7034
                          0.2533
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Optimization of log-likelihood by BFGS maximization
Log Likelihood: -692
Number of observations: 750
Number of iterations: 97
Exit of MLE: successful convergence
Simulation based on 50 draws
```

Note that the estimates for the population means indicate that on average individuals prefer

20

contracts that are cheaper and shorter, and companies that are local and well-known. But, there is great variation in preferences. The estimates from sd.cl.cl to sd.seas.seas are the elements of the lower triangular matrix **L**. If the user is interested in the standard errors of the variance-covariance matrix of the random parameters $\mathbf{LL}^{\top} = \boldsymbol{\Sigma}$ or the standard deviations, the S3 function vcov can be used for finding these elements. The syntax for both cases is the following:¹²

```
R> vcov(Elec.cor, what = "ranp", type = "cov", se = "true")
```

```
Estimate Std. Error z-value Pr(>|z|)
v.cl.cl
              0.1536
                          0.0329
                                     4.67
                                           3.1e-06 ***
v.cl.loc
              0.1928
                          0.0816
                                     2.36
                                            0.0181 *
v.cl.wk
                                            0.0185 *
              0.2161
                          0.0917
                                     2.36
v.cl.tod
             -0.3854
                          0.1290
                                    -2.99
                                            0.0028 **
                                    -0.64
                                            0.5249
v.cl.seas
             -0.0576
                          0.0906
v.loc.loc
              6.9630
                          2.2065
                                     3.16
                                            0.0016 **
              5.2776
                                            0.0015 **
v.loc.wk
                          1.6637
                                     3.17
v.loc.tod
              2.1599
                          1.3323
                                     1.62
                                            0.1050
v.loc.seas
              0.1715
                          1.1222
                                     0.15
                                            0.8785
                                     3.12
                                            0.0018 **
v.wk.wk
              4.1440
                          1.3293
                                            0.3585
v.wk.tod
              0.7832
                          0.8530
                                     0.92
v.wk.seas
             -0.1441
                          0.7525
                                    -0.19
                                            0.8481
                                     2.88
                                            0.0040 **
v.tod.tod
             10.0058
                          3.4763
v.tod.seas
              4.0739
                          1.5217
                                     2.68
                                            0.0074 **
                                     4.08
                                           4.5e-05 ***
v.seas.seas
              4.8384
                          1.1851
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
R> vcov(Elec.cor, what = "ranp", type = "sd", se = "true")
Standard deviations of the random parameters
     Estimate Std. Error z-value Pr(>|z|)
cl
        0.392
                    0.042
                             9.33
                                   < 2e-16 ***
                                    2.8e-10 ***
loc
        2.639
                    0.418
                             6.31
                                  4.5e-10 ***
wk
        2.036
                    0.327
                             6.23
        3.163
                    0.549
                             5.76 8.6e-09 ***
tod
seas
        2.200
                    0.269
                             8.17
                                   2.2e-16 ***
___
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Elements of the variance-covariance matrix

The correlation matrix of the random parameters can be recovered using the following syntax:

 $^{^{12}}$ To compute the standard errors, gmnl uses the deltamethod function from the msm package (Jackson 2011).

R> vcov(Elec.cor, what = "ranp", type = "cor")

cl loc wk tod seas cl 1.0000 0.1865 0.2708 -0.311 -0.0668 loc 0.1865 1.0000 0.9825 0.259 0.0295 wk 0.2708 0.9825 1.0000 0.122 -0.0322 tod -0.3109 0.2588 0.1216 1.000 0.5855 seas -0.0668 0.0295 -0.0322 0.586 1.0000

3.5. Estimating G-MNL models

In the following examples we show how to estimate G-MNL models in **gmnl**. Although we do not need to specify constants in an unlabeled experiment (alternatives are fully defined by the experimental attributes), just for illustrative purposes we will assume that the ASCs are random. Using the **formula** to create the ASCs produces problems in the **ranp** argument due to the way the constants are labeled. So, we first create the ASCs by hand:

```
R> Electr$asc2 <- as.numeric(Electr$alt == 2)
R> Electr$asc3 <- as.numeric(Electr$alt == 3)
R> Electr$asc4 <- as.numeric(Electr$alt == 4)</pre>
```

The G-MNL model is estimated using model = "gmnl":

```
R> Elec.gmnl <- gmnl(choice ~ pf + cl + loc + wk + tod + seas + asc2 +
     asc3 + asc4 | 0, data = Electr, subset = 1:3000, model = 'gmnl',
+
+
     R = 50, panel = TRUE, notscale = c(rep(0, 6), 1, 1, 1),
     ranp = c(cl = "n", loc = "n", wk = "n", tod = "n", seas = "n",
+
       asc2 = "n", asc3 = "n", asc4 = "n"))
+
The following variables are not scaled:
[1] "asc2" "asc3" "asc4"
Estimating GMNL model
R> summary(Elec.gmnl)
Model estimated on: Thu Feb 18 10:51:48 2016
Call:
gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas + asc2 +
    asc3 + asc4 | 0, data = Electr, subset = 1:3000, model = "gmnl",
    ranp = c(cl = "n", loc = "n", wk = "n", tod = "n", seas = "n",
        asc2 = "n", asc3 = "n", asc4 = "n"), R = 50, panel = TRUE,
    notscale = c(rep(0, 6), 1, 1, 1), method = "bfgs")
```

Frequencies of categories:

22

The estimation took: 0h:0m:22s

Cc	ef	f:	іc	ie	nt	s	:
~ ~		_				~	•

	Estimate	Std. Error	z-value	Pr(z)			
pf	-0.8733	0.1066	-8.19	2.2e-16	***		
cl	-0.1718	0.0422	-4.07	4.7e-05	***		
loc	1.8081	0.2289	7.90	2.9e-15	***		
wk	1.7543	0.2222	7.89	2.9e-15	***		
tod	-8.5960	0.9865	-8.71	< 2e-16	***		
seas	-8.8653	1.0128	-8.75	< 2e-16	***		
asc2	0.3044	0.1539	1.98	0.0479	*		
asc3	0.1563	0.1598	0.98	0.3279			
asc4	0.1133	0.1568	0.72	0.4698			
sd.cl	0.3643	0.0442	8.25	2.2e-16	***		
sd.loc	1.1015	0.2738	4.02	5.7e-05	***		
sd.wk	1.2053	0.2493	4.84	1.3e-06	***		
sd.tod	1.4655	0.2336	6.28	3.5e-10	***		
sd.seas	1.8110	0.2958	6.12	9.3e-10	***		
sd.asc2	0.5264	0.1791	2.94	0.0033	**		
sd.asc3	0.0849	0.2246	0.38	0.7055			
sd.asc4	0.2407	0.1881	1.28	0.2007			
tau	0.6777	0.1490	4.55	5.4e-06	***		
gamma	0.3625	0.1747	2.08	0.0380	*		
Signif.	codes: () '***' 0.0()1 '**' ().01 '*' (0.05 '.	' 0.1 ' '	1
Optimiz	ation of]	log-likeliho	ood by BI	GS maxim:	ization		
Log Likelihood: -729							
Number of observations: 750							
Number of iterations: 98							
Exit of	MLE: succ	cessful conv	vergence				
Simulat	ion based	on 50 draws	3				

Since we are including the ASCs as additional variables, the second part of the formula does not include the ASCs (| 0). Note also that even though the ASCs are random, they are not scaled: notscale = c(rep(0, 6), 1, 1, 1) indicates that the last three variables in the first part of the formula (asc2, asc3, and asc4) are not scaled.

Another important issue is that gmnl estimates γ directly by default as suggested by Keane and Wasi (2013). However, one can estimate γ^* , where $\gamma = \exp(\gamma^*)/(1+\exp(\gamma^*))$ as suggested by Fiebig *et al.* (2010), by specifying hgamma = "indirect". Thus, hgamma = "direct" is the default setting.

The G-MNL estimation code is also very convenient when one wants to estimate S-MNL models with random effects (Keane and Wasi 2013). In this case, the user can fix γ and use model = "gmnl".

```
R> Elec.smnl.re <- gmnl(choice ~ pf + cl + loc + wk + tod + seas + asc2 +
     asc3 + asc4 | 0, data = Electr, subset = 1:3000, model = 'gmnl', R = 50,
+
     panel = TRUE, print.init = TRUE, notscale = c(rep(0, 6), 1, 1, 1),
     ranp = c(asc2 = "n", asc3 = "n", asc4 = "n"), init.gamma = 0,
     fixed = c(rep(FALSE, 16), TRUE), correlation = TRUE)
+
The following variables are not scaled:
[1] "asc2" "asc3" "asc4"
Starting Values:
         pf
                      cl
                                  loc
                                                wk
                                                            tod
     -0.6018
                 -0.1350
                                1.2223
                                            1.0387
                                                        -5.3686
                                 asc3
                                              asc4 sd.asc2.asc2
        seas
                    asc2
     -5.5623
                  0.2097
                               0.0811
                                            0.1065
                                                         0.1000
sd.asc2.asc3 sd.asc2.asc4 sd.asc3.asc3 sd.asc3.asc4 sd.asc4.asc4
                               0.1000
     0.1000
                  0.1000
                                            0.1000
                                                         0.1000
        tau
                   gamma
                  0.0000
      0.1000
Estimating GMNL model
R> summary(Elec.smnl.re)
Model estimated on: Thu Feb 18 10:52:04 2016
Call:
gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas + asc2 +
    asc3 + asc4 | 0, data = Electr, subset = 1:3000, model = "gmnl",
    ranp = c(asc2 = "n", asc3 = "n", asc4 = "n"), R = 50, correlation = TRUE,
    panel = TRUE, init.gamma = 0, notscale = c(rep(0, 6), 1,
        1, 1), print.init = TRUE, fixed = c(rep(FALSE, 16), TRUE),
    method = "bfgs")
Frequencies of categories:
         2
               3
    1
                     4
0.215 0.303 0.217 0.265
The estimation took: 0h:0m:16s
Coefficients:
             Estimate Std. Error z-value Pr(|z|)
                                 -5.49 4.1e-08 ***
              -0.6299
                         0.1148
pf
cl
              -0.1377
                         0.0328 -4.20 2.7e-05 ***
loc
                         0.2200 5.80 6.8e-09 ***
              1.2749
                         0.1929 5.76 8.2e-09 ***
wk
              1.1119
             -6.2008
                        1.0450 -5.93 3.0e-09 ***
tod
                        1.0802 -5.90 3.7e-09 ***
             -6.3681
seas
```

24

asc2	0.2124	0.1442	1.47	0.1409			
asc3	0.2295	0.1351	1.70	0.0894 .			
asc4	0.1536	0.1310	1.17	0.2410			
sd.asc2.asc2	0.5694	0.2184	2.61	0.0091 **			
sd.asc2.asc3	0.3066	0.1813	1.69	0.0908 .			
sd.asc2.asc4	0.1508	0.1995	0.76	0.4497			
sd.asc3.asc3	0.0445	0.2192	0.20	0.8390			
sd.asc3.asc4	0.0893	0.2188	0.41	0.6832			
sd.asc4.asc4	-0.0406	0.2034	-0.20	0.8419			
tau	1.1009	0.1852	5.94	2.8e-09 ***			
Signif. codes	: 0 '***'	0.001 '**'	0.01 '*	*' 0.05 '.' 0.1	''1		
Optimization (of log-like	lihood by	BFGS max	kimization			
Log Likelihoo	d: -841						
Number of obs	ervations:	750					
Number of ite:	rations: 76	;					
Exit of MLE: successful convergence							
Simulation bas	Simulation based on 50 draws						

The argument init.gamma indicates the initial value for γ . In this case we set it at zero. The next step is to set the parameters that are fixed by using the argument fixed, which is passed to the maxLik function. Note that the user needs to be careful with the order of the parameters. We encourage the user to estimate first a model where all the parameters are freely estimated with the argument print.init = TRUE. This argument will display the initial values and the order used by gmnl. Generally, γ is the last parameter that enters the likelihood specification. So, by typing fixed = c(rep(FALSE, 16), TRUE) we are only holding γ fixed at zero, and the rest of the coefficients are freely estimated.

By default, the initial values for the mean of the random parameters come from an MNL, and the standard deviations or spread are set at 0.1. However, the starting values from an MNL model may not be the best guess, since the G-MNL model is not globally concave. The best starting values for a G-MNL model with correlated parameters might be: 1) G-MNL with uncorrelated parameters, 2) MIXL with correlated parameters, or 3) GMNL with correlated parameters with γ fixed at 0. One can first get these initial parameters and then use the start argument of gmnl to indicate the vector of appropriate starting values (see Section 3.7 for an example of how to use the start argument).

3.6. Estimating LC and MM-MNL models

The next example shows how an LC model with two classes can be estimated:

```
R> Elec.lc <- gmnl(choice ~ pf + cl + loc + wk + tod + seas | 0 | 0 | 0 | 1,
+ data = Electr, subset = 1:3000, model = 'lc', panel = TRUE, Q = 2)
```

Estimating LC model

Note that for the LC model, one needs to specify at least a constant in the fifth part of the formula. If the class assignment w_{iq} is also determined by socio-economic characteristics,

those covariates can also be included in the fifth part. The LC model is estimated by typing model = "lc", and the prespecified number of classes is indicated with the argument Q.

```
R> summary(Elec.lc)
Model estimated on: Thu Feb 18 10:52:05 2016
Call:
gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0 |
    0 | 0 | 1, data = Electr, subset = 1:3000, model = "lc",
    Q = 2, panel = TRUE, method = "bfgs")
Frequencies of categories:
          2
    1
                3
                      4
0.215 0.303 0.217 0.265
The estimation took: 0h:0m:1s
Coefficients:
             Estimate Std. Error z-value Pr(>|z|)
                                    -5.09 3.6e-07 ***
class.1.pf
              -0.4458
                          0.0876
class.1.cl
              -0.1847
                          0.0301
                                    -6.14 8.3e-10 ***
class.1.loc
               1.2144
                          0.1618
                                     7.50 6.2e-14 ***
class.1.wk
               0.9641
                          0.1429
                                     6.75
                                           1.5e-11 ***
class.1.tod
              -3.2184
                          0.6880
                                    -4.68 2.9e-06 ***
class.1.seas -3.4865
                                    -5.03 4.9e-07 ***
                          0.6929
                                          < 2e-16 ***
class.2.pf
              -0.8431
                          0.0968
                                    -8.71
class.2.cl
              -0.1242
                          0.0453
                                    -2.74
                                            0.0061 **
class.2.loc
                          0.2689
                                     6.12
                                           9.6e-10 ***
               1.6445
class.2.wk
               1.4139
                          0.2120
                                     6.67
                                           2.6e-11 ***
class.2.tod
                                  -10.80
                                           < 2e-16 ***
              -9.3732
                          0.8676
class.2.seas
              -9.2647
                                   -10.47
                                           < 2e-16 ***
                          0.8847
(class)2
              -0.2200
                          0.0788
                                    -2.79
                                            0.0052 **
___
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Optimization of log-likelihood by BFGS maximization
Log Likelihood: -793
Number of observations: 750
Number of iterations: 77
Exit of MLE: successful convergence
```

Note that the underlying assumption in this example is that there are two types of customers. For both types, the parameters have expected signs and are statistically significant. Probability of class assignment is assumed constant in this case, but in a dataset with sociodemographics, assignment to classes can vary for each individual using those sodiodemographics as explanatory variables of the class assignment probability. The following example estimates an MM-MNL with a mixture of two normal distributions:

```
R> Elec.mm <- gmnl(choice ~ pf + cl + loc + wk + tod + seas | 0 | 0 | 0 | 1,
     data = Electr, subset = 1:3000, model = 'mm', R = 50, panel = TRUE,
+
+
     ranp = c(pf = "n", cl = "n", loc = "n", wk = "n", tod = "n",
       seas = "n"), Q = 2, iterlim = 500)
+
Estimating MM-MNL model
R> summary(Elec.mm)
Model estimated on: Thu Feb 18 10:57:27 2016
Call:
gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0 |
   0 | 0 | 1, data = Electr, subset = 1:3000, model = "mm",
   ranp = c(pf = "n", cl = "n", loc = "n", wk = "n", tod = "n",
        seas = "n"), R = 50, Q = 2, panel = TRUE, iterlim = 500,
   method = "bfgs")
Frequencies of categories:
         2
               3
   1
                     4
0.215 0.303 0.217 0.265
The estimation took: 0h:5m:22s
Coefficients:
                Estimate Std. Error z-value Pr(|z|)
                            0.12279 -10.43 < 2e-16 ***
class.1.pf
                -1.28036
class.1.cl
                -0.49715
                            0.08070
                                     -6.16 7.3e-10 ***
                                      2.67 0.00749 **
class.1.loc
                 0.64445
                            0.24097
class.1.wk
                 0.71241
                            0.21823
                                       3.26 0.00110 **
                            1.02748 -11.31 < 2e-16 ***
class.1.tod
               -11.62474
class.1.seas
               -12.65698
                            1.13957 -11.11 < 2e-16 ***
class.2.pf
                -0.43575
                            0.11588
                                     -3.76 0.00017 ***
class.2.cl
                            0.08288
                                      1.02 0.30713
                 0.08464
                                      8.87 < 2e-16 ***
class.2.loc
                 3.38611
                            0.38188
class.2.wk
                 2.72095
                            0.32688
                                     8.32 < 2e-16 ***
class.2.tod
                -4.71637
                                      -4.47 7.7e-06 ***
                            1.05414
class.2.seas
                -4.64753
                            0.96000
                                     -4.84 1.3e-06 ***
                                      2.67 0.00752 **
class.1.sd.pf
                            0.03938
                 0.10526
class.1.sd.cl
                 0.26906
                            0.05835
                                      4.61 4.0e-06 ***
                                      0.03 0.97704
class.1.sd.loc
                 0.00764
                            0.26552
                                      0.20 0.84413
class.1.sd.wk
                 0.11414
                            0.58053
                                      4.90 9.7e-07 ***
class.1.sd.tod
                 2.20533
                            0.45035
                            0.45203 5.14 2.8e-07 ***
class.1.sd.seas
                 2.32243
```

```
class.2.sd.pf
                             0.03371
                  0.19696
                                         5.84 5.2e-09 ***
class.2.sd.cl
                  0.35523
                             0.07491
                                         4.74 2.1e-06 ***
class.2.sd.loc
                  0.58717
                             0.28699
                                         2.05 0.04076 *
class.2.sd.wk
                  1.10025
                             0.30323
                                         3.63 0.00029 ***
class.2.sd.tod
                  1.40225
                             0.51875
                                        2.70 0.00687 **
class.2.sd.seas
                  0.07309
                             0.25655
                                        0.28 0.77572
(class)2
                 -0.13714
                             0.07844
                                       -1.75 0.08039 .
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Optimization of log-likelihood by BFGS maximization
Log Likelihood: -672
Number of observations: 750
Number of iterations: 125
Exit of MLE: successful convergence
Simulation based on 50 draws
```

The specification is similar to that of the LC model, but we now allow the parameters in each class to be normally distributed using the argument **ranp**. It is worth mentioning that the number of iterations required for this model is greater than that for previous models.¹³ For that reason we have set the maximum of iterations at 500 using the argument **iterlim**. The example below adds the consideration of correlated parameters, which is the model typically used in Bayesian treatments.

Estimating MM-MNL model

R> summary(Elec.mm.c)
Model estimated on: Thu Feb 18 10:59:08 2016
Call:
gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0 |
0 | 0 | 1, data = Electr, subset = 1:3000, model = "mm",
ranp = c(pf = "n", cl = "n", loc = "n", wk = "n", tod = "n",
seas = "n"), R = 50, Q = 2, correlation = TRUE, panel = TRUE,
iterlim = 500, method = "bfgs")

28

¹³Another important issue is weak identification. Large magnitudes of the coefficients or standard errors, or even models with slow convergence, might be a sign of weak identification, especially in complex models such as the MM-logit model (Ruud 2007). Users should remain suspicious and further investigate such cases by analyzing the Hessian matrix of second-order partial derivatives. If the Hessian matrix is positive definite (e.g., all its eigenvalues are positive), the model is said to be locally identified (see Wedel and Kamakura 2012, p. 91). The Hessian can be obtained by my_model\$logLik\$hessian after estimating a model of class gmn1.

Frequencies of categories: 1 2 3 4 0.215 0.303 0.217 0.265

The estimation took: 0h:1m:41s

Coefficients:

	Estimate	Std. Error	z-value	Pr(> z)	
class.1.pf	-0.9996	0.1311	-7.63	2.4e-14	***
class.1.cl	-0.2168	0.0545	-3.98	7.0e-05	***
class.1.loc	2.7749	0.4689	5.92	3.3e-09	***
class.1.wk	2.3225	0.3165	7.34	2.2e-13	***
class.1.tod	-9.8537	1.1690	-8.43	< 2e-16	***
class.1.seas	-9.5464	1.0975	-8.70	< 2e-16	***
class.2.pf	-1.9182	0.4702	-4.08	4.5e-05	***
class.2.cl	-0.8815	0.1673	-5.27	1.4e-07	***
class.2.loc	3.7753	1.0432	3.62	0.00030	***
class.2.wk	3.0521	0.8006	3.81	0.00014	***
class.2.tod	-13.4974	3.6628	-3.68	0.00023	***
class.2.seas	-15.0237	3.6817	-4.08	4.5e-05	***
class.1.sd.pf.pf	0.6324	0.1245	5.08	3.8e-07	***
class.1.sd.pf.cl	0.2018	0.0522	3.87	0.00011	***
<pre>class.1.sd.pf.loc</pre>	1.4214	0.3932	3.62	0.00030	***
class.1.sd.pf.wk	1.0639	0.2577	4.13	3.6e-05	***
class.1.sd.pf.tod	5.5303	1.0575	5.23	1.7e-07	***
class.1.sd.pf.seas	4.3941	1.0112	4.35	1.4e-05	***
class.1.sd.cl.cl	0.2116	0.0638	3.32	0.00091	***
class.1.sd.cl.loc	-1.0122	0.3917	-2.58	0.00976	**
class.1.sd.cl.wk	-0.6071	0.2838	-2.14	0.03239	*
class.1.sd.cl.tod	2.0922	0.4038	5.18	2.2e-07	***
class.1.sd.cl.seas	1.5087	0.3366	4.48	7.4e-06	***
<pre>class.1.sd.loc.loc</pre>	1.3945	0.5937	2.35	0.01883	*
class.1.sd.loc.wk	0.8431	0.3562	2.37	0.01793	*
<pre>class.1.sd.loc.tod</pre>	0.5368	0.3483	1.54	0.12325	
<pre>class.1.sd.loc.seas</pre>	0.6143	0.4411	1.39	0.16371	
class.1.sd.wk.wk	0.5915	0.1638	3.61	0.00030	***
class.1.sd.wk.tod	0.2274	0.2398	0.95	0.34301	
class.1.sd.wk.seas	0.7723	0.2370	3.26	0.00112	**
class.1.sd.tod.tod	1.6883	0.5447	3.10	0.00194	**
class.1.sd.tod.seas	1.9974	0.4498	4.44	9.0e-06	***
<pre>class.1.sd.seas.seas</pre>	0.0275	0.4979	0.06	0.95597	
class.2.sd.pf.pf	-1.0278	0.2735	-3.76	0.00017	***
class.2.sd.pf.cl	0.3755	0.1017	3.69	0.00022	***
class.2.sd.pf.loc	1.5795	0.5169	3.06	0.00224	**
class.2.sd.pf.wk	1.9678	0.5497	3.58	0.00034	***

class.2.sd.pf.tod	-7.1137	2.0080	-3.54	0.00040	***
class.2.sd.pf.seas	-6.0019	2.0065	-2.99	0.00278	**
class.2.sd.cl.cl	1.2556	0.2070	6.07	1.3e-09	***
class.2.sd.cl.loc	0.0671	0.5375	0.12	0.90058	
class.2.sd.cl.wk	-0.5454	0.4364	-1.25	0.21141	
class.2.sd.cl.tod	-1.0686	0.5221	-2.05	0.04068	*
class.2.sd.cl.seas	4.0996	0.8738	4.69	2.7e-06	***
class.2.sd.loc.loc	3.8107	0.9585	3.98	7.0e-05	***
class.2.sd.loc.wk	3.3262	0.7860	4.23	2.3e-05	***
class.2.sd.loc.tod	0.3255	0.6085	0.53	0.59279	
class.2.sd.loc.seas	2.8477	0.9473	3.01	0.00265	**
class.2.sd.wk.wk	-0.7910	0.3234	-2.45	0.01446	*
class.2.sd.wk.tod	0.7507	0.3089	2.43	0.01508	*
class.2.sd.wk.seas	-1.6942	0.6594	-2.57	0.01019	*
class.2.sd.tod.tod	-2.6490	0.6178	-4.29	1.8e-05	***
class.2.sd.tod.seas	-0.4250	0.6364	-0.67	0.50425	
class.2.sd.seas.seas	1.4412	0.4171	3.46	0.00055	***
(class)2	-1.0232	0.0983	-10.40	< 2e-16	***
 Signif. codes: 0 '**	*' 0.001 '*	**' 0.01 '*	<' 0.05	'.' 0.1 '	' 1
Optimization of log-l	ikelihood	by BFGS max	ximizati	on	
Log Likelihood: -640					
Number of observation	.s: 750				
Number of iterations:	292				
Exit of MLE: successf	ul converge	ence			

Simulation based on 50 draws

The standard deviations of the random parameters and their standard errors for each class can be obtained using the vcov function in the following way

R> vcov(Elec.mm.c, what = "ranp", Q = 1, type = "sd", se = TRUE)

Standard deviations of the random parameters

```
Estimate Std. Error z-value Pr(>|z|)
       0.6324
                 0.1245
                           5.08 3.8e-07 ***
pf
       0.2924
                 0.0514
                           5.69 1.2e-08 ***
cl
                           5.51 3.6e-08 ***
                 0.4054
loc
       2.2337
       1.6004
                 0.3159
                           5.07 4.1e-07 ***
wk
       6.1767
                           6.30 3.0e-10 ***
tod
                 0.9809
seas
      5.1525
                 0.9761
                           5.28 1.3e-07 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R> vcov(Elec.mm.c, what = "ranp", Q = 2, type = "sd", se = TRUE)
```

```
Estimate Std. Error z-value Pr(|z|)
pf
        1.028
                    0.273
                              3.76
                                    0.00017 ***
cl
        1.311
                    0.209
                              6.26
                                    3.8e-10 ***
        4.126
loc
                    1.017
                              4.06
                                    4.9e-05 ***
wk
        3.982
                    0.885
                              4.50
                                    6.8e-06 ***
        7.709
                    1.960
                              3.93
                                    8.4e-05 ***
tod
        8.128
                    1.853
                              4.39
                                    1.2e-05 ***
seas
___
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Standard deviations of the random parameters

3.7. Willingness-to-pay space

Willingness-to-pay space models reparameterize the parameter space in such a way that the marginal WTP for each attribute (and the parameters of its heterogeneity distribution for a random parameter model) is directly estimated rather than the marginal utility (preference parameters). To motivate the WTP space model, consider the following latent utility

$$U_{ijt} = -\alpha p_{ijt} + \mathbf{x}_{ijt}^{\top} \boldsymbol{\beta} + \epsilon_{ijt}, \tag{5}$$

where p_{ijt} is the price coefficient. This model is known as the model in preference space. The utility in WTP-space is obtained by dividing the attribute's coefficients by the price coefficient in the following way

$$U_{ijt} = -\alpha p_{ijt} + \mathbf{x}_{ijt}^{\top} \left(-\alpha \frac{\boldsymbol{\beta}}{\alpha} \right) + \epsilon_{ijt}$$
$$= -\alpha p_{ijt} + \mathbf{x}_{ijt}^{\top} \left(-\alpha \boldsymbol{\gamma} \right) + \epsilon_{ijt},$$

where γ is the WTP parameter vector, and α is fixed and equal to 1. Although both, preference and WTP-space are behaviorally equivalent, the latter approach is useful when allowing for random heterogeneity in γ .

In effect, the WTP-space approach is very appealing because it allows the analyst to specify and estimate the distributions of WTP directly, rather than deriving them indirectly from distributions of coefficients in preference space model (Scarpa, Thiene, and Train 2008). In the preference space model, the distribution of WTP is derived from the distribution of the ratio of both α and β . However this ratio may not result in a well-specified distribution. For example, if both α and β are normally distributed, then the ratio produces a Cauchy distribution with no finite moments (Daly, Hess, and Train 2011). Motivated by this problem, Train and Weeks (2005) and Sonnier, Ainslie, and Otter (2007) extended the WTP-space approach by allowing γ to follow any distribution and thus to avoid the problem of non-finite moments for the distribution of WTP.

To illustrate the concept of WTP-space, and how it can be estimated using **gmnl**, we will first show the case without random parameters. The standard procedure to derive willingness-topay measures is to start with a model in preference space, and then make inference on the appropriate ratio that represents the marginal rate of substitution between a given attribute and price. For example, consider the simple conditional logit model,

```
gmnl: Multinomial Logit Models with Individual Heterogeneity in R
R> clogit <- gmnl(choice ~ pf + cl + loc + wk + tod + seas | 0,
     data = Electr, subset = 1:3000)
R> summary(clogit)
Model estimated on: Thu Feb 18 10:59:09 2016
Call:
```

gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0,

data = Electr, subset = 1:3000, method = "nr")

```
Frequencies of categories:
```

2 1 3 4 0.215 0.303 0.217 0.265

32

+

The estimation took: Oh:Om:Os

```
Coefficients:
     Estimate Std. Error z-value Pr(>|z|)
                 0.0548 -11.15 < 2e-16 ***
pf
      -0.6113
cl
     -0.1398
                 0.0204
                          -6.85 7.2e-12 ***
                         10.01 < 2e-16 ***
loc
      1.1986
                 0.1197
wk
       1.0304
                 0.1063
                           9.69 < 2e-16 ***
tod
     -5.4540
                 0.4341 -12.56 < 2e-16 ***
seas -5.6648
                 0.4419 -12.82 < 2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Optimization of log-likelihood by Newton-Raphson maximisation
Log Likelihood: -870
Number of observations: 750
Number of iterations: 4
Exit of MLE: gradient close to zero
```

To estimate the willingness to pay for each attribute, one needs to divide each attribute parameter by that of price pf. This ratio can be easily retrieved using the function wtp.gmnl:

```
R> wtp.gmnl(clogit, wrt = "pf")
```

Willigness-to-pay respect to: pf

	Estimate	Std. Error	t-value	Pr(> t)	
cl	0.2287	0.0358	6.38	1.8e-10	***
loc	-1.9610	0.2304	-8.51	< 2e-16	***
wk	-1.6858	0.1949	-8.65	< 2e-16	***
tod	8.9226	0.2025	44.07	< 2e-16	***
seas	9.2675	0.2164	42.83	< 2e-16	***

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The argument wrt = "pf" indicates that all the parameters should be divided by the parameter of the attribute pf.¹⁴ Using the estimated ratios, we can say, for example, that a individual with average price and contract lenght (cl) is willing to pay ≈ 0.23 , or almost one-fifth a cent per kWh extra, to have a contract that is one year shorter.

Another way to estimate the same WTP coefficients is to use the S-MNL model to derive a specification in WTP-space. To do so, we need first to compute the negative of the price attribute using the mlogit.data function:

```
R> Electr0 <- mlogit.data(Electricity, id = "id", choice = "choice",
+ varying = 3:26, shape = "wide", sep = "", opposite = c("pf"))
```

Next, we need to set the values for the price parameter and τ at 1 and 0, respectively. The fixed argument is used to set these values.

```
R> start <- c(1, 0, 0, 0, 0, 0, 0, 0)
R> wtps <- gmnl(choice ~ pf + cl + loc + wk + tod + seas | 0 | 0 | 0 | 1,
+ data = Electr0, model = "smnl", subset = 1:3000, R = 1,
+ fixed = c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE),
+ panel = TRUE, start = start, method = "bhhh", iterlim = 500)</pre>
```

Estimating SMNL model

Note that we fitted the S-MNL model with a constant in the scale. This constant, after a proper transformation, will represent the price parameter. Since we are working with a fixed parameter model, the number of draws is set equal to 1.

¹⁴In the current version of **gmnl**, the standard error of the WTP estimates are calculated using the delta method, which only works well when there are no problems of weak identification in the ratio.

```
Coefficients:
               Estimate Std. Error z-value Pr(|z|)
cl
                            0.0361 -6.34 2.4e-10 ***
                 -0.2287
                                      8.59 < 2e-16 ***
loc
                  1.9609
                            0.2284
                            0.1915
wk
                 1.6857
                                      8.80 < 2e-16 ***
                 -8.9226
                            0.2025 -44.06 < 2e-16 ***
tod
seas
                 -9.2675
                            0.2166 -42.79 < 2e-16 ***
het.(Intercept)
                -0.4922
                            0.0917
                                     -5.37 7.9e-08 ***
____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Optimization of log-likelihood by BHHH maximisation
Log Likelihood: -870
Number of observations: 750
Number of iterations: 14
Exit of MLE: successive function values within tolerance limit
Simulation based on 1 draws
```

Each value in the output represents the WTP estimates for each respective attribute. Note that these WTP estimates are the same as those obtained using the **wtp.gmnl** function. The price coefficient can be obtained using the following transformation:

If one requires the standard error for the price coefficient the deltamethod function from the msm (Jackson 2011) package can be used in the following way:

```
R> library("msm")
R> estmean <- coef(wtps)
R> estvar <- vcov(wtps)
R> se <- deltamethod(~ -exp(x6), estmean, estvar, ses = TRUE)
R> se
```

[1] 0.056

Using the same idea, one can let the WTP vary across individuals. To do so, we can estimate a G-MNL where the parameter of price and γ are fixed as in the previous example:

```
R> start2 <- c(1, coef(wtps), rep(0.1, 5), 0.1, 0)
R> wtps2 <- gmnl(choice ~ pf + cl + loc + wk + tod + seas | 0 | 0 | 0 | 1,
+ data = ElectrO, subset = 1:3000, model = "gmnl", R = 50,
+ fixed = c(TRUE, rep(FALSE, 12), TRUE), panel = TRUE, start = start2,
+ ranp = c(cl = "n", loc = "n", wk = "n", tod = "n", seas = "n"))</pre>
```

34

The estimation took: 0h:0m:1s

```
Estimating GMNL model
R> summary(wtps2)
Model estimated on: Thu Feb 18 10:59:37 2016
Call:
gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0 |
    0 | 0 | 1, data = ElectrO, subset = 1:3000, model = "gmnl",
    start = start2, ranp = c(cl = "n", loc = "n", wk = "n", tod = "n",
        seas = "n"), R = 50, panel = TRUE, fixed = c(TRUE, rep(FALSE,
        12), TRUE), method = "bfgs")
Frequencies of categories:
    1
          2
                3
                      4
0.215 0.303 0.217 0.265
The estimation took: 0h:0m:28s
Coefficients:
                Estimate Std. Error z-value Pr(|z|)
                 -0.2727
                             0.0518
                                      -5.26 1.4e-07 ***
cl
                                       8.82 < 2e-16 ***
loc
                  2.1631
                             0.2452
wk
                  1.9424
                             0.1935
                                      10.04 < 2e-16 ***
tod
                 -9.6782
                             0.2933 -32.99 < 2e-16 ***
                 -9.8866
                             0.2772 -35.67 < 2e-16 ***
seas
het.(Intercept)
                  0.1142
                             0.1401
                                       0.82
                                                0.41
sd.cl
                  0.4115
                             0.0520
                                       7.91 2.7e-15 ***
                                       7.10 1.3e-12 ***
sd.loc
                  1.7850
                             0.2515
sd.wk
                  1.2865
                             0.2213
                                       5.81 6.1e-09 ***
sd.tod
                  1.7174
                             0.2478
                                       6.93 4.2e-12 ***
sd.seas
                  2.2146
                             0.3723
                                       5.95 2.7e-09 ***
                                       4.95 7.3e-07 ***
tau
                  0.6904
                             0.1394
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Optimization of log-likelihood by BFGS maximization
Log Likelihood: -737
Number of observations: 750
Number of iterations: 143
Exit of MLE: successful convergence
Simulation based on 50 draws
```

Note that the model recast in WTP-space that is implemented in the G-MNL specification above allows the researcher to specify directly the heterogeneity distribution of WTP measures (Sonnier *et al.* 2007). When working in preference space, and then deriving WTP as

a parameter ratio, normally distributed WTP measures can only be derived if the price parameter is fixed (i.e., no unobserved heterogeneity in the marginal utility of income, which is a strong assumption) and the rest of the attributes are assumed to be normally distributed. The problem with all normals in preference space is that the ratio of two normally distributed parameters has a distribution with very long tails and without moments, which leads to unexpected individual-level predictions.

Finally, a WTP-space model with correlated random parameters can be estimated in the following way:

```
R> n ran <- 5
R> start3 <- c(1, coef(wtps), rep(0.1, .5 * n_ran * (n_ran + 1)), 0.1, 0)
R> wtps3 <- gmnl(choice ~ pf + cl + loc + wk + tod + seas | 0 | 0 | 0 | 1,
     data = ElectrO, subset = 1:3000, model = "gmnl", R = 50,
     fixed = c(TRUE, rep(FALSE, 22), TRUE), panel = TRUE, start = start3,
+
     ranp = c(cl = "n", loc = "n", wk = "n", tod = "n", seas = "n"),
+
     correlation = TRUE)
Estimating GMNL model
R> summary(wtps3)
Model estimated on: Thu Feb 18 11:00:19 2016
Call:
gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0 |
    0 | 0 | 1, data = ElectrO, subset = 1:3000, model = "gmnl",
    start = start3, ranp = c(cl = "n", loc = "n", wk = "n", tod = "n",
        seas = "n"), R = 50, correlation = TRUE, panel = TRUE,
    fixed = c(TRUE, rep(FALSE, 22), TRUE), method = "bfgs")
Frequencies of categories:
    1
          2
                3
                      4
0.215 0.303 0.217 0.265
The estimation took: 0h:0m:41s
Coefficients:
                Estimate Std. Error z-value Pr(|z|)
cl
                 -0.1968
                             0.0588
                                      -3.35 0.00082 ***
loc
                  2.1682
                             0.3228
                                       6.72 1.9e-11 ***
                             0.2523
                                       7.24
wk
                  1.8273
                                             4.4e-13 ***
tod
                 -9.9662
                             0.3736 -26.68 < 2e-16 ***
                 -9.9928
                             0.3535 -28.27 < 2e-16 ***
seas
het.(Intercept)
                 -0.1385
                             0.0945
                                      -1.47
                                             0.14268
sd.cl.cl
                  0.4741
                             0.0625
                                       7.59 3.2e-14 ***
sd.cl.loc
                  0.3903
                             0.2560
                                       1.52 0.12730
```

36

sd.cl.wk	0.6118	0.2444	2.50	0.01231	*		
sd.cl.tod	-1.3139	0.2727	-4.82	1.5e-06	***		
sd.cl.seas	-0.2438	0.2655	-0.92	0.35840			
sd.loc.loc	2.5819	0.4937	5.23	1.7e-07	***		
sd.loc.wk	1.6391	0.4104	3.99	6.5e-05	***		
sd.loc.tod	1.9078	0.4725	4.04	5.4e-05	***		
sd.loc.seas	0.9679	0.3765	2.57	0.01014	*		
sd.wk.wk	-0.7259	0.2745	-2.64	0.00818	**		
sd.wk.tod	2.2373	0.3745	5.97	2.3e-09	***		
sd.wk.seas	1.5985	0.3521	4.54	5.6e-06	***		
sd.tod.tod	2.5361	0.4169	6.08	1.2e-09	***		
<pre>sd.tod.seas</pre>	1.7418	0.3636	4.79	1.7e-06	***		
sd.seas.seas	2.0034	0.2872	6.98	3.0e-12	***		
tau	-0.2557	0.1219	-2.10	0.03595	*		
Signif. codes:	0 '***' 0.0	01 '**' 0.	.01 '*'	0.05 '.'	0.1		1
Optimization of	log-likelih	lood by BFC	GS maxim	ization			
Log Likelihood:	-691						
Number of observations: 750							
Number of iterations: 174							
Exit of MLE: successful convergence							
Simulation base	Simulation based on 50 draws						

Note that n_ran is the number of random coefficients, which is used to compute the number of initial values for the L matrix in the start3 vector of initial parameters: let this number be K_a , then the number of elements is equal to $(1/2) \cdot K_a \cdot (K_a + 1)$.

3.8. Individual parameters

Similarly to the **Rchoice** package (Sarrias 2016), **gmnl** also allows the analyst to get the conditional estimates for each individual in the sample (see for example Train 2009; Greene 2012). Using Bayes' theorem we obtain

$$f(\boldsymbol{\beta}_i|\mathbf{y}_i, \mathbf{X}_i, \boldsymbol{\theta}) = \frac{f(\mathbf{y}_i|\mathbf{X}_i, \boldsymbol{\beta}_i)g(\boldsymbol{\beta}_i|\boldsymbol{\theta})}{\int_{\boldsymbol{\beta}_i} f(\mathbf{y}_i|\mathbf{X}_i, \boldsymbol{\beta}_i)g(\boldsymbol{\beta}_i|\boldsymbol{\theta})d\boldsymbol{\beta}_i},$$

where $f(\beta_i | \mathbf{y}_i, \mathbf{X}_i, \boldsymbol{\theta})$ is the distribution of the individual parameters β_i conditional on the observed sequence of choices, and $g(\beta_i | \boldsymbol{\theta})$ is the unconditional distribution. The conditional expectation of β_i is thus given by:

$$\mathsf{E}\left[\boldsymbol{\beta}_{i}|\mathbf{y}_{i},\mathbf{X}_{i},\boldsymbol{\theta}\right] = \frac{\int_{\boldsymbol{\beta}_{i}}\boldsymbol{\beta}_{i}f(\mathbf{y}_{i}|\mathbf{X}_{i},\boldsymbol{\beta}_{i})g(\boldsymbol{\beta}_{i}|\boldsymbol{\theta})d\boldsymbol{\beta}_{i}}{\int_{\boldsymbol{\beta}_{i}}f(\mathbf{y}_{i}|\mathbf{X}_{i},\boldsymbol{\beta}_{i})g(\boldsymbol{\beta}_{i}|\boldsymbol{\theta})d\boldsymbol{\beta}_{i}}.$$
(6)

The expectation in Equation 6 gives us the conditional mean of the distribution of the random parameters, which can also be interpreted as the posterior distribution of the individual parameters. Simulators for this conditional expectation are presented below for the continuous,

discrete and mixture cases, respectively:

$$\begin{split} \widehat{\bar{\beta}}_{i} &= \widehat{\mathsf{E}}\left[\beta_{i}|\mathbf{y}_{i}, \mathbf{X}_{i}, \theta\right] = \frac{\frac{1}{R}\sum_{r=1}^{R}\widehat{\beta}_{ir}\prod_{t}f(y_{it}|\mathbf{x}_{it}, \widehat{\beta}_{ir}, \widehat{\theta})}{\frac{1}{R}\sum_{r=1}^{R}\prod_{t}f(y_{it}|\mathbf{x}_{it}, \widehat{\beta}_{ir}, \widehat{\theta})},\\ \widehat{\bar{\beta}}_{i} &= \widehat{\mathsf{E}}\left[\beta_{i}|\mathbf{y}_{i}, \mathbf{X}_{i}, \theta_{q}\right] = \frac{\sum_{q=1}^{Q}\widehat{\beta}_{q}\widehat{w}_{iq}\prod_{t}f(y_{it}|\mathbf{x}_{it}, \widehat{\beta}_{iq}, \widehat{\theta}_{q})}{\sum_{q=1}^{Q}\widehat{w}_{iq}\prod_{t}f(y_{it}|\mathbf{x}_{it}, \widehat{\beta}_{iq}, \widehat{\theta}_{q})},\\ \widehat{\bar{\beta}}_{i} &= \widehat{\mathsf{E}}\left[\beta_{i}|\mathbf{y}_{i}, \mathbf{X}_{i}, \theta_{q}\right] = \frac{\sum_{q=1}^{Q}\widehat{w}_{iq}\frac{1}{R}\sum_{r=1}^{R}\widehat{\beta}_{iqr}\prod_{t}f(y_{it}|\mathbf{x}_{it}, \widehat{\beta}_{irq}, \widehat{\theta}_{q})}{\sum_{q=1}^{Q}\widehat{w}_{iq}\frac{1}{R}\sum_{r=1}^{R}\prod_{t}f(y_{it}|\mathbf{x}_{it}, \widehat{\beta}_{iqr}, \widehat{\theta}_{q})}. \end{split}$$

In order to construct the confidence interval for $\hat{\beta}_i$, we can derive an estimator of the conditional variance from the point estimates as follows (Greene 2012, chap. 15):

$$\widehat{V}_{i} = \widehat{\mathsf{E}}\left[\beta_{i}^{2}|\mathbf{y}_{i}, \mathbf{X}_{i}, \boldsymbol{\theta}\right] - \widehat{\mathsf{E}}\left[\beta_{i}|\mathbf{y}_{i}, \mathbf{X}_{i}, \boldsymbol{\theta}\right]^{2}.$$
(7)

An approximate normal-based 95% confidence interval can be then constructed as $\hat{\beta}_i \pm 1.96 \times \hat{V}_i^{1/2}$. The **gmnl** package uses these formulae to compute the individual parameters along with their 95% confidence interval. However, it is worth mentioning that there are two shortcomings with the procedure describe above for computing the conditional variance of β_i . First, the estimator in Equation 7 is an estimator of the variance of the conditional distribution of $\bar{\beta}_i$, and not an estimator of the sampling variance of the estimator of the population as the number of choice situations faced by each person increases without bound (Hensher, Greene, and Rose 2006). Second, it does not take into account the sampling variability of the parameter estimates.¹⁵

As an illustration, we can plot the kernel density of the individuals' conditional mean for the loc parameter using Elec.cor model by typing the following:

R> plot(Elec.cor, par = "loc", effect = "ce", type = "density", col = "grey")

Figure 1 displays the distribution of the individuals' conditional mean for the parameter of loc. The gray area gives us the proportion of individuals with a positive conditional mean. The 95% confidence interval of the conditional mean for the first 30 individuals is shown in Figure 2, which was plotted using the following syntax:¹⁶

R> plot(Elec.cor, par = "loc", effect = "ce", ind = TRUE, id = 1:30)

Another important function in **gmnl** is **effect.gmnl**. This function allows the users to get the individuals' conditional mean of both the preference parameters and the willingness-to-pay measures.

For example, one can get the individual conditional mean and standard errors plotted in Figure 2 by typing:

¹⁵Under the Bayesian framework, the estimation of the individual-level estimates fully accounts for uncertainty in the population-level parameters in the estimation routine (see for example Daziano and Achtnicht 2014).

¹⁶gmnl uses plotrix package (Lemon 2006) to create the confidence interval graph.

Conditional Distribution for loc

Figure 1: Kernel density of the individuals' conditional mean.

95% Probability Intervals for loc

Figure 2: 95% confidence interval for the conditional means.

```
R> bi.loc <- effect.gmnl(Elec.cor, par = "loc", effect = "ce")
R> summary(bi.loc$mean)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. -0.79 0.42 2.04 2.12 3.46 7.13

```
R> summary(bi.loc$sd.est)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.113 0.564 0.795 0.866 1.130 1.860

The conditional mean of the willingness to pay for "loc" (wtp = $\beta_{i,loc}/\beta_{pf}$) for all individuals in the sample can be obtained using:

R> wtp.loc <- effect.gmnl(Elec.cor, par = "loc", effect = "wtp", wrt = "pf")</pre>

Note that the argument **par** is the variable whose parameter goes in the numerator, and the argument **wrt** is a string indicating which parameter goes in the denominator.

```
R> summary(wtp.loc$mean)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. -8.19 -3.98 -2.35 -2.44 -0.48 0.91

R> summary(wtp.loc\$sd.est)

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.130 0.648 0.914 0.996 1.300 2.130

4. Computational issues

There are some issues about computation and convergence of maximum likelihood worth mentioning before concluding this paper. Regarding models estimated by maximum simulated likelihood, there are at least four factors influencing the estimation of the parameters. First, if the draws used in the estimation are pseudo-random draws, instead of Halton draws, then the parameters might change if the seed is changed. Second, the number of draws used in the simulations is very important in order to have a good approximation of the likelihood. In this paper, we used just a few draws due to time restrictions. Nevertheless, in applied work researchers must use a greater number of draws, especially if pseudo-random draws are used. The 'standard rule' is to increase the number of draws in each run until the estimates stabilize. For a comprehensive review of the impact of the number of draws see for example Bhat (2001) and Sándor and Train (2004).

Another important factor affecting convergence and estimates is the starting values. It is important to stress that the likelihood of the models reviewed in this article are complex and are not globally concave. Thus, poor choice of initial values might lead to local maxima instead

```
40
```

of global maxima, or getting stuck in a flat region of the loglikelihood due to numeric overruns in the Hessian. If this is the case, the user of gmnl will receive the following message: Warning message: In sqrt(diag(vcov(object))): NaNs produced. We encourage users to try different initial values using the argument start.

Finally, the algorithm used for optimization of the MSL is another important factor that users should consider. **gmnl** uses the function **maxLik** to maximize the log-likelihood function, which implements the Newton-Raphson (NR), BGFS, and Berndt-Hall-Hall-Hausman (BHHH) procedures. As default, all models using simulation are estimated using the BFGS algorithm. But if the estimation does not converge, users should try a different algorithm. As a caution note, **gmnl** uses the numerical Hessian if the NR algorithm is used. Thus, it can be very slow compared to the other methods. BHHH is generally faster, but it might fail if the variables have very different scale. The larger the ratio between the largest standard deviation and the smallest standard deviation of the variables, the more problems the user will have with the estimation procedure. Therefore, users should check the variables and re-scale them if necessary, and always look at the output message regarding convergence. It is good practice to use the argument **print.level = 2** to trace the optimization procedure in real time. For more information about the arguments for optimization, type help(maxLik).

5. Conclusions

The package **gmnl** implements the maximum likelihood estimator of random parameter logit models with heterogeneity distributions that can be continuous, discrete, or discrete-continuous mixtures. In this paper we have shown how **gmnl** can fit several extensions to the standard multinomial logit model, including the recently derived mixed-mixed multinomial logit (MM-MNL). To our knowledge there is no other widely available statistical package that has implemented the maximum simulated likelihood estimator of MM-MNL, and we want to highlight that **gmnl** makes use of analytical expressions of the gradient. **gmnl** is also the first implementation in R of the estimator of the scale heterogeneity multinomial logit (S-MNL), the generalized multinomial logit (G-MNL), and the latent class logit (LC). Whereas there are other packages in R for the estimation of MIXL, **gmnl** allows for the inclusion of individualspecific variables to explain the mean of the random parameters for a mixture of deterministic taste variations and unobserved preference heterogeneity. In addition, **gmnl** also implements Johnson S_b heterogeneity distributions.

Another key post-estimation functionality of **gmnl** that we have illustrated in this paper is the derivation of conditional point and interval estimates of either the random parameters or willingness-to-pay measures at the individual level. Random parameter models can be used to make inference on the preference parameters of each individual in the sample, but most packages that estimate MIXL models lack a command to produce individual-level estimates. **gmnl** is able to compute individual parameters for all generalized logit models that are implemented in the package, including G-MNL, MIXL, and LC.

Additional functionalities that we expect to incorporate in the future are the consideration of different choice sets for each individual and the implementation of different methods for the construction of confidence intervals of willingness-to-pay measures.

Acknowledgments

We would like to express our gratitude to the two anonymous referees and the editor whose comments greatly improved this paper and the package. We are also very grateful to all the users of this package who have helped us to improve it through their questions and suggestions. Mauricio Sarrias thanks FONDECYT project # 11160104 for full funding support. Ricardo Daziano acknowledges support by the National Science Foundation CAREER Award CBET-1253475.

References

- Bhat CR (2001). "Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed Multinomial Logit Model." *Transportation Research Part B: Methodological*, **35**(7), 677–693. doi:10.1016/s0191-2615(00)00014-x.
- Boxall PC, Adamowicz WL (2002). "Understanding Heterogeneous Preferences in Random Utility Models: A Latent Class Approach." *Environmental and Resource Economics*, 23(4), 421–446. doi:10.1023/a:1021351721619.
- Bujosa A, Riera A, Hicks RL (2010). "Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach." *Environmental and Resource Economics*, 47(4), 477–493. doi:10.1007/s10640-010-9389-y.
- Croissant Y (2013). *mlogit:* Multinomial Logit Model. R package version 0.2-4, URL https: //CRAN.R-project.org/package=mlogit.
- Daly A, Hess S, Train K (2011). "Assuring Finite Moments for Willingness to Pay in Random Coefficient Models." *Transportation*, **39**(1), 19–31. doi:10.1007/s11116-011-9331-3.
- Daziano RA, Achtnicht M (2014). "Accounting for Uncertainty in Willingness to Pay for Environmental Benefits." *Energy Economics*, 44, 166–177. doi:10.1016/j.eneco.2014. 03.023.
- Dotson J, Brazell JD, Howell JR, Lenk P, Otter T, MacEachern SN, Allenby GA (2015). "A Probit Model with Structured Covariance for Similarity Effects and Source of Volume Calculations." doi:10.2139/ssrn.1396232.
- Dumont J, Keller J, Carpenter C (2015). RSGHB: Functions for Hierarchical Bayesian Estimation: A Flexible Approach. R package version 1.1.2, URL https://CRAN.R-project. org/package=RSGHB.
- Elff M (2016). *mclogit:* Mixed Conditional Logit Models. R package version 0.4.4, URL https://CRAN.R-project.org/package=mclogit.
- Fiebig DG, Keane MP, Louviere J, Wasi N (2010). "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity." *Marketing Science*, 29(3), 393-421. doi:10.1287/mksc.1090.0508.
- Gourieroux C, Monfort A (1997). Simulation-Based Econometric Methods. Oxford University Press.

Greene WH (2012). Econometric Analysis. 7th edition. Prentice Hall.

- Greene WH, Hensher DA (2003). "A Latent Class Model for Discrete Choice Analysis: Contrasts With Mixed Logit." *Transportation Research Part B: Methodological*, **37**(8), 681–698. doi:10.1016/s0191-2615(02)00046-2.
- Greene WH, Hensher DA (2010). "Does Scale Heterogeneity across Individuals Matter? An Empirical Assessment of Alternative Logit Models." *Transportation*, **37**(3), 413–428. doi: 10.1007/s11116-010-9259-z.
- Greene WH, Hensher DA (2013). "Revealing Additional Dimensions of Preference Heterogeneity in a Latent Class Mixed Multinomial Logit Model." Applied Economics, 45(14), 1897–1902. doi:10.1080/00036846.2011.650325.
- Hajivassiliou VA, Ruud PA (1986). "Classical Estimation Methods for LDV Models Using Simulation." In RF Engle, D McFadden (eds.), Handbook of Econometrics, volume 4, chapter 40, pp. 2383–2441. Elsevier.
- Hasan A, Wang Z, Mahani AS (2016). "Fast Estimation of Multinomial Logit Models: R Package mnlogit." Journal of Statistical Software, 75(3), 1–24. doi:10.18637/jss.v075. i03.
- Henningsen A, Toomet O (2011). "maxLik: A Package for Maximum Likelihood Estimation in R." Computational Statistics, 26(3), 443–458. doi:10.1007/s00180-010-0217-1.
- Hensher DA, Greene WH (2003). "The Mixed Logit Model: The State of Practice." *Transportation*, **30**(2), 133–176. doi:10.1023/a:1022558715350.
- Hensher DA, Greene WH, Rose JM (2006). "Deriving Willingness-to-Pay Estimates of Travel-Time Savings from Individual-Based Parameters." *Environment and Planning A*, 38(12), 2365. doi:10.1068/a37395.
- Hess S, Ben-Akiva M, Gopinath D, Walker J (2011). "Advantages of Latent Class over Continuous Mixture of Logit Models." *Working paper*, Institute for Transport Studies, University of Leeds.
- Hess S, Rose JM (2012). "Can Scale and Coefficient Heterogeneity Be Separated in Random Coefficients Models?" *Transportation*, **39**(6), 1225–1239. doi:10.1007/s11116-012-9394-9.
- Hess S, Stathopoulos A (2013). "Linking Response Quality to Survey Engagement: A Combined Random Scale and Latent Variable Approach." *Journal of Choice Modelling*, 7, 1–12. doi:10.1016/j.jocm.2013.03.005.
- Imai K, Van Dyk DA (2005). "MNP: R Package for Fitting the Multinomial Probit Model." Journal of Statistical Software, 14(3), 1–32. doi:10.18637/jss.v014.i03.
- Jackson CH (2011). "Multi-State Models for Panel Data: The msm Package for R." Journal of Statistical Software, 38(8), 1–29. doi:10.18637/jss.v038.i08.
- Keane M, Wasi N (2013). "Comparing Alternative Models of Heterogeneity in Consumer Choice Behavior." Journal of Applied Econometrics, 28(6), 1018–1045. doi:10.1002/jae. 2304.

- Kleiber C, Zeileis A (2008). Applied Econometrics with R. Springer-Verlag, New York. doi: 10.1007/978-0-387-77318-6.
- Lee LF (1992). "On Efficiency of Methods of Simulated Moments and Maximum Simulated Likelihood Estimation of Discrete Response Models." *Econometric Theory*, 8(4), 518–552.
- Leisch F (2004). "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R." Journal of Statistical Software, 11(8), 1–18. doi:10.18637/jss. v011.i08.
- Lemon J (2006). "plotrix: A Package in the Red Light District of R." R News, 6(4), 8–12.
- Linzer DA, Lewis JB (2011). "**poLCA**: An R Package for Polytomous Variable Latent Class Analysis." *Journal of Statistical Software*, **42**(10), 1–29. doi:10.18637/jss.v042.i10.
- Martin AD, Quinn KM, Park JH (2011). "MCMCpack: Markov Chain Monte Carlo in R." Journal of Statistical Software, 42(9), 22. doi:10.18637/jss.v042.i09.
- McFadden D (1974). "Conditional Logit Analysis of Qualitative Choice Behavior." In P Zarembka (ed.), *Frontiers in Econometrics*, pp. 105–142. Academic Press, New York.
- McFadden D, Train K (2000). "Mixed MNL Models for Discrete Response." *Journal of Applied Econometrics*, **15**(5), 447–470. doi:10.1002/1099-1255(200009/10)15:5<447:: aid-jae570>3.0.co;2-1.
- R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Rossi P (2015). **bayesm**: Bayesian Inference for Marketing/Micro-Econometrics. R package version 3.0-2, URL https://CRAN.R-project.org/package=bayesm.
- Rossi PE, Allenby GA, McCulloch R (2005). *Bayesian Statistics and Marketing*. John Wiley & Sons, Hoboken. doi:10.1002/0470863692.
- Ruud PA (2007). "Estimating Mixtures of Discrete Choice Model."
- Sándor Z, Train K (2004). "Quasi-Random Simulation of Discrete Choice Models." Transportation Research Part B: Methodological, 38(4), 313–327. doi:10.1016/s0191-2615(03) 00014-6.
- Sarrias M (2016). "Discrete Choice Models with Random Parameters in R: The Rchoice Package." Journal of Statistical Software, 74(10), 1–31. doi:10.18637/jss.v074.i10.
- Sarrias M, Daziano R (2017). gmnl: Multinomial Logit Models with Random Parameters. R package version 1.1-3, URL https://CRAN.R-project.org/package=gmnl.
- Scarpa R, Thiene M (2005). "Destination Choice Models for Rock Climbing in the Northeastern Alps: A Latent-Class Approach Based on Intensity of Preferences." Land Economics, 81(3), 426–444. doi:10.3368/le.81.3.426.
- Scarpa R, Thiene M, Train K (2008). "Utility in Willingness to Pay Space: A Tool to Address Confounding Random Scale Effects in Destination Choice to the Alps." *American Journal* of Agricultural Economics, 90(4), 994–1010. doi:10.1111/j.1467-8276.2008.01155.x.

- Sermas R (2012). *ChoiceModelR: Choice Modeling in R.* R package version 1.2, URL https://CRAN.R-project.org/package=ChoiceModelR.
- Shen J (2009). "Latent Class Model or Mixed Logit Model? A Comparison by Transport Mode Choice Data." Applied Economics, 41(22), 2915–2924. doi:10.1080/00036840801964633.
- Sonnier G, Ainslie A, Otter T (2007). "Heterogeneity Distributions of Willingness-to-Pay in Choice Models." Quantitative Marketing and Economics, 5(3), 313–331. doi:10.1007/ s11129-007-9024-6.
- Train K (2009). Discrete Choice Methods with Simulation. 2nd edition. Cambridge University Press.
- Train K, Weeks M (2005). "Discrete Choice Models in Preference Space and Willingnessto-Pay Space." In R Scarpa, A Alberini (eds.), Applications of Simulation Methods in Environmental and Resource Economics, volume 6 of The Economics of Non-Market Goods and Resources, pp. 1–16. Springer-Verlag. doi:10.1007/1-4020-3684-1_1.
- Train KE (2008). "EM Algorithms for Nonparametric Estimation of Mixing Distributions." Journal of Choice Modelling, 1(1), 40–69. doi:10.1016/s1755-5345(13)70022-8.
- Trautmann H, Steuer D, Mersmann O, Bornkamp B (2014). truncnorm: Truncated Normal Distribution. R package version 1.0-7, URL https://CRAN.R-project.org/package= truncnorm.
- Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. Springer-Verlag, New York.
- Wedel M, Kamakura WA (2012). Market Segmentation: Conceptual and Methodological Foundations. Springer-Verlag.
- Yee TW (2010). "The VGAM Package for Categorical Data Analysis." Journal of Statistical Software, **32**(10), 1–34. doi:10.18637/jss.v032.i10.
- Zeileis A, Croissant Y (2010). "Extended Model Formulas in R: Multiple Parts and Multiple Responses." Journal of Statistical Software, **34**(1), 1–13. doi:10.18637/jss.v034.i01.
- Zeileis A, Hothorn T (2002). "Diagnostic Checking in Regression Relationships." *R News*, **2**(3), 7–10.

Affiliation:

Mauricio Sarrias Department of Economics Universidad Católica del Norte 0610 Avenida Angamos, Antofagasta, Chile E-mail: msarrias860gmail.com URL: https://msarrias.weebly.com/ Ricardo A. Daziano School of Civil and Environmental Engineering Cornell University 305 Hollister Hall Ithaca, NY 14850, United States of America E-mail : daziano@cornell.edu URL: http://www.cee.cornell.edu/research/groups/daziano/

Journal of Statistical Software	http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics	http://www.foastat.org/
July 2017, Volume 79, Issue 2	Submitted: 2015-03-23
doi:10.18637/jss.v079.i02	Accepted: 2016-02-18

46