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Abstract

Personalized medicine, whereby treatments are tailored to a specific patient rather
than a general disease or condition, is an area of growing interest in the fields of biostatis-
tics, epidemiology, and beyond. Dynamic treatment regimens (DTRs) are an integral part
of this framework, allowing for personalized treatment of patients with long-term condi-
tions while accounting for both their present circumstances and medical history. The
identification of the optimal DTR in any given context, however, is a non-trivial problem,
and so specialized methodologies have been developed for that purpose. Here we introduce
the R package DTRreg which implements two regression-based approaches: G-estimation
and dynamic weighted ordinary least squares regression. We outline the theory underly-
ing these methods, discuss the implementation of DTRreg and demonstrate its use with
hypothetical and real-world inspired simulated datasets.

Keywords: adaptive treatment strategies, dynamic treatment regimens, dynamic weighted
ordinary least squares, G-estimation, personalized medicine.

1. Introduction
Dynamic treatment regimens (DTRs) are decision rules which take patient information such
as current disease severity and treatment history as input and output a recommended treat-
ment (Chakraborty and Moodie 2013; Chakraborty and Murphy 2014; Zhao and Laber 2014).
At its simplest a DTR could be a single treatment decision of the form ‘prescribe treatment if
patient is over 65 years old, prescribe control otherwise’ but they can also apply to longitudinal
data contexts with multiple decision points. In this context patients can be given personal-
ized management plans which evolve over time, taking into account their current condition,
their medical history, and even their reactions to previous treatments. As such, DTRs can
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lead to improvements in expected long-term outcomes when compared with one-size-fits-all
strategies.
The problem of estimating the optimal DTR is of obvious interest, but brings with it the-
oretical challenges. In particular, the potential for past treatments to influence the impact
of future ones requires careful consideration, as do the potentially complex model structures
that can arise from applying sequences of decision rules. This has given rise to a rapidly
expanding literature on the subject with a wide variety of new methods being proposed. As
is typical for such a nascent area, however, such advances have focused largely on theoretical
development rather than accessibility, with many methods presenting the familiar conflict of
desirable theoretical properties but challenging implementation.
There are, of course, some notable exceptions. Q-learning (Watkins 1989; Sutton and An-
drew 1998; Moodie, Dean, and Sun 2013), a relatively intuitive regression-based approach,
is fairly accessible in itself but has also enjoyed computational implementation via the R
package qLearn (Xin, Chakraborty, and Laber 2012). More recently, the alternative ‘inter-
active Q-learning’ approach (Laber, Linn, and Stefanski 2014) has received similar attention
through the iqLearn (Linn, Laber, and Stefanski 2015a,b) package. Some more complex,
classification-based approaches, meanwhile (Zhang, Tsiatis, Laber, and Davidian 2012, 2013;
Zhao, Zeng, Rush, and Kosorok 2012; Zhao, Zeng, Laber, and Kosorok 2014), have similarly
benefited from the release of R code in the form of the DynTxRegime package (Davidian
et al. 2014). An important exception, however, is the estimating equations-based method
of G-estimation (Robins 2004), which is notable for offering (as some of the aforementioned
classification-based methods also do) model parameter estimates that are doubly robust. We
shall discuss this property in more detail in the following section; in brief G-estimation de-
livers consistent parameter estimates as long as at least one of two models are correctly
specified, thereby offering flexibility and robustness that is lacking in many simpler methods
such as Q-learning. A related approach is dynamic weighted ordinary least squares (dWOLS;
Wallace and Moodie 2015), a new method which borrows ideas from both Q-learning and
G-estimation. dWOLS shares the double robustness property of G-estimation, but offers a
simplicity of theory and implementation more akin to that which heightens the appeal of
Q-learning (Wallace and Moodie 2015). In this paper we introduce the R package DTRreg
(Wallace, Moodie, Stephens, and Simoneau 2017) which implements G-estimation, dWOLS
and Q-learning for a variety of settings. The package is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=DTRreg. We provide
an outline of the theory underlying G-estimation and dWOLS in the sections that follow, but
refer the interested reader to the associated methods papers (Robins 2004 and Wallace and
Moodie 2015, respectively) for more detail.

2. G-estimation and dWOLS

2.1. Introductory concepts and notation

Much of the notation and terminology in the DTR literature will be familiar, but there are
various concepts that require explicit introduction. In general we assume that individuals are
followed up in stages: Starting at the beginning of treatment and at fixed points thereafter a
treatment decision is taken based on currently available patient information. For example, a
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patient prescribed an initial dose of some drug may then at weekly follow-up appointments
have their prescription varied depending on the current severity of their condition. A DTR is
simply the sequence of such treatment decision rules applied to that particular patient. While
there is inevitably some variation in the literature, we shall use the following notation:

• y: Patient outcome, typically defined such that larger values are preferred.

• aj : The jth treatment decision.

• hj : Covariate matrix containing patient information (history) prior to the jth treatment
decision. Note that the history may include previous treatments a1, . . . , aj−1.

In general a subscript j is used to indicate the stage of treatment, of which there are typically
J in total. A subscript i, when necessary, is used to indicate data on a specific patient, with n
the total number of subjects under consideration. When using G-estimation, treatments may
be binary, discrete, or continuous, while for dWOLS only binary treatments are supported. In
this context we shall assume treatments are coded as either 1 or 0, which is often interpreted
as representing receiving a treatment or a control, respectively. Finally, over- and underline
notation is sometimes used to indicate the past and future. For example, aj can be used to
indicate the first j treatment decisions, while aj would indicate treatments from the jth stage
onward (up to the Jth treatment).
A concept integral to DTR estimation is the blip function. Denoted γj(hj , aj), this is the
difference in expected outcome between a patient who received treatment aj at stage j and
a patient with identical history who received some ‘reference’ treatment at stage j, assuming
both go on to receive optimal future treatment. As such, this gives a measure of the impact
of choosing treatment aj instead of ‘standard’ care at stage j (i.e., the reference treatment),
and so at each stage the optimal treatment is that which maximizes γj (where the subscript
j notation reflects that these functions will typically vary from stage to stage).
If we consider a simple example where we have a single patient covariate and only one treat-
ment decision is made (and thus suppress our subscript j notation), we could model our
expected outcome as

E[Y a|H = h] = f(h;β) + γ(h, a;ψ), (1)

where we have separated the model into two components: the blip function γ and the
treatment-free function f . (The notation Y a indicates a potentially unobserved, or coun-
terfactual outcome Y under treatment a.) By compartmentalizing our outcome model in this
way, it becomes clear that we need only focus on identifying the form and parameters of γ as
this is the only means by which treatment can influence the expected outcome. Estimation of
the blip function parameters ψ is therefore the focus of our DTR estimation endeavors. Note
that we assume all blip functions will be linear in ψ.
Related to the blip is the regret function (Murphy 2003). This is defined as µj(hj , aj) =
E[Y aj−1,a

opt
j − Y aj ,a

opt
j+1 |Hj = hj ] and gives the expected loss (or regret) in our outcome from

using treatment aj at stage j instead of the optimal treatment, assuming optimal treatment
thereafter. Somewhat less formally, while the blip can be viewed as how ‘good’ it is to use
aj instead of some reference (control) treatment, the regret can be viewed as how ‘bad’ it is
to use aj instead of the best possible treatment at that stage. This relationship allows us to
compute the regret from the blip via µj(hj , aj) = γj(hj , aopt

j )− γj(hj , aj).
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2.2. G-estimation

The G-estimation approach, like some other DTR estimation methods such as Q-learning
and dWOLS, proceeds in a recursive manner. It begins by estimating the optimal final-
stage treatment and then, using this information, moves backwards through stages estimating
each previous optimal decision rule in turn. This recursive approach allows each subsequent
decision to be based on the assumption of all future treatments being optimal. G-estimation’s
typical presentation is moderately intimidating (see Wallace and Moodie 2015 for an example),
and we propose a more straightforward approach.
G-estimation for a binary treatment is implemented by the following process at each stage:

1. If j = J , write ỹJ = y. Otherwise, using results from earlier stages, form the pseudo-

outcome ỹj = y+
J∑

k=j+1
µ(hk, ak; ψ̂k). This may be thought of as the expected outcome

assuming optimal treatments are followed from stage j + 1 onward.

2. Propose a model of the form E[Ỹj |hj , aj ;βj , ψj ] = hβj βj + ajh
ψ
j ψj , where h

β
j βj is our

stage j treatment-free model, and ajhψj ψj is our stage j blip model.

3. Propose a treatment model E[Aj |Hj = hj ;αj ]; use the data to obtain estimates α̂j .

4. Form the matrices hδj = (hβj , ajh
ψ
j ) and hwj = (hβj ,h

ψ
j (aj−E[Aj |hαj ; α̂j ])), and estimate

δj = (βj , ψj) via δ̂j =
[
(hwj )>hδj

]−1
(hwj )>ỹj .

The resulting blip parameter estimators are then consistent if at least one of the treatment
or treatment-free models is correctly specified (this being the double robustness property
previously introduced). This is in contrast to estimators derived from methods such as Q-
learning whose consistency relies on a single model being correct.
When treatment is a continuous, rather than binary, variable we may wish to modify our
approach slightly. In particular, we may include a quadratic term in aj in our blip function,
thereby allowing it to potentially be maximized within the range of aj rather than at one
of its extremes (as would necessarily be the case if our blip were linear). Writing ψj =
(ψj(1), ψj(2)) and our quadratic blip function as γ(hj , aj ;ψj) = ajh

ψ(1)
j ψj(1) + a2

jh
ψ(2)
j ψj(2)

then G-estimation can also be adapted to this case if we redefine our matrices as

hδj = (hβj , ajh
ψ(1)
j , a2

jh
ψ(2)
j ); and

hwj = (hβj ,h
ψ(1)
j (aj − E[Aj |hαj ; α̂j ]),hψ(2)

j (a2
j − E[A2

j |hαj ; α̂j ])).

2.3. Dynamic weighted ordinary least squares

The dynamic weighted ordinary least squares (dWOLS) method (Wallace and Moodie 2015)
has much in common with G-estimation, but also builds on the theory (and simplicity) of
Q-learning. Also a recursive approach, it involves conducting a sequence of weighted ordinary
least squares regressions from which blip parameter estimates (and thence optimal DTRs)
are derived. Again, we assume that the blip function at each stage is linear in ψj , while in
addition we assume treatment is binary. Each stage of analysis involves the following steps
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1. If j = J , write ỹJ = y. Otherwise, using results from earlier stages, form the pseudo-

outcome ỹj = y +
J∑

k=j+1
µ(hk, ak; ψ̂k).

2. Propose a treatment model E[Aj |Hj = hj ;αj ]; use the data to obtain estimates α̂j .

3. Choose a weight function wj(aj ,hj ;αj) which satisfies

π(hj)wj(1,hj ;αj) = (1− π(hj))wj(0,hj ;αj),

where π(hj) = P(Aj = 1|hj). Use the estimates α̂j to obtain estimated weights ŵj .

4. Carry out a WOLS regression of ỹj on (hβj , ajh
ψ
j ) with weights ŵj where hβj and hψj

are variables (or functions of variables) thought to be present in linear models of the
treatment-free and blip functions. Use the resulting estimates ψ̂j to construct the next
pseudo-outcome and repeat the above steps, if necessary.

Like G-estimation, this produces consistent blip parameter estimators if at least one of the
treatment or treatment-free models is correctly specified. In addition, it achieves this via a
simple sequence of weighted regressions with relatively little algebraic or pre-computational
clutter. In informal terms, this approach works because the ‘weighted dataset’ created by
using weights of the given form removes any dependence between covariates and treatment
when the treatment-free model is mis-specified.
Note that an entire family of weights can be used, and that the choice of weights can affect
the efficiency of the resulting estimates. The theoretical underpinnings of choosing optimal
weights are still under development, but so far we have found that weights of the form
w = |a − E[A|H]| typically work well. These are the default weights used in the package,
but should future work identify better weighting options we anticipate updating the routine
accordingly, while in the meantime the user may choose to specify their own weights. Finally,
we observe that if we perform the above steps but carry out a non-weighted regression (i.e.,
ordinary least squares rather than weighted) we are in fact performing Q-learning.

3. Implementation
The main function in DTRreg is DTRreg. The syntax is:

DTRreg(outcome, blip.mod, treat.mod, tf.mod, data = NULL,
method = "gest", weight = "default", var.estim = "none", B = 200, M = 0,
truncate = 0, verbose = FALSE, interrupt = FALSE, treat.range = NULL,
missing = "default", interactive = FALSE, treat.mod.man = NULL)

The mandatory arguments are outcome, blip.mod, treat.mod and tf.mod. These define the
various component models of the analysis, as well as the outcome variable and the dataset
under analysis. blip.mod, treat.mod and tf.mod are lists of formulae which define the blip,
treatment, and treatment-free models respectively at each stage, with the first element of each
list corresponding to the first stage of treatment, the second element to the second stage, and
so on. These also implicitly tell DTRreg how many stages are being considered (inferred from
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the number of elements in each list, which must be the same for all three). If variables are
contained in a data frame, this may be specified using data.
When treatment is binary and the true treatment model is known (as may be the case, for
example, in a randomized trial) then this may be specified by setting treat.mod.man as a list
of vectors which gives the probability of receiving treatment (A = 1) for each subject at each
stage. Note that in this case a dummy model for treatment should still be specified (such
as treat.mod = list(A1 ~ 1, A2 ~ 1)) to indicate which are the treatment variables. If
treat.mod.man is not set then the formulae specified in treat.mod are used in either a
logistic or linear regression model for, respectively, a binary or non-binary treatment (which
is inferred from the data).
Choice of analysis method (G-estimation, dWOLS, or Q-learning) is controlled by method
which can be "gest", "dwols", or "qlearn". While the weights used for dWOLS are w =
|a− E[A|H]| by default, the weight option allows the user to specify a function in terms of
P(A = 1|H) which will be used as the weights for all subjects with a = 1. The routine will
then automatically assign weights for the remaining subjects to satisfy the condition in the
dWOLS procedure outlined above. Selecting the method "qlearn" will cause the routines
used for dWOLS to be called, but all regressions will be unweighted (by setting all weights
equal to 1). This option is included primarily with exploratory analyses in mind, and is not
intended to supersede or replace the extant qLearn package which offers some features that
DTRreg does not, but is restricted to a simpler, two-interval, binary treatment setting. Note
that while Q-learning does not require a treatment model to be specified, it is still necessary
to identify the treatment variable(s). This may be done via the treat.mod option, where the
model itself may be arbitrarily specified.
If desired, covariance estimates of the blip parameters can be estimated via bootstrap (by
var.estim = "bootstrap"). When using G-estimation, meanwhile, an additional method
based on the theory of Robins (2004) and Moodie (2009) is available (by var.estim =
"sandwich"). The number of bootstrap resamples is controlled by B, while the m-out-of-
n bootstrap may be used by specification of M for the bootstrap sample size (which otherwise
defaults to n). If the variance is estimated via bootstrap then the arguments truncate,
verbose and interrupt may be used. truncate allows the specification of a proportion (be-
tween zero and one) of the most extreme bootstrap parameter estimates which are excluded
when covariance estimates are calculated. For example, setting truncate = 0.01 removes
the lowest 1% and highest 1% of bootstrapped parameter estimates prior to estimation of the
standard error. This can be useful if the standard bootstrap procedure results in very large
standard errors caused by a (relatively) small number of extreme estimates, although it is
ad hoc and should only be used with considerable caution (it is recommended primarily for
exploratory or sensitivity analysis purposes). verbose and interrupt, meanwhile, are useful
for monitoring potentially time-intensive bootstrap analyses when conducting ad hoc, single
analysis runs. The former produces estimated time to completion statistics while the latter
gives the option to abort should the estimated time exceed 10 minutes.
The option treat.range is used when continuous treatments are being investigated and
specifies the minimum and maximum possible values a treatment may take. By default these
are taken to be the minimum and maximum values of the observed treatments at each stage of
analysis. DTRreg will automatically ignore any subjects with missing data (thereby carrying
out a complete-cases analysis), but if missing = "ipcw" then inverse probability of censored
weights is used with the probability of censoring estimated via logistic regression on the full
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covariate history up to that point. Finally, the interactive = TRUE option allows the user
to enter variables to be used in the blip, treatment, and treatment-free models via on-screen,
interactive prompts.
The DTRreg output includes blip parameter estimates along with standard errors and (Wald-
type) confidence intervals if estimated. It is supported by print() (and summary()) functions
which summarize the results of the analysis in an easy-to-understand format, including the
stage-by-stage decision rules, while coef() and confint() may be used to extract informa-
tion about parameter estimates. predict() is also available to provide estimated optimal
outcomes for new data, but this assumes that the treatment-free models (along with the blip
models) used were correctly specified. After analysis a plot() call produces diagnostic plots
akin to those available following the use of standard regression commands such as lm. These
include the usual diagnostics for the treatment model and specialized diagnostics that assess
whether at least one of the treatment-free or blip models are incorrectly specified as per Rich,
Moodie, Stephens, and Platt (2010).

4. Examples

4.1. Simulated example: dWOLS and binary treatment

We first demonstrate using dynamic weighted ordinary least squares for estimating the optimal
DTR in a two-stage simulated dataset. Data are generated on n = 10, 000 subjects as follows:

• Covariates: Xj ∼ N(0, 1).

• Treatments: Aj ∼ Bin(1, expit(xj)).

• Blip functions: γj(xj , aj ;ψj) = aj(ψj0 + ψj1xj).

• Outcome: Y ∼ N(ex1 + ex2 + γ1(x1, a1;ψ1) + γ2(x2, a2;ψ2), 1).

expit(x) = (1+e−x)−1 is the expit or inverse-logit function. Setting ψj0 = ψj1 = 1 for j = 1, 2
we generate the above via the following R code:

R> set.seed(1)
R> expit <- function(x) 1 / (1 + exp(-x))
R> n <- 10000
R> X1 <- rnorm(n)
R> A1 <- rbinom(n, 1, expit(X1))
R> X2 <- rnorm(n)
R> A2 <- rbinom(n, 1, expit(X2))
R> gamma1 <- A1 * (1 + X1)
R> gamma2 <- A2 * (1 + X2)
R> Y <- exp(X1) + exp(X2) + gamma1 + gamma2 + rnorm(n)

We can then conduct a dWOLS analysis on these data using the DTRreg command with the
method = "dwols" option. Here we present an example output for illustration, where we
have specified a non-default weight function: the inverse probability of treatment weights
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(IPTW), defined as wi = P(Ai = ai|Xi = xi)−1 (that is, the reciprocal of the probability a
patient received their given treatment). Because these weights satisfy the condition in Step 3
of our dWOLS procedure above we may use them for our analysis. As noted above, we use
the weight option and define our weight function in terms of E[A|X] = P(A = 1|X = x) for
those subjects with a = 1. For the IPTW this corresponds to the function f(w) = 1

w : For
subjects with a = 1 the weight is simply E[A|X]−1 while the weight for subjects with a = 0 is
constructed to satisfy the dWOLS condition (and as such equates to (1− E[A|X])−1). First,
we specify the models to be passed to DTRreg:

R> blip.mod <- list(~ X1, ~ X2)
R> treat.mod <- list(A1 ~ X1, A2 ~ X2)
R> tf.mod <- list(~ X1, ~ X2)

We then specify our weight function:

R> weight.fun <- function(w) 1 / w

Finally, we can run our analysis, requesting bootstrapped standard errors (and confidence
intervals):

R> DTRreg(Y, blip.mod, treat.mod, tf.mod, method = "dwols",
+ weight = weight.fun, var.estim = "bootstrap")

DTR estimation over 2 stages:

Blip parameter estimates
Estimate Std. Error 95% Conf. Int

Stage 1 (n = 10000)
(Intercept) 1.1064 0.0775 [0.9545,1.2584]

X1 1.1524 0.0918 [0.9724,1.3324]

Stage 2 (n = 10000)
(Intercept) 1.1362 0.0638 [1.0111,1.2613]

X2 1.1186 0.0981 [0.9263,1.3109]

Warning: possible non-regularity at stage 1 (prop = 0.134)
Warning: possible non-regularity at stage 2 (prop = 0.131)

Recommended dynamic treatment regimen:
Stage 1: treat if 1.1064 + 1.1524 X1 > 0
Stage 2: treat if 1.1362 + 1.1186 X2 > 0

Much of this output is self-explanatory: the blip parameter estimates are (ψ10, ψ11) =
(1.1064, 1.1524) and (ψ20, ψ21) = (1.1362, 1.1186) at stages 1 and 2, respectively. These give
rise to the recommended treatment regimen detailed at the end of the output, providing a
straightforward summary of how the analysis translates to a DTR.
This example also demonstrates non-regularity warnings. In this context, non-regularity
occurs if the optimal treatment for a given patient is non-unique. Non-regularity can cause
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theoretical concerns for both G-estimation and dWOLS, and so the commands in DTRreg
carry out an informal check based on the data and estimated blip parameters (see page 317
of Robins 2004, for further details). This involves identifying the proportion of subjects for
whom, when all possible blip parameter values within their respective confidence sets are
considered, both treatment and non-treatment could be recommended. In the example above
the proportion of subjects for whom this was the case is 0.134 at stage 1 and 0.131 at stage
2, and so the output includes a warning to that effect. Because non-regularity can only be
estimated when standard errors are, we note that DTRreg will not display non-regularity
warnings if var.estim = "none". The m-out-of-n bootstrap is one built-in option that can
help with the problem of non-regularity, while for a more general discussion see Chapter 8 of
Chakraborty and Moodie (2013).
Various information is stored in the model object, and we draw particular attention to the
stored variable opt.Y. This contains the estimated outcome for each subject had they followed
the optimal regimen, assuming the treatment-free and blip models were correctly specified,
and that the resulting parameter estimates are correct. This can give some sense of the poten-
tial improvement in outcome had subjects followed the optimal regimen, although obviously
it should be viewed with some caution given the underlying assumptions.
We also conducted four sets of longer simulation runs where neither, one, or both of the
treatment and treatment-free models were correctly specified, using dWOLS as above along
with G-estimation and Q-learning. The treatment-free model was mis-specified as in the
above example, with terms in x1 and x2 rather than ex1 and ex2 , while the treatment model
was mis-specified by assuming treatments were assigned with probability 0.5. The results of
these larger simulation runs (Table 1) demonstrate the expected consistency of dWOLS and
G-estimation when at least one of these two models is correctly specified, while Q-learning
(which of course does not depend on the treatment-free model) exhibits considerable bias
when the treatment-free model is mis-specified, similar to what is observed under dWOLS
and G-estimation when both are mis-specified.
Finally, in Figures 1 and 2 we illustrate partial results of calling the plot() command on
a ‘DTRreg’ object (here, with a sample size of n = 1, 000 for a slightly cleaner plot). The
diagnostic plots presented demonstrate that when the treatment-free model is incorrectly
specified there is evidence of a relationship between the residuals, fitted values and the model
covariates. The plot() command also returns standard diagnostics for the treatment model,
which are omitted here.

4.2. Simulated example: G-estimation and continuous treatment

Next we present a similar example but with a continuous, rather than binary, treatment.
Again, we shall consider a two-stage setup, with datasets of size n = 10, 000 generated as
follows:

• Covariates: Xj ∼ N(0, 1).

• Treatments: Aj ∼ N(xj , 0.5).

• Blip functions: γj(xj , aj ;ψj) = aj(ψj0 + ψj1xj + ψj2aj).

• Outcome: Y ∼ N(ex1 + ex2 + γ1(x1, a1;ψ1) + γ2(x2, a2;ψ2), 1).



10 DTRreg: Dynamic Treatment Regimen Estimation in R

Estimates
Method Models ψ̂10 ψ̂11 ψ̂20 ψ̂21

G-estimation Both correct 1.001 0.999 1.002 1.003
Treatment correct 1.001 0.998 1.002 1.004

Treatment-free correct 1.001 1.002 1.001 1.004
Neither correct 0.922 2.334 0.923 2.338

dWOLS Both correct 1.001 0.999 1.002 1.002
Treatment correct 1.001 1.006 1.003 1.009

Treatment-free correct 1.001 0.999 1.003 1.000
Neither correct 0.922 2.332 0.923 2.331

Q-learning Treatment-free correct 1.003 0.999 0.999 1.004
Treatment-free incorrect 0.926 2.337 0.921 2.337

Table 1: Mean blip parameter estimates and improvement in (mean) outcome from dWOLS,
G-estimation, and Q-learning analysis of 1, 000 simulated datasets of size n = 10, 000 with
neither, one, or both the treatment and treatment-free models correctly specified. Note that
Q-learning does not depend on the choice of a treatment model.

For our example ψj0 = ψj1 = 1 and ψj2 = −1 (for j = 1, 2). In addition to the treatments
now depending linearly on the patient covariates the other substantial change from the binary
setup is in the form of the blip. By including a quadratic term in aj we allow for the possibility
that the blip is maximized at some internal value of aj rather than necessarily at its maximum
or minimum. However, we note that linear blip functions are still permissible when treatments
are continuous, with either the user-specified treat.range or one inferred from the data used
for optimal rule estimation. Note that DTRreg can only be used for blip functions that are
linear or quadratic in the treatment variable; no higher order terms are currently supported.
The above data can be generated in R using the following code:

R> set.seed(1)
R> n <- 10000
R> X1 <- rnorm(n)
R> A1 <- rnorm(n, X1, 0.5)
R> X2 <- rnorm(n)
R> A2 <- rnorm(n, X2, 0.5)
R> gamma1 <- A1 * (1 + X1 - A1)
R> gamma2 <- A2 * (1 + X2 - A2)
R> Y <- exp(X1) + exp(X2) + gamma1 + gamma2 + rnorm(n)

We illustrate the implementation of the DTRreg command, again making use of the bootstrap
variance estimation procedure.

R> blip.mod <- list(~ X1 + A1, ~ X2 + A2)
R> treat.mod <- list(A1 ~ X1, A2 ~ X2)
R> tf.mod <- list(~ X1, ~ X1 + A1 + X2)
R> DTRreg(Y, blip.mod, treat.mod, tf.mod, var.estim = "bootstrap", B = 200,
+ treat.range = c(-5, 5))
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Figure 1: Diagnostic plots of treatment-free or blip function mis-specification when the former
is incorrectly specified.

DTR estimation over 2 stages:

Blip parameter estimates
Estimate Std. Error 95% Conf. Int

Stage 1 (n = 10000)
(Intercept) 1.0575 0.0601 [0.9397,1.1754]

X1 1.2970 0.1629 [0.9776,1.6163]
A1 -1.0959 0.0814 [-1.2555,-0.9363]

Stage 2 (n = 10000)
(Intercept) 1.0659 0.0452 [0.9773,1.1544]

X2 1.2231 0.1194 [0.9890,1.4571]
A2 -1.0759 0.0599 [-1.1933,-0.9585]

The output is interpreted similarly to that of the binary treatment, dWOLS example above,
with the addition of standard errors and 95% confidence intervals estimated via the bootstrap.
A run of 1,000 such simulated datasets returns mean blip parameter estimates of (ψ̂1, ψ̂2) =
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Figure 2: Diagnostic plots of treatment-free or blip function mis-specification when both are
correctly specified.

(1.000, 0.986,−0.996, 0.998, 1.001,−1.002) reflecting the consistency we would expect despite
the treatment-free model being mis-specified.
We note that with a quadratic blip function the output does not include a summary of the
recommended DTR, as in this setting such rules are potentially quite complex. For clarity,
we present a general interpretation of the blip parameters in this context.
Suppose our blip function at stage j is of the form γj(xj , aj ;ψj) = aj(ψj0 + ψj1xj + ψj2aj)
and we obtain corresponding parameter estimates (ψ̂j0, ψ̂j1, ψ̂j2). Depending on whether ψ̂j2
is negative or positive, the blip is then maximized or minimized, respectively, for a specific
subject by solving ∂γ̂j

∂aj
= 0, giving a∗j = −(ψ̂j0+ψ̂j1xj)

2ψ̂j2
. We would then recommend treatment a∗j

if it lies within the range of possible values for aj (and is a maximum rather than a minimum).
Otherwise the optimal treatment will be that which of the maximum or minimum possible
value for aj maximizes the estimated blip.

4.3. The Promotion of Breastfeeding Intervention Trial

As our final illustration we work with a simulated dataset that is inspired by real data. The
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Promotion of Breastfeeding Intervention Trial (PROBIT; Kramer et al. 2001) randomized
mother-infant pairs across 31 Belarusian maternity hospitals to receive either standard care or
a breastfeeding encouragement intervention. We follow Chakraborty and Moodie (2013) and
Moodie, Chakraborty, and Kramer (2012) in investigating the effect of breastfeeding from 0–3
months and 3–6 months on a child’s later development. This is measured by administration of
the Wechsler abbreviated scales of intelligence when the child is 6.5 years of age, encompassing
tests of verbal and quantitative intelligence. (We note that application of dWOLS to the real
dataset is presented in Wallace and Moodie 2015.)
We consider investigating the effect of breastfeeding on an outcome of verbal IQ in a two-stage
setup (Kramer et al. 2008). Stage 1 treatment is defined as whether any breastfeeding took
place between birth and three months, while stage 2 treatment is defined as whether any
breastfeeding took place between three and six months. Our simulated outcome is formed
of a linear combination of baseline covariates (the treatment-free model) along with two blip
functions – one for each stage of treatment. The baseline covariates are intervention group
status, hospital location (East or West Belarus, and urban or rural), mother’s education
level (a three-value categorical variable), mother’s smoking status, family history of allergy,
mother’s age, mother’s breastfeeding of previous children, whether the birth was by cesarean
section, the infant’s sex and birth weight. For more details on the simulation details see
Appendix A. Our blip functions take the form

• γ1 = a1(−0.2 + 0.1×Weight0); and

• γ2 = a2(−0.65 + 0.1×Weight3 − 0.5× Infection− 0.5×Hospitalization),

where Weight0 and Weight3 denote the infant’s weight at zero and three months, respec-
tively, while Infection and Hospitalization are binary variables taking value 1 if the infant was
reported as having had an infection, or been hospitalized, during the first three months. Inter-
vention status, age, location and infections during the first three months were independently
generated based on their observed distribution in the PROBIT dataset. Other variables were
generated with some dependencies (largely on education level) based on exploratory analyses
of the data. Breastfeeding, weight at three months, and our two outcomes were generated
based on parameters derived from regression models using the full dataset. Stage 1 treat-
ment was modeled via logistic regression on intervention status, mother’s education, mother’s
age, mother’s breastfeeding of previous children and the infant’s sex. Stage 2 treatment was
similar, but with stage 1 treatment included as an extra covariate. Weight at three months
was based on a linear regression on the full set of baseline covariates and an interaction term
between breastfeeding during the first three months and birth weight. Finally, our outcome
was generated as a linear combination of the baseline covariates (with parameters estimated
via linear regression) and the blip functions above.
The blip parameters chosen for the above outcome models correspond to a regime that during
the first three months recommends breastfeeding for all infants whose birth weight exceeds
2 kilograms. Between three and six months an infant should be breastfed if their three
month weight exceeds 6.5 kilograms if they did not have an infection or hospitalization during
the first three months, 6.0 kilograms if they had either an infection or hospitalization, and
5.5 kilograms if they had both. These parameter choices were inspired in part by the findings
of Chakraborty and Moodie (2013) as well as to present a more complex stage 2 treatment
rule. Note that our second stage parameters reflect an intuition that infants who were ill



14 DTRreg: Dynamic Treatment Regimen Estimation in R

or hospitalized during their first three months may be ‘artificially’ underweight and so the
breastfeeding threshold is lower.
Despite this complex setup, analysis via G-estimation (or dWOLS) using DTRreg is straight-
forward. Code detailing the full setup of the dataset is not included here, but we present
some sample output below. Note that we model the log-transformed quantitative IQ score,
which we have called verbal.iq.

R> PROBIT.sim <- read.csv("Simulated_PROBIT_data.csv")
R> bl.mod <- list(~ Wgt0, ~ Wgt3 + Infc + Hosp)
R> tr.mod <- list(Brf1 ~ Intervention + factor(Educ) + Age + BF.prev +
+ BF.not + Sex, Brf2 ~ Brf1 + Intervention + factor(Educ) + Age +
+ BF.prev + BF.not + Sex)
R> trf.mod <- list(~ Intervention + factor(Location) + factor(Educ) +
+ Smoke + Allergy + Age + I(Age^2) + BF.prev + BF.not + Cesarean +
+ Sex + Wgt0, ~ Intervention + factor(Location) + factor(Educ) +
+ Smoke + Allergy + Age + I(Age^2) + BF.prev + BF.not + Cesarean +
+ Sex + Infc + Hosp + Wgt0 + Brf1 + Wgt3)
R> verb.mod <- DTRreg(verbal.iq, bl.mod, tr.mod, trf.mod, data = PROBIT.sim,
+ method = "gest", var.estim = "sandwich")
R> verb.mod

DTR estimation over 2 stages:

Blip parameter estimates
Estimate Std. Error 95% Conf. Int

Stage 1 (n = 17044)
(Intercept) -0.2023 0.0040 [-0.2102,-0.1945]

Wgt0 0.1012 0.0012 [0.0988,0.1035]

Stage 2 (n = 17044)
(Intercept) -0.6508 0.0010 [-0.6528,-0.6488]

Wgt3 0.1001 0.0002 [0.0998,0.1005]
Infc -0.4999 0.0001 [-0.5002,-0.4997]
Hosp -0.5001 0.0002 [-0.5004,-0.4997]

Recommended dynamic treatment regimen:
Stage 1: treat if -0.2023 + 0.1012 Wgt0 > 0
Stage 2: treat if -0.6508 + 0.1001 Wgt3 - 0.4999 Infc - 0.5001 Hosp > 0

5. Discussion
The DTRreg package provides an easy means by which to conduct DTR analyses via the
established method of G-estimation and the more novel dWOLS approach. These methods
offer the desirable double robustness property whereby correct specification of at least one of
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the treatment or treatment-free models results in consistent parameter estimation. In practice,
and particularly with trial data, the former of these may well be known precisely and thus
these methods can be expected to perform well, but double robustness offers an additional
flexibility to an analysis. By making these methods accessible through the R environment we
hope many more practitioners will be encouraged to incorporate them in their work.
As with any computational package we anticipate improving and updating the code as theory
develops and time allows. Of particular interest would be expanding to other data structures,
such as non-continuous outcomes and higher order treatment terms in blip functions. As the
corpus of computational routines for methods from the DTR literature expands, we hope to
see the emergence of a coherent suite for dynamic treatment regimen analysis.
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A. PROBIT simulation details
Simulated data based on PROBIT. Note that ‘infection’ and ‘hospitalization’ refer to those
events during stage 1. Here is a ‘quick’ summary of the generation structure:

• Independently generated variables: intervention status, age, location, infection.

• Dependent on location: education.

• Dependent on education: location, smoking status, history of allergy, whether the birth
was by cesarean section, whether breastfed previously.

• Dependent on infection: hospitalization.

• Dependent on sex: weight.

• Dependent on breastfed previously: ‘did not breastfeed’.

• Breastfeeding during stages 1 and 2, and weight at 3 months were generated based on
regression models using the real PROBIT data (using the variables used in the example
in Section 6.1 of Chakraborty and Moodie 2013).

• IQ scores (verbal and quantitative) were generated by adding a ‘treatment free’ predicted
value to blip functions for stages 1 and 2. The blip functions are:

γ1 = A1(ψ10 + ψ20Weight0),
γ2 = A2(ψ20 + ψ21Weight3 + ψ22Infection + ψ23Hospitalization),

where we choose blip parameters as desired for the verbal IQ, and set them all to zero for
the quantitative IQ. The treatment free value for each subject was generated based on a
linear regression of observed vocabulary score on the variables used in the same example
from the book, but when predicting using this model all treatments were assumed to be
zero. In other words, if Ŷ (Hβ, Hψ;β,ψ) is the predicted value from this linear model for
a subject where we have divided the model covariates into those not including treatment
terms (Hβ) and those which do (Hψ), then our simulated IQ scores are generated by
Y = Ŷ (Hβ, Hψ = 0;β,ψ) + γ1 + γ2.

Below are the precise details of the data generation. Specific numbers are derived from
observations made on the original PROBIT dataset.

• Intervention status: intervention with probability 0.52.

• Age: log-normal with mean 3.17 and variance 0.037.

• Sex: male with probability 0.52.

• Location: assigned to urban East Belarus, rural East Belarus, urban West Belarus and
rural West Belarus with probabilities (0.33, 0.16, 0.26, 0.26).
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• Education: assigned to one of three levels dependent on location. Education levels
1, 2 and 3 correspond to ‘no university’, ‘some university’ and ‘completed university’
education, respectively.

East Belarus (urban): P(Education = (1, 2, 3)) = (0.31, 0.54, 0.15).

East Belarus (rural): P(Education = (1, 2, 3)) = (0.44, 0.44, 0.11).

West Belarus (urban): P(Education = (1, 2, 3)) = (0.33, 0.51, 0.16).

West Belarus (rural): P(Education = (1, 2, 3)) = (0.41, 0.48, 0.11).

• Smoking: P(Smoking = 1|Education = (1, 2, 3)) = (0.03, 0.02, 0.01).

• Allergy: P(Allergy = 1|Education = (1, 2, 3)) = (0.03, 0.05, 0.07).

• Cesarean: P(Cesarean = 1|Education = (1, 2, 3)) = (0.10, 0.12, 0.16).

• Had previous children and breastfed: P(BFPrev = 1|Education = (1, 2, 3)) = (0.25, 0.23,
0.30).

• Had previous children and did not breastfeed: with probability 0.23 if not previously
breastfed (0 otherwise).

• Infection: with probability 0.19.

• Hospitalization: with probability 0.07 if no infection, 0.25 if infection.

• Birth weight: Normal with (µ, σ) = (3.36, 0.39) for females, (3.5, 0.42) for males.

• Stage 1 breastfeeding: predicted using results of a logistic regression (using PROBIT
data) of stage 1 breastfeeding on intervention, education, age, breastfed previously, did
not breastfeed, and sex.

• 3 month weight: predicted using results of a linear regression model (using PROBIT
data) of (log) weight at 3 months on intervention, location, education, smoking, allergy,
age, age2, breastfed previously, did not breastfeed, cesarean, sex, infection, hospital-
ization, birth weight, stage 1 breastfeeding, and an interaction term between stage 1
breastfeeding and birth weight.

• Stage 2 breastfeeding: predicted using results of a logistic regression (using PROBIT
data) of stage 2 breastfeeding on stage 1 breastfeeding, intervention, education, age,
previously breastfed, did not breastfeed, sex.

• Outcome (IQ scores): predicted using results of a linear regression (using PROBIT data)
of all the terms in the 3 month weight model and: weight at 3 months, stage 2 breast-
feeding, and interactions between stage 2 breastfeeding and weight at 3 months, and
between stage 2 breastfeeding and stage 1 breastfeeding. IQ scores generated by pre-
dicting using this model with treatment variables ignored, then adding the appropriate
blip functions for stages 1 and 2.
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