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Abstract

The saemix package for R provides maximum likelihood estimates of parameters in
nonlinear mixed effect models, using a modern and efficient estimation algorithm, the
stochastic approximation expectation maximisation (SAEM) algorithm. In the present
paper we describe the main features of the package, and apply it to several examples
to illustrate its use. Making use of S4 classes and methods to provide user-friendly
interaction, this package provides a new estimation tool to the R community.
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1. Introduction

Over the recent years, a wealth of complex data has been accrued in many fields of biology,
medicine or agriculture. These data often present a hierarchical structure, with correlations
introduced by repeated measurements on the same individual. These correlations can be
handled by modeling the evolution of a process with time and assuming subject-specific pa-
rameters to account for interindividual differences. The models used to describe the dynamics
of biological processes are often nonlinear with respect to the parameters involved, and the
statistical tools of choice in this context are nonlinear mixed effect models (Ette and Williams
2007). Estimating the parameters of the models can be done through maximum likelihood
or Bayesian approaches; in the present paper we will focus on the first method. In maxi-
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mum likelihood approaches, the estimation process consists in defining a statistical criterion,
generally minimizing the likelihood or an approximation of the likelihood, and selecting an
algorithm to obtain the minimum of this criterion.
Longitudinal data arise in many fields, such as agronomy, spatial analysis, imagery, clini-
cal trials, and have been particularly prominent in the field of pharmacokinetics (PK) and
pharmacodynamics (PD). As such, they play an important role in the process of develop-
ing new drugs, and PK/PD analysis is an integral part of the registration file submitted to
the health authority for the approval of new drugs (Lee et al. 2011). It is also increasingly
used to tailor drug treatment and guide dose adaptation in special populations such as re-
nally impaired patients or children. Because of the importance of these models in PK/PD
applications, the first estimation methods have been developed in pharmacometrics. In the
context of maximum likelihood, a dedicated software, called NONMEM, was developed in the
70’s, which handles specific characteristics of pharmacologic data such as dosage regimen and
other variables measured during treatment (Boeckmann, Sheiner, and Beal 1994). The first
algorithms implemented in this software relied on model linearization to obtain an approxi-
mation of the likelihood, which cannot be computed easily in nonlinear mixed effect models.
This approximation is then maximized through iterative Newton-Raphson minimization, a
general purpose algorithm involving the gradient of the function to be optimized. Different
approximations to the likelihood have been proposed, including the first-order conditional
method where the linearization takes place around the current individual estimates at each
iteration (Lindstrom and Bates 1990). These estimation methods have also been implemented
in mainstream statistical software such as SAS (PROC NLMIXED; SAS Institute Inc. 2013) and
R (R Core Team 2017), where the nlme (Pinheiro and Bates 1995) package is now part of the
base installation.
Linearization-based methods however have both statistical and practical shortcomings. First
and foremost, they do not in fact converge to the maximum likelihood estimates. While
bias is generally minor for fixed effects, variance components may be significantly biased,
especially with large interindividual variability. This has been shown to increase the type
I error of likelihood tests (Comets and Mentré 2001; Bertrand, Comets, and Mentré 2008),
with the potential of building wrong models. Second, these methods suffer from severe bias
when applied to non-continuous data, as shown by Molenberghs and Verbeke (2005), while
stochastic algorithms have been shown to provide unbiased estimates (Savic, Mentré, and
Lavielle 2011). In practice, linearization-based algorithms also exhibit convergence issues and
can be tricky to use with complex models (Plan, Maloney, Mentré, Karlsson, and Bertrand
2012). Over the past decade, new and powerful estimation algorithms have therefore been
proposed to estimate the parameters of nonlinear mixed effect models (Lavielle 2014).
The alternative to model linearization is to compute the likelihood through numerical or sta-
tistical approximations, which preserve the statistical properties of maximum likelihood esti-
mators. An example is the Laplace approximation, which is equivalent to a one-point adaptive
Gaussian quadrature, and has been implemented in NONMEM. In R, the lme4 package uses
this approximation (Bates, Mächler, Bolker, and Walker 2015) with a penalized least square
approach for the estimation algorithm. A powerful alternative to gradient-based minimization
algorithms is the EM algorithm, also an iterative algorithm, which has been developed in the
context of missing data (Dempster, Laird, and Rubin 1977). The stochastic approximation
expectation maximization (SAEM) algorithm, combining a stochastic approximation to the
likelihood with an EM algorithm, has proven very efficient for nonlinear mixed effect mod-
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els, quickly converging to the maximum likelihood estimators (Delyon, Lavielle, and Moulines
1999) and performing better than linearization-based algorithms (Girard and Mentré 2005). It
has been implemented in the Monolix software (Lavielle 2014), which has enjoyed increasingly
widespread use over the last few years, more recently in the Statistics toolbox of MATLAB
(nlmefitsa.m; The MathWorks Inc. 2014), and which is also available in NONMEM version 7.
In the present paper, we provide an implementation of the SAEM algorithm in the R software
through the saemix package (Comets, Lavenu, and Lavielle 2017) available from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=saemix.
The package uses the S4 class system of R to provide a user-friendly input and output system,
with methods like summary or plot for fitted objects. The package provides summaries
of the results, individual parameter estimates, standard errors (obtained using a linearized
computation of the Fisher information matrix) Wald tests for fixed effects, and a number
of diagnostic plots, including VPC plots and npde (Brendel, Comets, Laffont, Laveille, and
Mentré 2006). The log-likelihood can be computed by three methods: a linearization of the
model, an importance sampling procedure, or a Gaussian quadrature. The diagnostic graphs
can be tailored to the user’s individual preferences by setting a number of options, and are
easily exported to a file. In the present paper we first present the statistical models, then
we describe the features of the package by applying it to several examples. We conclude by
simulation studies assessing the performance of saemix and its operating characteristics.

2. Nonlinear mixed effect models

2.1. Statistical models

A typical longitudinal dataset consists of observations collected onN individuals (for instance,
subjects in a clinical trial). We assume that ni observations yi = {yi1, . . . , yini} have been
collected on subject i, at design points xi = {xi1, . . . , xini} (in a clinical trial, x will typically
be time or doses). The statistical model for observation yij is the following:

yij = f(ψi, xij) + g(ψi, σ, xij)εij . (1)

In Equation 1, the function f represents the structural model, describing the evolution of
the process being modeled, while the function g characterizes the residual error model, more
specifically its variance, and may depend on additional parameters σ. We assume that the
variability between subjects is captured by the vector of individual parameters ψi, and that
the errors εij are random samples from the standard normal distribution, and are independent
of the ψi.
When f is nonlinear with respect to the parameters ψ, Equation 1 describes the general form
of nonlinear mixed effect models. In saemix, we make some additional assumptions. We
assume that the individual parameters ψi can be modeled parametrically as a function of
fixed effects µ, individual random effects ηi, and subject-specific covariates ci and that the
transformed parameters can be expressed using a linear relationship, where Ci is a matrix
obtained by rearranging the covariates ci:

φi = h(ψi) = Ciµ+ ηi, (2)

https://CRAN.R-project.org/package=saemix
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so that the model parameters can be expressed as:

ψi = h−1(µ, ci, ηi) = h−1(φi). (3)

We further assume that the vector of random effects ηi follows a multinormal distribution:
η ∼ N (0,Ω). In the current version of saemix, h must be one of the following: the identity
function (normal distribution for ψ), the logarithmic function (log-normal distribution for ψ),
or the logit or probit transformations. Finally, the residual error model can be one of constant
(g = a), proportional (g = bf(ψi, xij)), combined (g = a + bf(ψi, xij)), or exponential. The
exponential model assumes that yij > 0 for all i, j and yij = f(ψi, xij)eg(ψi,xij)εij , where g = a
(corresponding to an homoscedastic variance after log-transformation). We denote by σ the
parameters of the residual error model (σ = {a, b}).
The unknown set of parameters in the model defined by (1) are θ = (µ, vec(Ω), σ), where
vec(Ω) is the vector of the parameters of the variance-covariance matrix Ω.

2.2. Parameter estimation
In the context of maximum likelihood, we are interested in the estimates of θ which maximize
the likelihood of the observations `(θ; y). Assuming the different subjects are independent, `
can be written as a product of the individual likelihoods, which are obtained as an integral
over the distribution of the individual parameters D:

`(θ; y) =
N∏
i=1

`(θ; yi) =
∏
i

p(yi|θ) =
∏
i

∫
D
p(yi|ηi, θ)p(ηi|θ)dηi. (4)

This likelihood has no analytical expression when f is nonlinear. To get around this is-
sue, two main approaches can be used. The first approach involves a linearization of the
model (Lindstrom and Bates 1990) or of the likelihood (Wolfinger 1993) to obtain a tractable
expression, while the second approach uses numerical (Pinheiro and Bates 1995) or stochastic
(Wei and Tanner 1990) approximations to compute the likelihood. Once an expression has
been computed, the resulting likelihood is then maximized either through standard minimiza-
tion algorithms like the quasi-Newton algorithms, or through EM algorithms (Dempster et al.
1977), where the unknown individual parameters are treated as missing data. In nonlinear
mixed effect models, the E-step at the iteration k of the EM algorithm consists in computing
the conditional expectation of the complete log-likelihood Qk(θ) = E(log p(y, ψ; θ)|y, θk−1)
and the M-step consists in computing the value θk that maximizes Qk(θ). Following Demp-
ster et al. (1977) and Wu (1983), the EM sequence (θk) converges to a stationary point of
the observed likelihood (i.e., a point where the derivative of ` is 0) under general regularity
conditions.
In cases where the regression function f does not linearly depend on the random effects, the
E-step cannot be performed in a closed-form. The stochastic approximation version of the
standard EM algorithm, proposed by Delyon et al. (1999), consists in replacing the usual
E-step of EM by a stochastic procedure. At iteration k of SAEM, the algorithm proceeds as
follows:

• Simulation-step : draw ψ(k) from the conditional distribution p(·|y; θk).

• Stochastic approximation : update Qk(θ) according to

Qk(θ) = Qk−1(θ) + γk(log p(y, ψ(k); θ)−Qk−1(θ)). (5)



Journal of Statistical Software 5

• Maximization-step : update θk according to

θk+1 = Arg max
θ
Qk(θ).

In the simulation step, the ψ(k) are simulated at each iteration via an Markov chain Monte
Carlo (MCMC) procedure from the current conditional distribution of the individual param-
eters. The same procedure can also be used after the algorithm has converged to obtain
the conditional distribution of the individual parameters, from which we can compute the
conditional modes, the conditional means and the conditional standard deviations. In the
stochastic approximation step, the sequence of γk controls the convergence of the SAEM al-
gorithm. It should be a decreasing sequence converging to 0 at a rate slower than 1 over the
iteration number (Delyon et al. 1999). In practice, γk is set equal to 1 during the first K1
iterations to let the algorithm explore the parameter space without memory and to converge
quickly to a neighborhood of the maximum likelihood estimator, and the stochastic approxi-
mation is performed during the final K2 iterations where γk = 1/(k −K1 + 1), ensuring the
almost sure convergence of the estimator. Also, the step size in the first few initial iterations
(6 by default) is set to 0, as we are not interested in computing Q during the run-in sequence.
The SAEM algorithm has been implemented in the MATLAB software under the name Mono-
lix (Kuhn and Lavielle 2005). It has been shown theoretically to converge to a maximum
of the likelihood of the observations under very general conditions (Delyon et al. 1999). To
avoid local maxima, a simulated annealing step is implemented in a first series of iterations
to ensure proper exploration of the parameter space, which confers a certain robustness with
respect to the choice of initial parameter values to the SAEM algorithm. In practical appli-
cations, the SAEM algorithm implemented in Monolix has been shown to be effective and
fast (Girard and Mentré 2005; Plan et al. 2012).

2.3. Estimation of the log-likelihood

The SAEM algorithm uses a stochastic approximation of the log-likelihood during the iteration
phase, and thus does not compute directly the log-likelihood. The likelihood in Equation 4
can be computed at the end of the optimization process by one of several approaches.
A first possibility is to approximate (4) by the likelihood of the Gaussian model deduced from
the nonlinear mixed effects model after linearization of the function f around the predictions
of the individual parameters (ψi, 1 ≤ i ≤ N), essentially using the same approximation
proposed by Lindstrom and Bates (1990).
A second possibility is to use a Monte Carlo approach, to obtain an estimate without any
model approximation. The integral `(θ; y) can be approximated via an importance sampling
integration method (IS), using the conditional distribution p(ψ|y; θ) which is obtained using
the empirically estimated conditional mean E(ψi|yi; θ̂) and conditional variance VAR(ψi|yi; θ̂)
of ψi for each subject i = 1, 2, . . . , N . The quality of the approximation depends on the
estimates of the conditional mean and variances of the individual distributions.
A third possibility (GQ) is to use numeric integration as opposed to stochastic integra-
tion. Gauss-Hermite quadrature methods use a fixed set of KGQ ordinates (called nodes)
and weights (xk, wk)k=1,...,KGQ

to approximate the likelihood function. As for importance
sampling, the quality of the approximation depends on the estimates of E(ψi|yi; θ̂) and
VAR(ψi|yi; θ̂).
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The linearized approximation to the log-likelihood is the same approximation used in the
linearization-based estimation methods, but is computed at the maximum likelihood esti-
mates obtained by SAEM. It is fast to compute, but becomes increasingly inaccurate as the
nonlinearity of the model increases. The two other methods provide respectively stochas-
tic and numerical approximations to the true log-likelihood, which should be asymptotically
equivalent when increasing the number of nodes (with Gaussian quadrature) and the number
of samples (with importance sampling). In practice, both these approximations have been
shown to carry a significant computational burden for large number of random effects (Pin-
heiro and Bates 1995). In saemix, we have implemented fixed Gaussian quadrature with 12
nodes by default, and the number of nodes can be set to any value between 1 and 25 through
the nnodes.gq argument, while the number of samples for the importance sampling method
may be tuned by the nmc.is argument. Adaptive Gaussian quadrature (AGQ) could be
used to improve the approximation, as Pinheiro and Bates (1995) suggested AGQ to be more
computationally efficient than IS and GQ, but is not yet implemented in saemix.

2.4. Estimation of standard errors

To assess the parameter estimates which have been obtained through the SAEM algorithm, we
can consider the standard errors associated with the estimates. Estimates of these standard
errors can be obtained as the inverse of the Fisher information matrix I(θ̂) = −∂2

θ log `(θ̂; y)
(see for instance Walter and Pronzato 2007).
As with the likelihood defined in (4), the Fisher information matrix of the nonlinear mixed
effect model has no closed-form solution. Approximations to the Fisher information matrix
have been proposed in the optimal design context by Mentré and others (Mentré, Mallet, and
Baccar 1997; Retout, Mentré, and Bruno 2002). In saemix we compute the Fisher information
matrix by linearization of the function f around the conditional expectation of the individual
Gaussian parameters (E(ψi|y; θ̂), 1 ≤ i ≤ N). The resulting model is Gaussian, and its Fisher
information matrix is a block matrix (no correlations between the estimated fixed effects
and the estimated variances). We compute the gradient of f numerically. Alternatively, the
Louis principle could be used to compute the Fisher information matrix through a stochastic
approximation that does not involve a linearization of the model (Louis 1982).

2.5. Model evaluation

Model evaluation is a vital part of model building. Detecting model deficiencies can help
guide the next model to be tested. Basic model diagnostics compare model point predic-
tions and observations, while more sophisticated diagnostics involve simulations under the
model (Brendel et al. 2006; Comets, Brendel, and Mentré 2008, 2010). Other elements to
assess model performance include predictive abilities on external datasets.
Computing predictions requires estimates of subject-specific parameters. In nonlinear mixed
effect models, two sets of predictions are generally considered. Population predictions use
the estimates of the population parameters and the individual design, typically dose regi-
men and regressors in PK/PD, while individual predictions are obtained using the individual
parameters. The individual parameters (ψi) are obtained by estimating the individual nor-
mally distributed parameters (φi) and deriving the estimates of (ψi) using the transformation
ψi = h(φi). These estimates are obtained through p(φi|yi; θ̂), the conditional distribution
of φi for 1 ≤ i ≤ N , where θ̂ denotes the estimated value of θ computed with the SAEM
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algorithm. The MCMC procedure used in the SAEM algorithm is used to estimate these
conditional distributions, and obtain for each subject i the conditional mode (or maximum
a posteriori) m(φi|yi; θ̂) = Arg maxφi

p(φi|yi; θ̂), the conditional mean E(φi|yi; θ̂), and the
conditional standard deviation sd(φi|yi; θ̂). The number of iterations of the MCMC algo-
rithm used to estimate the conditional mean and standard deviation is adaptively chosen to
maintain the sequence of empirical means and standard deviations within a ρmcmc-confidence
interval during Lmcmc iterations.

3. Overview of the package

3.1. Package structure

The saemix package implements the SAEM algorithm in R using S4 object-oriented pro-
gramming. The main function in the package is the saemix() function, which estimates the
population parameters of a nonlinear mixed effect model. This function requires two manda-
tory arguments, the (structural and statistical) model, a ‘saemixModel’ object, and the data,
a ‘saemixData’ object created by the saemixData() function. An optional list of settings can
be passed on as a list. The syntax of the saemix() function is simply:

saemix(model, data, control)

where the control argument is optional.
The model object is created by a call to the saemixModel() function, with the following main
arguments:

saemixModel(model, psi0, description, error.model, transform.par,
fixed.estim, covariate.model, covariance.model, omega.init, error.init,
...)

The first two arguments are mandatory, while all the others have default values.

model: Name of an R function used to compute the structural model. The function should
return a vector of predicted values given a matrix of individual parameters, a vector of
indices specifying which records belong to a given individual, and a matrix of dependent
variables (see example below for syntax).

psi0: A matrix with a number of columns equal to the number of parameters in the model,
and one (when no covariates are available) or two (when covariates enter the model)
rows giving the initial estimates for the fixed effects. The column names of the matrix
should be the names of the parameters in the model, and will be used in the plots and
the summaries. When only the estimates of the mean parameters are given, psi0 may
be a named vector.

description: A character string, giving a brief description of the model or the analysis.

error.model: Type of residual error model (valid types are constant, proportional, combined
and exponential).
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transform.par: The distribution for each parameter (0 = normal, 1 = log-normal, 2 =
probit, 3 = logit).

fixed.estim: Whether parameters should be estimated (1) or fixed to their initial esti-
mate (0).

covariate.model: A matrix giving the covariate model, with 0 for parameters to be esti-
mated and 1 for parameters set to 0. Defaults to diagonal (only variance terms are
estimated, and covariances are assumed to be zero).

covariance.model: A square matrix of size equal to the number of parameters in the model,
giving the variance-covariance matrix of the model.

omega.init: A square matrix of size equal to the number of parameters in the model, giving
the initial estimate for the variance-covariance matrix of the model.

error.init: A vector of size 2 giving the initial values of a and b in the error model.

The data object is created by a call to the saemixData() function:

saemixData(name.data, header, sep, na, name.group, name.predictors,
name.response, name.X, name.covariates, units, ...)

The first argument is the only mandatory argument, and gives the name of the dataset. All
others have default values, provided the columns of the dataset have names which can be
identified by the program, although the user is encouraged to provide the names of the group,
predictors and response columns for safety:

name.data: Name of the dataset (can be a character string giving the name of a file on disk
or the name of a dataset in the R session).

header: Whether the dataset/file contains a header.

sep: The field separator character.

na: A character vector of the strings which are to be interpreted as NA values.

name.group: Name (or number) of the column containing the subject id.

name.predictors: Name (or number) of the column(s) containing the predictors (the algo-
rithm requires at least one predictor x).

name.response: Name (or number) of the column containing the response variable y modeled
as a function of predictor(s) x.

name.covariates: Name (or number) of the column(s) containing the covariates, if present
(otherwise missing).

name.X: (used in plots) Name of the column containing the regression variable to be used on
the x-axis in the plots (defaults to the first predictor).

units: List with up to three elements, x, y and optionally covariates, containing the units
for the X and Y variables respectively, as well as the units for the different covariates.
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Examples of how to use these functions are provided in Section 4.
The third argument in the call to saemix(), control, is optional; when given, it is a list
containing options like the directory in which to save graphs and results, or the seed used to
initialize the random number generator. The list of options which can be set is described in
detail in the help files provided with the package.
The saemix() function returns an S4 object of class ‘saemixObject’. This object contains
the following slots:

data: The data object.

model: The model object.

results: The results object.

options: A list of options containing variables controlling the algorithm.

prefs: A list of graphical preferences, applied to plots.

Many methods have been programmed for ‘saemixObject’ objects, including summary, print
and plot methods, as well as functions to extract likelihoods, fitted values and residuals.
Other functions are specific to saemix, and are used to compute the likelihood (llis.saemix,
llgq.saemix), estimate and sample from the conditional distribution of individual parameters
(conddist.saemix), compute standard errors of estimation using the linearized Fisher infor-
mation matrix (fim.saemix), and simulate observations and parameters (simul.saemix).
All the functions are documented in the online help.

3.2. Settings

Once a fit has been performed, the resulting object contains two named lists, which contain
settings for running the algorithms and graphical preferences which are used mostly for plots.
A detailed description can be found in the user documentation.

Algorithmic settings

These settings are passed on to the saemix() function through a list. All the elements in this
list are optional and will be set to default values when running the algorithm if they are not
specified by the user prior to the fit as elements of the control list. They include: (i) settings
for the SAEM algorithm (the sequence of step sizes γ, the number of burning iterations Kb);
(ii) settings for the MCMC algorithm (the number of Markov chains L, the numbers m1, m2,
m3 and m4 of iterations in the Hasting-Metropolis algorithm, the probability of acceptance ρ
for kernel q(3) and q(4)); (iii) settings for the algorithm estimating the conditional distribution
of the (φi) (the width of the confidence interval ρmcmc and the number of iterations Lmcmc);
(iv) settings for the simulated annealing algorithm (the coefficients τ1 and τ2 defining the de-
crease of the temperature and the number of iterations Ksa); (v) settings for the algorithms
to compute the likelihood (the Monte Carlo number M for the importance sampling, num-
ber of quadrature points as well as the width of each integral for the Gaussian quadrature
algorithm); (vi) which modeling steps to perform after the estimation of the population pa-
rameters (estimation of individual parameters, estimation of the standard errors, estimation
of different approximations to the likelihood).
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User preferences

A list of default graphical parameters is stored in the prefs elements of the ‘saemixObject’
object returned after a fit. These parameters control colors, line and symbol types and sizes,
axes labels, titles, etc. and can be used to supersede default values in the plot functions. Any
of these settings can be changed directly in the list, and will then affect all future plots, but
can also be set on the fly when calling the plot function, then affecting only the plot being
created.

4. Examples
The objective of this section is to show how to use the saemix package through several
examples. In the first example, we will show the main features of a typical longitudinal dataset
used also in other modeling software, the orange tree dataset. This very simple example will
allow us to explain the structure of the data object and to create a simple logistic model that
we can fit with saemix(). We then show the main output from the package. In the second
example, we will consider a well-known pharmacokinetic example, giving an example of a
covariate model, and we will use this example to showcase the diagnostic plots provided in
the package. In the third example, we will study the statistical performances of the SAEM
algorithm in terms of parameter estimation through a simulation study, by applying saemix
to an Emax model for dose-response data, and we show the influence of tuning the parameters
in the algorithm.
In the following we will assume that the saemix package has been loaded:

R> library("saemix")

4.1. Orange trees

The data

The orange tree data was originally presented by Draper and Smith (1981) and was used
by Pinheiro and Bates (1995) to demonstrate the nlme package. It is now available in the
datasets package distributed with R, and it is also distributed with other statistical programs,
most notably SAS and WinBUGS (Lunn, Thomas, Best, and Spiegelhalter 2000). The dataset
contains measurements of the circumference at chest height of 5 orange trees, measured at
seven time points during a period of 4 years. The data is available in R under the name
Orange.
The data object is created through the function saemixData. We need to specify the name of
the dataframe, as well as the columns containing the grouping factor (indicating the subject),
the predictor(s) and the response. Here, the grouping factor is Tree, and the number of the
tree is given in the first column, while the second contains the age of the tree (the predictor)
and the third its circumference (the response).

R> data("Orange", package = "datasets")
R> head(Orange)
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Tree age circumference
1 1 118 30
2 1 484 58
3 1 664 87
4 1 1004 115
5 1 1231 120
6 1 1372 142

R> orange <- saemixData(name.data = Orange, name.group = "Tree",
+ name.predictors = "age", name.response = "circumference",
+ units = list(x = "Days", y = "mm"))

Using the object called Orange in this R session as the data.
The following SaemixData object was successfully created:

Object of class SaemixData
longitudinal data for use with the SAEM algorithm

Dataset Orange
Structured data: circumference ~ age | Tree
Predictor: age (Days)

The units element is optional, but if given, will be used to label the plots. Note that it is also
possible to give the number of the columns instead of the names, as in:

R> orange <- saemixData(name.data = Orange, name.group = 1,
+ name.predictors = 2, name.response = 3)

and that there is also some automatic name recognition built into the function (see the second
example in Section 4.2).
A plot of the data can be obtained by a call to the plot function, yielding the graph shown
in Figure 1.

R> plot(orange)

Modeling

Different mathematical functions can be used to describe growth curves. Pinheiro and Bates
(1995) used the following three-parameters logistic model to predict f(x), the circumference
of the tree at age x:

f(x) = λ1

1 + e
−(x− λ2)

λ3

. (6)

They assumed an additive error model with constant variance (εij ∼ N (0, σ2)). Since the
dataset contained only 5 subjects, they assumed that only the intercept λ1 varied across trees,
and they set a normal distribution for λ1 so that λ1i ∼ N (µ1, ω

2
1). The individual vector of

parameters is then λi = (λ1i, λ2, λ3).
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Figure 1: Orange tree data: Tree circumference (in mm) as a function of time (in days since
1968/12/31).

To set up this model in saemix, we first define a general model function. This function must
have 3 arguments named psi (assumed to be a matrix with the number of columns equal
to the number of parameters in the model, here 3), id (assumed to be a vector of indices
matching observation number with subject index) and xidep (assumed to be a matrix with
as many columns as predictors, here 1). The three arguments passed to the function will
be generated automatically from the model and data object within the saemix code. The
function must return a vector of predictions, the length of which is equal to the number of
rows in the predictor xidep. The following code snippet shows how to define the function f
for the orange tree model as a saemix model function:

R> logistic.model <- function(psi, id, xidep) {
+ age <- xidep[, 1]
+ lambda1 <- psi[id, 1]
+ lambda2 <- psi[id, 2]
+ lambda3 <- psi[id, 3]
+ resp <- lambda1 / (1 + exp( -(age - lambda2) / lambda3))
+ return(resp)
+ }

The user only needs to change the computation of the response, and adjust the number of pre-
dictors and parameters. More examples of model functions can be found in the documentation
online, as well as in the other examples (see Sections 4.2 and 4.3).
We then build the statistical model through the function saemixModel:

R> orange.model <- saemixModel(model = logistic.model,
+ description = "Logistic growth", psi0 = matrix(c(200, 800, 400),
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+ ncol = 3, byrow = TRUE, dimnames = list(NULL, c("lambda1", "lambda2",
+ "lambda3"))), covariance.model = matrix(c(1, 0, 0, 0, 0, 0, 0, 0, 0),
+ ncol = 3, byrow = 3))

The following SaemixModel object was successfully created:

Nonlinear mixed-effects model
Model function: Logistic growth

function (psi, id, xidep)
{

age <- xidep[, 1]
lambda1 <- psi[id, 1]
lambda2 <- psi[id, 2]
lambda3 <- psi[id, 3]
resp <- lambda1/(1 + exp(-(age - lambda2)/lambda3))
return(resp)

}
Nb of parameters: 3

parameter names: lambda1 lambda2 lambda3
distribution:

Parameter Distribution Estimated
[1,] lambda1 normal Estimated
[2,] lambda2 normal Estimated
[3,] lambda3 normal Estimated

Variance-covariance matrix:
lambda1 lambda2 lambda3

lambda1 1 0 0
lambda2 0 0 0
lambda3 0 0 0

Error model: constant , initial values: a = 1
No covariate in the model.
Initial values

lambda1 lambda2 lambda3
Pop.CondInit 200 800 400

Note that in this model, we only estimate a variability for λ1, the other parameters are the
same for all subjects. Since we do not specify an initial value for the variance-covariance
matrix, the default initialization is used: a diagonal matrix, the diagonal elements of which
are set to 1 for parameters with a log-normal, logit or probit distribution, and to the square of
the initial value (set in argument psi0) for parameters with a normal distribution. Since the
algorithm is stochastic, non-zero values must be set even for parameters without individual
variability for the algorithm to simulate samples in the run-in phase.

Parameter estimation
To run saemix(), we pass the model and data arguments to the function. A list of options
may be specified: in the code below, we set the seed for the random number generator, and
we specify that we do not want graphs and results to be saved as they would be by default.
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R> opt <- list(seed = 94352514, save = FALSE, save.graphs = FALSE)
R> orange.fit <- saemix(orange.model, orange, opt)

The parameters are then estimated. The output includes a summary of the model and data,
followed by the numerical results, which include parameter estimates, their standard errors
and several statistical criteria. By default, the likelihood is computed both by linearization
and by importance sampling, and the corresponding Akaike (AIC) and Schwarz (BIC) in-
formation criteria are computed. In this very simple model, both are practically identical.
For each parameter estimated in the model, estimates of the standard error are reported, as
an absolute value (SE) and relative to the estimate, as a coefficient of variation (% CV). In
the present case, all the fixed parameters are well estimated, with coefficients of variation
less than 10%, and the standard deviation of parameter λ1 (measuring its variability) is esti-
mated to be about 33, with an estimation error somewhat higher (65%) reflecting the limited
information available with only 5 subjects in the dataset.

...
-----------------------------------
---- Results ----
-----------------------------------
----------------------------------------------------
----------------- Fixed effects ------------------
----------------------------------------------------

Parameter Estimate SE CV(%)
[1,] lambda1 196.2 16 8.2
[2,] lambda2 748.3 38 5.1
[3,] lambda3 362.7 28 7.7
[4,] a 7.9 1 12.9
----------------------------------------------------
----------- Variance of random effects -----------
----------------------------------------------------

Parameter Estimate SE CV(%)
lambda1 omega2.lambda1 1043 673 65
----------------------------------------------------
------ Correlation matrix of random effects ------
----------------------------------------------------

omega2.lambda1
omega2.lambda1 1
----------------------------------------------------
--------------- Statistical criteria -------------
----------------------------------------------------
Likelihood computed by linearisation

-2LL = 263.4706
AIC = 273.4706
BIC = 271.5178

Likelihood computed by importance sampling
-2LL = 263.48
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Figure 2: Convergence plots for the orange tree data.

AIC = 273.48
BIC = 271.5272

During the fit, the progression of convergence is assessed through plots, shown in Figure 2.
The vertical line in the plots correspond to K1 iterations, and delineates two phases in the
algorithm. During the first K1 iterations, the algorithm explores freely the parameter space,
while during the second phase (K2 iterations), the step size γk decreases slowly to ensure
parameter convergence. The individual parameters of each subject are estimated during the
second phase (K2 iterations), and used for the diagnostics. These initial estimates can be
further refined after the fit through the conddist.saemix() function.
Finally, we can check that the model is able to describe the observed data by producing plots
of the individual fits:

R> plot(orange.fit, plot.type = "individual", smooth = TRUE)

this code adds the smooth = TRUE argument to use more time-points on the x-axis for the plot,
and computes the prediction at each time-point using the estimated individual parameters
for each tree. The result is shown in Figure 3 and illustrates a very good fit of the model for
all subjects.

Corresponding code for nlme and nlmer

The same model can be fit to the orange data using either nlmer from lme4 or nlme from
nlme. The following code, adapted from the online help for nlme, loads the two packages and
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Figure 3: Plots showing the individual predictions (solid line) overlaid on the observations
(black dots) for each tree in the dataset.

defines the model function as a user-defined function. It is also possible to use the built-in
SSlogis function, but the purpose of this paragraph is to show how models in saemix relate
to other modeling packages to facilitate switching from one to the other. The same function
can be used for both nlmer and nlme, but nlmer needs the gradients to be defined in the
function through the deriv function:

R> library("nlme")
R> library("lme4")
R> modelform <- ~ lambda1 / (1 + exp( -(age - lambda2) / lambda3))
R> nlmer.orangemod <- deriv(modelform, namevec = c("lambda1", "lambda2",
+ "lambda3"), function.arg = c("age", "lambda1", "lambda2", "lambda3"))
R> startvec <- c(lambda1 = 200, lambda2 = 800, lambda3 = 400)

The following code performs the fit using nlmer:

R> nlmer.orangefit <- nlmer(circumference ~ nlmer.orangemod(age, lambda1,
+ lambda2, lambda3) ~ lambda1 | Tree, Orange, start = startvec,
+ random = lambda1)

The following code performs the fit using nlme, using a slightly different syntax to specify the
structure of the fixed and random effects:
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R> nlme.orangefit <- nlme(circumference ~ nlmer.orangemod(age, lambda1,
+ lambda2, lambda3), fixed = lambda1 + lambda2 + lambda3 ~ 1,
+ random = lambda1 ~ 1, data = Orange, start = startvec)

The output from the nlmer fit is given by:

R> summary(nlmer.orangefit)

Nonlinear mixed model fit by maximum likelihood ['nlmerMod']
Formula: circumference ~ nlmer.orangemod(age, lambda1, lambda2, lambda3) ~

lambda1 | Tree
Data: Orange

AIC BIC logLik deviance df.resid
273.1 280.9 -131.6 263.1 30

Scaled residuals:
Min 1Q Median 3Q Max

-1.9170 -0.5421 0.1754 0.7116 1.6820

Random effects:
Groups Name Variance Std.Dev.
Tree lambda1 1001.49 31.646
Residual 61.51 7.843

Number of obs: 35, groups: Tree, 5

Fixed effects:
Estimate Std. Error t value

lambda1 192.05 15.58 12.32
lambda2 727.90 34.44 21.14
lambda3 348.07 26.31 13.23

Correlation of Fixed Effects:
lambd1 lambd2

lambda2 0.384
lambda3 0.362 0.762
Warning messages:
1: In vcov.merMod(object, use.hessian = use.hessian) :

variance-covariance matrix computed from finite-difference Hessian is
not positive definite: falling back to var-cov estimated from RX
2: In vcov.merMod(object, correlation = correlation, sigm = sig) :

variance-covariance matrix computed from finite-difference Hessian is
not positive definite: falling back to var-cov estimated from RX

The output from the nlme fit is given by:

R> summary(nlme.orangefit)
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Nonlinear mixed-effects model fit by maximum likelihood
Model: circumference ~ nlmer.orangemod(age, lambda1, lambda2, lambda3)

Data: Orange
AIC BIC logLik

273.1693 280.9461 -131.5847

Random effects:
Formula: lambda1 ~ 1 | Tree

lambda1 Residual
StdDev: 31.48254 7.846255

Fixed effects: lambda1 + lambda2 + lambda3 ~ 1
Value Std.Error DF t-value p-value

lambda1 191.0455 16.15380 28 11.82666 0
lambda2 722.5357 35.14849 28 20.55666 0
lambda3 344.1529 27.14659 28 12.67757 0
Correlation:

lambd1 lambd2
lambda2 0.375
lambda3 0.354 0.755

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.9147537 -0.5351318 0.1436489 0.7309596 1.6615020

Number of Observations: 35
Number of Groups: 5

In this example, the estimates of the parameters as well as the statistical criteria are very
close across the three packages.

4.2. Theophylline pharmacokinetics

The data

This is again a well-known dataset, distributed in NONMEM, Monolix and R, for fitting
nonlinear mixed effect models, and is a classic example of pharmacokinetic data. The data
was collected in a study by Upton of the kinetics of the anti-asthmatic drug theophylline
and analyzed by Boeckmann et al. (1994). Twelve subjects were given oral doses of the
anti-asthmatic drug theophylline, then serum concentrations (in mg/L) were measured at
11 time points over the next 25 hours. In package saemix, we removed the data at time 0
to avoid some unexplained non-zero values in a supposedly single-dose study; in addition we
transformed the doses to body doses in mg instead of doses by weight mg/kg as in the original
dataset, and we added a dummy variable for gender with values 0 and 1 to illustrate fitting a
categorical covariate model. The resulting dataset is available under the name theo.saemix
in the saemix package.
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Figure 4: Concentration of theophylline versus time in 12 subjects.

The data is shown in Figure 4. In the following code, we use the dataset from the package
create the ‘saemixData’ object:

R> data("theo.saemix", package = "saemix")
R> theo.data <- saemixData(name.data = theo.saemix, header = TRUE,
+ sep = " ", na = NA, name.group = c("Id"),
+ name.predictors = c("Dose", "Time"), name.response = c("Concentration"),
+ name.covariates = c("Weight", "Sex"),
+ units = list(x = "hr", y = "mg/L", covariates = c("kg", "-")),
+ name.X = "Time")
R> plot(theo.data, type = "b", col = "DarkRed", main = "Theophylline data")

The data includes 2 predictors, Dose and Time; we use the name.X = "Time" argument to
specify which of the predictor will be used as the independent variable in the plots. We read
the two covariates in the data object, and we specify units for the independent and dependent
variables, as well as for the covariates. The last line in this code is used to plot the data,
changing a few options such as plot type, color and title by passing these arguments to the
plot function.

Modeling
These data were analyzed in Davidian and Giltinan (1995) and Pinheiro and Bates (1995)
using a two-compartment open pharmacokinetic model. Subject i receives an initial dose Di

at time 0. Serum concentrations yij measured at time tij are modeled by a first-order one
compartment model, according to the following equation:

yij = Dikaikei
CLi(kai − kei)

(
e−kaitij − e−keitij

)
+ εij , (7)
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where CLi is the clearance of subject i, kai is the absorption rate constant, kei is the elimination
rate constant and is expressed as a function of CLi and the volume of distribution Vi as
kei = CLi

Vi
. For subject i, the vector of regression (or design) variables is xij = (Di, tij), and

the vector of individual parameters is θi = (kai,CLi, Vi). kai, CLi and Vi are assumed to be
independent log-normal random variables (corresponding to h(x) = ln(x)), and we assume a
relationship between the clearance and the subject’s body weight BWi:

ln(kai) = µ1 + η1,

ln(Vi) = µ2 + η2,

ln(CLi) = µ3 + βWT,CL BWi + η3.

(8)

We used a simple homoscedastic error model where VAR(εij) = a2.
The following code is used to write a model function, and to create a ‘saemixModel’ object:

R> model1cpt <- function(psi, id, xidep) {
+ dose <- xidep[, 1]
+ tim <- xidep[, 2]
+ ka <- psi[id, 1]
+ V <- psi[id, 2]
+ CL <- psi[id, 3]
+ k <- CL / V
+ ypred <- dose * ka / (V * (ka - k)) * (exp(-k * tim) - exp(-ka * tim))
+ return(ypred)
+ }
R> theo.model <- saemixModel(model = model1cpt,
+ description = "One-compartment model with first-order absorption",
+ psi0 = matrix(c(1, 20, 0.5, 0.1, 0, -0.01), ncol = 3, byrow = TRUE,
+ dimnames = list(NULL, c("ka", "V", "CL"))), transform.par = c(1, 1, 1),
+ covariate.model = matrix(c(0, 0, 1, 0, 0, 0), ncol = 3, byrow = TRUE))

The covariate model is specified as a matrix, and is reported in the model object as:

Covariate model:
ka V CL

[1,] 0 0 1
[2,] 0 0 0

This indicates that the first covariate in the dataset (Weight in our example) will be assumed
to have a relationship with parameter CL. In the code, psi0 now includes a second line, which
is used to specify initial values for the parameter-covariate relationships. The same initial
values would be used for all covariates, but we could specify different starting values for each
parameter-covariate relationship by adding more lines to the matrix psi0. Alternatively, we
can also let the program use default values of 0 by letting psi0 be a one-line matrix as in the
orange tree example.

Parameter estimation

As previously, we fit this model using the saemix() function:
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R> opt <- list(save = FALSE, save.graphs = FALSE)
R> theo.fit <- saemix(theo.model, theo.data, opt)

...
-----------------------------------
---- Results ----
-----------------------------------
----------------------------------------------------
----------------- Fixed effects ------------------
----------------------------------------------------

Parameter Estimate SE CV(%) p-value
[1,] ka 1.5786 0.2947 18.7 -
[2,] V 31.6605 1.4322 4.5 -
[3,] CL 1.5521 0.9683 62.4 -
[4,] beta_Weight(CL) 0.0082 0.0089 108.3 0.18
[5,] a 0.7429 0.0569 7.7 -
----------------------------------------------------
----------- Variance of random effects -----------
----------------------------------------------------

Parameter Estimate SE CV(%)
ka omega2.ka 0.368 0.1668 45
V omega2.V 0.017 0.0096 57
CL omega2.CL 0.065 0.0324 50
----------------------------------------------------
------ Correlation matrix of random effects ------
----------------------------------------------------

omega2.ka omega2.V omega2.CL
omega2.ka 1 0 0
omega2.V 0 1 0
omega2.CL 0 0 1
----------------------------------------------------
--------------- Statistical criteria -------------
----------------------------------------------------
Likelihood computed by linearisation

-2LL = 343.427
AIC = 359.427
BIC = 363.3063

Likelihood computed by importance sampling
-2LL = 344.8205
AIC = 360.8205
BIC = 364.6997

----------------------------------------------------

Again fixed effects are well estimated, except for the fixed effect of weight on clearance, which
is estimated with a variability of 108%.
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Covariate model

We can test whether the covariate effect is significant. In nonlinear mixed effect models,
standard tests are the Wald test and the log-likelihood ratio test (LRT).
The Wald test compares the value of a parameter estimate Ψ̂(k) to the standard error of
estimation ŜE(Ψ̂(k)) through a χ2 statistic with one degree of freedom:

W =
(

Ψ̂(k)

ŜE(Ψ̂(k))

)2

∼ χ2
1. (9)

This is the test performed in the output above for the fixed effects involved in a covariate
model, and here we see that in this example, the fixed effect representing the influence of
weight on CL is not significant (p = 0.18, NS according to the Wald test), in keeping with
the large estimated SE .
The LRT compares two nested models through the difference in twice the log-likelihood (LL).
Assuming the more parsimonious model M1 has p parameters and the larger model M2 p+ q
parameters, asymptotically the difference in −2LL follows a χ2 statistic with q degree of
freedom:

Z = − (2LL1 − 2LL2)2 ∼ χ2
q . (10)

In saemix, the likelihood can be computed by three different approximations. Two of these
are computed by default with the standard settings of the algorithm. To compute also the
likelihood by Gaussian quadrature, we use the llgq.saemix() function:
R> theo.fit <- llgq.saemix(theo.fit)
R> theo.fit

This adds the log-likelihood computed by Gaussian quadrature to the object:
...
Likelihood computed by Gaussian quadrature

-2LL = 344.7868
AIC = 360.7868
BIC = 364.666

To test the covariate model using the LRT, we first need to fit a model without the covariate,
then we compute the LRT statistic. Here we use the log-likelihoods computed by linearisation,
but in this example we get similar p values with all approximations.
R> theo.model.base <- saemixModel(model = model1cpt,
+ description = "One-compartment model with first-order absorption",
+ psi0 = matrix(c(1., 20, 0.5, 0.1, 0, -0.01), ncol = 3, byrow = TRUE,
+ dimnames = list(NULL, c("ka", "V", "CL"))), transform.par = c(1, 1, 1))
R> opt <- list(save = FALSE, save.graphs = FALSE)
R> theo.base <- saemix(theo.model.base, theo.data, opt)
R> ll1 <- theo.base["results"]["ll.lin"] * (-2)
R> ll2 <- theo.fit["results"]["ll.lin"] * (-2)
R> 1 - pchisq(ll1 - ll2, 1)

[1] 0.4365312
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Model selection

Statistical tools for model selection include information criteria and hypothesis tests such as
the Wald test and likelihood ratio test (LRT) for nested models. Non-nested models can be
compared through the Akaike criterion (AIC) and Schwarz’s information criterion, also called
Bayes information criterion or BIC. These two statistics are reported in the output for each
likelihood computed. Their value is given by:

AIC = −2LL + 2p,
BIC = −2LL + p ln(ntot),

(11)

where p is the number of parameters in the model and ntot the total number of observations.
AIC and BIC are justified based on asymptotic criteria (Burnham and Anderson 2002), that
is, when the sample size increases and the model dimension stays fixed. In the context
of mixed effect models, the effective sample size is not clearly defined and the formula for
calculating the BIC differs from software to software. The penalty using ntot is implemented
in the R package nlme and SPSS procedure MIXED, while the number of subjects, N , is used in
Monolix and SAS PROC NLMIXED. An optimal BIC penalty based on two terms proportional
to logN and logntot and that is consistent with the random effect structure in a mixed effect
model was recently proposed by Delattre, Poursat, and Lavielle (2014).
Other criteria have been proposed and studied for nonlinear mixed effect models (see the
review in Bertrand, Comets, Chenel, and Mentré 2012); they can be computed from the
estimate of the log-likelihood, which can be accessed through elements of the results object.
For instance, the log-likelihood computed by importance sampling can be obtained as:

R> logLik(theo.fit)

LL by is "-172.41 (df=8)"

We should also note that a conditional AIC (cAIC) has been proposed by Vaida and Blan-
chard (2005) for linear mixed effect models. Its theoretical properties have been investigated
by Greven and Kneib (2010) and implemented for lme4 in an R package. In nonlinear mixed
effect models, small sample corrections have been proposed for the Wald test by Bertrand
et al. (2012), who also suggest using permutation tests to control type I error inflation in
model selection with the LRT and the Wald test.

Model diagnostics

Diagnostics are destined to evaluate model properties and help guide model building. A num-
ber of diagnostic graphs are produced automatically when running saemix(), and are output
by a call to the plot() function applied to the object resulting from the fit. Specific plots
can also be created using the plot.type argument to the function. When called individually,
each graph can be tailored to user preferences through options as in the previous example
(Figure 4). The next code snippet shows how to obtain specific graphs, given in Figures 5
to 8. The first graph, in Figure 5, displays the individual fits for the first 4 subjects in the
theophylline example, including a smoothed prediction line, and changing the color of the line
and the plotting symbol. A logarithmic scale is used for the y-axis. Figure 6 plots the obser-
vations versus the predictions, adding the unity line to assess deviations. Figure 7 assesses
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Figure 5: Individual plots for the first 4 subjects in the study, with different options.
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Figure 6: Observations versus predictions for the theophylline data, with population predic-
tions on the left and individual predictions on the right.
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Figure 7: Residual diagnostics based on npde for the theophylline data.
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Figure 8: VPC for the theophylline data.
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the distribution of npde, a residual adapted to nonlinear mixed effect models (Brendel et al.
2006; Comets et al. 2010), while Figure 8 gives the visual predictive check (VPC).

R> par(mfrow = c(2, 2))
R> plot(theo.fit, plot.type = "individual.fit", new = FALSE, ilist = 1:4,
+ smooth = TRUE, ylog = TRUE, pch = 1, col = "Blue", xlab = "Time in hr",
+ ylab = "Theophylline concentrations (mg/L)")
R> plot(saemix.fit, plot.type = "observations.vs.predictions")
R> plot(saemix.fit, plot.type = "npde")
R> plot(saemix.fit, plot.type = "vpc")

Overall, these plots show good model adequacy, and individual profiles indicate that the
model is able to reproduce observed data reasonably well. Some points to note may be the
departure of the npde from the theoretical normal distribution seen in Figure 7, as well as a
slight tendency in the plots of npde versus time. The VPC plot in Figure 8 shows that the
model predicts the median evolution very well; the variability may be slightly overestimated
but with only 12 subjects in the dataset this may be expected.

Corresponding code for nlme and nlmer

Again, we can cast the same model for use in nlme and nlmer. For nlme, the relationship
between parameters and covariates is set in the fixed argument within the function call:

R> startvec.ke <- c(lKe = -2.99, lKa = 0.5, lCl = 0.75, lClSex = 0)
R> nform <- ~Dose * exp(lKe + lKa - lCl) * (exp(-exp(lKe) * Time) -
+ exp(-exp(lKa) * Time)) / (exp(lKa) - exp(lKe))
R> nlme.theomod.ke <- deriv(nform, namevec = c("lKe", "lKa", "lCl"),
+ function.arg = c("Dose", "Time", "lKe", "lKa", "lCl"))
R> nlme.fit.sex <- nlme(Concentration ~ nlme.theomod.ke(Dose, Time, lKe,
+ lKa, lCl), data = groupedData(Concentration ~ Time | Id,
+ data = theo.saemix), fixed = list(lKe ~ 1, lKa ~ 1, lCl ~ Sex),
+ random = pdDiag(lKe + lKa + lCl ~ 1), start = startvec.ke)

For nlmer on the other hand, the model function needs to be rewritten to explicitly include
the covariate effects, as follows:

R> nform.sex <- ~ Dose * exp(lKe + lKa - lCl - lClSex * Sex) *
+ (exp(-exp(lKe) * Time) - exp(-exp(lKa) * Time)) / (exp(lKa) - exp(lKe))
R> nlmer.theomod.ke.sex <- deriv(nform.sex,
+ namevec = c("lKe", "lKa", "lCl", "lClSex"),
+ function.arg = c("Dose", "Time", "lKe", "lKa", "lCl", "lClSex", "Sex"))
R> nlmer.fit.sex <- nlmer(Concentration ~ nlmer.theomod.ke.sex(Dose, Time,
+ lKe, lKa, lCl, lClSex, Sex) ~ (lKe | Id) + (lKa | Id) + (lCl | Id),
+ data = theo.saemix, start = list(nlpars = startvec.ke))

In both cases, the model had to be reparameterized in terms of log-parameters (lKe, lKa and
lCl) as both packages only handle normal distributions for the random effects. In addition,
both nlme and nlmer fail to converge when the model is reparameterized with the volume
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of distribution (V ) instead of the elimination rate constant Ke, which is equal to CL/V .
Although we can reparameterize the model as we did here, it is worth noting that this changes
the mixed effect model, because it modifies the structure of the interindividual variability.
Another point to note is that for nlmer, a new function needs to be created for each parameter-
covariate relationship that the user wishes to test.

4.3. Evaluating the performance of saemix

Data and model

In this section, we use simulated data to evaluate the performance of saemix. The simulated
datasets were generated by Plan et al. (2012) in a paper comparing different software packages
to estimate parameters in nonlinear mixed effect models, and were obtained directly from the
authors of that paper and are included in the supplementary material.
The model used for this simulation is a sigmoid Emax model, a standard model in dose-
response studies where the effect of a drug in response to a dose d, E(d), is a sigmoid function
corresponding to the following equation:

E(d) = E0 + Emax
dγi

dγi + EDγ
50
. (12)

This model involves 4 parameters, the initial effect E0, the maximum effect Emax, the con-
centration at which half the maximum effect is achieved ED50 and the sigmoidicity factor γ
which controls the nonlinearity of the model through the curvature. Interindividual variabil-
ity was modeled through a log-normal distribution for all parameters, except for γ which was
assumed to be the same for all subjects (no IIV). A correlation was simulated between Emax
and ED50. In Plan et al. (2012), 3 values of γ were tested, 1, corresponding to the Emax
model, and 2 and 3, involving increasing amounts of nonlinearity, along with two residual
error models, additive or proportional error. In the present work, we focus on the scenarios
with γ = 3 with constant variance σ2 (scenarios R3A for the rich and S3A for the sparse
design), but full results on the 8 scenarios simulated in Plan et al. (2012) are available on
request. The parameters used in the simulation are given in Table 1.

Simulation study

The design of the simulation study mimicked that of a clinical trial including 100 individuals
and investigating four dose levels (0, 100, 300, and 1000 mg). Two sampling designs were

Parameter Value Parameter Value
E0 (–) 5 ω2

E0
0.09

Emax (–) 30 ω2
Emax

0.49
ED50 (mg) 500 ω2

ED50
0.49

γ (–) 3 COV(E0,Emax) 0.245
σ (–) 2

Table 1: Parameters used in the simulation for the Emax model (see Plan et al. 2012).
.
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Settings Default Tuned
Initial parameters TRUE FALSE TRUE FALSE

E0 0.43 ( 4.80) −0.04 ( 4.74) −0.14 ( 4.37) −0.23 ( 4.28)
Emax 1.34 (17.52) 4.54 (17.56) 1.47 (13.68) 2.95 (13.54)
ED50 −0.56 (13.03) 1.70 (13.07) −0.24 (10.53) 0.88 (10.84)

γ 3.35 (10.04) 0.97 ( 9.32) 1.79 ( 6.94) 0.54 ( 6.46)
σ 0.59 ( 7.96) 0.40 ( 7.26) −0.48 ( 6.40) −0.32 ( 6.37)

ω2
E0

−5.15 (37.39) −3.74 (35.40) 0.90 (28.38) 0.32 (27.93)
ω2

Emax
−0.53 (21.45) 3.30 (27.86) −1.54 (20.88) 0.23 (21.14)

ω2
ED50

−2.98 (36.71) 3.58 (37.47) −1.86 (31.20) 1.27 (30.08)
COV(Emax,ED50) −1.47 (55.93) 10.69 (65.08) −0.88 (48.28) 4.85 (48.72)

ρ −4.90 (32.64) 0.71 (33.45) −2.66 (27.60) 0.69 (26.85)

Table 2: Relative bias (RRMSE, %) in the scenario with rich sampling.

Settings Default Tuned
Initial parameters TRUE FALSE TRUE FALSE

E0 2.50 ( 7.97) 0.96 ( 8.31) 0.31 ( 6.26) −2.03 ( 6.75)
Emax −4.28 (22.69) 38.18 ( 68.24) −1.20 (21.75) 33.50 ( 46.78)
ED50 −2.72 (19.96) 34.88 ( 59.25) −1.86 (18.72) 29.52 ( 43.07)

γ 12.17 (30.54) −12.18 ( 23.26) 6.58 (19.89) −16.93 ( 21.18)
σ 3.80 (16.90) 6.05 ( 19.58) −0.99 (11.32) −0.16 ( 11.30)

ω2
E0

−17.50 (79.45) −19.60 ( 86.07) 3.27 (54.95) 5.58 ( 60.81)
ω2

Emax
−5.78 (37.85) 21.06 ( 67.68) −0.24 (33.97) 29.38 ( 62.72)

ω2
ED50

−18.51 (47.84) 29.30 ( 72.66) −6.36 (42.43) 43.91 ( 71.99)
COV(Emax,ED50) −31.22 (82.42) 51.60 (139.77) −5.84 (71.81) 80.19 (131.59)

ρ −35.20 (67.43) 2.91 ( 59.09) −11.90 (50.82) 25.35 ( 44.63)

Table 3: Relative bias (RRMSE, %) in the scenario with sparse sampling.

evaluated, a rich design (R) in which all individuals were sampled at the four dose levels, and
a sparse design (S) where each individual was randomly allocated to only two of the four dose
levels.
We evaluated the influence of the starting values and of the tuning parameters on the per-
formance of saemix. Initial parameter estimates were either set to the values used in the
simulation (TRUE) or to different values (FALSE), where the fixed parameters were multiplied
by 2 while the variability parameters were set to 0.1. We also used either the default settings
of the algorithm, or tuned the settings by increasing the number of chains to 5 and increasing
the number of iterations to 300 and 150 respectively in the burn-in and convergence phases of
the algorithm. Combining starting values and tuning parameters, we therefore performed 4
successive parameter estimations for each dataset. In all settings, we used the same random
seed for all runs.

Evaluation

The performance of both algorithms was evaluated by computing the relative bias and root
mean square error (RMSE) over the 100 simulations, using the simulation parameters as true
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Figure 9: Bias over 100 simulations for the parameters estimated in the rich design. The solid
line signals an absence of bias (y = 0) and the two dotted lines are plotted at ± 20% bias.

values. Denoting Ψk
0 the true value of parameter Ψk, and Ψ̂k

l the value estimated in the lth
simulated dataset, the relative bias for this parameter was given by

RB(Ψk) =
100∑
l=0

Ψ̂k
l −Ψk

0
Ψk

0
(13)

and the relative RMSE by

RRMSE(Ψk) =
100∑
l=0

(Ψ̂k
l −Ψk

0)2

Ψk 2
0

. (14)
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Figure 10: Bias over 100 simulations for the parameters estimated in the sparse design. The
solid line signals an absence of bias (y = 0) and the two dotted lines are plotted at ± 20%
bias.

Results

Tables 2 and 3 show the relative bias and root mean square error obtained for both methods
in the two scenarios, in the four settings.
In the rich sampling scenario, all parameters are estimated without bias (less than 5% relative
bias) irrespective of whether initial parameters were set to the true value or not, or whether
the algorithm was tuned. The relative root mean square errors are less than 20% for the fixed
effects, and between 20 and 50% for the variability parameters. Figure 9 shows a boxplot of
the biases observed in the 100 datasets, when running the algorithm with the default settings
and false starting values: For most of the datasets and all parameters except the covariance
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the bias is less than 20% in the majority of the datasets.
In the sparse sampling scenario (Table 3) on the other hand, some bias is apparent for several
parameters: The fixed parameters ED50 and Emax are poorly estimated when the starting
parameters are moved away from the true values used in the simulation, even when the number
of chains and iterations is increased. Their variabilities are also poorly estimated, with a large
RMSE. This is consistent with the results found in Plan et al. (2012). In that paper, most
algorithms had difficulties estimating ED50 and Emax with the sparse design, which was quite
challenging as it combined limited individual information and high model nonlinearity, and
all methods showed biases over 20 to 30% on several parameters, worsening when perturbed
initial values were used.
This is illustrated in Figure 10 with the same settings as in Figure 9. This time most of the
datasets show bias for Emax and ED50, and the variability between the datasets in bias is also
much larger, especially for variabilities.

5. Operational characteristics

saemix is one of several packages in R that can be used to fit nonlinear mixed effect models.
In this section, we first provide a comparison of saemix to nlme and lme4 in terms of bias and
precision of parameter estimates, as well as convergence. In a second part, we investigated
run times when model complexity and dataset size increase to evaluate the scalability of the
approach.

5.1. Comparing saemix to nlme/nlmer

Simulation study

The datasets from Section 4.3 have been fit using nlme by Plan et al. (2012), who report
convergence for only 5% (rich design) and 16% (sparse design) of the datasets. We had the
same issue when trying to fit the same data (results not shown). We attempted to use nlmer
from lme4 and had the same convergence problems; with nlmer we also had a technical issue,
in that the derivative with respect to γ is not defined for a dose of 0, which required some
tinkering with the data to bypass. Because we could fit so few datasets, we could not compare
meaningfully the performance of saemix to those of the other two modelling packages. In Plan
et al. (2012), the rate of convergence decreased as γ increased, suggesting it was related to
model nonlinearity. In this section, we therefore decided to use the datasets simulated with
γ = 1 and we fit them using an Emax model corresponding to Equation 12 with γ = 1 (fixed,
not estimated). The datasets for the sparse design were derived from the datasets with a rich
design (scenario R1A) by using for each dataset the same sampling times as in scenario S3A
analysed in the previous section.
Initial conditions for nlmer were set to the true values used in the simulation, given in Table 1,
as for saemix, except for COV(E0,Emax) and σ which could not be initialised in the other
packages. As we encountered convergence issues again, we changed the initial parameter
estimates within 20% of the original values; this was repeated a maximum of 10 times per
dataset.
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saemix nlme nlmer
E0 −2.51 ( 5.84) 0.29 ( 4.69) 2.12 ( 5.46)

Emax 1.09 ( 9.43) −1.92 ( 7.98) −2.56 ( 8.57)
ED50 −2.54 (14.41) −8.05 (13.48) −6.34 (12.36)

σ 1.12 ( 6.86) 1.94 ( 6.26) −0.95 ( 6.11)
ω2

E0
1.09 (42.38) 7.73 (31.12) 0.76 (32.00)

ω2
Emax

−1.84 (19.21) −8.50 (18.22) −1.66 (18.32)
ω2

ED50
−2.13 (37.46) −27.60 (34.83) −16.60 (30.95)

Failed runs 0 0 56

Table 4: Relative bias and RRMSE for the three packages in the scenario with rich sampling.

saemix nlme nlmer
E0 −1.33 ( 9.06) −4.38 ( 9.90) 0.80 ( 7.56)

Emax 1.07 ( 16.56) −0.24 ( 24.68) −0.90 ( 7.88)
ED50 0.42 ( 30.30) −10.04 ( 47.48) −4.83 ( 18.50)

σ 6.71 ( 18.71) 5.83 ( 17.35) −8.42 ( 22.48)
ω2

E0
−16.90 ( 80.13) 12.70 ( 69.36) −6.43 ( 61.69)

ω2
Emax

−3.05 ( 42.46) −17.68 ( 31.96) −12.18 ( 32.46)
ω2

ED50
−17.34 (107.92) −37.20 (105.09) −37.10 ( 58.41)

Failed runs 0 14 83

Table 5: Relative bias and RRMSE for the three packages in the scenario with sparse sampling.

Results

Tables 4 and 5 show the bias and RMSE for the parameters estimated by each of three
packages for the rich and sparse scenarios respectively.
A first result concerns convergence rates: While saemix provided estimates for all datasets, we
could not obtain parameter estimates for more than half of the datasets with nlmer despite
retrying a number of times. With nlme, all datasets could be fit in the rich scenario but
14% failed with a sparse design. In terms of estimation errors, saemix provided unbiased
estimates in the rich design, while both nlme and nlmer had difficulties to estimate ED50 and
its variability. In the sparse scenario, both saemix and nlme tended to slightly overestimate
σ and underestimate variabilities. saemix tended to underestimate the variability on E0 and
ED50, while nlme strongly underestimated the variabilities on Emax and ED50. The results of
nlmer were not meaningful given that estimates could be obtained in only 17 datasets out of
100, but they also indicated similar issues.
These results show convergence issues with nlmer and to a lesser extent with nlme, in keeping
with the findings reported in Plan et al. (2012), which had been obtained with a more nonlinear
model. In our simplified settings, on a very simple Emax model, nlme converged more often
than with high sigmoidicity, but showed more estimation bias than saemix. These results
were obtained using nlme version 3-1.128 and lme4 version 1.1-12.

5.2. Computation times

We performed two series of simulations to evaluate the scalability of the algorithm. In the
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Emax N subjects n samples Run time, 100 simulations (s)
30 3 340
30 6 419
30 12 582
100 3 654
100 6 823
100 12 1191
200 3 1198
200 6 1580
200 12 2289
500 3 2878
500 6 3718
500 12 5325

Exponential Number of random effects Run time, 100 simulations (s)
2 348
4 662
6 1157

Table 6: Run times in seconds for different models, exploring the effect of increasing the
number of samples and the number of subjects in the Emax model (30 to 500 subjects, 3 to
12 samples), and of increasing the number of parameters in the model (exponential models
with 2, 4 and 6 parameters).

first, we investigated the effect of the size of the datasets by simulating datasets using the
Emax model from Section 4.3, and varying the number of samples and the number of subjects.
In the second, we assessed the effect of increasing model complexity on the run times. For
this second simulation, we simulated three models with one, two and three exponential terms
(respectively 2, 4 and 6 parameters). Each dataset was simulated assuming 100 subjects and
6 sample times, which had been optimised by the PFIM software (Retout, Comets, Samson,
and Mentré 2007) to ensure reasonable identifiability of the most complex model. The model
with two exponentials is similar to the Emax model in terms of model complexity. In each
simulation, 100 datasets were generated, and the run times for the fit of the 100 datasets
were collected through the Rprof() function in R, and summarised. Table 6 shows the total
run times in seconds reported by Rprof(); the same information is displayed in Figure 11,
with the graph on the left showing the evolution of run times with the number of subjects,
stratified by the number of samples, and the graph on the right showing the influence of
model complexity.
The values in Table 6 were obtained on a personal computer and are purely indicative, as they
depend on CPU, memory and concurrent tasks. The relative values between the different
settings however show clearly how the algorithm scales with increasing model complexity
(roughly linearly with respect to the number of parameters to estimate), and with the size of
the dataset. In Figure 11, there is a slight bend in the curve between a number of subjects
equal to 30 and a number of subjects higher than 100. This is because when there are less
than 50 subjects in the datasets, more chains are generated by the algorithm in order to
improve model stability, increasing the number of ‘individuals’ considered in the algorithm.
Other than that, run times are seen to increase linearly with the number of subjects and more
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Figure 11: Evolution of run times with the number of subjects, the number of samples, and
model complexity.

slowly with the number of samples. Run times also increase approximately linearly with model
complexity. These results show the algorithm behaves as expected, as the number of random
effects to be generated at each iteration of the algorithm depends on both model complexity
and number of subjects, while the number of samples influences the time spent to compute
model predictions and many intermediate computations. These profiling results will also be
used to identify computational bottlenecks in further developments of saemix.

6. Discussion
The use of modelling and simulation in clinical drug development is now well established.
Regardless of whether a single outcome is considered at the end of the study, clinical tri-
als routinely collect longitudinal data, with each subject providing several measurements
throughout the study. Longitudinal data is a staple in particular of pharmacokinetic (PK)
and pharmacodynamic (PD) studies, which are a required part of a new drug application file
(Lee et al. 2011). Nonlinear mixed effect models can help to characterise and to understand
many complex nonlinear biological processes, such as biomarkers or surrogate endpoints, and
are crucial in describing and quantifying the mechanisms of drug action and the different
sources of variation, e.g., the interindividual variability (Ette and Williams 2007). As a
result, these models have been extensively studied over the past two decades, with many
developments in methods for parameter estimation, experimental design, or model evalua-
tion. Parameter estimation can be performed through maximum likelihood (ML), restricted
maximum likelihood (REML), or Bayesian approaches.
The saemix package provides an implementation of one of these recent estimation algorithms,
SAEM, in R, to obtain maximum likelihood estimates. It offers an interesting alternative to
linearisation-based estimation methods as implemented for instance in nlme and lme4. The
different packages all have their own specificities and limitations. The oldest, nlme, is included
in the base packages distributed with R, and as lme4, can handle multiple levels of variability.
They both implement maximum and restricted maximum likelihood estimation. lme4 also
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offers an approach based on adaptive-Gaussian quadrature but only when the model is linear.
A limitation of nlmer is that there is currently no way to fit heteroscedastic error models,
which are frequently used in pharmacokinetics. In practice however, nlme and nlmer often
run into convergence issues, especially as model complexity increases. Both nlme and nlmer
require the model to be specified in closed form; an extension nlmeODE has been developed to
handle structural models defined by a differential equation system (Tornøe, Agersø, Jonsson,
Madsen, and Nielsen 2004), but it also suffers from convergence issues. saemix also has some
limitations in the models that can be set up. Covariates must enter the parameter model
linearly (after one of the available transformations), and there is no automated treatment
of categorical covariates, although this can be circumvented by users creating sets of binary
covariates. In addition, for the moment saemix can only handle one response. Finally, the
current version of the package is better suited to models with closed-form solutions, although
there is no limitations from an algorithmic point of view on the models that can be fit.
Using a system of differential equations (ODE) can be implemented quite easily within R
using deSolve (Soetaert, Petzoldt, and Setzer 2010) for instance (see Supplementary code
file fitODE_saemix.R for an example). This approach could be used to implement a model
with Michaelis-Menten elimination, for which no closed form solution of the model exists.
We however recommend against integrating ODE models with ode(). Indeed, run times
are exceedingly long even with the theophylline example, which is a very simple first-order
elimination model with only 12 subjects. These run times would in addition increase linearly
with the number of subjects, quickly becoming intractable. It is also possible with deSolve
to implement the structural model in Fortran to improve the computational time but this is
beyond the scope of this paper.
The SAEM algorithm has been shown to have good statistical properties in various theoret-
ical (Kuhn and Lavielle 2005) and practical applications (Girard and Mentré 2005; Panhard
and Samson 2009; Comets, Lavenu, and Lavielle 2011). We show here that the R implemen-
tation saemix performs well on reference datasets used to compare different software packages
by Plan et al. (2012). Most of the scenarios run with nlme showed various degrees of con-
vergence issues in that paper, whether started from the true or from altered parameters.
Estimates were obtained for only 5% of the datasets simulated under a rich design, and 16%
of those simulated under a sparse design in Plan et al. (2012). Convergence issues were related
to the nonlinearity between dose and response, with a γ of 3. Of note, FOCE in NONMEM
or SAS did not show the same convergence problems, suggesting the R implementation of
the FOCE algorithm could probably be improved (Plan et al. 2012). We attempted here to
fit the same datasets with nlmer (data not shown), but encountered even more convergence
problems. Note also we could not fit the original dataset directly with nlmer, as the gradient
of the model is undefined for a dose of 0. We had to change the dataset by assuming a dose
of 0.01 instead of 0 to avoid this numerical problem. nlme for the same datasets also showed
major convergence issues. In the present paper, we therefore compared saemix to nlme and
nlmer on a less challenging setting using an Emax model instead of the Hill model. However,
nlmer still failed in over half of the datasets we attempted to fit, despite trying different initial
parameter estimates. nlme fared better in terms of convergence, but still exhibited more bias
than saemix. Both packages were run with the default settings, which might explain in part
the poor results we found here.
The SAEM algorithm involves repeated evaluations of the model function, and run times
increase with the number of subjects in the dataset. One possibility to improve the speed of
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saemix will be to implement a stopping criterion to move into the second phase of the algo-
rithm when the estimates of the parameters stabilise, as has been done in Monolix (Lavielle
2014). A sizeable portion of the time spent in the main algorithm is devoted to evaluations
of the model predictions. Model predictions could be obtained from more efficient codes in C.
Other computationally intensive functions include the computation of the log-likelihood by
importance sampling, which again requires repeated model evaluations. These sections could
again be externalised to C in future versions of saemix.
saemix has a number of settings that the user can change. Most of the time these settings can
be left at the default values, with the exception of the following. With small sample sizes, the
number of chains (argument nb.chains) can be increased as the results are then averaged over
the different chains and yield more stable estimates from run to run. The number of iterations
(argument nbiter.saemix) in both burn-in and convergence phases of the algorithm can also
improve convergence, as shown in Section 4.3. In practice, the convergence plots can be used
to assess the stability of the parameter estimates at the end of the burn-in phase to detect
whether to increase the number of iterations. The number of samples used to compute the
log-likelihood by importance sampling (argument nmc.is) can be increased to compute a
more precise estimate of the log-likelihood if the estimate does not appear stable yet in the
convergence plots. Obviously, increasing the values of these settings will have an impact on
run times. Finally, the robustness of the estimated parameters can be assessed by changing
the random seed (argument seed) and initial estimates of the parameters around the final
estimates. Practical illustrations are proposed in Lavielle (2014).
To use saemix, the user needs to define two specific objects, one containing the hierarchi-
cal data structure and the other containing the elements of the mixed effect models. The
structural model is defined through a R function that the user must create, which is one
of the difference with nlme or lme4 which both use R formulas. Although it requires a bit
more work from the user to create this function, it is clear from the examples in Section 4.2
and 4.3 that this it not very difficult. Specifying the interindividual variability in saemix is
very straightforward: The random effects are sampled from normal distributions and the user
only needs to specify the transformation for each random effect, as well as the joint covari-
ance structure. This allows great flexibility, compared to, e.g., nlme where changing from a
normal to a log-normal distribution requires to reparameterise the model and its derivatives
in terms of log-parameters. The other advantage is a clearer separation between regressors
and covariates, which are defined in the data object, and parameters, which belong to the
model. This is a much more flexible structure to include for instance complex dose regimens
or other inputs to the system. The structure of the ‘saemixModel’ object is also more easy
to interface with other outputs (C programs, specialised packages) which may not comply
with R standards. The future of saemix will indeed be tied in with larger developments that
are ongoing in the pharmacometrics community. There is currently a European consortium
called DDMoRe working on developing a general language for pharmacometrics, encompass-
ing structural models from pharmacokinetics to system biology and statistical models ranging
from frequentist to Bayesian approaches (Harnisch, Matthews, Chard, and Karlsson 2013).
Two authors of this paper (Comets and Lavielle) are part of this endeavour and saemix will
be extended to support this language.
In conclusion, we have developed the R package saemix to estimate the parameters of nonlinear
mixed effect models. We do not intend to suggest that it is better than the other modelling
packages available in R, merely that it can be used to complement the existing array of
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estimation methods. It is very easy to use, as we show in the current paper how to cast
models in nlme and nlmer in terms of saemix, so that it can be used to compare the results
for different estimation methods and evaluate the robustness of the analysis. However, the
underlying algorithm, SAEM, has been shown to have superior statistical properties and good
operational performances when compared to gradient-based algorithms. We hope to extend
saemix to more complicated models by using the MLX-TRAN language and solver, which
are being externalised to C/C++ so that the models can be called and model predictions
obtained from different software packages. Other extensions will include more complex data,
involving simultaneous modelling of several responses, left-censored data, as well as allow the
user to model the interindividual variability through other parameter distributions and write
his or her own residual error model. These more advanced features are already available in the
Monolix software, which is implemented in MATLAB and has many specific features adapted
to PK/PD applications as well as an extensive library of PK/PD models and a modelling
language where ODE models can be easily coded. However, the objective in developing
saemix was not to provide a complete rewrite of Monolix, but to offer the SAEM estimation
algorithm to the R community, to be used in conjunction with or as an alternative to other
packages for nonlinear mixed effect models. As such, it has many potential applications for
the analysis of longitudinal data, which are encountered for instance in agronomy, chemistry,
medical trials and of course pharmacokinetics and pharmacodynamics.
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