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Abstract

In this paper we show how to simulate and estimate a COGARCH(p, q) model in
the R package yuima. Several routines for simulation and estimation are introduced.
In particular, for the generation of a COGARCH(p, q) trajectory, the user can choose
between two alternative schemes. The first is based on the Euler discretization of the
stochastic differential equations that identify a COGARCH(p, q) model while the second
considers the explicit solution of the equations defining the variance process.

Estimation is based on the matching of the empirical with the theoretical autocorre-
lation function. Three different approaches are implemented: minimization of the mean
squared error, minimization of the absolute mean error and the generalized method of
moments where the weighting matrix is continuously updated. Numerical examples are
given in order to explain methods and classes used in the yuima package.

Keywords: COGARCH(p, q) processes, inference, YUIMA project.

1. Introduction
The continuous-time GARCH(1, 1) process has been introduced in Klüppelberg, Lindner,
and Maller (2004) as a continuous counterpart of the discrete-time generalized autoregressive
conditional heteroskedastic (GARCH hereafter) model proposed by Bollerslev (1986). The
idea is to develop in continuous time a model that is able to capture some stylized facts
observed in financial time series exploiting only one source of randomness for returns and for
variance dynamics. Indeed, in the continuous-time GARCH process (COGARCH hereafter),
the stochastic differential equation, that identifies the variance dynamics, is driven by the
discrete part of the quadratic variation of the same Lévy process used for modeling returns.
The continuous nature of the COGARCH makes it particularly appealing for describing the
behavior of high frequency data (see Haug, Klüppelberg, Lindner, and Zapp 2007, for an
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application of the method of moments using intraday returns). It is possible to estimate
the model using daily data and then generate the sample paths of the process with intraday
frequency. This feature makes these models more useful than their discrete counterparts
especially for risk management purposes. The recent crises show the relevance of monitoring
the level of risk using high frequency data (see Shao, Lian, and Yin 2009; Dionne, Duchesne,
and Pacurar 2009, and references therein for some further explanation on the value-at-risk
computed on intraday returns).
The generalization to higher order COGARCH(p, q) processes has been proposed in Brockwell,
Chadraa, and Lindner (2006) and Chadraa (2009). Starting from the observation that the
variance of a GARCH(p, q) is an autoregressive moving average model (ARMA hereafter)
with order (q, p−1) (see Brockwell et al. 2006, for more details), the variance is modeled with
a continuous-time autoregressive moving Average process (CARMA hereafter) with order
(q, p − 1) (see Brockwell 2001; Tómasson 2015; Brockwell, Davis, and Yang 2007, and many
others) driven by the discrete part of the quadratic variation of the Lévy process in the
returns. Although this representation is different from that used by Klüppelberg et al. (2004)
for the COGARCH(1, 1) process, the latter can be again retrieved as a special case.
Many authors recently have investigated the COGARCH(1, 1) model from a theoretical and an
empirical point of view (see Maller, Müller, and Szimayer 2008; Kallsen and Vesenmayer 2009;
Müller 2010; Bibbona and Negri 2015, and many others). Some R codes for the estimation and
the simulation of a COGARCH(1, 1) driven by a compound Poisson or by a variance gamma
are available in Granzer (2013). For the general COGARCH(p, q), the main results are given
in Brockwell et al. (2006) and Chadraa (2009). The aim of this paper is to describe the simu-
lation and the estimation schemes for a COGARCH(p, q) model in the yuima package version
1.0.2 developed by Brouste, Fukasawa, Hino, Iacus, Kamatani, Koike, Masuda, Nomura, Ogi-
hara, Shimuzu, Uchida, and Yoshida (2014). Based on our knowledge, the yuima version 1.6.8
(YUIMA Project Team 2017) used in this paper is the only R package available on the Compre-
hensive R Archive Network (CRAN; https://CRAN.R-project.org/package=yuima) that
allows the user to manage a higher order COGARCH(p, q) model driven by a general Lévy
process. Moreover, the estimation algorithm gives the option to recover the increments of the
underlying noise process and estimates the Lévy measure parameters. We recall that a similar
procedure is available in yuima also for the CARMA model (see Iacus and Mercuri 2015, for
a complete discussion). The estimated increments can be used for forecasting the behavior
of high frequency returns, as shown in the empirical analysis. We also provide a comparison
with GARCH models. At the moment, there exist several choices for GARCH modeling in
R, see for instance fgarch (Wuertz and Chalabi 2016), tseries (Trapletti and Hornik 2015)
and rugarch (Ghalanos 2015). In our comparison the natural choice seems to be the rugarch
package that allows the user to forecast the time series using both parametric distributions
and estimated increments.
The outline of the paper is as follows. In Section 2 we discuss the main properties of the
COGARCH(p, q) process. In particular we review the condition for the existence of a strictly
stationary variance process, its higher moments and the behavior of the autocorrelation of
the squared increments of the COGARCH(p, q) model. In Section 3 we analyze two different
simulation schemes. The first is based on the Euler discretization while the second uses the
solution of the equations defining the variance process. Section 4 is devoted to the estimation
algorithm. In Section 5 we describe the main classes and corresponding methods in the yuima
package and in Section 6 we present some numerical examples about the simulation and the
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estimation of a COGARCH(p, q) model and we conduct a comparison with the GARCH(1, 1)
model. Section 7 concludes the paper. In the Appendix we derive the higher moments of a
COGARCH(p, q) process and its autocorrelation function by means of Teugels martingales.

2. COGARCH(p, q) models driven by a Lévy process
In this section, we review the mathematical definition of a COGARCH(p, q) process and its
properties. In particular we focus on the conditions for the existence of a strictly stationary
COGARCH(p, q) process and compute the first four unconditional moments. Their existence
plays a central role for the computation of the autocorrelation function of the squared incre-
ments of the COGARCH(p, q) model and consequently the estimation procedure implemented
in the yuima package.
The COGARCH(p, q) process, introduced in Brockwell et al. (2006) as a generalization of
the COGARCH(1, 1) model, is defined through the following system of stochastic differential
equations: 

dGt =
√
VtdLt

Vt = a0 + a>Yt−
dYt = AYt−dt+ e

(
a0 + a>Yt−

)
d [L,L]dt

(1)

where q and p are integer number such that q ≥ p ≥ 1. The state space process Yt is a vector
with q components:

Yt = [Y1,t, . . . , Yq,t]> .
Vector a ∈ Rq is defined as:

a = [a1, . . . , ap, ap+1, . . . , aq]>

with ap+1 = · · · = aq = 0. The companion q × q matrix A is

A =


0 1 . . . 0
...

... . . . ...
0 0 . . . 1
−bq −bq−1 . . . −b1

 .
Vector e ∈ Rq contains zero entries except for the last component that is equal to one.
[L,L]dt is the discrete part of the quadratic variation of the underlying Lévy process Lt and
is defined as:

[L,L]dt :=
∑

0≤s≤t
(∆Ls)2 . (2)

If the process Lt is a càdlàg pure jump Lévy process the quadratic variation is defined as
in (2).

Remark 1 A COGARCH(p, q) model is constructed starting from the observation that in the
GARCH(p, q) process, its discrete counterpart, the dynamics of the variance is a predictable
ARMA(q, p−1) process driven by the squares of the past increments. In the COGARCH(p, q)
case, the ARMA process leaves the place to a CARMA(q, p − 1) model (see Brockwell 2001,
for details about the CARMA(p, q) driven by a Lévy process) and the infinitesimal increments
of the COGARCH(p, q) are defined through the differential of the Lévy Lt as done in (1).
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The COGARCH(p, q) process generalizes the COGARCH(1, 1) process that has been intro-
duced following different arguments from those for the (p, q) case. However, choosing q = 1
and p = 1 in (1), the COGARCH(1, 1) process developed in Klüppelberg et al. (2004) and
Haug et al. (2007) can be retrieved through straightforward manipulations and, for obtaining
the same parametrization as in Proposition 3.2 of Klüppelberg et al. (2004), the following
equalities are necessary:

ω0 = a0b1, ω1 = a1e
−b1 and η = b1.

Before introducing the conditions for strict stationarity and the existence of unconditional
higher moments, it is worth noting that the state space process Yt can be seen as a multivariate
stochastic recurrence equation (see Brandt 1986; Kesten 1973) and the corresponding theory
can be applied to the COGARCH(p, q) process (see Brockwell et al. 2006; Chadraa 2009, for
more details) in order to derive its main features.
In the case of the compound Poisson driven noise, the representation through the stochastic
difference equations is direct in the sense that the random coefficients of the state process Yt
can be written explicitly while in the general case, it is always possible to identify a sequence
of compound Poisson processes that converges to the chosen driven Lévy process.
In the following, we consider the case of distinct eigenvalues that implies matrix A is diago-
nalizable, that is:

A = SDS−1 (3)

with

S =


1 . . . 1
λ1 . . . λq
...

...
λq−1

1 . . . λq−1
q

 , D =

 λ1
. . .

λq

 , (4)

where λ1, λ2, . . . , λq are the eigenvalues of matrix A and are ordered as follows:

<{λ1} ≥ <{λ2} ≥ . . . ≥ <{λq} . (5)

Through the theory of stochastic recurrence equations, Brockwell et al. (2006) provide a
sufficient condition for the strict stationarity of a COGARCH(p, q) model. Under the as-
sumption that the measure νL (l) is not trivial, the stationary solution of process Yt converges
in distribution to the random variable Y∞ if there exists some r ∈ [1,+∞] such that:∫ +∞

−∞
ln
(
1 + ‖S−1ea>S‖rl2

)
dνL (l) ≤ <{λ1} (6)

for some matrix S such that it is possible to find a diagonalizable matrix A as in (3). The
operator ‖·‖r denotes both the vector Lr norm if its argument is a vector and the associated
natural matrix norm if the argument is a matrix (see Serre 2002, for details).

If we choose as a starting condition Y0
d= Y∞ then the process Yt is strictly stationary and

consequently the variance process Vt is strictly stationary. As shown in Klüppelberg et al.
(2004) and remarked in Brockwell et al. (2006), the condition in (6) is also necessary for the
COGARCH(1, 1) case and can be simplified as:∫ +∞

−∞
ln
(
1 + a1l

2
)
dνL (l) ≤ b1. (7)
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Using the stochastic recurrence equation theory, it is also possible to determine the condition
for the existence of higher moments of the state process Yt. The conditions r ≥ 1, <{λ1} < 0
in (5) and

E
(
L2κ

1

)
< +∞,

∫ +∞

−∞

[(
1 + ‖S−1ea>S‖rl2

)κ
− 1

]
dνL (l) < <{λ1}κ, (8)

where S is chosen such that matrix A is diagonalizable, are sufficient for the existence of the
κth order moment of the process Yt as shown in Brockwell et al. (2006).
Choosing κ = 1, the unconditional stationary mean of Yt exists and can be computed as:

E (Y∞) = −a0µ
(
A+ µea>

)−1
e = a0µ

bq − a1µ
e1, (9)

where e1 = [1, 0, . . . , 0]> is a q × 1 vector.
In this case, the condition in (8) can be simplified as follows:

E
(
L2

1

)
< +∞, ‖S−1ea>S‖rµ < <{λ1} , (10)

where µ :=
∫+∞
−∞ l2dνL (l) is the second order moment of the Lévy measure νL (l).

It is worth noting that condition (10) ensures also the strict stationarity for Yt since, using
ln(1 + x) ≤ x, we have the following sequence of inequalities:∫ +∞

−∞
ln
(
1 + ‖S−1ea>S‖rl2

)
dνL (l) ≤ ‖S−1ea>S‖rµ ≤ <{λ1} .

The exponential of matrix A:

eA =
∞∑
k=0

1
k!A

k

is used in the stationary covariance matrix (see Chadraa 2009, for more details)

COV (Y∞) =
a2

0b
2
qρ

(bq − µa1)2 (1−m)

∫ ∞
0

eÃtee>eÃ>tdt. (11)

The existence of the second moment of Y∞ in (8) becomes:

E
(
L4

1

)
<∞, ‖S−1ea>S‖rρ < 2

(
−<{λ1} − ‖S−1ea>S‖rµ

)
,

where
ρ :=

∫ +∞

−∞
l4dνL (l)

is the fourth moment of the Lévy measure νL (l) and

m :=
∫ +∞

0
a>eÃtee>eÃ>tadt.

Before introducing the higher moments and the autocorrelations, we recall the conditions
for the non-negativity of a strictly stationary variance process in (1). Indeed, under the
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assumption that all the eigenvalues of matrix A are distinct and the relation in (6) holds, the
variance process Vt ≥ a0 > 0 a.s. if:

a>eAte ≥ 0, ∀t ≥ 0. (12)

The condition in (12) is costly since we need to check it at each time instance. Nevertheless
some useful controls are available1 (see Tsai and Chan 2005, for details).

• A necessary and sufficient condition to guarantee that a>eAte ≥ 0 in the COGARCH(2, 2)
case is that the eigenvalues of A are real and a2 ≥ 0 and a1 ≥ −a2λ (A), where λ (A) is
the biggest eigenvalue.

• Under condition 2 ≤ p ≤ q, that all eigenvalues of A are negative and ordered in an
increasing way λ1 ≥ λ2 ≥, . . . ,≥ λp−1 and γj for j = 1, . . . , p − 1 are the roots of the
polynomial a (z) := a1 + a2z + · · ·+ apz

p−1 ordered as 0 > γ1 ≥ γ2 ≥ . . . ≥ γp−1, then
a sufficient condition for (12) is

k∑
i=1

γi ≤
k∑
i=1

λi ∀k ∈ {1, . . . , p− 1} .

• For a COGARCH(1, q) model a sufficient condition that ensures (12) is that all eigen-
values must be real and negative.

Combining the requirement in (6) with that in (12) it is possible to derive the higher moments
and the autocorrelations for a COGARCH(p, q) model. As a first step, we define the returns
of a COGARCH(p, q) process on the interval (t, t+ r] , ∀t ≥ 0 as:

G
(r)
t :=

∫ t+r

t

√
VsdLs. (13)

Let Lt be a symmetric and centered Lévy process such that the fourth moment of the asso-
ciated Lévy measure is finite, we define matrix Ã as:

Ã := A+ µea>.

It is worth noting that Ã has the same structure as A except for the last row q where
Ãq, = (−bq + µa1, . . . ,−b1 + µaq). For any t ≥ 0 and for any h ≥ r > 0, the first two
moments of (13) are

E
[(
G

(r)
t

)]
= 0 (14)

and

E
[(
G

(r)
t

)2
]

= α0bqr

bq − µa1
E
[
L2

1

]
. (15)

1In the yuima package a diagnostic for condition (6) is available choosing matrix S as done in (4) and r = 2.
See function Diagnostic.Cogarch and its documentation for more details. The function verifies also if the
sufficient conditions for the positivity of process Vt are satisfied.
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The computation of the autocovariances of the variance of the squared returns (13) is based
on the following quantities defined as:

P0 = 2µ2
[
3Ã−1

(
Ã−1

(
eÃrI

)
− rI

)
− I

]
COV (ε∞)

Ph = µ2eÃhÃ−1
(
I − eÃr

)
Ã−1

(
eÃr − I

)
COV (ε∞)

, (16)

Q0 = 6µ
[(
rI − Ã−1

(
eÃr − I

))
COV (ε∞)− Ã−1

(
Ã−1

(
eÃr − I

)
− rI

)
COV (ε∞) Ã>

]
e

Qh = µeÃhÃ−1
(
I − e−Ãr

) [(
I − eÃr

)
− Ã−1

(
eÃr − I

)
COV (ε∞) Ã>

]
e

,

(17)
and

R = 2r2µ2 + ρ. (18)

Observe that Ph and P0 are q × q matrices. Qh and Q0 are q × 1 vectors and R is a scalar.
The q × q matrix COV (ε∞) is defined as:

COV (ε∞) = ρ

∫ ∞
0

eÃtee>eÃ>tdt. (19)

The autocovariances of the squared returns (13) are defined as:

γr (h) := COV
[
(G(r)

t )2, (G(r)
t+h)2

]
=
a2

0b
2
q

(
a>Pha + aQh

)
(1−m) (bq − µa1)2 , h ≥ r, (20)

while the variance of the process
(
G

(r)
t

)2
is

γr (0) := VAR
((
G

(r)
t

)2
)

=
a2

0b
2
q

(
a>P0a + aQ0 +R

)
(1−m) (bq − µa1)2 . (21)

Combining the autocovariances in (20) with (15) and (21) we obtain the autocorrelations:

ρr (h) := γr (h)
γr (0) =

(
a>Pha + aQh

)
(a>P0a + aQ0 +R) . (22)

As done for the GARCH(p, q) model the autocovariances of the returns G(r)
t are all zeros.

In Appendix B, by means of the Teugels martingales (Nualart and Schoutens 2000) we derive
the results in (14), (15), (20) and (21).

3. Simulation of a COGARCH(p, q) model
In this section we illustrate the theory behind the simulation routines available in the yuima
package for a COGARCH(p, q) model. The corresponding sample paths are generated ac-
cording two different schemes.
The first method is based on the Euler-Maruyama (see Iacus 2008, for more details) dis-
cretization of the system in (1). In this case the algorithm follows these steps:
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• We determine an equally spaced grid from 0 to T composed by N intervals with the
same length ∆t:

0, . . . , (n− 1)×∆t, n×∆t, . . . , N ×∆t.

• We generate the trajectory of the underlying Lévy process Lt sampled on the grid
defined in the previous step.

• Choosing a starting point for the state process Y0 = y0 and G0 = 0, we have

Yn = (I +A∆t)Yn−1 + e
(
a0 + a>Yn−1

)
∆ [LL]dn . (23)

The discrete quadratic variation of the processes Lt process is approximated by

∆ [LL]dn = (Ln − Ln−1)2 .

• We generate the trajectories for the variance process and for process Gn based on the
following two equations:

Vn∗ = a0 + a>Yn−1

and

Gn = Gn−1 +
√
Vn (Ln − Ln−1) .

Although the discretized version of the state process Yn in (23) can be seen as a stochastic
recurrence equation, the stationarity and non-negativity conditions for the variance Vn are
different from those described in Section 2. In particular, it is possible to determine an
example where the discretized variance process Vn assumes negative values while the true
process is non-negative almost surely.
In order to clarify deeper this issue we consider a COGARCH(1, 1) model driven by a variance
gamma Lévy process (see Madan and Seneta 1990; Loregian, Mercuri, and Rroji 2012, for
more details about the VG model). In this case, the condition for the non-negativity of the
variance in (12) is ensured if a0 > 0 and a1 > 0 while the strict stationarity condition in (7)
for the COGARCH(1, 1) requires that E[L2] = 1 and a1 − b1 < 0. The last two requirements
guarantee also the existence of the stationary unconditional mean for the process Vt.
We define the model using the function setCogarch. Its usage is completely explained in
Section 5. The following command line instructs yuima to build the COGARCH(1, 1) model
with variance gamma noise:

R> library("yuima")
R> model1 <- setCogarch(p = 1, q = 1, work = FALSE,
+ measure = list(df = "rvgamma(z, 1, sqrt(2), 0, 0)"),
+ measure.type = "code", Cogarch.var = "G", V.var = "v",
+ Latent.var = "x", XinExpr = TRUE)

Choosing the following values for the parameters

R> param1 <- list(a1 = 0.038, b1 = 301, a0 = 0.01, x01 = 0)
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Figure 1: Sample path of a VG COGARCH using the Euler discretization of state process.

the COGARCH(1, 1) model is stationary and the variance is strictly positive. Nevertheless,
if we simulate the trajectory using the Euler discretization, the value of ∆t can lead to an
exploding oscillatory behavior2 for the process as shown in Figure 1:

R> Terminal1 <- 5
R> n1 <- 750
R> samp1 <- setSampling(Terminal = Terminal1, n = n1)
R> set.seed(123)
R> sim1 <- simulate(model1, sampling = samp1, true.parameter = param1,
+ method = "euler")
R> plot(sim1,
+ main = "Sample Path of a VG COGARCH(1,1) model with Euler scheme")

2For a general SRE
Yn = AnYn−1 + Bn

the conditions for the existence and the uniqueness of a strictly stationary solution are E [ln |A0|] < 0 and
E
[
ln+ |B0|

]
<∞ (as in Chadraa 2009) where ln+ (x) = max {ln (x) , 0}. If we look to Equation 23, the above

conditions in our example read
E
[
ln+ (a0∆[L, L])

]
<∞

and
E [ln (|1− b1∆t + a1∆ [L, L]|)] < 0.

The first condition is ensured by the following inequality.

E
[
ln+ (a0∆[L, L])

]
= E [max (ln (a0∆[L, L]) , 0)] < E [max (a0∆[L, L]− 1, 0)]

since ∆[L, L] has a finite first moment, we have

E
[
ln+ (a0∆[L, L])

]
< a0E [∆[L, L]] <∞.

The second condition depends on ∆t since for instance if ∆t → 0 the condition is never true since the
approximated quadratic variation ∆ [L, L] is non-negative and then also ln

(
1 + a1∆ [L, L]n

)
is positive.
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From a theoretical point of view, the values used for the parameters guarantee the non-
negativity and the stationarity of the variance of a COGARCH(1, 1) process.
To overcome this problem, we provide an alternative simulation scheme based on the solution
of the process Yn given the previous point Yn−1. Applying Ito’s Lemma for semimartingales
as in Protter (1990) to the transformation e−AtYt, we have:

e−A∆tYt = Yt−∆t −
∫ t

t−∆t
Ae−AuYu−du+

∫ t

t−∆t
e−AudYu+∑
s≤t

[
e−As (Ys − Ys−)− e−As (Ys − Ys−)

]
.

We substitute the definition of Yt in (1) and get:

e−AtYt = Yt−∆t −
∫ t

t−∆t
Ae−AuYu−du+

∫ t

t−∆t
e−AuAYu−du+∫ t

t−∆t
e−Aue

(
a0 + a>Yu−

)
d [LL]du .

Using the following property for an exponential matrix

AeAt = A

(
I +At+ 1

2A
2t2 + 1

3!A
3t3 + . . .

)
=

(
I + tA+ 1

2 t
2A2 + t3

1
3!A

3 + . . .

)
A = eAtA,

we get
Yt = eAtYt−∆t +

∫ t

t−∆t
eA(t−u)e

(
a0 + a>Yu−

)
d [LL]du . (24)

Except for the case where the noise is a compound Poisson, the simulation scheme follows
the same steps of the Euler-Maruyama discretization where the state space process Yn on the
sample grid is generated through the approximation of the relation in (24):

Yn = eA∆tYn−1 + eA(∆t)e
(
a0 + a>Yn−1

) (
[LL]dn − [LL]dn−1

)
(25)

or equivalently:

Yn = a0e
A(∆t)e∆ [LL]dn + eA∆t

(
I + ea>∆ [LL]dn

)
Yn−1, (26)

where ∆ [LL]dn := [LL]dn − [LL]dn−1 is the increment of the discrete part of the quadratic
variation.
The sample path is simulated based on the recursion in (26) choosing method = mixed in the
simulate function, as done below:

R> set.seed(123)
R> sim2 <- simulate(model1, sampling = samp1, true.parameter = param1,
+ method = "mixed")
R> plot(sim2,
+ main = "Sample Path of a VG COGARCH(1,1) model with mixed scheme")
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Figure 2: Sample path of a VG COGARCH(1, 1) process with method = "mixed" in the
simulate function.

In the case of the COGARCH(p, q) driven by a compound Poisson Lévy process, a trajectory
can be simulated without any approximation of the solution in (24). Indeed it is possible to
determine the time where the jumps occur and then evaluate the corresponding quadratic
variation in an exact way. Once the trajectory of a random time is obtained, the piecewise
constant interpolation is used on the fixed grid, in order to maintain the càdlàg property of
the sample path.

4. Estimation of a COGARCH(p, q) model
In this section we explain the estimation procedure that we propose in the yuima package for
the COGARCH(p, q) model. As done for the CARMA(p, q) model driven by a Lévy process in
Iacus and Mercuri (2015), we consider a three step estimation procedure that allows the user
to obtain estimated values for the COGARCH(p, q) and the parameters of the Lévy measure.
As done for the estimation of the COGARCH(1, 1) model (see Haug et al. 2007), hereafter
we assume E [L1] = 1.
This procedure is structured as follows:

• Using the moment matching procedure explained below, we estimate the COGARCH(p,
q) parameters a := [a1, . . . , ap], b := [b1, . . . , bq] and the constant term a0 in the variance
process Vt. In this phase, the estimation is obtained by minimizing some distances
between the empirical and theoretical autocorrelation function.

• Once the COGARCH(p, q) parameters are available, we recover the increments of the
underlying Lévy process.

• In the third step, we use the increments obtained in the second step and get the Lévy
measure parameters by means of the maximum likelihood estimation procedure.
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The process Gt in (1) is assumed to be observed on the grid 0, 1×∆t, . . . , n×∆t, . . . , N ×∆t
with ∆t = T

N . The associated sampled process Gn is defined as:

Gn := Gn×∆t, n = 0, 1, . . . , N.

In the following we require the underlying Lévy process to be symmetric and centered in zero.
The COGARCH(p, q) increments of lag one are determined as:

G(1)
n := Gn −Gn−1

and the increments of lag r as:
G(r)
n := Gn −Gn−r, (27)

where r ≥ 1 is an integer and for r = 1 the definition in (4) coincides with (27).
It is worth mentioning that the increments G(r)

n can be obtained as a time aggregation of
increments of lag one as follows:

G(r)
n =

n∑
h=n−r+1

G
(1)
h . (28)

The time aggregation in (28) can be useful during the optimization routine when the values
of increments G(1)

n are very small in absolute value.
Using the sample

{
G

(r)
n

}
n≥r

, we compute the empirical second order moment

µ̂r := 1
N − d− r + 1

N−d∑
n=r

(
G(r)
n

)2

and the empirical autocovariance function γ̂ (h) is defined as:

γ̂r (h) := 1
N − d− r + 1

N−d∑
n=r

((
G

(r)
n+h

)2
− µ̂r

)(
(Grn)2 − µ̂r

)
h = 0, 1, . . . , d,

where d is the maximum lag considered.
The empirical autocorrelations are:

ρ̂r (h) = γ̂r (h)
γ̂r (0) . (29)

We use the theoretical and the empirical autocorrelations in order to define the moment
based conditions for the estimation procedure. By the introduction of the (q + p)× 1 vector
θ := (a,b) we define the vector function g (θ) : Rq+p → Rd as follows:

g (θ) := E
[
f
(
G(r)
n , θ

)]
, (30)

where f
(
G

(r)
n , θ

)
is a d-dimensional real function with the components defined as:

fh
(
G(r)
n , θ

)
= ρr (h)−

((
G

(r)
n+h

)2
− µr

)((
G

(r)
n

)2
− µr

)
γr (0) , h = 1, . . . , d. (31)
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In the estimation algorithm, we replace the expectation in (30) with the sample counterpart.
The components of vector ĝ (θ) = [ĝ1 (θ) , . . . , ĝd (θ)]> are defined as:

ĝh (θ) = 1
N − d− r + 1

N−d∑
n=r

ρr (h)−

((
G

(r)
n+h

)2
− µ̂r

)((
G

(r)
n

)2
− µ̂r

)
γ̂r (0)


= ρr (h)− ρ̂r (h) , h = 1, . . . , d. (32)

The vector θ is obtained by minimizing some distances between empirical and theoretical
autocorrelations. The optimization problem is:

min
θ∈Rq+p

d (ρr, ρ̂r) , (33)

where the components of vectors ρr and ρ̂r are the theoretical and empirical autocorrelations
defined in (22) and (29) respectively. Function d (x, y) measures the distance between vectors
x and y. In the yuima package, three distances are available and listed below:

• The L1 norm

‖ĝ (θ)‖1 =
d∑

h=1
|ĝh (θ)| . (34)

• The square of L2 norm

‖ĝ (θ)‖22 =
d∑

h=1
(ĝh (θ))2 . (35)

• The quadratic form
‖ĝ (θ)‖2W = ĝ (θ)>Wĝ (θ) , (36)

where the positive definite weighting matrix W is chosen to improve the efficiency within
the class of GMM type estimators.

It is worth noting that the objective function ‖ĝ (θ)‖22 is a special case of the function ‖ĝ (θ)‖2W,
where the weighting matrix W coincides with the identity matrix. Both distances are related
to the generalized method of moments (GMM) introduced by Hansen (1982). The efficiency
of GMM estimators is discussed in Appendix A based on a particular choice of the weighting
matrix W.
It is worth noting that by solving the minimization problem in (33), we obtain estimates for
the vector θ. The parameter a0 is determined by the inversion of the formula in (15) where
the sample estimate of E

[(
G

(r)
t

)2
]
is used.

Once the estimates of vector θ are obtained, the user is allowed to retrieve the increments of
the underlying Lévy process based on the following procedure. This stage is independent of
the nature of the Lévy measure but it is only based on the solution of the state process Yt
and on the approximation of the quadratic variation with the squared increments of the Lévy
driven process.
Let Gt− be the left limit of the COGARCH(p, q) process Gt, the increments ∆Gt := Gt−Gt−
can be approximated using the observations {Gn}Nn=0 as follows:

∆Gt ≈ ∆Gn = Gn −G(n−1). (37)
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Recalling that Gt = ∑
0≤s≤t

√
Vs (∆Ls), the approximation in (37) becomes:

∆Gt ≈
√
Vn (∆Ln) , (38)

where Vn is the value of the variance process at the observation time t = n∆t and ∆Ln =
Ln − Ln−1 is the discretized Lévy increment from t−∆t to t.
Using the discretization scheme introduced in (25), the process Yn is written as:

Yn = eA∆tYn−1 + eA∆te
(
a0 + a>Yn−1

) (
[LL]dn − [LL]dn−1

)
. (39)

Since [LL]dn − [LL]dn−1 ≈ (∆Ln)2 and using the result in (38), the difference equation (39)
can be approximated in terms of the squared increments of the COGARCH(p, q) process to
obtain:

Yt ≈ eA∆tYn−1 + eA∆te
(
a0 + a>Yn−1

)
(∆Ln)2

= eA∆tYn−1 + eA∆te (∆Gn)2 .

Choosing Y0 equal to the unconditional mean of the process Yt, we are able to retrieve its sam-
ple path based on the recursive equation in (40). The only quantities that we need to compute
are the squared increments of the COGARCH(p, q) process on the grid {0, 1×∆t, 2×∆t, . . . ,
n×∆t, . . . , N ×∆t}. The estimated state process in (40) is also useful for getting the esti-
mated trajectory of the variance process. Finally note the Lévy increment at a general time
t = n×∆t is obtained as:

∆Ln = ∆Gn√
Vn

. (40)

The increments of the underlying Lévy process in (40) can be used for estimation of some
Lévy measure parameters. As observed in Kappus and Reiss (2010), identification of the
Lévy measure from increments observed at arbitrary discrete grid is not trivial. In yuima, it
is possible to estimate the parameters of a compound Poisson and a variance gamma process.
In the first case the quasi-likelihood estimation in Iacus (2011) is considered while, in the
second case, the likelihood function is determined as reported in Seneta (2004).

5. Usage
In this section we illustrate the main classes and methods in yuima that allow the user to deal
with a COGARCH(p, q) model. The routines implemented are based on the results considered
in Section 3 for the simulation and in Section 4 for the estimation procedures.
In particular we classify these classes and methods in three groups. The first group contains
the classes and functions that allow the user to define a specific COGARCH(p, q) model in
the yuima framework. The second group is used for the simulation of the sample paths for
the COGARCH(p, q) model and in the third estimation can be done both using simulated
or real data. A summary of the main constructors, classes and methods with their usage is
reported in Figure 3.

5.1. Classes and methods for the definition of a COGARCH(p, q) model
The main object for a COGARCH(p, q) process in the yuima package is an object of class
‘yuima.cogarch’ that contains all the information about a specific COGARCH(p, q) process.
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Figure 3: Main classes, methods and constructor in the yuima for a COGARCH(p, q) model.

The user builds an object of this class through the constructor setCogarch:

setCogarch(p, q, ar.par = "b", ma.par = "a", loc.par = "a0",
Cogarch.var = "g", V.var = "v", Latent.var = "y", jump.variable = "z",
time.variable = "t", measure = NULL, measure.type = NULL,
XinExpr = FALSE, startCogarch = 0, ...)

The arguments used in a call of the function setCogarch can be classified in four groups. The
first group composed by p, q, ar.par, ma.par and loc.par contains information about the
COGARCH parameters. In particular the integers p and q are the order of the moving average
and autoregressive coefficients respectively, while ar.par, ma.par and loc.par indicate the
label of the COGARCH coefficients in the variance process.
The arguments Cogarch.var, V.var, Latent.var, jump.variable and time.variable com-
pose the second group and they are strings chosen by the user in order to personalize the
model. In particular, they refer to the label of the observed COGARCH process (Cogarch.var),
the latent variance (V.var), the state space process (Latent.var), the underlying pure jump
Lévy (jump.variable) and the time variable (time.variable).
The third group characterizes the Lévy measure of the underlying noise. measure.type
indicates whether the noise is a compound Poisson process or another Lévy without the
diffusion component while the input measure identifies a specific parametric Lévy measure.
If the noise is a compound Poisson, measure is a list containing two elements: the name of
the intensity parameter and the density of the jump size. In the alternative case, measure
contains information on the parametric measure. We refer to the yuima documentation for
more details.
The last group is related to the starting condition of the SDE in (1). In particular, XinExpr
is a logical variable associated to the state process. The default value XinExpr = FALSE
implies that the starting condition is the zero vector, while the alternative case, XinExpr =
TRUE, allows the user to specify as parameters the starting values for each component of the
state variable. The input startCogarch is used to specify the start value of the observed
COGARCH process.
An object generated by setCogarch extends the ‘yuima.model’ class and it has only one
additional slot, called @info, that contains an object of class ‘cogarch.info’. We refer to the
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yuima documentation for a complete description of the slots that constitute the object of class
‘yuima.model’ while an object of class ‘cogarch.info’ is characterized by slots containing
the same information of the setCogarch inputs except for startCogarch, time.variable
and jump.variable that are used to fill the slots inherited from ‘yuima.model’.

5.2. Classes and methods for the simulation of a COGARCH(p, q) model
simulate is a method for an object of class ‘yuima.model’. It is also available for an object
of class ‘yuima.cogarch’. The function requires the following inputs:

simulate(object, nsim = 1, seed = NULL, xinit, true.parameter,
space.discretized = FALSE, increment.W = NULL, increment.L = NULL,
method = "euler", hurst, methodfGn = "WoodChan", sampling = sampling,
subsampling = subsampling, ...)

In this work we focus on the argument method that identifies the type of discretization scheme
when the object belongs to the class of ‘yuima.cogarch’, while for the remaining arguments
we refer to Brouste et al. (2014) and yuima’s documentation (YUIMA Project Team 2017).
The default value "euler" means that the simulation of a sample path is based on the Euler-
Maruyama discretization of the stochastic differential equations. This approach is available
for all objects of class ‘yuima.model’. For the COGARCH(p, q) an alternative simulation
scheme is available choosing method = "mixed". In this case the generation of trajectories
is based on the solution (24) for the state process. In particular if the underlying noise
is a compound Poisson Lévy process, the trajectory is built using a two step algorithm.
First the jump time is simulated internally using the exponential distribution with parameter
λ and then the size of jump is simulated using the random variable specified in the slot
yuima.cogarch@model@measure. For the other Lévy processes, the simulation scheme is
based on the discretization of the state process solution (25) in Section 5.
The simulate method is also available for an object of class ‘cogarch.est.incr’ as shown
in the next section.

5.3. Classes and methods for the estimation of a COGARCH(p, q) model
The ‘cogarch.est’ class is a class of the yuima package that contains estimated parameters
obtained through the gmm function. The structure of an object of this class is the same of an
object of class ‘mle’ in the package stats4 (see R Core Team 2017) with an additional slot,
called @yuima, that is the mathematical description of the COGARCH model used in the
estimation procedure.
The ‘cogarch.est’ class is extended by the ‘cogarch.est.incr’ class since the latter contains
two additional slots: @Incr.Lev and @logL.Incr. Both slots are related to the estimated
increments in (40). In particular @Incr.Lev is an object of class ‘zoo’ that contains the
estimated increments and the corresponding log-likelihood is stored in the slot @logL.Incr.
If we apply the simulate method to an object of class ‘cogarch.est.incr’, we obtain an
object of class ‘yuima’ where the slot data contains the COGARCH(p, q) trajectory obtained
from the estimated increments. As remarked for an object of class ‘cogarch.est’, even in
this case, an object of class ‘cogarch.est.incr’ is built internally from function gmm. This
function returns the estimated parameters of a COGARCH(p, q) model using the approaches
described in Section 4.
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gmm(yuima, data = NULL, start, method = "BFGS", fixed = list(), lower,
upper, lag.max = NULL, equally.spaced = TRUE, Est.Incr = "NoIncr",
objFun = "L2")

In order to apply the gmm function, the user has to specify the COGARCH(p, q) model,
observed data and the starting values for the optimizer using respectively the main arguments
yuima, data and start. It is worth noting that the input yuima can be alternatively an
object of class ‘yuima.cogarch’ or an object of class ‘yuima’ while data is an object of class
‘yuima.data’ containing observed data. Nevertheless if data = NULL, the input yuima must
be an object of ‘yuima’ and contain the observed data.
Arguments method, fixed, upper and lower are used in the optimization routine. In partic-
ular the last three arguments can be used to restrict the model parameter space while, using
the input method, it is possible to choose the algorithms available in the function optim.
The group composed by lag.max, equally.spaced and objFun is useful to control the error
function discussed in Section 4. In particular, lag.max is the maximum lag for which we
calculate the theoretical and empirical autocorrelation function. equally.spaced is a logical
variable. If TRUE, in each unitary interval, we have the same number of observations and the
COGARCH increments, used in the empirical autocorrelation function, are aggregated on the
unitary lag using the relation in (28). Otherwise the autocorrelation function is computed
directly using all increments. The objFun is a string variable that identifies the objective func-
tion in the optimization step. For objFun = "L2", the default value, the objective function
is a quadratic form where the weighting matrix is the identity one. For objFun = "L2CUE"
the weighting matrix is estimated using continuously updating GMM (L2CUE). For objFun
= "L1", the objective function is the mean absolute error. In the last case standard errors
for estimators are not available.
The remaining argument Est.Incr is a string variable. If Est.Incr = "NoIncr", the default
value, gmm returns an object of class ‘cogarch.est’ that contains the COGARCH param-
eters. If Est.Incr = "Incr" or Est.Incr = "IncrPar" the output is an object of class
‘cogarch.est.incr’. In the first case the object contains the increments of the underly-
ing noise while in the second case it contains also the estimated parameters of the Lévy
measure. If Est.Incr = "Incr" or Est.Incr = "IncrPar" the output is an object of class
‘cogarch.est.incr’. In the first case the object contains the increments of the underlying
noise while in the second case it contains also the estimated parameters of the Lévy measure.
Function gmm uses function cogarchNoise for the estimation of the underlying Lévy in a
COGARCH(p, q) model. This function assumes that the underlying Lévy process is symmetric
and centered in zero.

cogarchNoise(yuima, data = NULL, param, mu = 1)

In this case the arguments yuima and data have the same meaning as the arguments discussed
for the gmm function. The remaining inputs param and mu are the COGARCH(p, q) parameters
and the second moment of the Lévy measure respectively.
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6. Numerical results

6.1. Simulation and estimation of COGARCH(p, q) model

In this section we show how to use the yuima package for the simulation and the estimation
of a COGARCH(p, q) model driven by different symmetric Lévy processes. As a first step we
focus on a COGARCH(1, 1) model driven by different Lévy processes available in the package.
In particular we consider the cases in which the driven noise is a compound Poisson with jump
size normally distributed and a variance gamma process. In the last part of this section, we
show also that the estimation procedure implemented seems to be adequate even for higher
order COGARCH models. In particular we simulate and then estimate a COGARCH(2, 1)
model driven by a compound Poisson process where the jump size is normally distributed.

COGARCH(1, 1) model with compound Poisson

The first example is a COGARCH(1, 1) model driven by a compound Poisson process. As a
first step, we choose the set of the model parameters:

R> numSeed <- 200
R> param.cp <- list(a1 = 0.038, b1 = 0.053, a0 = 0.04 / 0.053, x01 = 50.33)

where a1, b1 and a0 are the parameters of the state process Yt; x0,1 is the starting point of
the process Xt. The chosen value is the stationary mean of the state process and it is used
in the simulation algorithm.
In the following command line we define the model using the setCogarch function.

R> mod.cp <- setCogarch(p = 1, q = 1, work = FALSE,
+ measure = list(intensity = "1", df = list("dnorm(z, 0, 1)")),
+ measure.type = "CP", Cogarch.var = "g", V.var = "v", Latent.var = "x",
+ XinExpr = TRUE)

In this example, the intensity of the compound Poisson is fixed to 1 and the distribution of
the jump size is a standard normal.
We simulate a sample path of the model using the Euler discretization. We fix ∆t = 1

15 and
the command lines below are used to instruct yuima for the choice of the simulation scheme:

R> Term <- 1600
R> num <- 24000
R> set.seed(numSeed)
R> samp.cp <- setSampling(Terminal = Term, n = num)
R> sim.cp <- simulate(mod.cp, true.parameter = param.cp, sampling = samp.cp,
+ method = "euler")

In Figure 4 we show the behavior of the simulated trajectories for the COGARCH(1, 1) model
Gt, the variance Vt and the state space Xt:

R> plot(sim.cp, main = paste("simulated COGARCH(1,1) model driven by a",
+ "Compound Poisson process"))
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Figure 4: Simulated sample path of a CP COGARCH(1, 1) process.

We use the two step algorithm developed in Section 4 for the estimation of the COGARCH(p, q)
and the parameters of the Lévy measure. In the yuima function gmm, we fix objFun = "L2"
meaning that the objective function used in the minimization is the mean squared error.
Setting also Est.Incr = "Incr", the function gmm returns the estimated increments of the
underlying noise.

R> res.cp <- gmm(sim.cp, start = param.cp, objFun = "L2", Est.Incr = "Incr")

In this case, the summary reports estimated parameters, their standard error computed ac-
cording to the matrix V in (43), the logarithm of the L2 distance between empirical and the
theoretical autocorrelation function and some general information about increments.

R> summary(res.cp)

Two Stages GMM estimation

Call:
gmm(yuima = sim.cp, start = param.cp, Est.Incr = "Incr", objFun = "L2")

Coefficients:
Estimate Std. Error

b1 0.06784719 0.06863755
a1 0.03404473 0.02899020
a0 1.03244444 NA

Log.objFun L2: -3.523248

Number of increments: 24000
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Figure 5: Estimated increments of a CP COGARCH(1, 1) model.

Average of increments: -0.002113

Standard Dev. of increments: 0.256569

Summary statistics for increments:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.839877 0.000000 0.000000 -0.002113 0.000000 3.685463

Cogarch(1,1) model: Stationarity conditions are satisfied.

Cogarch(1,1) model: Variance process is positive.

We remark that the standard error for a0 is not provided in the summary since, as explained
in Section 4, its value is obtained once the parameters a and b are estimated and then the
variance-covariance matrix V in (43) refers only to these parameters.
The behavior of increments is shown in Figure 5 applying the plot method to the object
res.cp

R> plot(res.cp, main = "CP Increments of a COGARCH(1,1) model")

We are able also to reconstruct the original process using the increments stored into the object
res.cp using the simulate function.

R> traj.cp <- simulate(res.cp)
R> plot(traj.cp, main = paste("estimated COGARCH(1, 1) driven by",
+ "compound poisson process"))



Journal of Statistical Software 21

−
80

−
60

−
40

−
20

0

g

1.
5

2.
5

3.
5

4.
5

v

0 500 1000 1500

t

20
40

60
80

10
0

x1

estimated COGARCH(1,1) driven by compound poisson process

Figure 6: Estimated sample path of a CP COGARCH(1, 1) model with estimated increments.

COGARCH(1, 1) model with variance gamma

We simulate and estimate a COGARCH(1, 1) model driven by a variance gamma process. We
set the values for the parameters and define the model using the following command lines:

R> param.VG <- list(a1 = 0.038, b1 = 0.053, a0 = 0.04 / 0.053, x01 = 50.33)
R> cog.VG <- setCogarch(p = 1, q = 1, work = FALSE,
+ measure = list(df = "rvgamma(z, 1, sqrt(2), 0, 0)"),
+ measure.type = "code", Cogarch.var = "y", V.var = "v",
+ Latent.var = "x", XinExpr = TRUE)

We obtain a trajectory for the COGARCH(1, 1) model with variance gamma noise.

R> set.seed(numSeed)
R> samp.VG <- setSampling(Terminal = Term, n = num)
R> sim.VG <- simulate(cog.VG, true.parameter = param.VG, sampling = samp.VG,
+ method = "euler")
R> plot(sim.VG, main = paste("simulated COGARCH$(1,1)$ model driven by a",
+ "Variance Gamma process"))

and then we estimate the model parameters:

R> res.VG <- gmm(sim.VG, start = param.VG, Est.Incr = "Incr")
R> summary(res.VG)

Two Stages GMM estimation

Call:
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Figure 7: Simulated sample path of a VG COGARCH(1, 1) model.

gmm(yuima = sim.VG, start = param.VG, Est.Incr = "Incr")

Coefficients:
Estimate Std. Error

b1 0.04866498 0.04134217
a1 0.02767662 0.01791801
a0 1.22204060 NA

Log.objFun L2: -3.751638

Number of increments: 24000

Average of increments: 0.003643

Standard Dev. of increments: 0.258217

Summary statistics for increments:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-5.559364 -0.001731 0.000000 0.003643 0.002094 4.002009

Cogarch(1,1) model: Stationarity conditions are satisfied.

Cogarch(1,1) model: Variance process is positive.

R> plot(res.VG, main = "VG Increments of a COGARCH(1,1) model")

Even in this case we can obtain the COGARCH(1, 1) trajectory using the estimated incre-
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Figure 8: Estimated increments of a VG COGARCH(1, 1) model.
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Figure 9: Simulated sample path of a VG COGARCH(1, 1) model with estimated increments.

ments. The result is shown in Figure 9:

R> traj.VG <- simulate(res.VG)
R> plot(traj.VG, main = paste("estimated COGARCH(1, 1) model driven by",
+ "Variance Gamma process"))
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Figure 10: Simulated sample path of a CP COGARCH(2, 1) model.

COGARCH(2, 1) model
We conclude this section by considering a COGARCH(2, 1) driven by a compound Poisson
process where the jump size is normally distributed.
We define the COGARCH(2, 1) model in yuima using the command lines:

R> param.cp2 <- list(a0 = 0.5, a1 = 0.1, b1 = 1.5, b2 = 0.5, x01 = 2.5,
+ x02 = 0)
R> mod.cp2 <- setCogarch(p = 1, q = 2, work = FALSE,
+ measure = list(intensity = "1", df = list("dnorm(z, 0, 1)")),
+ measure.type = "CP", Cogarch.var = "y", V.var = "v",
+ Latent.var = "x", XinExpr = TRUE)

We simulate a trajectory:

R> samp.cp2 <- setSampling(Terminal = Term, n = num)
R> set.seed(numSeed)
R> sim.cp2 <- simulate(mod.cp2, sampling = samp.cp2,
+ true.parameter = param.cp2, method = "euler")
R> plot(sim.cp2, main = paste("simulated COGARCH(2,1) model driven by",
+ "a Compound Poisson process"))

We estimate the model parameters and recover the underlying Lévy noise increments:

R> res.cp2 <- gmm(yuima = sim.cp2, start = param.cp2, Est.Incr = "Incr")
R> summary(res.cp2)

Two Stages GMM estimation
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Call:
gmm(yuima = sim.cp2, start = param.cp2, Est.Incr = "IncrPar")

Coefficients:
Estimate Std. Error

b2 0.05697643 0.20061075
b1 0.95210334 3.54561358
a1 0.02814250 0.09780875
a0 0.29579029 NA

Log.objFun L2: -3.381407

Number of increments: 24000

Average of increments: -0.001928

Standard Dev. of increments: 0.258788

Summary statistics for increments:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.053593 0.000000 0.000000 -0.001928 0.000000 3.482231

Cogarch(1,2) model: Stationarity conditions are satisfied.

Cogarch(1,2) model: Variance process is positive.

R> plot(res.cp2, main = "Compound Poisson Increment of a COGARCH(2,1) model")

The estimated increments are reported in Figure 11 while Figure 12 shows the COGARCH(2, 1)
sample path built with these increments.

R> traj.cp2 <- simulate(res.cp2)
R> plot(traj.cp2, main = paste("estimated COGARCH(2, 1) model driven",
+ "by a Compound Poisson process"))

6.2. Real data

In this section, we show how to use the yuima package in the estimation of a COGARCH(p, q)
model using real financial time series and we perform a comparison with the GARCH(p, q)
model.
Our dataset is composed by intraday values of the SPX ranging from 09 July 2012 to 01 April
2015 freely downloadable from the http://thebonnotgang.com/ website. In our analysis,
we decide to aggregate the data in order to have observations each five minute and the same
number of observations each day. Aggregation is performed using function aggregatePrice
of the R package highfrequency (Boudt, Cornelissen, and Payseur 2017). This dataset is

http://thebonnotgang.com/
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Figure 11: Increments of a CP COGARCH(2, 1) model.
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Figure 12: Increments of a CP COGARCH(2, 1) model.

stored in the file LogSPX.rda available in the yuima package. Figure 13 shows the behavior
of log prices in the whole period.

R> library("yuima")
R> data("LogSPX", package = "yuima")
R> allObs <- Data$allObs
R> obsinday <- Data$obsinday
R> logdayprice <- Data$logdayprice
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Figure 13: Log prices of the SPX index.

R> dimData <- length(allObs)
R> plot(x = 1:dimData / obsinday, y = allObs,
+ main = "Intraday 5 min Log SPX Index", type = "l", ylab = "Index",
+ xlab = "Times" )

The object Data is a list that contains the five minutes SPX log prices Data$allObs, the
number of observations each day Data$obsinday and the daily log prices Data$logdayprice.
In the following, we study the time dependence of daily log returns from a qualitative point
of view. In Figure 14 we report the autocorrelation function of log returns and of the squared
log returns. As expected, the autocorrelation of squares is higher than those of log returns
suggesting a possible ARCH effect. To be more precise we perform an ARCH LM test proposed
in Engle (1982) and available in the R package FinTS (Graves 2014). The result is shown
below.

R> library("FinTS")
R> logRetDay <- diff(logdayprice)
R> ArchTest(logRetDay, lags = 5)

ARCH LM-test; Null hypothesis: no ARCH effects

data: logRetDay
Chi-squared = 29.55, df = 5, p-value = 1.808e-05

Now we determine the in-sample dataset excluding from the original data the last two weeks
of observations. These two weeks are used for the out-of-sample analysis.

R> dayout <- 5
R> daysout <- obsinday * dayout
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Figure 14: Autocorrelation of log returns and of the squared log returns.

R> Dataout <- allObs[(dimData - daysout + 1):dimData]
R> Datain <- allObs[1:(dimData - daysout)]

We use the estimation procedure explained in Section 4 for obtaining the parameters of a
COGARCH(1, 1) model. The following command lines are used for a complete description of
the model:

R> Cogparam11 <- list(a1 = 1.06e-02, b1 = 1.60e-02, a0 = 0.01, lambda = 1,
+ alpha = sqrt(2), beta = 0, mu = 0, y01 = 0)
R> Cogmodel11 <- setCogarch(p = 1, q = 1,
+ measure = list(df = "rvgamma(z, lambda, alpha, beta, mu)"),
+ measure.type = "code", XinExpr = TRUE)

The in- and out-of-sample data are stored in two objects of class ‘yuima.data’. We build an
object of class ‘yuima’ that is the main argument for function gmm.

R> incr.dataI <- diff(Datain) - mean(diff(Datain))
R> dataI <- setData(as.matrix(cumsum(c(0, incr.dataI))),
+ delta = 1 / obsinday)
R> incr.dataO <- diff(Dataout) - mean(diff(Dataout))
R> dataO <- setData(as.matrix(cumsum(c(0, incr.dataO))),
+ delta = 1 / obsinday)
R> par(mfrow = c(1, 2))
R> plot(dataI, main = "In-Sample Data")
R> plot(dataO, main = "Out-Of-Sample Data")

Figure 15 reports in- and out-of-sample data.
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Figure 15: In- and out-of-sample data.

R> CogYuima11 <- setYuima(data = dataI, model = Cogmodel11)
R> resCog11 <- gmm(yuima = CogYuima11, start = Cogparam11,
+ Est.Incr = "IncrPar")
R> summary(resCog11)

Two Stages GMM estimation

Call:
gmm(yuima = CogYuima11, start = Cogparam11, Est.Incr = "IncrPar")

Coefficients:
Estimate Std. Error

b1 6.760738e-01 0.8974535
a1 4.529468e-01 0.7757128
a0 1.595818e-05 NA
lambda 5.600338e+00 3.0381282
alpha 3.439355e+00 1.0717414
beta -7.844474e-01 0.4758460
mu 7.646354e-01 0.4166521

Log.objFun L2: -3.047445

Number of increments: 52614

Average of increments: -0.000286

Standard Dev. of increments: 0.107909
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-2 log L of increments: 1941.341575

Summary statistics for increments:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.073694 -0.044251 -0.001104 -0.000286 0.045402 3.860247

Cogarch(1,1) model: Stationarity conditions are satisfied.

Cogarch(1,1) model: Variance process is positive.

R> TestStat <- Diagnostic.Cogarch(resCog11)

COGARCH(11) model

The process is strictly stationary
The unconditional first moment of the Variance process exists

the Variance is a positive process

The Lévy measure parameters are unknown and they are estimated using the gmm function
available in yuima where Est.Incr = "IncrPar". Looking to the summary, the mean and
the standard error of daily increments are almost −0.0003 and 0.11, respectively. Moreover,
applying the function Diagnostic.Cogarch to the object resCog11, the estimates identify a
stationary COGARCH(1, 1) model where the variance is a positive process with unconditional
mean.
Applying the plot method to the object resCog11, it is possible to generate Figure 16 that
shows the behavior of the estimated increments of the underlying noise.

R> plot(resCog11, main = "Noise Increments")

Note that the simulate method is also available for objects of class ‘cogarch.est.incr’,
In our exercise, we are able to retrieve the sample path for the COGARCH(1, 1) model,
the variance and the state processes applying the simulate function directly to the object
resCog11. The result is reported in Figure 17 obtained using the following command lines.

R> simCog <- simulate(resCog11)
R> plot(simCog, main = "Real COGARCH(1,1) sample path")

The next step is to verify whether the ARCH effect was removed. We apply the ARCH test
directly to the daily noise increments. Our analysis can be replicated using the following
command lines:

R> Incr.Lall <- resCog11@Incr.Lev
R> Dates <- seq(1, length(Incr.Lall), by = obsinday)
R> dayIncr <- diff(cumsum(Incr.Lall)[Dates])
R> ArchTest(dayIncr, lags = 5)
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Figure 16: Estimated increments of a COGARCH(1, 1) model using SPX data.
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Figure 17: Simulated trajectory of the COGARCH(1, 1) model using increments estimated
from SPX data.

ARCH LM-test; Null hypothesis: no ARCH effects

data: dayIncr
Chi-squared = 6.5531, df = 5, p-value = 0.2561

The value of the p value suggests that the null hypothesis cannot be rejected, i.e., the ARCH
effect was removed. From the in-sample analysis, we can conclude that the COGARCH(1, 1)
seems to be a reasonable model for the considered dataset.
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The out-of-sample analysis is based on the generation of sample paths through Monte Carlo
simulation and the comparison with the observed out-of-sample trajectory. We consider
two different simulation strategies. In the first, the underlying noise is generated from a
variance gamma where the parameters are estimated previously using the gmm function. In
the second approach, we use a subsample of the estimated increments, stored in the slot
resCog11@Incr.Lev, from where we simulate. We remark that in the second approach, we
decide to use the increments only for the last two weeks stored in the in-sample dataset. This
choice is done since the last increments are less influenced from the initial value of the state
process and due to the fact that they are more representative of recent market conditions.
The command lines below are useful for the generation of the sample path by means of both
procedures:

R> mod <- resCog11@yuima@model
R> Incr.L <- Incr.Lall[(length(Incr.Lall) - daysout):length(Incr.Lall)]
R> param <- c(coef(resCog11), y01 = TestStat$meanStateVariable)
R> set.seed(2)
R> samp <- setSampling(Initial = 0, Terminal = dayout, n = obsinday * dayout)
R> nrip <- 1000
R> AllGparam <- matrix(NA, obsinday * dayout, nrip)
R> AllGboot <- matrix(NA, obsinday * dayout, nrip)
R> for (i in 1:nrip) {
+ pos <- as.integer(runif(obsinday * dayout, min = 1,
+ max = length(Incr.L)))
+ trajboot <- simulate(mod, true.parameter = param,
+ Incr.L = as.matrix(Incr.L)[pos, ], samp = samp)
+ traj <- simulate(mod, true.parameter = param, samp = samp)
+ AllGparam[, i] <- traj@data@original.data[, 1]
+ AllGboot[, i] <- trajboot@data@original.data[, 1]
+ }

In Figure 18, we have trajectories generated assuming the underlying Lévy is the estimated
variance gamma on the left hand side while on other side the trajectories are obtained resam-
pling the estimated increments. In both, the bold path is the real data. We conclude this
section with a comparison between the forecasting ability of a COGARCH(1, 1) with that
obtained using the GARCH(1, 1) model where only daily based analysis is possible. Since, as
customary for a discrete time model, the GARCH can be simulated only on a time grid com-
posed by natural numbers. For instance, if we use daily data for the estimation of parameters
in a GARCH(1, 1) model, we can simulate returns with daily (or lower) frequency and then
the generation of high frequency data is not possible.
Here the GARCH(1, 1) model is estimated through function ugarchfit, available in the R
package rugarch (Ghalanos 2015), based on a quasi-maximum likelihood estimation procedure
(see Bollerslev 1986, for more details on the behavior of the corresponding estimators). As
observed at the beginning of this section, the choice of this package is justified from the fact
that, once the GARCH(1, 1) model is estimated, we simulate trajectories resampling from
the estimated increments (as done in the COGARCH(1, 1) case) and we are able to compare
graphically the one and five days distributions obtained with both models.

R> library("rugarch")
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Figure 18: Comparison between simulated COGARCH(1, 1) trajectories and SPX out-of-
sample data.

R> daydatain <- diff(Datain[Dates])
R> spec <- ugarchspec(variance.model = list(model = "sGARCH",
+ garchOrder = c(1, 1)), mean.model = list(armaOrder = c(0, 0),
+ include.mean = FALSE))
R> resGarch <- ugarchfit(data = daydatain, spec = spec)
R> coef(resGarch)

omega alpha1 beta1
9.482534e-06 1.822243e-01 6.311268e-01

To generate the sample paths for cumulative returns we use function ugarchboot and we
refer to the rugarch documentation for details of these functions

R> set.seed(2)
R> bootp <- ugarchboot(resGarch, method = c("Partial", "Full")[1],
+ n.ahead = 5, n.bootpred = 1000)
R> series <- apply(bootp@fseries, 1, cumsum)

The two generated distributions are reported in Figure 19. On a daily horizon the two
distributions are quite similar while increasing the horizon, for example one week, we observe
a small departure. This fact is confirmed using the qqplot (see Figure 20) function available
in R. The following table reports the quantiles and mean of absolute distance between the
cumulative distribution function for all out-of-sample days.

I day II day III day IV day V day
max 0.08000000 0.09300000 0.10900000 0.08000000 0.10000000
quantile.95 0.06620000 0.06960000 0.10000000 0.06880000 0.09340000
quantile.90 0.03280000 0.06280000 0.09080000 0.05840000 0.07460000
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Figure 19: Simulated distributions for daily and weekly log returns obtained from the esti-
mated increments and parameters of a GARCH(1, 1) and a COGARCH(1, 1) model, where
both are fitted to the SPX data.

mean 0.01303448 0.01975862 0.03034483 0.01706897 0.02513793
quantile.10 0.00100000 0.00200000 0.00180000 0.00100000 0.00200000
quantile.05 0.00100000 0.00140000 0.00100000 0.00100000 0.00140000

7. Conclusion
We proposed a computational scheme for simulation and estimation of a COGARCH(p, q)
model in the yuima package. Two simulation algorithms have been developed. The first is
based on the Euler discretization for the state process while the second uses the solution of its
stochastic differential equation. The COGARCH (p, q) parameters were estimated minimizing
some distance between empirical and theoretical autocorrelations and then estimation of Lévy
increments is possible. The user is allowed to obtain the Lévy measure parameters from the
estimated increments.
We showed also the steps for estimation on real data and performed a comparison with a
GARCH(p, q) model. In the empirical analysis GARCH(p, q) and COGARCH(p, q) produced
similar returns for a one day horizon. The advantage of using the COGARCH(p, q) model
was explicited in the possibility of generating intraday returns even if the model is estimated
on daily data.
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A. Weighting matrix for GMM estimation
Under some regularity conditions (see Newey and McFadden 1994, for a complete discussion),
the GMM estimators are consistent and, for any general positive definite matrix W, their
asymptotic variance-covariance matrix V is:

V = 1
N − d− r + 1

(
D>WD

)−1
D>WSWD

(
D>WD

)−1
.

Matrix D is defined as:

D = E

∂f
(
G

(r)
n , θ

)
∂θ>

 , (41)

while
S = E

[
f
(
G(r)
n , θ

)
f
(
G(r)
n , θ

)>]
. (42)

For the square L2 norm in (35) matrix V becomes:

V = 1
N − d− r + 1

(
D>D

)−1
D>SD

(
D>D

)−1
. (43)

Here we use the continuously updated GMM estimator (see Hansen, Heaton, and Yaron 1996,
for more details) and W is determined simultaneously with the estimates of parameters in
vector θ.
Introducing the function ‖ĝ (θ)‖2Ŵ as the sample counterpart of the quadratic form in (36),
the minimization problem becomes:

min
θ∈Rq+p

‖g (θ)‖2Ŵ = ĝ (θ)> Ŵ (θ) ĝ (θ) ,

where function Ŵ (θ) maps from Rp+q to Rd×d and is defined as:

Ŵ (θ) =
(

1
N − r − d+ 1

N−r−d∑
n=r

f
(
G(r)
n , θ

)
f
(
G(r)
n , θ

)>)−1

. (44)

Observe that Ŵ (θ) is a consistent estimator of matrix S−1 that means

Ŵ (θ) P→
N→+∞

S−1 (45)

and the asymptotic variance-covariance matrix V in (43) becomes:

V = 1
N − r − d+ 1

(
D>S−1D

)−1
. (46)

B. COGARCH(p, q) moments through Teugels martingales
In this appendix we show the calculations for the moments of a stationary COGARCH(p, q)
model and the steps for the derivation of the autocorrelation function of squared returns as
explained in Section 2.
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Hereafter we assume the underlying Lévy process to be symmetric and centered in zero.
All the derivations in this appendix are based on the Teugels martingales (see Nualart and
Schoutens 2000) and Ito’s Lemma for semimartingales.

B.1. Useful results

Teugels martingales

We assume that a càdlàg pure jump Lévy process Lt with finite variation satisfies the condi-
tion:

E
[
ecL1

]
< +∞, ∀c ∈ (−a, a) with a > 0. (47)

We define a process L(k)
t such that:

L
(1)
t := Lt,

L(k) := ∑
0<h≤t (∆Lh)k , k ≥ 2.

(48)

The Teugels martingales are:
L̄kt = Lkt −mkt, k ≥ 1, (49)

where m1 = E [L1] and for k ≥ 2,

mk =
∫
xkdνL (x) . (50)

µ and ρ in Section 2 are respectively m2 and m4 defined in (50).
In particular it is possible to show that3:[

L(k), L
]
t

= L̄
(k+1)
t +mk+1t, k ≥ 1, (51)

or equivalently:
d
[
L(k), L

]
t

= dL̄(k+1)
t +mk+1dt. (52)

Starting from the definition of the quadratic covariation, we have:

[[L,L] , L]r =
∑

0<h≤r
∆ [L,L]h ∆Lh,

[[L,L] , [L,L]]r =
∑

0<h≤r
∆ [L,L]h ∆ [L,L]h ,

3Starting from the definition of covariation for a finite variation process we have:[
L(k), L

]
t

=
∑

0<s≤t

∆L(k)
s ∆Ls,

where
∆L(k)

s =
∑

0<h≤s

∆L
(k)
h −

∑
0<h<s

∆L
(k)
h = (∆Ls)k

and then [
L(k), L

]
t

=
∑

0<s≤t

∆L(k+1)
s .

The relation in (51) is obtained using the Teugels Martingales in (49).
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since ∆ [L,L]h = ∑
0<s≤h (∆Ls)2−

∑
0<s<h (∆Ls)2 = (∆Lh)2 and ∆ [L,L]h = ∑

0<s≤h (∆Ls)2

−
∑

0<s<h (∆Ls)2 = (∆Lh)2 we obtain the following representation using the Teugels martin-
gales and assuming m3 = 0 we obtain:

[[L,L] , L]r =
∑

0<h≤r
(∆Lh)3 = L̄(3)

r ,

[[L,L] , [L,L]]r =
∑

0<h≤r
(∆Lh)4 = L̄(4)

r +m4r. (53)

m1 and m3 are both equal to zero if we consider a symmetric Lévy process centered in zero
and with finite moments.

Stochastic recurrence equations of the state process Yt

The state space process Yt of a COGARCH(p, q) with parameters A,a, a0 and driving Lévy
process Lt can be represented as a stochastic recurrence equation, as shown in Theorem 3.3
in Brockwell et al. (2006):

Yt = Js,tYs +Ks,t, 0 ≥ s ≥ t, (54)

where the sequences {Js,t}0≤s≤t and {Ks,t}0≤s≤t are random matrices q× q and q×1 random
vectors respectively and the distribution of (Js,t,Ks,t) depends only on t − s. Following the
same passages in Brockwell et al. (2006), the expected values are:

E [Js,t] = eÃ(t−s),

E [Ks,t] =
(
I − eÃ(t−s)

) a0m2
bq − a1m2

e1, (55)

where e1 = [1, 0, . . . , 0]>.
Under the stationarity condition in (6), there exists Y∞ for any h ≥ 0 defined as the unique
solution of the random fixed point equation:

Y∞
d= J0,hY∞ +K0,h. (56)

Matrices Js,t and vectors Ks,t are constructed explicitly if Lt is a compound Poisson process.
The coefficients in (54) for general Lévy processes are obtained as a limit of the corresponding
quantities for compound Poisson processes (see Theorem 3.5 in Brockwell et al. 2006, for
explicit formulas).

B.2. First moment of the stationary state process Yt

We derive the first moment of the state process starting from its stationary solution. Under
the assumption that the real part of all eigenvalues of matrix A is negative, we have:

Yu =
∫ u

−∞
eA(u−s)e

(
a0 + a>Ys−

)
d [LL]s . (57)

Apply the Teugels martingales from where we get:

Yu =
∫ u

−∞
eA(u−s)e

(
a0 + a>Ys−

)
dL̄(2)

u +m2

∫ u

−∞
eA(u−s)e

(
a0 + a>Ys−

)
ds. (58)
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Recall that condition (10) ensures E (Yu) = E (Y∞) ∀u. Taking expectation of both sides
in (58) we have:

E (Y∞) = m2

[∫ u

−∞
eA(u−s)ds

]
e
[
a0 + a>E (Y∞)

]
. (59)

We compute the integral in (59) based on the observation that
∫ u
−∞ e

A(u−s)ds =
∫+∞

0 eAydy =
−A−1. We have an analytical formula for the first unconditional moment of the stationary
state process Yt:

E (Y ) = −a0m2
(
A+m2ea>

)−1
e = a0m2

bq − a1m2
e1. (60)

B.3. Covariance of the stationary state process Yt

To determine the stationary covariance of the state process Yt, we introduce matrix Ã :=
A+m2ea>, and the condition for its existence implies that all eigenvalues of Ã have strictly
negative real part (this consequence arises as an application of the Bauer-Fike perturbation
result on eigenvalues).
The first step is to find the stationary solution of process Yt in terms of matrix Ã. We consider
the transformation e−ÃtYt and apply Ito’s Lemma:

de−ÃtYt = −e−Ãt
(
A+m2ea>

)
Yt−dt+ e−ÃtAYt−dt+ e−Ãte

(
a0 + a>Yt

)
d [L,L]t .

Given the initial condition Ys we have:

Yt = eÃ(t−s)Ys −m2

∫ t

s
eÃ(t−u)ea>Yu−du+

∫ t

s
eÃ(t−u)e

(
a0 + a>Yu

)
d [L,L]u (61)

and, under the assumption of negative eigenvalues for Ã, we obtain:

Yt = −m2

∫ t

−∞
eÃ(t−u)ea>Yu−du+

∫ t

−∞
eÃ(t−u)e

(
a0 + a>Yu

)
d [L,L]u . (62)

Consider the transformation Zt = a>Yt and compute Z2
t integrating by parts:

Z2
t = 2

∫ t

−∞
Zu−dZu + [Z,Z]t .

From (62) we have:

Z2
t = −2m2a>

∫ t

−∞
eÃ(t−u)eZ2

u−du+ 2a>
∫ t

−∞
eÃ(t−u)e

(
a0Zu− + Z2

u−

)
d [L,L]u

+
[
a>
∫ .

−∞
eÃ(t−u)e (a0 + Zu−) d [LL]u ,

(∫ .

−∞
eÃ(t−u)e (a0 + Zu−)d [LL]u

)>
a
]
t

= −2m2a>
∫ t

−∞
eÃ(t−u)eZ2

u−du+ 2a>
∫ t

−∞
eÃ(t−u)e

(
a0Zu− + Z2

u−

)
d [L,L]u

+ a>
(∫ t

−∞
eÃ(t−u)e

(
a2

0 + Z2
u− + 2a0Zu−

) (
eÃ(t−u)e

)>
d [[LL]. , [LL].]u

)
a. (63)
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Use (53) in computing the expectation:

E
(
Z2
t

)
= −2m2a>

∫ t

−∞
eÃ(t−u)eE

(
Z2
u−

)
du+ 2m2a>

∫ t

−∞
eÃ(t−u)e

(
a0E (Zu−) + E

(
Z2
u−

))
du

+m4a>
(∫ t

−∞
eÃ(t−u)e

(
a2

0 + E
(
Z2
u−

)
+ 2a0E (Zu−)

) (
eÃ(t−u)e

)>
du
)

a

= 2m2a>
∫ t

−∞
eÃ(t−u)e (a0E (Zu−))du

+m4a>
(∫ t

−∞
eÃ(t−u)e

(
a2

0 + EZ2
u− + 2a0EZu−

) (
eÃ(t−u)e

)>
du
)

a. (64)

Recall that E (Zu) = Z̄ and E
(
Z2
u

)
= Z̄2, ∀u, we obtain:

Z̄2 =
2m2a0Z̄a>

∫ t
−∞ e

Ã(t−u)edu+m4
(
a2

0 + 2a0Z̄
)

a>
(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a(
1−m4a>

(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a
) .

(65)
The stationary variance Zt is computed using formulas in (65) and in (60) and we have:

VAR (Zt) =
2m2a0Z̄a>

∫ t
−∞ e

Ã(t−u)edu(
1−m4a>

(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a
)+

+
m4

(
a2

0 + 2a0Z̄
)

a>
(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a(
1−m4a>

(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a
) − Z̄2

=
2m2a0 (a0m2a1) a>

∫ t
−∞ e

Ã(t−u)edu

(bq − a1m2)
(

1−m4a>
(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a
)+

+
m4

(
a2

0bq + a2
0m2a1

)
a>
(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a

(bq − a1m2)
(

1−m4a>
(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a
) − a2

0m
2
2a

2
1

(bq − a1m2)2

=
m4a

2
0b

2
qa>

(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a

(bq − a1m2)2
(

1−m4a>
(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a
)

+
(
a2

0m
2
2a1
)

(bq − a1m2)
(
a>
∫ t
−∞ e

Ã(t−u)du
)

e− a2
0m

2
2a

2
1

(bq − a1m2)2
(

1−m4a>
(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a
) . (66)

Since (
a>
∫ t

−∞
eÃ(t−u)du

)
e = −a>Ã−1e = a1

(bq − a1m2) , (67)



Journal of Statistical Software 43

we have

VAR [Z] =
m4a

2
0b

2
qa>

(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a

(bq − a1m2)2
(

1−m4a>
(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a
) . (68)

The stationary covariance of Yt is

COV (Yt) =
m4a

2
0b

2
q

(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

(bq − a1m2)2
(

1−m4a>
(∫ t
−∞ e

Ã(t−u)e
(
eÃ(t−u)e

)>
du
)

a
) . (69)

B.4. First two moments of a COGARCH(p, q)
From the definition in (13), we have that:

E
[
G

(r)
t

]
= 0, (70)

since Lt is a zero-mean martingale.

For the computation of E
[(
G

(r)
t

)2
]
, we observe that

E
[(
G

(r)
t

)2
]

= E
[
G2
r

]
.

Apply the integration by parts to G2
r = GrGr and observe that

G2
r = 2

∫ r

0
Gu−dGu + [G,G]r , (71)

where the quadratic variation [G,G]r is defined as:

[G,G]r =
∑

0<h≤r
(∆Gh)2 =

∑
0<h≤r

Vh (∆Lh)2 =
∫ r

0
Vud [LL]u . (72)

Substitute (72) and (52) in (71) we have:

G2
r = 2

∫ r

0
Gu−

√
VudLu +

∫ r

0
VudL̄(2)

u +m2

∫ r

0
Vudu. (73)

Compute the expectation of both sides in (73) we get:

E
[
G2
r

]
= 0 + 0 +m2

∫ r

0
E [Vu] du

= m2

∫ r

0
E [Vu] du. (74)

In order to solve the integral in (74), we need to evaluate the quantity E [Vt]. Under condi-
tion (10), the unconditional stationary mean of the variance process Vt is given by:

E [V∞] = a0 + a>E [Y∞]
= a0 + a0m2

bq − a1m2
a>e1

= a0bq
bq − a1m2

. (75)
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Substituting (75) in (74), we obtain:

E
[
G2
r

]
= m2

∫ r

0

a0bq
bq − a1m2

du

= m2r
a0bq

bq − a1m2
. (76)

B.5. Autocovariance function for the squared COGARCH(p, q)
We derive the covariance between the squared increments of a COGARCH(p, q) model:

COV
[
(Grt )2 ,

(
Grt+h

)2] = E
[
(Grt )2 ,

(
Grt+h

)2]− E
[
(Grt )2

]
E
[(
Grt+h

)2]
. (77)

To compute E
[
(Grt )2 ,

(
Grt+h

)2
]
, we apply the law of iterated expectations:

E
[
(Grt )2 ,

(
Grt+h

)2] = E
[
(Grt )2 E

[(
Grt+h

)2 |Ft ]] . (78)

Consider (71) defined in the interval [t, t+ r] and applying the Teugels martingales we have:

E
[(
Grt+h

)2 |Ft+r ] = E
[
2
∫ t+h+r

t+h
Gu−

√
VudLu +

∫ t+h+r

t+h
VudL̄

(2)
u +m2

∫ t+h+r

t+h
Vudu |Ft+r

]

and consequently:

E
[(
Grt+h

)2 |Ft+r ] = m2

∫ t+h+r

t+h
E [Vu |Ft+r ] du. (79)

Using the stochastic recurrence equation for the representation of the variance Vt, we have
for any s < t:

E [Vt |Fs ] = a0 + a>E [Yt |Fs ]
= a0 + a>E [Js,tYs +Ks,t |Fs ] . (80)

Since the distribution of the pair (Js,t,Ks,t) depends only on the time interval t− s and using
the properties in (55), we write (80) as follows:

E [Vt |Fs ] = a0 + a>E [Js,t] E [Yt |Fs ] + a>E [Ks,t |Fs ]
= a0 + a>eÃ(t−s)E [Yt |Fs ] +

(
I − eÃ(t−s)

) a0m2
bq − a1m2

e1. (81)

Recalling the unconditional mean of the state process in (10) and rearranging the terms
in (81), we have:

E [Vt |Fs ] = a0bq
bq − a1m2

+ a>eÃ(t−s) (Ys − E (Y∞)) . (82)

Substituting (82) into (79), we have:

E
[(
Grt+h

)2 |Ft+r ] = m2
a0bqr

bq − a1m2
+m2a>

[∫ t+h+r

t+h
eÃ(u−t−r)du

]
(Yt+r − E (Y∞)) . (83)
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Using the integration rule for an exponential matrix and making the substitution s = u−t−r,
the integral in (83) becomes:∫ t+h+r

t+h
eÃ(u−t−r)du = eÃhÃ−1

(
I − e−Ãr

)
and (83) can be written as:

E
[(
G

(r)
t+h

)2
|Ft+r

]
= m2

a0bqr

bq − a1m2
+m2a>

[
eÃhÃ−1

(
I − e−Ãr

)]
(Yt+r − E (Y∞)) . (84)

The quantity in (78) can be written using (84) as:

E
[ (
G

(r)
t

)2
,
(
G

(r)
t+h

)2
]

=

= E
[(
G

(r)
t

)2
[
m2

a0bqr

bq − a1m2
+m2a>

[
eÃhÃ−1

(
I − e−Ãr

)]
(Yt+r − E (Y∞))

]]

= m2
a0bqr

bq − a1m2
E
[(
G

(r)
t

)2
]

+m2a>
[
eÃhÃ−1

(
I − e−Ãr

)]
E
[(
G

(r)
t

)2
(Yt+r − E (Y∞))

]
= m2

a0bqr

bq − a1m2
E
[(
G

(r)
t

)2
]

+m2a>
[
eÃhÃ−1

(
I − e−Ãr

)]{
E
[(
G

(r)
t

)2
Yt+r

]
− E

[(
G

(r)
t

)2
]

E (Yt+r)
}
.

Since E (Yt+r) = E (Y∞) is the unconditional first moment of the state process Yt we have:

E
[(
G

(r)
t

)2
,
(
G

(r)
t+h

)2
]

=

= m2
a0bqr

bq − a1m2
E
[(
G

(r)
t

)2
]

+m2a>
[
eÃhÃ−1

(
I − e−Ãr

)]
COV

[
Yt+r

(
G

(r)
t

)2
]
. (85)

The covariance term in (85) is:

COV
[
Yt+r

(
G

(r)
t

)2
]

= COV
[(
Yt+r, 2

∫ t+r

t
Gu−

√
VudLu +

∫ t+r

t
Vud [LL]u

)]
, (86)

and defining the processes

Ht+r :=
∫ t+r

t
Gu−

√
VudLu

Kt+r :=
∫ t+r

t
Vud [LL]u

we have:
COV

[(
G

(r)
t

)2
Yt+r

]
= 2COV [Yt+r, Ht+r] + COV [Yt+r,Kt+r] . (87)
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Observe that E (H) = 0 and finally get that:

COV [Yt+r, Ht+r] = E [Yt+rHt+r] . (88)

The evaluation of the expectation in (88) is based on the integration by parts of the process
Yt+rHt+r:

Yt+rHt+r = YtHt +
∫ t+r

t
Yu−dHu +

∫ t+r

t
Hu−dYu + [H,Y ]t+rt . (89)

By construction Ht = 0 which implies:

Yt+rHt+r =
∫ t+r

t
Yu−Gu−

√
VudLu

+A

∫ t+r

t
Hu−Yu−du+

∫ t+r

t
Hu−e

(
a0 + a>Yu−

)
d [LL]u

+ [H,Y ]t+rt .

From the use of the Teugels martingale L̄(2)
u we get:

Yt+rHt+r =
∫ t+r

t
Yu−Gu−

√
VudLu +A

∫ t+r

t
Hu−Yudu

+A

∫ t+r

t
Hu−e

(
a0 + a>Yu−

)
dL̄(2)

u +m2

∫ t+r

t
Hu−e

(
a0 + a>Yu−

)
du

+
[∫ t+r

t
Yu−Gu−

√
VudLu, A

∫ t+r

t
Yu−du+

∫ t+r

t
e
(
a0 + a>Yu−

)
d [L,L]u

]t+r
t

.

Since HuYu = Hu−Yu = Hu−Yu− almost surely for any fixed u, the expectation is:

E [Yt+rHt+r] = (A+ aqm2I)
∫ t+r

t
E [HuYu] du,

or equivalently:
dE [YuHu] = (A+ aqm2I) E [HuYu]du.

Apply the differentiation operator to the transformation e−(A+aqm2I)uE [YuHu] and observe
that:

d
[
e−(A+aqm2I)uE [YuHu]

]
= e−(A+aqm2I)u (A+ aqm2I) E [HuYu] du

− (A+ aqm2I) e−(A+aqm2I)uE [HuYu]du
= 0du,

whose solution in the interval [t, t+ r] is:

E [Yt+rHt+r]− = E [YtHt] e(A+aqm2I)r

and recalling that Ht = 0 we conclude that E [Yt+rHt+r] = 0.
In conclusion the first term in (87) disappears and then

COV
[
(Grt )2 Yt+r

]
= COV [Yt+r,Kt+r] . (90)
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Using the stochastic differential equation of the process Yt we have:

Vud [LL]u = (dYu −AYu−du)> e. (91)

Use result (91) to compute Kt+r we obtain:

Kt+r :=
∫ t+r

t
Vud [LL]u =

∫ t+r

t
(dYu −AYu−du)> e =

(
Yt+r − Yt −

∫ t+r

t
AYu−du

)>
e.
(92)

The covariance in (90) becomes:

COV
[(
G

(r)
t

)2
Yt+r

]
= COV

[
Yt+r,

(
Yt+r − Yt −

∫ t+r

t
AYu−du

)>
e
]

=
(

COV (Yt+r)− COV (Yt+r, Yt)−
∫ t+r

t
COV (Yt+r, Yu−) du A>

)
e. (93)

Exploiting the stochastic recurrence representation of the stationary state process Yt we are
able to evaluate the quantity COV (Yt+r, Yt) as follows:

COV
(
Yt+r,Yt

)
= E

(
Yt+r, Y

>
t

)
− E (Yt+r) E (Yt)>

= E (Jr) E
(
Yt, Y

>
t

)
+ E (Kr) E

(
Y >t

)
− E (Jr) E (Yt) E (Yt)> − E (Kr) E (Yt)>

= eÃrCOV (Yt) .

The relation in (93) becomes:

COV
[
(Grt )2 Yt+r

]
=
[
COV (Y∞)− eÃrCOV (Y∞)−

(∫ t+r

t
eÃ(t+r−u)du

)
COV (Y∞)A>

]
e.

Solving the integral with the exponential matrix we obtain:

COV
[
(Grt )2 Yt+r

]
=
((
I − eÃr

)
COV (Y∞)− Ã−1

(
eÃr − I

)
COV (Y∞)A>

)
e. (94)

The formula in (85) can be written as:

E
[ (
G

(r)
t

)2
,
(
G

(r)
t+h

)2
]

= m2
a0bqr

bq − a1m2
E
[(
G

(r)
t

)2
]

+m2a>
[
eÃhÃ−1

(
I − e−Ãr

)]
·
((
I − eÃr

)
COV (Y∞)− Ã−1

(
eÃr − I

)
COV (Y∞)A>

)
e. (95)

We derive
E
[(
G

(r)
t

)2
]

E
[(
G

(r)
t+h

)2
]

= m2
a0bqr

bq − a1m2
E

[(
G

(r)
t

)2
]

(96)

and then the autocovariance in (77) can finally be written as:

COV
[
(Grt )2 ,

(
Grt+h

)2] = m2a>
[
eÃhÃ−1

(
I − e−Ãr

)]
·
((
I − eÃr

)
COV (Y∞)− Ã−1

(
eÃr − I

)
COV (Y∞)A>

)
e. (97)
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Using the covariance COV (Y∞) in (69), the relation in (20) is obtained by adding and sub-
tracting the term m2a>

[
eÃhÃ−1

(
I − e−Ãr

)]
Ã−1

(
eÃr − I

)
COV (Y∞)m2ae> in (97).

B.6. Variance of squared COGARCH(p, q)

For the derivation of the variance of
(
G

(r)
t

)2
we start from its definition:

VAR
[(
G

(r)
t

)2
]

= E
[(
G

(r)
t

)4
]
− E

[(
G

(r)
t

)2
]

E
[(
G

(r)
t

)2
]

= E
[(
G

(r)
0

)4
]
− E

[(
G

(r)
0

)2
]

E
[(
G

(r)
0

)2
]

= E
[
G4
r

]
− E2

[
G2
r

]
. (98)

As a first step, we determine the fourth moment of the process Gr. For this reason, we apply
the integration by parts and get:

G4
r = 2

∫ r

0
G2
u−dG2

u +
[
G2, G2

]
r
. (99)

Substituting (71) into (99) we have:

G4
r = 4

∫ r

0
G2
u−Gu−

√
VudLu + 2

∫ r

0
G2
u−Vud [LL]u

+
[
2
∫ .

0
Gu−

√
VudLu +

∫ .

0
Vud [LL]u , 2

∫ .

0
Gu−

√
VudLu +

∫ .

0
Vud [L,L]u

]
r
.

Taking the expectation of both sides and applying the Teugels martingales we have:

E
(
G4
r

)
= 2m2

∫ r

0
E
(
G2
u−Vu

)
du

+ E
{[

2
∫ .

0
Gu−

√
VudLu +

∫ .

0
Vud [LL]u , 2

∫ .

0
Gu−

√
VudLu +

∫ .

0
Vud [L,L]u

]
r

}
. (100)

The quadratic variation in (100) can be written as:

4
∫ r

0
G2
u−Vud [L,L]u + 4

∫ r

0
Gu−Vu

√
Vud [[L,L]L]u +

∫ r

0
V 2
u d [[LL] [LL]]u . (101)

Substituting (53) and (101) in (100) and using the Teugels martingales we have:

E
(
G4
r

)
= 6m2

∫ r

0
E
(
G2
u−Vu

)
du+m4rE

(
V 2
∞

)
(102)

or equivalently

E
(
G4
r

)
= 6m2

∫ r

0

[
COV

(
G2
u−Vu

)
+ E

(
G2
u−

)
E (Vu)

]
du+m4rE

(
V 2
∞

)
. (103)

From (76) and (75), the formula in (103) becomes:

E
(
G4
t

)
= 6m2

∫ r

0
a>COV

(
G2
u−Yu

)
du+m2 [E (V∞)]2 r

2

2 +m4rE
(
V 2
∞

)
. (104)
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Using (94), we get:

E
(
G4
t

)
= 6m2

∫ t

0
a>
((
I − eÃu

)
COV (Y∞)− Ã−1

(
eÃu − I

)
COV (Y∞)A>

)
edu

+m2 [E (V∞)]2
∫ t

0
u du+m4tE

(
V 2
∞

)
,

and by straightforward calculations we have:

E
(
G4
t

)
= 6m2a>

{[
It− Ã−1

(
eÃt − I

)]
COV (Y∞)−

Ã−1
[
Ã−1

(
eÃt − I

)
− It

]
COV (Y∞)A>

}
e +m2 [E (V∞)]2 t

2

2 +m4tE
(
V 2
∞

)
. (105)

Combining (76) and (105) into (98) we get:

VAR
(
G4
t

)
= 6m2a>

{[
It− Ã−1

(
eÃt − I

)]
COV (Y∞)−

Ã−1
[
Ã−1

(
eÃt − I

)
− It

]
COV (Y∞)A>

}
e + 2m2

2 [E (V∞)]2 t2 +m4tE
(
V 2
∞

)
. (106)
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